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Abstract 

Multi-omic studies promise the improved characterization of biological processes across molecular 

layers. However, methods for the unsupervised integration of the resulting heterogeneous datasets 

are lacking. We present Multi-Omics Factor Analysis (MOFA), a computational method for 

discovering the principal sources of variation in multi-omic datasets. MOFA infers a set of (hidden) 

factors that capture biological and technical sources of variability. It disentangles axes of 

heterogeneity that are shared across multiple modalities and those specific to individual data 

modalities. The learnt factors enable a variety of downstream analyses, including identification of 

sample subgroups, data imputation, and the detection of outlier samples. We applied MOFA to a 

cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, 

RNA expression, DNA methylation and ex-vivo drug responses. MOFA identified major dimensions 

of disease heterogeneity, including immunoglobulin heavy chain variable region status, trisomy of 

chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In 
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a second application, we used MOFA to analyse single-cell multiomics data, identifying 

coordinated transcriptional and epigenetic changes along cell differentiation. 

 

Introduction 

Technological advances increasingly enable multiple biological layers to be probed in parallel, 

ranging from genome, epigenome, transcriptome, proteome and metabolome to phenome profiling 

(Hasin et al, 2017). Integrative analyses that use information across these data modalities promise 

to deliver more comprehensive insights into the biological systems under study. Motivated by this, 

multi-omic profiling is increasingly applied across biological domains, including cancer biology 

(Cancer Genome Atlas Research Network, 2017; Gerstung et al, 2015; Iorio et al, 2016; Mertins et 

al, 2016), regulatory genomics (Chen et al, 2016), microbiology (Kim et al, 2016) or host-pathogen 

biology (Soderholm et al, 2016). Most recent technological advances have also enabled performing 

multi-omics analyses at the single cell level (Angermueller et al, 2016; Clark et al, 2018; Colomé-

Tatché & Theis, 2018; Guo et al, 2017; Macaulay et al, 2015). A common aim of such applications 

is to characterize heterogeneity between samples, as manifested in one or several of the omic data 

types (Ritchie et al, 2015). Multi-omics profiling is particularly appealing if the relevant axes of 

variation are not known a priori, and hence may be missed by studies that consider a single data 

modality or targeted approaches.  

A basic strategy for the integration of omics data is testing for marginal associations between 

different data modalities. A prominent example is molecular QTL-analysis, where large numbers of 

association tests are performed between individual genetic variants and gene expression levels 

(Consortium, 2015) or epigenetic marks (Chen et al, 2016). While eminently useful for variant 

annotation, such association studies are inherently local and do not provide a coherent global map 

of the molecular differences between samples. A second strategy is the use kernel- or graph-

based methods to combine different data types into a common similarity network between samples 

(Lanckriet et al, 2004; Wang et al, 2014); however, it is difficult to pinpoint the molecular 

determinants of the resulting graph structure. Related to this, there exist generalizations of other 

clustering methods to reconstruct discrete groups of samples based on multiple data modalities 

(Mo et al, 2013; Shen et al, 2009).  

A key challenge that is not sufficiently addressed by these approaches is interpretability. In 

particular, it would be desirable to reconstruct the underlying factors that drive the observed 

variation across samples, similar to the loadings in conventional principal component analysis. 

These could be continuous gradients, discrete clusters, or combinations thereof. Such factors 
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would also help in establishing or explaining associations with external data such as phenotypes or 

clinical covariates. Although factor models that aim to address this have previously been proposed, 

e.g., (Meng et al, 2014; Meng et al, 2016; Singh et al, 2016; Tenenhaus et al, 2014), these 

methods either lack sparsity, which can reduce interpretability, or they require a substantial number 

of parameters to be determined in extensive cross-validation or post hoc. Further challenges faced 

by existing methods are computational scalability to larger datasets, handling of missing values 

and non-Gaussian data modalities, such as binary readouts or count-based traits. 

 

Results 

We present Multi-Omics Factor Analysis (MOFA), a statistical method for integrating multiple 

modalities of omic data in an unsupervised fashion. Intuitively, MOFA can be viewed as a versatile 

and statistically rigorous generalization of principal component analysis (PCA) to multi-omics data. 

Given several data matrices with measurements of multiple ‘omics data types on the same or on 

partially overlapping sets of samples, MOFA infers an interpretable low-dimensional data 

representation in terms of (hidden) factors. These learnt factors represent the driving sources of 

variation across data modalities, thus facilitating the identification of molecular states or subgroups 

of samples. The inferred factor loadings are sparse, thereby facilitating the linkage between the 

factors and its driving molecular features. Importantly, MOFA disentangles to what extent each of 

the factors is unique to a single data modality or is manifested in multiple modalities (Fig. 1), 

thereby identifying links between the different ‘omics layers. Once trained, the model output can be 

used for a range of downstream analyses, including visualisation, clustering and classification of 

samples in the low-dimensional space(s) spanned by the factors as well as automated annotation 

of factors using (gene set) enrichment analysis, the identification of outlier samples and the 

imputation of missing values (Fig. 1). 

