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Abstract 10 

As the spread of antibiotic resistance outstrips the introduction of new antibiotics, reusing 11 

existing antibiotics is increasingly important. One promising method is to combine antibiotics 12 

with synergistically acting adjuvants that inhibit resistance mechanisms, allowing drug 13 

killing. Here we use co-amoxiclav (a commonly used and clinically important drug 14 

combination of the β-lactam antibiotic amoxicillin and the β-lactamase inhibitor clavulanate) 15 

to ask whether treatment efficacy and resistance evolution can be decoupled via component 16 

dosing modifications.  17 

A simple mathematical model predicts that different ratios of these two drug components can 18 

produce distinct evolutionary responses despite similar initial levels of control. We test this 19 

hypothesis by selecting Escherichia coli with a plasmid encoded β-lactamase (ESBL CTX-20 

M-14), against different proportions of amoxicillin and clavulanate. Consistent with our 21 

theory, we found that while resistance evolved under all conditions, the component ratio 22 

influenced both the rate and mechanism of resistance evolution. Specifically, we found that 23 

the current clinical practice of high amoxicillin to clavulanate ratios resulted in the most rapid 24 

failure due to the evolution of gene dosing responses. Increased plasmid copy number 25 

allowed E. coli to increase β-lactamase dosing and effectively titrate out the low quantities of 26 

clavulanate, restoring amoxicillin resistance. In contrast, we found high clavulanate ratios 27 

were more robust - plasmid copy number did not increase, although porin or efflux resistance 28 

mechanisms were found, as in all drug ratios. Our results indicate that by changing the ratio 29 

of adjuvant to antibiotic we can slow and steer the path of resistance evolution. We therefore 30 

suggest the use of increased clavulanate dosing regimens to slow the rate of resistance 31 

evolution. 32 

  33 
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Introduction 34 

The current crisis of antibiotic resistance is grounded in the ability of bacterial pathogens to 35 

rapidly evolve and adapt to novel stressors like antibiotics (1). Even for the same drug many 36 

different mechanisms confer resistance, often with varying transmissibility, costs and cross 37 

resistances (2-5). Examples of resistance have been found for all currently used antibiotics 38 

and recently clinicians have begun to face pathogens that are resistant to all available 39 

antibiotics (4, 6-8).  40 

In addition to the ongoing search for new drugs (9) , an important direction in combating 41 

resistance is the restoration of antibiotic sensitivity to existing drugs via the use of anti-42 

resistance compounds or  adjuvants (10-12). Antibiotic adjuvants are compounds that do not 43 

affect the growth of bacteria on their own but instead enhance the activity of antibiotics, by 44 

inhibiting mechanisms of resistance (13, 14). For example β-lactamase inhibitors prevent β-45 

lactamase enzymes from degrading β-lactam antibiotics (15). β-lactamse mediated resistance 46 

is especially problematic for gram negative pathogens where these enzymes are common and 47 

disseminated on plasmids (10, 16, 17). Therefore β-lactamase β-lactamase inhibitor (BLBLI) 48 

combinations will restore β-lactam sensitivity of β-lactamse carrying strains without using 49 

novel antibiotics or antibiotics of last resort like carbapenems (16). 50 

In this study we use co-amoxiclav (brand name Augmentin), a BLBLI combination of 51 

amoxicillin and clavulanate (clavulanic acid) that has been widely used globally since 1981 52 

(18), and is on the WHO list of essential medicines (19). Amoxicillin is a bacteriocidal β-53 

lactam antibiotic that inhibits synthesis of the bacterial cell wall (17). The adjuvant 54 

clavulanate has a similar structure to β-lactam antibiotics and thus acts as a competitive 55 

inhibitor of many β-lactamase enzymes (15). By preventing amoxicillin cleavage, clavulanate 56 

suppresses the resistance phenotype making amoxicillin effective again.  57 

Despite the efficacy of BLBLI combinations like co-amoxiclav resistance is still possible, 58 

either by altering the effect of amoxicillin or the effect of clavulanate. Clavulanate is 59 

ineffective against resistance mechanisms that don’t involve β-lactamase expression. Thus 60 

direct resistance to amoxicillin, via altered penicillin binding protein structure, reduced porin 61 

expression or increased efflux pump expression can lead to resistance to co-amoxiclav (15). 62 

