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ABSTRACT: Over half of the human genome is comprised of transposable elements 

(TE). TE have been implicated in cancer pathogenesis. Despite large-scale studies of the 

transcriptome in cancer, a comprehensive look at TE expression investigating its 

relationship to various mutations and its role in predicting prognosis has not been 

performed. We characterized TE expression in 178 adult acute myeloid leukemia (AML) 

patients using transcriptome data from The Cancer Genome Atlas (TCGA). We identified 

significant dysregulation of TE, with distinct patterns of TE expression correlated to 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/217299doi: bioRxiv preprint 

https://doi.org/10.1101/217299
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

specific mutations and distinct coding gene networks. TP53 mutated AML had a unique 

TE expression signature and was associated with significantly suppressed expression of 

TE and various classes of non-coding RNA. We identified 17 candidate prognostic TE 

transcripts that can classify AML subtypes as either high or low risk. These 17 TE were 

able to further sub-stratify low risk AML (based on mutational profile and coding gene 

expression) into favorable and unfavorable prognostic categories. The expression 

signature of the 17 TE was able to predict prognosis in an independent cohort of 284 

pediatric AML patients, and was also able to predict time to relapse in an independent 

dataset of relapsed adult cases. This first comprehensive study of TE expression in AML 

demonstrates that TE expression can be used as a biomarker for predicting prognosis in 

AML and also provides novel insights into the biology of TP53 mutated AML. Studies 

characterizing its role in other cancers are warranted. 

 

INTRODUCTION:  

Approximately 50% of the genome is comprised of transposable elements (TE), 

including satellites, long interspersed nuclear elements (LINE), short interspersed nuclear 

elements (SINE), DNA/RNA transposons, long-terminal repeats (LTR) including 

endogenous retroviruses (ERV), and rRNA 1. Despite large-scale studies of genome and 

transcriptome over the last decade, the importance of TE in health and disease has been a 

focus of intense research only recently. TE have been implicated in the pathogenesis of 

cancer, but studies have mostly focused on their deleterious effects. For example, LINE1 

ORF overexpression has been observed in many cancers suggesting increased 

transpositioning activity 2-4, which can lead to increased genomic plasticity and 
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insertional mutagenesis. Recent analysis of TE expression in large cancer transcriptome 

database demonstrated increased activity of LINE1 in cancer 5. However, evidence for 

direct mutagenic effect of TE in cancer is sparse 6. Moreover, LTR, including ERV, are 

mostly defective in their transpositioning activity. Very recently, beneficial roles of TE 

have been described. Induction of their expression leads to the activation of the viral 

recognition pathway, enabling cancer cell death 7,8. In addition, TE have been shown to 

regulate coding gene function  9-12. Hence, they may indirectly alter the transcriptional 

networks to promote or inhibit cancer cell growth. This suggests that TE have complex 

and diverse functions in cancer, which has largely remained unexplored.   

Prediction of prognosis using coding gene expression in cancer has been widely 

studied and this has resulted in development of many assays for clinical use. 

Hypomethylation of LINE1 element in the genome of cancer has been associated with 

prognosis in cancer 13, however the role of TE expression in predicting prognosis in 

cancer has not been explored comprehensively.  

Regulation of TE expression remains poorly understood. Like coding genes, TE 

can be regulated both transcriptionally and post-transcriptionally 14. Epigenetic 

modifications, such as methylation of DNA and histones regulate TE expression, as do 

transcription factors such as ATRX, P53, and SIRT6 15-17. However, the identification of 

transcriptional circuits and the cofactors involved in TE regulation remains incomplete.  

The role of coding gene mutations in the alteration of gene network is well 

known, providing valuable information on the regulation of coding genes by genes 

mutated in cancer. However, how mutations affect transcription of TE has not been well 

characterized. By understanding the changes in TE expression with respect to specific 
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mutations in cancer, we can gain novel insight into how TE expression is regulated by the 

genes that are mutated in cancer. 

In this study, we performed a comprehensive analysis of the expression of TE in 

acute myeloid leukemia (AML) transcriptome. We analyzed the mutation specific 

alterations in expression of TE and characterized their expression pattern to 

transcriptional networks. We identified a TE expression signature that predicts prognosis 

in AML, paving way for the development of novel biomarkers for prognostication in 

AML. 