Technically, MOFA builds upon the statistical framework of group factor analysis (Bunte et al, 

2016; Khan et al, 2014; Klami et al, 2015; Leppäaho & Kaski, 2017; Virtanen et al, 2012; Zhao et 

al, 2016), which we have adapted to the requirements of multi-omics studies (Methods): (i) fast 

inference based on a variational approximation, (ii) inference of sparse solutions facilitating 

interpretation, (iii) efficient handling of missing values, and (iv) flexible combination of potentially 

different likelihood models for each data modality, which enables integrating diverse data types 

such as binary-, count- and continuous-valued data. The relationship of MOFA to previous 

approaches (Bunte et al, 2016; Hore et al, 2016; Klami et al, 2015; Leppäaho & Kaski, 2017; Mo et 
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al, 2013; Remes et al, 2015; Shen et al, 2009; Virtanen et al, 2012; Zhao et al, 2016) is discussed 

in Methods and Appendix Table S3. 

MOFA is implemented as well-documented open-source software that facilitates a range of 

important downstream analyses, including visualization and automatic characterization of the 

inferred factors (Methods). Taken together, these functionalities provide a powerful and versatile 

tool for disentangling sources of variation in multi-omic studies.  

 

Model validation and comparison on simulated data 

First, to validate MOFA, we simulated data from its generative model, varying the number and the 

likelihood model of different views, the number of latent factors and other parameters (Methods, 

Appendix Table S1). We found that MOFA was able to accurately reconstruct the latent 

dimension, except in settings with large numbers of factors or proportions of missing values 

(Appendix Figure S1). We also found that models with non-Gaussian likelihood models improved 

the fit when simulating binary or count data (Appendix Figure S2 and S3).  

 

We also compared MOFA to two previously reported latent variable models for multi-omics 

integration: GFA (Leppäaho & Kaski, 2017) and iCluster (Mo et al, 2013). Over a range of 

simulations, we observed that GFA and iCluster tended to infer redundant  factors (Appendix 

Figure S4) and were less accurate in recovering patterns of factor activity across views (Appendix 

Figure S5). MOFA is also computationally more efficient than GFA and iCluster (Figure EV1). For 

example, the training on the CLL data, which we consider next, required 45 minutes with MOFA vs. 

34 hours with GFA and 5-6 days with iCluster.  

 

Application to Chronic Lymphocytic Leukaemia 

We applied MOFA to a study of chronic lymphocytic leukaemia (CLL), which combined ex-vivo 

drug response measurements with somatic mutation status, transcriptome profiling and DNA 

methylation assays (Dietrich et al, 2018) (Fig. 2a). Notably, nearly 40% of the 200 samples were 

profiled with some but not all ‘omics types; such a missing value scenario is not uncommon in large 

cohort studies, and MOFA is designed to cope with it (Methods; Appendix Figure S1). MOFA 

was also configured to combine different likelihood models in order to accommodate the 

combination of continuous and discrete data types in this study.  
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MOFA identified 10 factors (minimum explained variance 2% in at least one assay; Methods). 

These were robust to algorithm initialisation as well as subsampling of the data (Appendix Figure 

S6,7). The factors were largely orthogonal, capturing independent sources of variation (Appendix 

Figure S6). Among these, Factors 1 and 2 were active in most assays, indicating broad roles in 

multiple molecular layers (Fig. 2b). In contrast, other factors such as Factor 3 or Factor 5 were 

specific to two data modalities, and Factor 4 was active in a single data modality only. 

Cumulatively, the 10 factors explained 41% of variation in the drug response data, 38% in the 

mRNA data, 24% in the DNA methylation data and 24% in the mutation data (Fig. 2c).  

 

We also trained MOFA when excluding individual views to probe their redundancy, finding that 

factors that were active in multiple assays could still be recovered, while the identification of others 

was dependent on a specific data type (Appendix Figure S8). In comparison to GFA (Leppäaho & 

Kaski, 2017) and iCluster (Mo et al, 2013), MOFA was more consistent in identifying factors across 

random restarts and their cross-assay activity (Appendix Figure S9). 

 

MOFA identifies important clinical markers in CLL and reveals an underappreciated axis of 

variation attributed to oxidative stress. 

As part of the downstream pipeline, MOFA provides different strategies to use the loadings of the 

features on each factor to identify their etiology (Fig. 1). For example, based on the top weights in 

the mutation data, Factor 1 was aligned with the somatic mutation status of the immunoglobulin 

heavy-chain variable region gene (IGHV), while Factor 2 aligned with trisomy of chromosome 12 

(Fig. 2d,e). Thus, MOFA correctly identified two major axes of molecular disease heterogeneity 

and aligned them with two of the most important clinical markers in CLL (Fabbri & Dalla-Favera, 

2016; Zenz et al, 2010) (Fig. 2d,e).  

IGHV status, the marker corresponding to Factor 1, is a surrogate of the differentiation state of the 

tumor’s cell of origin and the level of activation of the B-cell receptor. While in clinical practice this 

axis of variation is generally considered binary (Fabbri & Dalla-Favera, 2016), our results indicate a 

more complex substructure (Fig. 3a, Appendix Figure S10). At the current resolution, this factor 

was consistent with three subgroup models such as proposed by (Oakes et al, 2016; Queiros et al, 

2015) (Appendix Figure S11), although there is suggestive evidence for an underlying continuum. 

MOFA connected this factor to multiple molecular layers (Appendix Figure S12, S13), including 

changes in the expression of genes previously linked to IGHV status (Maloum et al, 2009; Morabito 
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et al, 2015; Plesingerova et al, 2017; Trojani et al, 2012; Vasconcelos et al, 2005) (Fig. 3b,c) and 

with drugs that target kinases in or downstream of the B-cell receptor (Fig. 3d,e).  

 

Despite their clinical importance, the IGHV and the trisomy 12 factors accounted for less than 20% 

of the variance explained by MOFA, suggesting the existence of other sources of heterogeneity. 