On the other hand increased production of lactamase enzymes overwhelm the clavulanate 63 

(20) and inhibitor resistant β-lactamase enzymes reduce (or abolish) the effect of clavulanate 64 

(21). 65 
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Despite the recent interest in adjuvants, the relative doses of the components in adjuvant 66 

therapies have received little attention, with clinical amoxicillin : clavulanate ratios varying 67 

from 2:1 to 16:1 (22), with an increase in amoxicillin more recently to combat resistance 68 

(18). Here we mathematically model and empirically map the synergy between amoxicillin 69 

and clavulanate in controlling a population of β-lactamase expressing E. coli. We then go on 70 

to demonstrate that drug ratios that are equally effective in their initial levels of control can 71 

produce distinct evolutionary responses. Specifically, we find that current high amoxicillin 72 

ratios lead to the rapid evolution of resistance via increased β-lactamase expression, while 73 

low amoxicillin ratios with equal initial efficacy are more robust, and maintain the efficacy of 74 

our meagre pool of β-lactamase inhibitors. We therefore suggest the use of increased 75 

clavulanate dosing regimens to slow the rate of resistance evolution. 76 

77 
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Results 78 

Theoretical model 79 

We begin by developing a simple qualitative model for bacterial population dynamics under 80 

the control of co-amoxiclav as examples of β-lactam antibiotics and a β-lactamase inhibiting 81 

adjuvants (Figure S3, Text S1). The model predicts that the two compounds will show strong 82 

synergy when controlling a pathogen with an existing β-lactamase resistance gene (Figure 83 

1a), as is seen in our experimental results (Figure 1b). We next introduce two resistance 84 

mechanisms to the model, direct (non-β-lactamase) mediated resistance via 85 

target/permeability mutations (fig 2a), or β-lactamase over-production (fig 2b) and ask how 86 

co-amoxiclav component dosing regimens impact selection for each mechanism. 87 

 
Figure 1: A simple model of amoxicillin and clavulanate action captures observed synergy. 

a) We model the dynamics of bacterial density B under the influence of amoxicillin A and 

clavulanate C as !"
!"
= 1 − 𝐵 𝐵 − 𝑐!  𝑧  𝐵 − 𝑐!   𝑑𝐵 − 𝑘  𝐴  𝐵 1 − 𝑑 𝑒!!!!! (for details, see Text 

S1). Carrying capacity of the system is normalised to one, so equilibrium density will be one in 

the absence of drugs and costly resistance. Parameters capture resistance to amoxicillin via β-

lactamase over-production (z=2.3). Other parameters are k=0.3, d=0.1, cd=0.05 and cz=0.005. b) 

This model approximates the synergistic inhibition of growth seen in E. coli expressing a β-

lactamase. The surface is the prediction of the fitted linear model (Figure S1). 
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Figure 2: Drug ratios steer adaptation 
towards different resistance mechanisms in 
a simple model. a) The growth benefit 

𝑘  𝐴  𝑒!!  !!! − 𝑐!  of direct (d, not mediated 
by β-lactamase) resistance to amoxicillin is 
directly proportional to the inhibition of 
bacterial growth in the model (Figure 1a). b) 

The growth benefit !  !   !!!     !!!  !
!!

!!
− 𝑐!    

of increased β-lactamase production (z) can be 
greatly reduced without affecting equilibrium 
density or benefit of direct resistance by 
reducing the proportion of amoxicillin. 
Parameter values are the same as in Figure 1a. 
See Text S1 for derivation of equations. c) We 
chose 5 drug ratios (different coloured lines 
from the origin) which according to our model 
and data (Figure 1) should impose similar 
inhibition (at 3 different strengths of 
inhibition) but select for different resistance 
mechanisms. 