 

RESULTS:  

Mutation specific dysregulation of TE expression in AML: Mutations in AML are 

associated with distinct alterations in the expression of coding genes 18, which provides 

insight into gene regulation. In order to investigate the effect of mutations on the 

expression of TE and identify possible mechanism for regulation of TE in the context of 

AML, we investigated the relationship between specific mutations and expression of TE 

in AML.  We analyzed the transcriptome from 178 AML patients in the cancer genome 

atlas (TCGA) using Arkas 19, an RNA sequence analysis pipeline that provides detailed 

annotation information for TE and ENSEMBL non-TE (non-TE) transcripts.  The non-TE 

includes protein-coding genes, pseudogenes, long non-coding RNA (lncRNA), and short 

non-coding RNA.   

The TE and non-TE were normalized together using voom15 log2 counts per 

million (CPM) expression.  We used the multivariate empirical Bayesian linear model to 

study the effect of various mutations on the expression of TE 18. For this, we used the 
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mutational status of 178 AML patients as independent predictors and TE expression as 

response.   Hierarchical filtering, coupled with Benjamini-Hochberg (BH) false discovery 

rate (FDR) q.value threshold of 0.05, identified the total number of significantly (BH 

q.value ≤0.05) altered expression of TE transcripts (AE-TE) with respect to each 

mutation.  TP53 mutation was associated with the most number (49) of AE-TE, with 40 

showing down regulation (Figure 1A).  This was followed by NPM1 mutation (36), with 

20 showing down regulation. Mutations in Cohesin complex (SMC1A, STAG2, SMC3) 

were associated with the 3rd most number of AE-TE, with SMC1A mutation being 

associated with 28 AE-TE (mostly exhibiting down regulation). RUNX1, inv (16) and 

MLL gene rearrangement were mostly associated with up regulation of TE.  Although 

methylation has been shown to regulate the expression of TE 7,8,17, DNMT3A and TET2 

mutations instead showed the lowest number of AE-TE.   

TE biotypes exhibited specific alteration patterns with respect to mutational status 

(Figure 1B and 1C). LINE1 and ERVK were mostly down regulated with respect to 

mutations, whereas ERV3 and ERV1 exhibited up-regulation. ERVL showed both up and 

down regulation with respect to mutational status.  Further, specific TE biotypes such as 

ERV1, ERVL, and L1 predominantly exhibited down-regulation with respect to TP53 

mutation, and up-regulation with respect to MLL. partner rearrangement. These findings 

demonstrate a non-uniform regulation pattern of the expression of various TE transcripts 

and biotype predicted by mutation status, suggesting that that the common mutations in 

AML are associated with a distinct pattern of alteration in TE expression. 
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Correlating the transcript network with the expression of TE:  Regulation of TE 

expression and its downstream effects are not fully understood. TE are key regulators of 

coding gene expression 1,9,10,12,20. They are known to activate the interferon pathway, 

induce DNA breaks and DNA damage response. Distinct TE transcripts possibly mediate 

these varied effects. In order to gain insight into this, we correlated the normalized 

expression of TE biotypes with transcript networks. For this, the similarly expressed non-

TE transcripts were grouped together, forming transcript modules 21  (Y-axis in Figure 2).  

These modules were then correlated with the expression of specific TE biotypes (X-axis 

in Figure 2).  The number of non-TE transcripts that were altered in expression within 

each module, predicted by various mutations was measured. Mutations with high total 

number of significant altered expression of non-TE for each module were depicted (left 

column of Y-axis).  This 3-way correlation matrix provided detailed information on the 

association between mutations, transcript networks, and the expression of various TE 

biotypes in AML. 

We observed that the TE biotypes formed distinct clusters based on its association 

with non-TE transcript modules, indicating diversity among TE biotypes. L1 was 

clustered furthest from ERV biotypes.  Diversity was also observed among various ERV 

biotypes. For instance, the distinct sub-clusters that contained ERV1 held large distance 

from ERV3, ERVL and ERVK, indicating distinct association patterns. Though these 

findings do not prove direct functional relationship between TE biotypes and the 

transcript networks, they support diverse functionality of each TE subtype.  
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Transcript network analysis in TP53 mutated AML exhibits unique signature: TP53 

was associated with the most alteration in the expression of non-TE transcripts in the 

most number of transcript modules (Figure 2). Interestingly, TP53 was also associated 

with the highest number of alterations in expression of TE transcripts and non-TE (Figure 

1A and Supplement Figure 1).  In order to gain further insight into the association 

between non-TE network and TE in TP53 mutated AML, we generated a TP53 mutation 

specific network analysis (Figure 3A) using significantly altered non-TE (AE-non-TE) 