One example is Factor 5, which was active in the mRNA and drug response data. Analysis of the 

weights in the mRNA revealed that this factor tagged a set of genes enriched for oxidative stress 

and senescence pathways (Fig. 2f, Figure EV2a), with the top weights corresponding to heat 

shock proteins (HSPs) (Figure EV2b,c), genes that are essential for protein folding and are up-

regulated upon stress conditions (Åkerfelt et al, 2010; Srivastava, 2002). Although genes in HSP 

pathways are upregulated in some cancers and have known roles in tumour cell survival 

(Trachootham et al, 2009), thus far this gene family has received little attention in the context of 

CLL. Consistent with this annotation based on the mRNA data, we observed that the drugs with the 

strongest weights on Factor 5 were associated with response to oxidative stress, such as target 

reactive oxygen species (ROS), DNA damage response and apoptosis (Figure EV2d,e).  

Factor 4 captured 9% of variation in the mRNA data, and gene set enrichment analysis on the 

mRNA loadings suggested etiologies related to immune response pathways and T-cell receptor 

signalling (Fig. 2f), likely due to differences in cell type composition between samples: While the 

samples are comprised mainly of B-cells, Factor 4 revealed a possible contamination with other 

cell types such as T-cells and monocytes (Appendix Figure S14). Factor 3 explained 11% of 

variation in the drug response data capturing differences in the samples’ general level of drug 

sensitivity (Geeleher et al, 2016) (Appendix Figure S15).  

 

MOFA identifies outlier samples and accurately imputes missing values 

Next, we explored the relationship between inferred factors and clinical annotations, which can be 

missing, mis-annotated or inaccurate, since they are frequently based on single markers or 

imperfect surrogates (Westra et al, 2011). Since IGHV status is the major biomarker impacting on 

clinical care, we assessed the consistency between the inferred continuous Factor 1 and this 

binary marker. For 176 out of 200 patients, the MOFA factor was in agreement with the clinical 

IGHV status, and MOFA further allowed for classifying 12 patients that lacked clinically measured 

IGHV status (Figure EV3a,b). Interestingly, MOFA assigned 12 patients to a different group than 

suggested by their clinical IGHV label. Upon inspection of the underlying molecular data, nine of 

these cases showed intermediate molecular signatures, suggesting that they are borderline cases 
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that are not well captured by the binary classification; the remaining three cases were clearly 

discordant (Figure EV3c,d). Additional independent drug response assays as well as whole 

exome sequencing data confirmed that these cases are outliers within their IGHV group (Fig. 

EV3e,f).  

As incomplete data is a common problem in studies that combine multiple high-throughput assays, 

we assessed the ability of MOFA to fill in missing values within assays as well as when entire data 

modalities are missing for some of the samples. For both imputation tasks, MOFA yielded more 

accurate predictions than other established imputation strategies, including imputation by feature-

wise mean, SoftImpute (Mazumder et al, 2010) and a k-nearest neighbour method (Troyanskaya et 

al, 2001) (Figure EV4, Appendix Figure S16), and MOFA was more robust than GFA, especially 

in the case of missing assays (Appendix Figure S17). 

 

Latent factors inferred by MOFA are predictive of clinical outcomes 

Finally, we explored the utility of the latent factors inferred by MOFA as predictors in models of 

clinical outcomes. Three of the 10 factors identified by MOFA were significantly associated with 

time to next treatment (Cox regression, Methods, FDR<1%, Fig. 4a,b): the cell of origin related 

Factor 1, and two Factors, 7 and 8, associated with chemo-immunotherapy treatment prior to 

sample collection. In particular, Factor 7 captures del17p and TP53 mutations as well as 

differences in methylation patterns of oncogenes (Fluhr et al, 2016; Garg et al, 2014) (Appendix 

Figure S18), while Factor 8 is associated with WNT signalling (Appendix Figure S19). 

We also assessed the prediction performance when combining the 10 MOFA factors in a 

multivariate Cox regression model. Notably, this model yielded higher prediction accuracy than 

models using factors derived from conventional PCA (Fig. 4c), individual molecular features 

(Appendix Figure S20) or MOFA factors derived from only a subset of the available data 

modalities (Appendix Figure S8b,d) (assessed using cross-validation, Methods). Notably, the 

predictive value of MOFA factors was similar to clinical covariates (such as Lymphocyte doubling 

time) that are used to guide treatment decisions (Appendix Figure S21). 

 

MOFA reveals coordinated changes in single cells between the transcriptome and the 

epigenome along a differentiation trajectory 

As multi-omic approaches are also beginning to emerge in single cell biology (Angermueller et al, 

2016; Clark et al, 2018; Colomé-Tatché & Theis, 2018; Guo et al, 2017; Macaulay et al, 2015), we 
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investigated the potential of MOFA to disentangle the heterogeneity observed in such studies. We 

applied MOFA to a data set of 87 mouse embryonic stem cells (mESCs), comprising of 16 cells 

cultured in ‘2i’ media, which induces a naive pluripotency state, and 71 serum-grown cells, which 

commits cells to a primed pluripotency state poised for cellular differentiation (Angermueller et al, 

2016). All cells were profiled using single-cell methylation and transcriptome sequencing, which 

provides parallel information of these two molecular layers (Fig. 5a). We applied MOFA to 

disentangle the observed heterogeneity in the transcriptome and the CpG methylation at three 

different genomic contexts: promoters, CpG islands and enhancers.   