The model predicts that non-β-lactamase resistance mutations will be selected in proportion 89 

to the efficacy of the combination treatment (Figure 2a). In contrast, β-lactamase over-90 

production mutants show a more interesting pattern with maximal selection biased towards 91 
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high amoxicillin ratios (Figure 2b), as increasing β-lactamase can then effectively titrate out 92 

the low concentration of clavulanate and restore the resistance phenotype. 93 

 94 

Adaptation of E. coli to drug environments 95 

We next tested our theoretical predictions by conducting experimental evolution in 15 drug 96 

environments, corresponding to 5 differing amoxicillin proportions (p), each at 3 dose 97 

strengths (V) (Figure 2c). Importantly amoxicillin proportion and dose strength (strength of 98 

inhibition in the ancestor) varied independently across these 15 environments. After 6 99 

passages (approximately 40 generations) each evolved population was assayed for growth in 100 

the drug environment it was selected in. The growth of populations, in their drug 101 

environment, was greater for populations selected in high amoxicillin ratios than those 102 

selected in low amoxicillin ratios (figure 3a), even though the different drug ratios showed 103 

similar efficacy on the ancestral strain (figure S2). The slower adaptation in low amoxicillin 104 

lines can also be seen over the course of the whole selection experiment, which ran for 12 105 

passages (figure S4). 106 

 107 

 
Figure 3: Differences in the adaptation and specificity of resistance for lines evolved under 
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Cross resistance between drug environments 108 

Next, we explored how adaptation to one drug environment influenced growth across distinct 109 

drug environments. The populations that had been selected for 6 passages were exposed to 110 

alternate drug environments along the two variables of drug environment; amoxicillin 111 

proportion and dose strength.  112 

 113 

different amoxicillin proportions (p). a) shows the growth of each population its selective 

environment. Panels b-f) show lines evolved at different amoxicillin proportions (pS) from a) 

low pS to f) high pS (as depicted in figure 2c). Each line was assayed for growth at alternate drug 

ratios (pA). Colours differentiate dose strengths for both selection history and assay (VS = VA). 

Solid curves show predicted values from the fixed effects of a minimal linear mixed effects 

model detailed in table S3. The grey regions indicate the drug ratio that lines were selected 

against, the points in these regions are shown together in panel a). Points are the mean of three 

replicate evolved lines. 
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Figure 4: High dose strengths predispose bacteria to growth at even higher drug doses of the 

same ratio of drugs. Each panel shows lines evolved to dose strengths (VS) of a) 0.7, b) 0.85 and c) 

1, assayed for growth at alternate assay dose strengths (VA). Colours differentiate amoxicillin 

proportion for both selection history and assay (pS = pA). Solid cures show predicted values from 

the fixed effects of a minimal linear mixed effects model detailed in Table S4. The grey bars 

indicate the dose strength (VS) that lines were selected against. Points are the mean of three 

replicate lines. 

By varying assay amoxicillin proportion (pA) we found that adaptation to a high clavulanate 114 

environment (low pS, Figure 3b) leads to poor growth across all drug environments. Even the 115 

complex statistical model presented here underestimates the extent that lines evolved to high 116 

clavulanate treatments have impaired growth. In contrast, adaptation to high amoxicillin 117 
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environment (high pS, Figure 3d-f) leads to performance that is more sensitive to the assay 118 

environment pA, with high growth in the environment of adaptation and poor growth in a low 119 

amoxicillin environment, suggesting higher specificity of resistance in these lines.  120 

By varying the assay dose (VA, Figure 4) we found that adaptation to a higher dose strength 121 

environment (high Vs, Figure 4c) leads to a reduced sensitivity to increasing assay dose 122 

(Figure 4). The lines selected to different drug ratios behave similarly when assay dose 123 

strengths are changed. However, strains evolved at high clavulanate proportions do poorly 124 

against all dose strengths. 125 

Genetic changes during selection 126 

To cast light on the mechanisms of evolved resistance, we sequenced the 15 populations 127 

evolved against high dose strengths of co-amoxiclav. We find a pattern of parallel mutation 128 

of the plasmid copy number repression locus repY (23), predominantly in the lines evolved 129 

against high amoxicillin proportions (Figure 5, Data S1). Mutations affecting porins and 130 

efflux pumps, which prevent access of amoxicillin to the cell wall target (24), are also found 131 

in multiple lines (Figure 5, Data S1) but are not specifically found in lines evolved to high or 132 