(Supplement Figure 1A) and AE-TE (Figure 1A) with respect to TP53 mutation.  TP53 

mutation was associated with 6809 AE-non-TE and 40 AE-TE (BH q.value ≤0.05, 

minimum absolute log-fold-change 0.2). Of the 6809 TP53 mutation specific AE-non-

TE, 3918 were clustered into 7 modules with sufficient connectivity metrics as previously 

described 21.  The 40 AE-TE were correlated to the principle component (PC) 1 of each 7 

modules in the TP53 specific-network. Interestingly, the module 1 of the TP53 mutation 

specific network predominantly non-protein-coding transcripts: (722 (58%) lncRNAs, 

157 pseudogenes (13%), 45 short non-coding RNAs (sncRNAs) (4%), and only 320 

protein coding (26%)) (supplementary Table 3).  It was also the only down regulated 

module with respect to TP53 mutation.   In comparison, the other 6 modules had far less 

non-protein-coding RNA transcripts: modules 2, 3, 4, 5, and 6 held more than 100 

transcripts in their modules and contained 703 (82.5%), 635 (74.6%), 377 (95%), 377 

(99%) and 134 (95.7%) protein-coding genes respectively.  Module 1 was also the only 

module to be statistically correlated to the TP53 specific AE-TE expression: 37/40 AE-

TE had a statistically significant positive correlation to the expression of module 1.  The 

non-coding RNAs in module 1 (lncRNAs, pseudogenes, and sncRNAs) were down-
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regulated with respect to TP53 mutation and were significantly positively associated with 

the expression of TP53 specific AE-TE.  These two independent analyses associating the 

expression of TE and non-TE, in the context of TP53 mutation, showed a correlative link 

between different non-coding RNA classes with a common pattern of dysregulation in 

TP53 mutated AML.  This may indicate that the mechanism of dysregulation of lncRNA, 

sncRNA and psedogenes may have a common link to the dysregulation of TE expression 

in the context of TP53 mutation in AML.   

We sought to understand if this pattern of dysregulation of non-coding RNA 

classes is unique to TP53 mutation. For this, we tested the rates of dysregulation of 

different classes of non-TE in other mutations and compared it to TP53 mutation (Figure 

3B).   We measured the ratio of transcripts predicted to be down-regulated to that of up-

regulated within each class of non-TE (protein coding, lncRNA, pseudogenes and small-

ncRNA) for each mutation. TP53 mutation, which was associated with the mot 

dysregulation of both TE and non-TE transcripts, exhibited high level of suppression of 

non-coding non-TE classes and activation of protein coding-RNA. Other mutations were 

primarily associated with up-regulation of non-TE non-coding RNA classes.  

These findings indicate that TP53 mutation in AML was associated with a unique 

signature of suppression of various classes of non-protein coding RNA and that this was 

linked with suppression of TE.  

 

Prediction of prognosis using TE expression in AML: Expression of coding genes and 

non-coding genes such as microRNAs has been shown to predict the survival of many 

cancers including AML 22,23. We investigated whether expression of TE can similarly 
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predict prognosis in AML and if so, which TE are associated with good and bad 

prognosis.  For this, the transcriptome from the 178 adult AML patients in TCGA was 

split into training and a test cohort. Initial discovery of the TE associated with prognosis 

was done in the training cohort and subsequently validated in the test cohort. In addition, 

further validation was performed in an independent 284 pediatric AML 24, and 19 

relapsed adult AML 25 patients.  

We randomly selected 99 (55%) patients into a training cohort, which ensured 

proportions of gender and racial factors were well balanced in each split of the full data.  

We performed a forward selection of TE transcripts that predict survival using univariate 

Cox regression.  The forward selection used an unpenalized univariate Cox proportional 

hazard model with a significance threshold of 0.025 and 10-fold cross validation 18.  This 

identified 17 TE associated with prognosis (TEP, Figure 4A). Following the 

identification of the TEP from the training cohort, we tested its ability to predict 

prognosis using the test cohort (79, 45% of patients). A multivariate Cox proportional 

hazard model using the TEP showed that the 17 TE covariates statistically distinguished 

patients with good and poor prognosis (Figure 4B, log-rank test p.value = 0.0041, score 

log-rank test=0.0027, wald test=0.0035).   Upon testing the proportional hazards of the 

Cox model assumption using two-sided p-values, the 17 TEP did not violate the 

proportionality assumption.  A 3-fold cross validation yielded a mean correspondence 

index (c-index)  26-28 of 0.55.   The influence of gender and race was not associated to the 