MOFA identified 3 factors driving cell-cell heterogeneity (minimum explained variance of 2%, 

Methods): While Factor 1 is shared across all data modalities (7% variance explained in the RNA 

data and between 53% and 72% in the methylation data sets), Factors 2 and 3 are active primarily 

in the RNA data (Fig. 5b,c). Gene loadings revealed that Factor 1 captured the cell’s transition 

from naive to primed pluripotent states, pinpointing markers for naive pluripotency such as 

Rex1/Zpf42, Tbx3, Fbxo15 and Essrb (Mohammed et al, 2017) (Fig. 5d and Figure EV5a). MOFA 

connected these transcriptomic changes to coordinated changes of the genome-wide DNA 

methylation rate across all genomic contexts (Figure EV5b) as previously described both in vitro 

(Angermueller et al, 2016) and in vivo (Auclair et al, 2014). Factor 2 captured a second axis of 

differentiation from the primed pluripotency state to a differentiated state with highest RNA loadings 

for known differentiation markers such as keratins and annexins (Fuchs, 1988) (Fig. 5d and 

Figure EV5c). Finally, Factor 3 captured the cellular detection rate, a known technical covariate 

associated with cell quality (Finak et al, 2015) (Appendix Figure S22).  

Jointly, Factors 1 and 2 captured the entire differentiation trajectory from naive pluripotent cells via 

primed pluripotent cells to differentiated cells, (Fig. 5e), illustrating the importance of learning 

continuous latent factors rather than discrete sample assignments. Multi-omics clustering 

algorithms such as SNF (Wang et al, 2014) or iCluster (Mo et al, 2013; Shen et al, 2009) were only 

capable of distinguishing cellular subpopulations, but not of recovering continuous processes such 

as cell differentiation (Appendix Figure S23). 

 

 

Discussion 

Multi-Omics Factor Analysis (MOFA) is an unsupervised method for decomposing the sources of 

heterogeneity in multi-omics data sets. We applied MOFA to high-dimensional and incomplete 
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multi-omics profiles collected from patient-derived tumour samples and to a multi-omics single-cell 

study of mESCs.  

First, in the CLL study, we demonstrated that our method is able to identify major drivers of 

variation in a clinically and biologically heterogeneous disease. Most notably, our model identified 

previously known clinical markers as well as novel putative molecular drivers of heterogeneity, 

some of which were predictive of clinical outcome. Additionally, since MOFA factors capture 

variations of multiple features and data modalities, inferred factors can help to mitigate assay 

noise, thereby increasing the sensitivity for identifying molecular signatures compared to using 

individual features or assays. Our results also demonstrate that MOFA can leverage information 

from multiple omics layers to accurately impute missing values from sparse profiling datasets and 

guide the detection of outliers, e.g. due to mislabelled samples or sample swaps. 

In a second application, we used MOFA for the analysis of single-cell multi-omics data. This use 

case illustrates  the advantage of learning continuous factors, rather than discrete groups, enabling 

MOFA to recover a differentiation trajectory by combining information from two sparsely profiled 

molecular layers. 

While applications of factor models for integrating different data types were reported previously 

(Akavia et al, 2010; Lanckriet et al, 2004; Mo et al, 2013; Shen et al, 2009), MOFA provides unique 

features (Methods, Appendix Table S3) that enable the interpretable reconstruction of the 

underlying factors and accommodating different data types as well as different patterns of missing 

data. MOFA is available as open source software and includes semi-automated analysis pipelines 

allowing for in-depth characterisations of inferred factors. Taken together, this will foster the 

accessibility of interpretable factor models for a wide range of multi-omics studies. 

Although we have addressed important challenges for multi-omics applications, MOFA is not free 

of limitations. The model is linear, which means that it can miss strongly non-linear relationships 

between features within and across assays (Buettner & Theis, 2012). Non-linear extensions of 

MOFA may address this, although as with any models in high-dimensional spaces, there will be 

trade-offs between model complexity, computational efficiency and interpretability (Damianou et al, 

2016). A related area of work is to incorporate prior information on the relationships between 

individual features. For example, future extensions could make use of pathway databases within 

each omic type (Buettner et al, 2017) or priors that reflect relationships given by the ‘dogma of 

molecular biology’. In addition, new likelihoods and noise models could expand the value of MOFA 

in data sets with specific statistical properties that hamper the application of traditional statistical 
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methods, including zero-inflated data (i.e. scRNA-seq (Pierson & Yau, 2015)) or binomial 

distributed data (i.e. splicing events (Huang & Sanguinetti, 2017)). Finally, while here we use 

approximate Bayesian inference and focus attention on the resulting point estimates of inferred 

factors, future extensions could attempt a more comprehensive Bayesian treatment that 

propagates evidence strength and estimation uncertainties to diagnostics and downstream 

analyses. 

 

Methods 

Code availability 

An open source implementation of MOFA is available from https://github.com/bioFAM/MOFA. 

Code to reproduce all the analyses presented is available at https://github.com/PMBio/MOFA_CLL. 

 

Data availability 

The CLL data were obtained from (Dietrich et al, 2018) and are available at the European 

Genome-phenome Archive under accession EGAS00001001746 and data tables as R objects can 

be downloaded from http://pace.embl.de/. The single-cell data were obtained from (Angermueller 

et al, 2016) and are available in the Gene Expression Omnibus under accession GSE74535. All 

data used are contained within the MOFA vignettes and can be downloaded as from 

https://github.com/bioFAM/MOFA. 