low amoxicillin proportions. By using read depth of the plasmid and genome regions to 133 

estimate plasmid copy number we find that lines selected against higher amoxicillin 134 

proportions evolved higher plasmid copy number (Figure 6, β = 2.187, F1,13 = 20.89, p<0.001, 135 

robust to removal of outlying point).  136 
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Figure 5: Populations selected for 6 passages have different mechanisms of co-amoxiclav 

resistance. The table on the left gives detail about the mutations. The frequency of each mutation in 

all sequenced populations is shown on the left. Red indicates that a mutation is at high frequency and 

blue indicates that the mutation is at low frequency or absent. The white box indicates that the 

mutation is present in the population but a frequency is unable to be assigned to it. Mutations are 

identified by their position and prefixed by P or C for plasmid or chromosome respectively. Only 

polymorphic mutations that were found at a frequency equal to or greater than 20% in one or more 

lines are shown. All mutations are listed in the Data S1. 

Position Mutation Change Gene Description

P|553.00 C→A intergenic (–/-57) – / →

repY

–/positive regulator for RepZ translation

P|89,384 IS4 +12 bp coding 

(290-301/438 nt)

pilM ← type IV pilus protein

C|985,674 G→A Q178* (CAG→TAG) ompF ←

←

outer membrane porin 1a (Ia;b;F)

C|985,714 IS1 +9 bp coding 

(484-492/1089 nt)

C|986,140 IS1 +8 bp coding 

(59-66/1089 nt)

C|986,160 IS5 +4 bp coding 

(43-46/1089 nt)

C|986,223 IS2 +5 bp intergenic 

(-18/+581)

ompF ← / 

← asnS

outer membrane porin 1a 

(Ia;b;F)/asparaginyl tRNA synthetase

C|1,298,718 IS5 +4 bp intergenic 

(+250/-485)

ychE → / 

→ oppA

putative inner membrane 

protein/oligopeptide transporter subunit

C|2,844,696 T→G T247P (ACC→CCC) hycD ← hydrogenase 3, membrane subunit

C|3,533,481 G→A T137I (ACC→ATC) envZ ← sensory histidine kinase in 

two-component regulatory system with 

OmpRC|3,533,638 C→T G85R (GGG→AGG) 

C|3,533,640 A→T L84Q (CTG→CAG) 

C|3,860,684 T→G pseudogene 

(943/1617 nt)

glvC ← pseudogene, arbutin specific enzyme IIC 

component of PTS;enzyme; 

C|4,294,083 C→T intergenic 

(+266/+376)

gltP → / 

← yjcO

glutamate/aspartate:proton 

symporter/hypothetical protein

C|4,300,681 T→G T141P (ACC→CCC) mdtO ← membrane translocase (MDR) of MdtNOP

efflux pump, PET family

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 10, 2017. ; https://doi.org/10.1101/217711doi: bioRxiv preprint 

https://doi.org/10.1101/217711
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 6: Plasmid copy number is higher in lines selected at high amoxicillin proportions. The 

copy number of the pCT plasmid in the first second and third replicate populations are denoted by 

squares, circles and triangles respectively. The strength of the red colour represents the sum of the 

proportion of all mutations in the repY promoter. Replicate 2 of the lines evolved at a relative 

amoxicillin proportion of 0.90 could not be quantified for the number of mutations at the repY 

promoter and is coloured black. 

Discussion 137 

In this study we have demonstrated that the synergistic interaction between a β-lactam 138 

antibiotic and a β-lactamase inhibitor (adjuvant) can lead to distinct phenotypic and genomic 139 

paths to resistance evolution in a ratio-dependent manner, with potential consequences for the 140 

sustainable management of adjuvant therapies. Recent work has suggested that the ratio of 141 

drugs used in combination therapies may affect selection for resistance (25-27). However 142 

drug interactions make it difficult to separate the effect of drug ratio from the inhibitory 143 

strength of the treatment, which has a well-established effect on the evolution of drug 144 

resistance (3). We find that low amoxicillin treatments confer weaker selection for resistance 145 

(Figure 3), even when the inhibitory effect of the drug combination on the ancestor is similar. 146 