TEP risk classification groups (gender Chi-square p.value=0.41; race Chi-square 

p.value=0.99). 
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In order to further confirm the validity of the TEP in predicting prognosis in AML, 

we used 2 independent cohorts (284 pediatric AML from TARGET and 19 relapsed adult 

AML). The RNA-seq data from these independent cohorts was processed using Arkas as 

previously described. Using the method described above to generate compound covariate 

summary values for risk estimates using the TEP expression and the corresponding Cox 

hazard estimates, we were able to stratify the 284 pediatric AML patients 24 into good and 

poor risk (Figure 4C, log rank test p.value=4.95e-04, score log rank test p.value = 3.79e-

04, Wald test p.value=4.66e-04, N=284).  Of the 17 TEP identified in TCGA, 16 were 

expressed in TARGET; AluSx1 was not sufficiently expressed in TARGET with at least 

2 read counts across 284 samples.  The log-rank test on the multivariate Cox model using 

the 16 TEP, without compounding hazard estimates into prognostic patient scores, 

revealed a statistically significant difference from a null model (log-rank test p-

value=3.21e-05).  Testing the Cox proportional hazards assumption using two-sided p-

values showed all 16 TEP alpha levels greater than 0.05.  After 5-fold cross validation, 

the c-index average across all folds was 0.584.  This confirmed the validity of the 16 TEP 

in pediatric AML. 

A second independent validation was similarly performed on a cohort of relapsed 

AML 25. Of the 17 TEP identified in TCGA, 14 TEP were expressed in the relapsed 

cohort; LTR33, KER, AluSx1 were not expressed higher than 0.2 across 19 samples.  The 

TEP were able to stratify patients based on the differences in time to relapse between risk 

groups (Figure 4D, log rank test p.value=7.17e-04, score log rank test p.value =2.26e-04, 

Wald test p.value = 2.76e-03, N=19).  The patient risk groups were formed using 

unsupervised clustering of prognostic summary values determined by compounding 
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hazard estimates and corresponding TEP expression values.  Upon examination, the Cox 

proportionality assumption was not violated using two-sided p-values.  After 3-fold cross 

validation yielded a c-index of 0.57.  These results indicated the robustness of the 

discovery algorithm that predicted prognosis using TE expression in a large cancer cohort. 

We then wanted to identify whether the TEP would independently improve the 

mutation based risk stratification, which is a conventionally used biomarker for 

prognostication in AML. For this, we first used a Cox regression analysis and stratified 

the good-risk (N=99) and poor-risk (N=79) AML cohort using only the mutational 

signature.   The TEP were then used to sub-stratify the low-risk and poor-risk groups 

identified by mutational status.  In the mutation based low-risk group TEP signature re-

classified 39/99 patients to a higher-risk group (Figure 5A, log-rank test p.value=0.0233, 

score log rank test p.value =0.0203, Wald test p.value=0.0222, N=99, Cox Assumption 

was not violated using two-sided p-values). After 3-fold cross validation, the c-index 

score of the TEP was on average 0.611 over all folds.  Similarly the TEP expression 

signature was able to independently sub-stratify mutationally ‘good-risk cohort’ into 

better (40/79) and worse (39/79) groups (Figure 5B, log-rank test p.value=1.07e-03, scale 

log-rank test p.value=8.33e-04, wald test p.value=1.11e-03, Cox proportionality was not 

violated using two-sided p.value, 3 fold-CV c-index score=0.503).   

Similarly, TEP were able to independently sub-stratify risk classifications based 

on coding gene expression.  The 17 TEP identified 41 poor risk patients from a pool of 83 

good-risk patients identified based on gene expression (Figure 5C, log-rank test 

p.value=0.0173, scale log-rank test p.value=0.0163, wald test p.value=0.0195, Cox 

proportionality was not violated using two-sided p.value, 3 fold-CV c-index score=0.495).   
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And, the 17 TEP identified 47 better risk patients from a pool of 93 poor-risk patients 

identified by gene expression Figure 5D, (log-rank test p.value=2.61e-03, scale log-rank 

test p.value=2.17e-03, wald test p.value=2.54e-04, Cox proportionality was not violated 

using two-sided p.value, 3 fold-CV c-index score=0.457).  

Overall, this indicated that the TEP could provide robust independent prognostic 

value and can improve the prognostic ability obtained by either mutational status or 

coding gene expression in AML. 