 

Multi-Omic Factor Analysis Model 

Starting from M data matrices Y1,..,YM of dimensions N × Dm, where N is the number of samples 

and Dm the number of features in data matrix m, MOFA decomposes these matrices as 

  Ym = ZWmT  + 𝜺m m=1,...,M.  (1) 

Here, Z denotes the factor matrix (common for all data matrices) and Wm denote the weight 

matrices for each data matrix m (also referred to as view m in the following). 𝜺m denotes the view-

specific residual noise term, with its form depending on the specifics of the data-type (see section 

Noise model).  

The model is formulated in a probabilistic Bayesian framework, where we place prior distributions 

on all unobserved variables of the model (see plate diagram in Appendix Figure S24), i.e. the 

factors Z, the weight matrices Wm and the parameters of the residual noise term. In particular, we 
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use a standard normal prior for the factors Z and employ sparsity priors for the weight matrices 

(see next section).  

 

Model regularization  

An appropriate regularization of the weight matrices is essential for the model’s ability to 

disentangle variation across data sets and yield interpretable factors. MOFA uses a two-level 

regularization: The first level encourages view- and factor-wise sparsity, thereby allowing to directly 

identify which factor is active in which view. The second level encourages feature-wise sparsity, 

thereby typically resulting in a small number of features with active weights. To encode these 

sparsity levels we combine an Automatic Relevance Determination prior for the first type of the 

sparsity with a spike-and-slab prior for the second. For amenable inference we model the spike-

and-slab prior by parameterizing the weights as a product of a Bernoulli distributed random 

variable and a normally distributed random variable: 𝑊 = 𝑆�̂�, where 𝑠𝑑𝑘
𝑚  ∼ Ber(𝜃𝑘

𝑚) and �̂�𝑑𝑘
𝑚  ∼

𝑁(0,1/𝛼𝑘
𝑚). To automatically learn the appropriate level of regularization for each factor and view, 

we use uninformative conjugate prior on 𝛼𝑘
𝑚, which controls the strength of factor k in view m, and 

on 𝜃𝑘
𝑚, which determines the feature-wise sparsity level of factor k in view m (see Appendix 

Supplementary Methods, section 2 for details). 

 

Noise model 

MOFA supports the combination of different noise models to integrate diverse data types, including 

continuous, binary and count data. A standard noise model for continuous data is the Gaussian 

noise model assuming iid heteroscedastic residuals 𝜺m, i.e. 𝜀𝑛𝑑
𝑚 ∼ 𝑁(0,1/𝜏𝑑

𝑚) , with Gamma prior on 

the precision parameters 𝜏𝑑
𝑚.  MOFA further supports noise models for binary and count data that 

are not appropriately modelled using a Gaussian likelihood. In the current version, MOFA models 

count data using a Poisson model and binary data by using a Bernoulli model. Here, the model 

likelihood is given by 𝑦𝑛𝑑
𝑚 ∼ 𝑃𝑜𝑖(𝜆(𝑧𝑛:𝑤𝑑:

𝑇 )) and 𝑦𝑛𝑑
𝑚 ∼ Ber(𝜎(𝑧𝑛:𝑤𝑑:

𝑇 )), respectively, where 𝜆(𝑥) =

log(1 + 𝑒𝑥) and 𝜎 denotes the logistic function 𝜎(𝑥) = (1 + 𝑒−𝑥)−1. 

 

Parameter inference 

For scalability, we make use of a variational framework with a mean-field approximation (Blei et al, 

2017). The key idea is to approximate the intractable posterior distribution from a simpler class of 

distributions by minimizing the Kullback-Leibler divergence to the posterior, or equivalently, 

maximizing the evidence lower bound (ELBO). Convergence of the algorithm can be monitored 
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based on the ELBO. A short introduction to variational inference and details on the algorithm for 

MOFA can be found in Appendix Supplementary Methods, section 3. To enable an efficient 

inference for non-Gaussian likelihoods we employ variational lower bounds on the likelihood 

(Jaakkola & Jordan, 2000; Seeger & Bouchard, 2012) (see Appendix Supplementary Methods, 

section 4). 

 

Model training and selection 

An important part of the training is the determination of the number of factors. Factors are 

automatically inactivated by the model with help of the ARD prior as described in Model 

regularization. In practice, factors are pruned during training using a minimum fraction of variance 

explained threshold that needs to be specified by the user. Alternatively, the user can fix the 

number of factors and the minimum variance criterion is ignored. In the analyses presented we 

initialised the models with K=25 factors and they were pruned during training using a threshold of 

variance explained of 2%. For details on the implementation as well as practical considerations for 

training and choice of the threshold parameter refer to Appendix Supplementary Methods, 

section 5.  

While the inferred factors are robust under different initializations (e.g. Appendix Figure S6c,d) 

the optimization landscape is non-convex and the algorithm is not guaranteed to identify a global 

optimum. Results presented here are based on 10-25 random restarts, selecting the model with 

the highest ELBO (e.g. Appendix Figure S6b). 

 

Downstream analysis for factor interpretation and annotation 

As part of MOFA we provide the R package MOFAtools, containing a semi-automated pipeline for 

the characterisation and interpretation of the latent factors. In all downstream analyses we use the 

expectations of the model components under the posterior distributions inferred by the variational 

framework. 