As expected (3), resistance generally evolves faster when the inhibitory effect is greater 147 
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(figure 3 and 4), however, all lines selected in high clavulanate environments had least 148 

resistance, regardless of inhibitory effect (Figure 3a). 149 

Our mathematical model (Figure 2b and S3) suggests that increased β-lactamase expression 150 

is more strongly selected with high proportions of amoxicillin, because when clavulanate is 151 

not in excess its effect can be titrated out by increasing lactamase expression. On the other 152 

hand selection for direct resistance only depends on the inhibitory strength of the drug 153 

combination, because this is equivalent to the amoxicillin concentration experienced by the 154 

bacterium after some proportion has been broken down by lactamase. Consistent with our 155 

model, we found that lines selected at high amoxicillin proportions grew well in high 156 

amoxicillin environments but poorly in low amoxicillin environments (Figures 3d-f). These 157 

lines had increased plasmid copy number (and thus β-lactamase expression) through parallel 158 

mutations in repY (Figure 5), which protects against amoxicillin but not in the presence of 159 

high levels of clavulanate. On the other hand, lines selected in high clavulanate environments 160 

grew poorly, but consistently across all amoxicillin proportions. These lines only acquired 161 

direct resistance to amoxicillin through parallel mutations affecting porins and efflux pumps, 162 

a resistance mechanism seen across all amoxicillin proportions. This resistance mechanism 163 

provides a benefit independent of amoxicillin proportion, as it only depends on amount of 164 

non-cleaved amoxicillin. In addition to multiple different mutations in genes with similar 165 

functions we find some identical mutations in different lines indicating that specific 166 

mutations may be adaptive as is likely the case for repY mutations. Mock passaged blank 167 

wells showed no evidence of cross contamination. Sequencing of a control evolved line 168 

indicated that it was also polymorphic at chromosome position 4,294,083 suggesting this 169 

polymorphism was present in the ancestral population or is an artefact of our sequence 170 

analysis.  171 

Although the shape of drug interactions have recently been shown to evolve in bacteria (27), 172 

to our knowledge this is the first time that this has been reported for antibiotic adjuvant 173 

combinations, or that these changes have been linked to the mechanisms of drug action. Our 174 

results suggest that dosing regimens with higher amounts of clavulanate will more effectively 175 

slow the evolution of resistance by rendering some resistance types ineffective; specifically 176 

beta-lactamase dose-response mutations will be less able to titrate out the effect of larger 177 

amounts of beta-lactamase inhibitor. Since its introduction the dosage of amoxicillin in co-178 

amoxiclav tablets has increased from 250mg to 875mg, to combat amoxicillin resistance, 179 

however the dosage of clavulanate has remained the same at 125mg. There are many other 180 
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considerations when designing dosing regimens including pharmacokinetics/ 181 

pharmacodynamics and toxicity (although amoxicillin and clavulanate are well tolerated, (28, 182 

29)), but the potential for resistance is increasingly important. Increased β-lactamase 183 

expression is a common resistance mechanism, particularly when plasmid borne (20). 184 

Therefore, we suggest that the amount of clavulanate could be increased to reduce selection 185 

for increased lactamase expression without affecting the fitness of other resistance 186 

mechanisms. This would have the added benefit of reducing selection for plasmid based 187 

resistance, which is both easily mobilised and can increase evolvability (20). 188 

As our supply of antibiotics becomes limited there has been greater interest in extending the 189 

lifetime of antibiotics through combination with adjuvants, and β-lactams are no exception 190 

(9). As antibiotics have been developed for longer than adjuvants we have many β-lactam 191 

antibiotics which could be more effective if combined with an adjuvant but relatively few β-192 

lactamase inhibitors to combine them with (15). Therefore, it has been argued that adjuvants 193 

should be conserved over antibiotics (13), with the antibiotic component of a combination 194 

being replaced when resistance renders it ineffective through direct resistance mechanisms. 195 