 

Risk-stratification of AML based on a combination of mutations and TEP 

expression: In the previous analysis we showed that both mutations and TEP were able 

to risk-stratify AML patients and that TEP added independent prognostic value to 

mutation based risk stratification. We hence developed a composite model combining the 

prognostic value of both the mutations and TEP expression to understand the relative 

effect of mutations and TEP in various mutational sub-categories of AML. Using 

mutations alone the 178 AML patients were classified in to 99 low-risk and 79 high-risk 

patients. This risk stratification based placed most of DNMT3A, TP53, RUNX and FLT3 

mutations into high-risk category and NPM1 mutation and inv (16) into low risk 

category.   

A PC analysis, using the expression of TEP as vectors, was done on the 178 

patients, identifying patients with and without specific mutations (Figure 6A). This 

provided information on the prognostic weight of the mutations relative to the effect of 

TEP.  The results indicated that certain mutations (TP53, NPM1) showed significant 

deviation of the center to the high-risk 3-dimensional space, suggesting that these 
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mutations by themselves provided strong prognostic value. DNMT3A, FLT3 mutations 

and inv (16) did not show significant deviation from the center, suggesting that patients 

with those mutations comprised of prognositically diverse group. We predicted that in 

these patients TEP would provide significant additional prognostic information. 

TEP expression re-classified 39/99 mutation based low-risk and 40/79 mutation 

based high-risk patients to worse and better prognosis respectively (Figure 6B). We 

analyzed the mutational categories of patients that were reclassified in these groups 

(Figure 6C). In the mutation based high-risk group, a large majority of patients with 

DNMT3A mutations, DNMT3A plus NPM1 mutations, CEBPA mutations, FLT3 plus 

NPM1 mutations (73% of patients with DNMT3A mutation, 67% of DNMT3A plus 

NPM1 mutation, 75% of CEBPA mutation, and 64% of FLT3 plus NPM1 mutations) 

were re-classified as low-risk.  In contrast, the TEP did not have a huge impact on 

reclassifying TP53 mutated patients identified as high-risk based on mutation profile 

(only 20% re-classified as low-risk).  The low-risk patients (identified using mutational 

profile) were similarly reclassified to high-risk patients using TEP. Here, we observed 

that TEP significantly influenced re-classification to a higher-risk group in patients with 

mutations in NRAS, FLT3, MLL rearrangement, and inv (16).  

This suggested that AML patients with DNMT3A, CEBPA or FLT3 mutations, 

MLL gene rearrangement and inv (16) constitute a diverse group with regards to their 

prognosis and that TEP provides significant prognostic information in these common 

subtypes of AML.  The utility of TEP in re-classifying TP53 mutated AML and NPM1 

mutated AML was minimal, suggesting that TP53 mutation and NPM1 mutation 

conferred strong risk prediction irrespective of the TEP expression status.  These findings 
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demonstrate that by incorporating the expression of 17 the TEP with the mutational 

status, we can significantly improve the ability to predict prognosis in AML, particularly 

in patients with common mutations such as DNMT3A, FLT3 mutations, MLL 

reaarnagement and inv (16). 

 

Discussion:  

This is the first study to comprehensively characterize the expression of TE 

expression at the transcript level, demonstrating novel roles for TE in cancer.  Our study 

shows a strong association between TP53 mutation and suppression of TE in AML, a 

novel finding. Expression of TE is known to activate the viral recognition pathway 7,8. 

Though suppression of TP53 has been previously shown to activate the expression of TE 

and induce suicidal interferon response 17, our study showed that TP53 mutated AML 

exhibited features of TE suppression. Interestingly, we also observed suppression of 

several other classes of non-coding RNAs, including lncRNA and pseudogenes, many of 

which form dsRNA, in TP53 mutated AML. The contradiction between prior 

experimental observation and our data in AML patients in vivo could be due to 

evolutionary biology of TP53 mutated AML in patients. Previous studies have shown that 

clonal hematopoiesis with TP53 mutation, without evidence of leukemia, is common in 

elderly individual 29-33. This suggests that in early stages of TP53 mutation, the mutated 

clone is actively cleared as it is formed. Hence it is possible that in the initial stages, 

TP53 mutation leads to activation of TE and immune pathways, enabling clearance of the 

mutated cells. But further clonal evolution in vivo via suppression of dsRNA may lead to 
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escape from immune mediated attack of TP53 mutated cells, a hypothesis that needs to be 

investigated.  

Recent report suggested that TP53 mutated AML are highly susceptible to 

treatment with hypomethylating agents 34, the mechanism of which is not known. In our 

study, despite low expression of TE and other non-coding RNA, the gene network 

analysis showed a moderately activated interferon gene pathway in TP53 mutated AML. 