The first step, after a model has been trained, is to disentangle the variation explained by each 

factor in each view. To this end, we compute the fraction of total variance explained (R2) by factor k 

in view m as 

𝑅𝑚,𝑘
2 =  1 − (∑ 𝑦𝑛𝑑

𝑚
𝑛,𝑑 − 𝑧𝑛𝑘𝑤𝑘𝑑

𝑚  − 𝜇𝑑
𝑚)2 /(∑ 𝑦𝑛𝑑

𝑚
𝑛,𝑑 − 𝜇𝑑

𝑚)2     

as well as the fraction of variance explained per view taking into account all factors 

𝑅𝑚
2 =  1 − (∑ 𝑦𝑛𝑑

𝑚
𝑛,𝑑 − ∑ 𝑧𝑛𝑘𝑤𝑘𝑑

𝑚
𝑘  − 𝜇𝑑

𝑚)2 /(∑ 𝑦𝑛𝑑
𝑚

𝑛,𝑑 − 𝜇𝑑
𝑚)2     
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Here, 𝜇𝑑
𝑚 denotes the feature-wise mean. Subsequently, each factor is characterised by three 

complementary analyses: 

1. Ordination of the samples in factor space: Visualise a low-dimensional representation of 

the main drivers of sample heterogeneity. 

2. Inspection of top features with largest weight: The loadings can give insights into the 

biological process underlying the heterogeneity captured by a latent factor. Due to scale 

differences between assays, the weights of different views are not directly comparable. For 

simplicity, we scale each weight vector by its absolute value. 

3. Feature set enrichment analysis: We combine the signal from functionally related sets of 

features (e.g., gene sets) to derive a feature-set based annotation. By default, we use a 

parametric t-test comparing the means of the foreground set (the weights of features that 

belong to a set G) and the background set (the weights of features that do not belong to the 

set G), similar to (Frost et al, 2015).  

 

Relationship to existing methods 

MOFA builds upon the statistical framework of group factor analysis (Bunte et al, 2016; Khan et al, 

2014; Klami et al, 2015; Leppäaho & Kaski, 2017; Virtanen et al, 2012; Zhao et al, 2016) and 

shares components of the iCluster methods (Mo et al, 2013; Shen et al, 2009) as shown in 

Appendix Table S3. Here we describe the connections in more detail: 

iCluster: In contrast to MOFA, iCluster uses in a each view the same extent of regularization for all 

factors, which may be sufficient for the purpose of clustering (the primary application of iCluster), 

however it results in a reduced ability for distinguishing factors that drive variation in distinct 

subsets of views (Appendix Figure S5). Additionally, unlike MOFA and GFA, iCluster does not 

handle missing values and is computationally demanding (Figure EV1), as it requires re-fitting the 

model for a large range of different penalty parameters and choices of the model dimension. 

Group factor analysis: While the underlying model of MOFA is closely connect to the most recent 

GFA implementation (Leppäaho & Kaski, 2017), GFA is restricted to Gaussian observation noise. 

In terms of implementation, MOFA adds a burn-in period during training without sparsity 

constraints to avoid early splitting of factors and actively drops factors below the variance threshold 

as described in Model training and selection. In contrast, GFA directly uses sparsity constraints 

from the beginning and maintains all factors that have non-zero weights. In terms of inference, 
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MOFA is implemented using a variational approach while GFA uses a Gibbs sampling scheme. In 

terms of scalability (Figure EV1), both methods are linear in the model’s parameters. The higher 

intercept and slope for GFA is mainly driven by the presence of missing values in the data. This, 

together with the inability to drop factors (Appendix Figure S4) renders GFA considerably slower 

in applications to real data.  

 

Details on the simulation studies 

Model validation 

To validate MOFA we simulated data from the generative model for a varying number of views 

(M=1,3,...,21), features (D=100,500,…,10000), factors (K=5,10,...,60), missing values (from 0% to 

90%) as well as for non-Gaussian likelihoods (Poisson, Bernoulli) (see Appendix Table S1 for 

simulation parameters). We assessed the ability of MOFA to recover the true number of factors in 

the different settings across 10 realizations for every configuration. All trials were started with a 

high number of factors (K=100), and inactive factors were pruned as described in the Model 

training and selection section. 

Model comparison 

To compare MOFA with other approaches we simulated data from the generative model with 

Ktrue=10 factors, M=3 views, N=100 samples, D=5,000 features each and 5% missing values 

(missing at random). For each of the three views we used a different likelihood model: continuous 

data was simulated with a Gaussian distribution, binary data with a Bernoulli distribution and count 

data with a Poisson distribution. Except for the non-Gaussian likelihood extension, both methods 

share the same underlying generative model, which ensures a fair comparison. We fit ten 

realization of the MOFA and GFA models starting with Kinitial=20 factors, and let the method learn 

the true number of factors. To assess scalability, the same simulation setting was used varying one 

of the simulation parameters at a time (number of factors K, number of features D, number of 

samples N and number of views M, all Gaussian). To compare the ability to reconstruct factor 

activity patterns we simulated data from the generative model for Ktrue=10 and Ktrue=15 factors (M, 

N, D as before, no missing values, only Gaussian views), where factors were set to either active or 

inactive in a specific view by sampling the parameter 𝛼𝑘
𝑚 from {1,103}. Appendix Table S1 shows 

in more detail the simulation parameters used in each setting. 
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Details on the CLL analysis   