Our results with co-amoxiclav suggest that using β-lactamase inhibitors at high 196 

concentrations would do exactly this by steering resistance away from β-lactamase over-197 

expression and towards direct mechanisms of resistance – at which point the β-lactam 198 

component could in principle be replaced. In practice, the potential enrichment of broad-199 

specificity resistance mechanisms will limit the set of replacement options. In general we 200 

argue that our ability to manage infections on both the patient and public health scales will 201 

require greater investment into the evolutionary consequences of existing and potential 202 

treatment regimens. 203 

Methods 204 

Strains and media 205 

Escherichia coli strain MG1655 containing a naturally occurring pCT plasmid (30) and 206 

defective for horizontal transfer due to a mutation in the trbA gene (31) was used as the 207 

ancestor of all selection lines and is henceforth referred to as the ancestor. The strain was 208 

produced in the lab of Dr Ben Raymond (31) and kindly provided. The pCT plasmid is a 209 

large naturally occurring plasmid containing the CTX-M-14 extended spectrum β-lactamase. 210 

The pCT plasmid is stable, however prior to incubation for experimental evolution and 211 

growth dynamics assays the ancestor was grown in the presence of 100µg/ml ampicillin to 212 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 10, 2017. ; https://doi.org/10.1101/217711doi: bioRxiv preprint 

https://doi.org/10.1101/217711
http://creativecommons.org/licenses/by-nc-nd/4.0/


maintain the pCT plasmid. For phenotyping of experimentally evolved strains pre-culture 213 

was without antibiotics to reduce any non-genetic effects of exposure to antibiotic treatment. 214 

Experimental evolution was conducted in a defined minimal medium with the following 215 

recipe. M9 medium base (containing 6.78 mg/ml Na2HPO4, 3 mg/ml KH2PO4, 0.5 mg/ml 216 

NaCl and 1 mg/ml NH4Cl) supplemented with 1mM MgSO4, 0.1mM CaCl2, 0.4% (v/v) 217 

glycerol, 0.02% casamino acids, 0.5µg/ml thiamine and Hutners trace elements (32) at 1X 218 

concentration. Initial checkerboard assays were conducted in Luria Bertani (LB) broth.  219 

Clavulanate (in the form of potassium clavulanate, Fluca analytical) and amoxicillin (LKT 220 

laboratories) were supplied in powdered forms, stored at 4oC and used to make stocks in 221 

deionised water. These stocks were stored at 4oC according to manufacturer's instructions, 222 

liquid stocks were not kept for longer than 14 days to minimise degradation of the 223 

compounds. 224 

To test antibiotic sensitivity of the ancestral strain the ancestor was grown for 22 hours in LB 225 

broth in the presence of increasing clavulanate and amoxicillin, at all possible combinations 226 

of the two drug concentrations (checkerboard assay, Figures 1b and S1). From these 5 227 

different ratios of amoxicillin and clavulanate, as well as associated iso-inhibitory doses were 228 

identified for each ratio. These were tested in minimal medium to confirm that growth was 229 

not significantly affected by drug ratio, but was affected by the strength of the drug dose 230 

(figure S2). The chosen concentrations and relationships between them are shown in Figure 231 

2c.  232 

Experimental evolution 233 

To test its ability to adapt to different drug doses, E coli was selected against varying drug 234 

regimens defined by the relative proportion of amoxicillin (p Selection, ps) and dose strength 235 

(Vs), as in figure 2c. A mid exponential culture the ancestor was washed and diluted in 236 

minimal medium. This was aliquotted into 48 wells in the centre of a 96 well plate, which 237 

were then made up to a final volume of 200µl by adding reconstituted clavulanate and 238 

amoxicillin, starting densities were OD = 0.01. Experimental evolution lines were set up 239 

corresponding to 5 drug ratios at 3 different strengths, plus one line which was not exposed to 240 

drugs, each replicated 3 times (48 independent lines), plus 3 replicate sterile wells with no 241 

drugs (which were still passaged). Plates were incubated statically at 37oC for 22 hours for 242 

each passage. After each growth cycle wells were mixed using a pipette to re-suspend any 243 

clumps of bacteria. The optical density of the wells was then measured and used to transfer 244 
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cells to a fresh microwell plate so that each line started at an OD (600nm) of 0.01. 245 