Hypomethylating agents have been shown to activate the expression of TE and the 

downstream interferon leading to cancer cell death 7,8. We speculate that the specific gene 

expression signature of TP53 mutated AML (low dsRNA with active interferon gene 

expression) may make the leukemic cells vulnerable to further increase in dsRNA 

mediated activation of interferon and its resultant immune mediated cell death.  

Our findings and previous work suggests that TP53 is a regulator of non-coding 

RNAs including TE. The mechanism of its regulation and whether it is a repressor or 

activator of TE expression in vivo in hematopoietic stem/progenitor cells and AML 

leukemic cells needs to be investigated.  

Although methylation has been previously shown to regulate the expression of TE 

7,8, our study showed very little association between mutations in methylation regulating 

genes (DNMT3A and TET2) and dysregulation of TE expression. However, we found 

strong association between mutations in TP53, NPM1, MLL and the cohesion complex. 

Mechanism of how these genes regulate TE expression will be needed. 

In the past, assumptions have been made generalizing the function of TE as a 

whole without understanding their diversity. Most studies describe activated TE 

expression to be advantageous to the cancer cell by promoting genomic instability and 
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hence cellular heterogeneity and cancer progression. However, recent studies describe 

their role in promoting cancer cell death via activating immune pathways 7,8. In this 

context, we recently showed that leukemic stem cells in AML, which are the most 

resilient to treatment, have suppressed TE expression 21. A recent study also reported that 

TE is suppressed in chemotherapy resistant cancer cells 35. Here, we similarly show that 

TE are suppressed in high-risk AML, particularly in TP53 mutated AML. These findings 

demonstrate that suppression of TE in cancer could possibly play a role in cancer 

evolution by protecting the cells from immune mediated cell death.  TE constitutes a 

diverse group of transcripts, which likely have diverse function, as demonstrated by our 

network analysis correlating various TE biotypes with coding gene modules. It is likely 

that some of the TE that have active transpositioning activity promote tumorigenesis, 

whereas most others that have defective transpositioning activity perform other functions 

such as regulating coding gene expression and interferon activation via dsRNA 

recognition pathways.  

This is the first study demonstrating the utility of TE expression signature in 

predicting prognosis in cancer. Our initial discovery using a large adult AML 

transcriptome database was validated in 2 independent cohorts, including a large pediatric 

AML cohort. We have identified 17 TEP transcripts that can be developed as a biomarker 

for prediction of survival in AML. Interestingly, the TE transcripts were associated with 

either good or bad prognosis and TE transcripts within the same class/type were 

associated with varying hazard estimates, indicating diversity within TE. For example, 

LTR34 and MER89, both from ERV1 biotype, were associated with good and bad 
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prognosis, respectively. We predict that individual TE transcripts are as diverse as coding 

genes in their function.  

Piggback derived 5 (PGBD5), which belongs to the DNA element family, was 

recently identified to be associated with poor prognosis in rhabdomyosarcoma 6. PGBD5 

was then shown to exert its effect by interacting with HPRT1 and THAP9 genes. 

Similarly, studying the mechanisms of how the 17 TEP transcripts influences prognoses 

in AML may lead to novel understanding of the disease pathogenesis.  

We propose an improved prognostic algorithm in AML utilizing mutational status 

along with expression of the 17 TEP. TP53 and NPM1 mutations by themselves 

conferred strong prognoses (poor and good respectively) and TEP expression information 

only marginally improved the risk classification. However, TEP significantly improved 

risk stratification of AML patients with mutations such as DNMT3A and FLT3 

mutations. The utility of TEP in risk stratifying AML needs to be further validated using 

orthogonal assays in future studies.  

Large adult and pediatric transcriptome data is available for multiple cancers in 

TCGA and TARGET. This study establishes the analytical foundation to investigate the 

role of TE in other cancers. Whether TEP identified in AML overlaps with other cancer 

and pattern of TE dysregulation observed with TP53 mutated AML is common across 

other cancers with TP53 mutation needs to be investigated.   
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FIGURE LEGENDS: 

Figure 1: Mutation specific alteration in expression of transposable elements. A) The 

number of TE altered in expression (AE-TE) with respect to specific mutation. 