Data processing 

The data was obtained from (Dietrich et al, 2018) where details on the data generation and 

processing can be found. Briefly, the data consist of somatic mutations (combination of targeted 

and whole exome sequencing), RNA expression (RNA-Seq), DNA methylation (Illumina arrays) 

and ex-vivo drug response screens (ATP-based CellTiter Glo assay). For the training of MOFA we 

included 62 drug response measurements (excluding NSC 74859 and bortezomib due to bad 

quality) at five concentrations each (D=310) with a threshold at 1.1 to remove outliers. Mutations 

were considered if present in at least 3 samples (D=69). Low counts from RNAseq data were 

filtered out and the data was normalized using the estimateSizeFactors and 

varianceStabilizingTransformation function of DESeq2 (Love et al, 2014). For training we used the 

top D=5000 most variable mRNAs after exclusion of genes from the Y chromosome. Methylation 

data was transformed to M-values and we extracted the top 1% most variable CpG sites excluding 

sex chromosomes (D=4248). We included patients diagnosed with CLL and having data in at least 

two views into the MOFA model leading to a total of N=200 samples. 

     

Model training and selection     

We trained MOFA on the data for 25 random initializations with a variance threshold of 2% and 

selected a model for downstream analysis as described in Model training and selection. 

        

Gene set enrichment analysis 

Gene set enrichment analysis was performed on the Reactome gene sets (Fabregat et al, 2015) as 

described above. Resulting p-values are adjusted for multiple testing on each factor using 

Benjamini-Hochberg (Benjamini & Hochberg, 1995) procedure to control the false discovery rate at 

1%. 

 

Imputation 

To compare imputation performance, we trained MOFA on the subset of samples with all 

measurements (N=121) and masked at random either single values or all measurements for given 

samples in the drug response. After model training the masked values were imputed directly from 

the model equation (1) and the accuracy was assessed in terms of mean squared error on the true 

(masked) values. For both settings we fixed the number of factors in MOFA to K=10. To investigate 
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the dependence on K for imputation and compare to GFA we re-ran the same masking 

experiments varying K=1,...,20. 

 

Survival Analysis 

Associations of the inferred factors to clinical outcome were assessed using patients’ time to next 

treatment as response variable in a Cox model on all samples having this information, i.e. N=174 

of which 96 are uncensored cases. For univariate associations (as shown in Figure 4a, Appendix 

Figure S21) we scaled all predictors to ensure comparability of the hazard ratios and we rotated 

factors, which are rotational invariant, such that their Hazard ratio is greater or equal to 1. To 

investigate the predictive power of different datasets, we used a multivariate Cox model and 

compared Harrell's C-index of predictions in a stratified 5-fold cross-validation scheme. As 

predictors we included the top 10 principal components on the data of each single view, a 

concatenated data set ('all') as well as the ten MOFA factors. Missing values in a view were 

imputed by the feature-wise mean. In a second set of models we used the complete set of all 

features in a view with a ridge penalty in the Cox model as implemented in the R package glmnet. 

For the Kaplan-Meier plots an optimal cut-point on each factor was determined to define the two 

groups using the maximally selected rank statistics as implemented in the R package survminer 

with p-values based on a Log-Rank test between the resulting groups. 

 

Details on the scMT analysis 

The data were obtained from (Angermueller et al, 2016), where details on the data generation and 

pre-processing can be found. Briefly for each CpG site we calculated a binary methylation rate 

from the ratio of methylated read counts to total read counts. RNA expression data were 

normalised using (Lun et al, 2016). To fit MOFA, we considered the top 5000 most variable genes 

with a maximum dropout of 90%, and the top 5000 most variable CpG sites with a minimum 

coverage of 10% across cells. Model selection was performed as described for the CLL data and  

factors were inactivated below a minimum explained variance of 2%. For the clustering analysis 

using SNF and iCluster, the optimal number of clusters was selected using BIC criterion. 
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Figure legends 

Figure 1 | Multi-Omics Factor Analysis: model overview and downstream analyses. 

(a) Model overview: MOFA takes an arbitrary number of M data matrices as input (Y1,..., YM), one 

or more from each data modality, with co-occurrent samples but features that are in general 

unrelated and that differ in numbers. MOFA decomposes these matrices into a matrix of factors, Z, 

for each sample and M weight matrices, one for each data modality (loadings W 1,.., WM). White 

cells in the weight matrices correspond to zeros, i.e. inactive features, whereas the cross symbol in 

the data matrices denote missing values. (b) The fitted MOFA model can be queried for different 

downstream analyses, including (i) variance decomposition, assessing the proportion of variance 

explained by each factor in each data modality, (ii) semi-automated factor annotation based on the 

inspection of loadings and gene set enrichment analysis, (iii) visualization of the samples in the 

factor space and (iv) imputation of missing values, including missing assays. 

  

 

Figure 2 | Application of MOFA to a study of chronic lymphocytic leukaemia. 

(a) Study overview and data types. Data modalities are shown in different rows (D = number of 

features) and samples in columns, with missing samples shown using grey bars. (b) Proportion of 

total variance explained (R2) by individual factors for each assay and (c) cumulative proportion of 

total variance explained. (d) Absolute loadings of the top features of Factors 1 and 2 in the 

Mutations data. (e) Visualisation of samples using Factors 1 and 2. The colors denote the IGHV 

status of the tumors; symbol shape and color tone indicate chromosome 12 trisomy status. (f) 

Number of enriched Reactome gene sets per factor based on the gene expression data (FDR< 

1%). The colors denote categories of related pathways defined as in Appendix Table S2.  