Experimental evolution was performed for 12 passages (corresponding to approximately 84 246 

generations). Lines were frozen every 3 passages by adding 100µl of a 1:1 LB:glycerol 247 

mixture to the remaining culture after the transfer had been performed, these were then frozen 248 

at -80oC. 249 

Measuring cross resistance between drug environments 250 

Although final density was measured at the end of each passage, the growth of frozen 251 

samples was used primarily used to assess variation in resistance phenotypes across 252 

populations (removing long term physiological effects of antibiotic exposure). To assay 253 

evolutionary change in response to drug combinations, for each line the population after 6 254 

passages (chosen because this is when there was most diversity in how lines had adapted to 255 

their environment) was revived by overnight growth in LB. Each line of selection was 256 

assayed for growth in new drug environments (Assay environments, pA, VA). The differing 257 

drug environments that selection lines were assayed against either kept amoxicillin 258 

proportion the same (pA = pS) and varied dose strength (VA) or kept dose strength the same 259 

(VA = VS) and varied amoxicillin proportion (pS). When varying dose strength an increased 260 

dose of 1.15 times the maximum dose was also used (VA=1.15). Otherwise all conditions 261 

were the same, strains were grown in minimal media statically for 22 hours at 37oC and 262 

mixed prior to measuring optical density. 263 

This was a large experiment so selection lines were randomly blocked across the central 264 

wells of nine 96 well plates. Each plate had three blank wells and one well containing each of 265 

the 3 control lines selected in the absence of drugs and assayed in the absence of drugs. There 266 

was small but significant variation in the growth of control lines across plates so OD values 267 

were for each plate were corrected using the growth of controls (in the absence of drugs). pS 268 

is undefined for the control lines (selected without drugs) so these were tested against every 269 

different drug environment. 270 

Statistics 271 

All statistics were performed in R (33). Full models were produced using relevant main 272 

effects and interactions (statistical tables in supplementary information). Fixed effects models 273 

were fitted using the glm function with a Gaussian error distribution and identity link 274 

function. For data sets where multiple measures were taken from each strain, a mixed effects 275 

model was used to take into account the effect of strain as a random effect, this was fitted 276 
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using the lme function in the nlme package (34). As there were many explanatory variables 277 

for this data, 2 models are fitted to 2 subsets of the data. One data set includes all data where 278 

strains are tested for resistance to the same dose strength they are selected against (at varying 279 

drug ratios). This will investigate whether resistance evolved to one drug ratio confers 280 

resistance to other drug ratios. The other set includes all data where strains are tested for 281 

resistance to the same ratio they were selected against (at different dose strengths). This 282 

model investigates whether resistance selected at one dose strength confers resistance to 283 

others. Both these data sets include the 45 data points (one per evolved line) where both ratio 284 

and strength of assay are the same as those for selection (i.e the selection conditions for that 285 

line). 286 

The maximal model was reduced to a minimal model in a stepwise manner. At each step of 287 

model reduction all terms that were not currently included in an interaction were tested for 288 

significance as grounds for including them in a model. Terms were dropped if the result of an 289 

F test (for fixed effects models) or likelihood ratio test (for mixed effects models) comparison 290 

of models with and without the term of interest was not significant at α=0.05 (i.e. accepting 291 

the null hypothesis of no significant effect of the term). At each step only one term could be 292 

dropped so where several effects were non-significant the new model with the lowest AiC 293 

(Akaike information criterion) was chosen as the best model reduction at that step. When no 294 

terms (not included in higher order interactions) could be dropped without a significant effect 295 

this was considered the minimal model. Statistical support for all terms in the minimal 296 

models was assessed as above but through comparison of the minimal model and the minimal 297 

model with the term dropped. Full statistical results are reported in statistical tables in the 298 

supplementary information. 299 

Sequencing and Bioinformatics 300 

To test whether different drug ratios select for different resistance mutations we sequenced 301 

evolved populations selected against the highest dose strengths after 6 passages of 302 

experimental evolution. The ancestral strain and one of the 3 populations evolved in the 303 

absence of drugs was also sequenced. Library preparation and paired end MiSeq sequencing 304 

was performed by Edinburgh genomics. Obtained sequences were aligned to both the 305 

MG1655 reference (35) and the pCT plasmid reference (30) and polymorphisms identified 306 

using breseq in polymorphism mode using default parameters (36). 307 
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