(Hierarchical test FDR <0.05; BH adjusted; n=178).  B) TE biotype dysregulation with 

respect to specific mutation. Statistically significant coefficients total TE biotype sum 

identified from multiple regression per mutation (hierarchical test FDR <0.05; BH 

adjusted; n=178).  C) A summary river-plot of mutation (top axis) specific dysregulation 

of TE biotypes (sum of significant coefficients corresponding to TE) (bottom axis).  Red is 

estimated up-regulated, and blue is estimated down-regulated; purple indicates an even 

mixture of both up and down regulated transcripts corresponding to the respective TE 

biotype (hierarchical test FDR <0.05; BH adjusted; n=178).  
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Figure 2: Correlating the transcript network with the expression of TE. Y-axis 

represents transcript 'modules' constructed by identifying non-TE transcripts based on 

the co-expression patterns. The X-axis denotes canonical TE biotypes used for 

correlating them. The centre figure represents the correlation matrix for the  normalized 

gene 'module' expression and the TE type. * indicates significant associations (pearson 

correlation p.value ≤ 0.05). The panel to the left of the Y-axis depicts significant 

(hierarchical test FDR <0.05; BH adjusted; n=178) average dysregulation of the non-TE 

transcripts corresponding to each network module.  

 

Figure 3. Transcript network analysis in TP53 mutated AML. A) TP53 specific sub-

network construction using TP53 specific dysregulated non-TE transcripts (AE-non-TE) 

to TP53 specific AE-TE.  The modules were constructed using the AE-non-TE as in 

Figure 2. To the left of Y-axis we represent the estimated altered expression of non-TE 

corresponding to each module (adjusted p.value <0.05 ; Benjamini-Hochberg adjustment 

method, minimum logFC 0.2).  The x-axis depicts AE-TE predicted by TP53 

dysregulation (adjusted p.value <0.05 ; Benjamini-Hochberg adjustment method, 

minimum logFC 0.2).  The bottom x-axis annotation bar depicts the estimated altered 

expression per TE.  The cells in the association table indicate the correlation of 

expression between the TE biotype and the PC1 of the module (pearson correlation 

statistical significant (“*”) p.value<0.05). B) Comparison of dysregulation of non-TE 

classes between different mutations. Mutational dysregulation relative proportions per 

non-TE class.  The y-axis depicts each mutation used to measure significant 

dysregulation of non-TE (adjusted p.value <0.05 ; Benjamini-Hochberg adjustment 
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method, minimum logFC 0.5).  The x-axis depicts each class.  The number in each cell 

are the total number of significant altered expressed of the non-TE transcripts in each 

class corresponding to each mutation.  Purple indicates an increase in the proportion of 

suppressed non-TE transcripts for each class.  Green indicates an increase in the 

proportion of activated non-TE transcripts similarly. 

 

Figure 4.  Prediction of prognosis using TE expression in AML. A) TE transcripts 

identified to predict prognosis in AML (TEP). The left table shows favorable risk TEP, 

estimated coefficients, biotype, and hazard estimates used in validation. The right table 

similarly shows unfavorable risk TEP. B) Validation of TEP in TCGA in the test cohort 

(N=79). Blue is favorable risk, and red is unfavorable risk. The y-axis is survival 

probability and the x-axis is time in months of 2 unsupervised patient risk classification 

groups determined by prognostic summary values (log-rank-test, score log-rank-test, and 

Wald test p.value <0.05).  C) Validation of the TEP in pediatric AML using TARGET 

data set (N=284). Unsupervised classification groups were determined (log-rank-test, 

score log-rank-test, and Wald test p.value <0.05, n= 284) using the TEP. D) Validation of 

the TEP in adult relapsed (N=19).  The y-axis represents relapse probability, and the x-

axis time in months.  Unsupervised risk classification was similarly determined (log-

rank-test, score log-rank-test, and Wald test p.value <0.05) using TEP.  

 

 

Figure 5. Utility of TE in improving mutation based and coding gene expression 

based risk prediction. A) Improvement in prognostication of mutation based low-risk 
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group (N=99). Sub-stratification using 17 TEP (log-rank-test, score log-rank-test, and 

Wald test p.value <0.025, n= 99) of this cohort is represented.  Favorable risk is blue, and 

unfavorable risk identified in red. 

B) Improvement in prognostication of mutation based high-risk group (N=79). Similar 

sub-stratification using 17 TEP (log-rank-test, score log-rank-test, and Wald test p.value 

<0.0125).    

C) Improvement in prognostication of coding gene expression based low-risk group 

(N=83). Low risk patients initially identified by using expression of 409 non-TE 

prognosticators were sub-stratified using TEP (log-rank-test, score log-rank-test, and 

Wald test p.value <0.025).  D) Improvement in prognostication of coding gene expression 

based high-risk group (N=95).  High-risk patients initially identified by using expression 

of 409 non-TE prognosticators were sub-stratified using TEP (log-rank-test, score log-

rank-test, and Wald test p.value <0.0125, n= 95).   