  

 

Figure 3 | Characterization of the inferred factor associated to the differentiation state of the 

cell of origin. (a) Beeswarm plot with Factor 1 values for each sample with colors corresponding 

to three clusters found by 3-means clustering with low factor values (LZ), intermediate factor 

values (IZ) and high factor values (HZ). (b) Absolute loadings for the genes with the largest 

absolute weights in the mRNA data. Plus or minus symbols on the right indicate the sign of the 

loading. Genes highlighted in orange were previously described as prognostic markers in CLL and 

associated with IGHV status (Maloum et al, 2009; Morabito et al, 2015; Plesingerova et al, 2017; 

Trojani et al, 2012; Vasconcelos et al, 2005). (c) Heatmap of gene expression values for genes 
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with the largest weights as in b. (d) Absolute loadings of the drugs with the largest weights, 

annotated by target category. (e) Drug response curves for two of the drugs, stratified by the 

clusters as in a.   

 

 

Figure 4 | Relationship between clinical data and latent factors. 

(a) Association of MOFA factors to time to next treatment using a univariate Cox models. Error 

bars denote 95% confidence intervals. Numbers on the right denote p-values for each predictor. 

(b) Kaplan-Meier plots measuring time to next treatment for the individual MOFA factors. The cut-

points on each factor were chosen using maximally selected rank statistics(Hothorn & Lausen, 

2003), and p-values were calculated using a Log-rank test on the resulting groups. (c) Prediction 

accuracy of time to treatment using multivariate Cox regression trained using the 10 factors 

derived using MOFA, as well using the first 10 components obtained from PCA applied to the 

corresponding single data modalities and the full dataset (assessed on hold-out data). Shown are 

average values of Harrell’s C index from 5-fold cross-validation. Error bars denote standard error of 

the mean.  

 

 

Figure 5 | Application of MOFA to a single-cell multi-omics study. 

(a) Study overview and data types. Data modalities are shown in different rows (D = number of 

features) and samples in columns, with missing samples shown using grey bars. (b) Fraction of the 

total variance explained (R2) by individual factors for each data modality and (c) cumulative 

proportion of total variance explained. (d) Absolute loadings of Factor 1 (bottom) and Factor 2 (top) 

in the mRNA data. Labeled genes in Factor 1 are known markers of pluripotency (Mohammed et 

al, 2017) and  genes labeled in Factor 2 are known differentiation markers (Fuchs, 1988).(e) 

Scatterplot of Factors 1 and 2. Colors denote culture conditions. The grey arrow illustrates the 

differentiation trajectory from naive pluripotent cells via primed pluripotent cells to differentiated 

cells.   
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Expanded View Figure legends 

 

Expanded View Figure 1 | Scalability of MOFA, GFA and iCluster. Time required for model 

training for GFA (red), MOFA (blue) and iCluster (green) as a function of number of factors K, 

number of features D, number of samples N and number of views M. Baseline parameters were 

M=3, K=10, D=1000 and N=100 and 5% missing values. Shown are average time across 10 trials, 

error bars denote standard deviation. iCluster is only shown for the lowest M as all other settings 

require on average more than 200 minutes for training.  

 

Expanded View Figure 2 | Characterization of Factor 5 (oxidative stress response factor) in 

the CLL data. (a) Beeswarm plot of Factor 5. Colors denote the expression of TNF, an 

inflammatory stress marker. (b) Gene set enrichment for the top Reactome pathways in the mRNA 

data (t-test, Methods). (c) Heatmap of gene expression values for the six genes with largest 

loading. Samples are ordered by their factor values. (d) Scaled loadings for the top drugs with the 

largest loading, annotated by target category. (e) Heatmap of drug response values for the top 

three drugs with largest loading. 

 

Expanded View Figure 3 | Prediction of IGHV status based on Factor 1 in the CLL data and 

validation on outlier cases on independent assays. (a)  Beeswarm plot of Factor 1 with colours 

denoting agreement between predicted and clinical labels as in (b). (b) Pie chart showing total 

numbers for agreement of imputed labels with clinical label. (c) Sample-to-sample correlation 

matrix based on drug response data. (d) Sample-to-sample correlation matrix based on 

methylation data. (e) Drug response to ONO-4509 (not included in the training data): Boxplots for 

the viability values in response to ONO-4509. The three outlier samples are shown in the middle, 

on the left and right the viabilities of the other M-CLL and U-CLL samples are shown, respectively. 

The panels show different drug concentrations tested. (b) Whole exome sequencing data on IGHV 

genes (not included in the training data): the number of mutations found on IGHV genes using 

whole exome sequencing is shown on the y-axis, separately for U-CLL and M-CLL samples. The 

three outlier samples are labelled. 
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Expanded View Figure 4 | Imputation of missing values in the drug response assay of the 

CLL data. Considered were MOFA, SoftImpute, imputation by feature-wise mean (Mean) and k-

nearest neighbour (kNN). Shown are averages of the mean squared error (MSE) across 15 

imputation experiments for increasing fractions of missing data, considering (a) values missing at 

random and (b) entire assay missing for samples at random. Error bars denote plus or minus two 

standard error. 

 

Expanded View Figure 5 | Transcriptomic and epigenetic changes associated with Factor 1 

in the scMT data. (a) RNA expression changes for the top 20 genes with largest weight on Factor 

1. (b) DNA methylation rate changes for the top 20 CpG sites with largest weight. Shown is a non-

linear loess regression model fit per CpG site. (c) RNA expression changes for the top 20 genes 

with largest weight on Factor 2.  
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