 

Figure 6. Risk- stratification of AML using Mutational profile and TEP. A) Principle 

component analysis of 178 AML patients from TCGA using TEP expression. In each 

panel, patients were classified based on presence or absence of the mutation and 

identified the location of the mutated patients in the 3-dimensional space. The solid 

triangles (‘∆’) represent TEP risk categorization of low risk whereas crosses (‘+’) 

indicate high risk. Patients with mutations are represented in the respective color. B) 

AML patients classified based on mutational profile vs. TEP. The mutation based risk 

classification is depicted on the left.  Each bar plot (3) depicts independent risk 

classification models using covariates such as mutations, 17 TEP , or mutations plus 17 
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TEP.  High risk (red) and low risk (blue) represents patient’s risk classification. The TEP 

based risk stratification (right-most) similarly depicts bar plots (3) for each separate 

model.  C) Risk- adjustment based on TEP among different mutations in AML. The top 

panel represents the mutational profile based high risk reclassified using TEP. TEP sub-

stratified 79 patients, red indicates both models preserved high risk classification, blue 

indicates TEP sub-stratified the mutational classification to the TEP adjusted low-risk.  In 

the bottom, we similarly depict the mutation profile of the 99 mutation based low-risk 

cohort sub-stratified by TEP.  Blue indicates that both classification models preserved the 

patient as low-risk, and red indicates the TEP updated the mutational based low-risk to 

high-risk.  Each bar plot depicts the percentage in each preserved/updated risk-

stratification model. 
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Figure 6 
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Similar to Figure 1, we examine the multiple regression measuring the non-TE ~ prevalent mutations.  The prevalent mutations (5% prevalent) are on 
the x-axis.  The y-axis is the total number of dysregulated non-TE for that corresponding mutational predictive factor used in the linear model.  Only 
significant dysregulated non-TE were considered (hierarchical test, FDR method BH with significance level of 0.05). 

Supplement	figure	1	
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The x-axis is the explained variance per repeat elements using the true mutational profile as predictive 
features in a linear model (red).  The y-axis is the density distribution range.  The grey distribution is 
generated after randomly permuting the mutational profile.  We’ve highlighted 3 TEP (table 1) in the 
critical region suggesting that some of the TE prognosticators are statistically altered in expression in 
this model. 

Supplement	figure	2	
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B A 

C 
A)  Survival	analysis	using	17	TEP	in	the	TCGA	test	cohort	(N=79).	

The	y-axis	is	survival	probability.	The	x-axis	is	Gme	in	months.		
Red	is	high	risk	classificaGon,	and	blue	is	low	risk.		The	groups	
were	formed	using	Cox	proporGonal	hazards	model	(without	
applying	any	penalty	in	the	model).		PaGent	unsupervised	groups	
were	formed	using	k-means	clustering	on	the	compound	
prognosGc	summary	values.	

B)  Similar	unpenalized	model	to	A).		Using	Target	(N=284),	using	16	
TEP.	

C)  Similar	unpenalized	to	A).		ValidaGon	in	MSKCC	(N=19)	using	14	
TEP.		The	y-axis	is	relapse	probability.	
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Supplement	figure	4	
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TARGET stratified analysis 

Supplement	figure	5	
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This compares TCGA full model 
(N=178) contrasting the differential 
expression using TEP classifications. 
The high risk patients are compared 
in a differential expression model to 
the low risk patients in a simple 
contrast (High.vs.Low). Differential 
expression was modeled using the 
high risk classification as the design 
matrix, and an empirical Bayes linear 
model was used to determine 
differential expression between TEs 
(adjusted p.value <0.05 , adjust 
method is Benjamini-Hochberg).  We 
observed that for all TE biotypes the 
low risk group has up-regulated 
expression in comparison to the high 
risk cohort. 
  The box plot depicts the log-FC 
values on the y-axis calculated from 
the linear model after FDR filtering.  
The x-axis is the TE biotypes.  We 
modeled all the TE transcripts 
simultaneously, and for each TE 
biotype calculated the summary 
statistics of the logFC computed from 
the model. 

Supplement	figure	6	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/217299doi: bioRxiv preprint 

https://doi.org/10.1101/217299
http://creativecommons.org/licenses/by-nc-nd/4.0/

