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ABSTRACT: Over half of the human genome is comprised of transposable elements
(TE). TE have been implicated in cancer pathogenesis. Despite large-scale studies of the
transcriptome in cancer, a comprehensive look at TE expression investigating its
relationship to various mutations and its role in predicting prognosis has not been
performed. We characterized TE expression in 178 adult acute myeloid leukemia (AML)
patients using transcriptome data from The Cancer Genome Atlas (TCGA). We identified

significant dysregulation of TE, with distinct patterns of TE expression correlated to
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specific mutations and distinct coding gene networks. TP53 mutated AML had a unique
TE expression signature and was associated with significantly suppressed expression of
TE and various classes of non-coding RNA. We identified 17 candidate prognostic TE
transcripts that can classify AML subtypes as either high or low risk. These 17 TE were
able to further sub-gtratify low risk AML (based on mutational profile and coding gene
expression) into favorable and unfavorable prognostic categories. The expression
signature of the 17 TE was able to predict prognosisin an independent cohort of 284
pediatric AML patients, and was also able to predict time to relapse in an independent
dataset of relapsed adult cases. Thisfirst comprehensive study of TE expressionin AML
demonstrates that TE expression can be used as a biomarker for predicting prognosisin
AML and also provides novel insightsinto the biology of TP53 mutated AML. Studies

characterizing its role in other cancers are warranted.

INTRODUCTION:

Approximately 50% of the genome is comprised of transposable elements (TE),
including satellites, long interspersed nuclear elements (LINE), short interspersed nuclear
elements (SINE), DNA/RNA transposons, long-terminal repeats (LTR) including
endogenous retroviruses (ERV), and rRNA *. Despite large-scale studies of genome and
transcriptome over the last decade, the importance of TE in health and disease has been a
focus of intense research only recently. TE have been implicated in the pathogenesis of
cancer, but studies have mostly focused on their deleterious effects. For example, LINEL
ORF overexpression has been observed in many cancers suggesting increased

transpositioning activity >*, which can lead to increased genomic plasticity and
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insertional mutagenesis. Recent analysis of TE expression in large cancer transcriptome
database demonstrated increased activity of LINEL in cancer °. However, evidence for
direct mutagenic effect of TE in cancer is sparse®. Moreover, LTR, including ERV, are
mostly defective in their trangpositioning activity. Very recently, beneficial roles of TE
have been described. Induction of their expression leads to the activation of the vira
recognition pathway, enabling cancer cell death . In addition, TE have been shown to
regulate coding gene function **2. Hence, they may indirectly alter the transcriptional
networks to promote or inhibit cancer cell growth. This suggests that TE have complex
and diverse functions in cancer, which has largely remained unexplored.

Prediction of prognosis using coding gene expression in cancer has been widdy
studied and this has resulted in devel opment of many assays for clinical use.
Hypomethylation of LINE1 element in the genome of cancer has been associated with
prognosisin cancer *, however the role of TE expression in predicting prognosisin
cancer has not been explored comprehensively.

Regulation of TE expression remains poorly understood. Like coding genes, TE
can be regulated both transcriptionally and post-transcriptionally *. Epigenetic
modifications, such as methylation of DNA and histones regulate TE expression, as do
transcription factors such as ATRX, P53, and SIRT6 %", However, the identification of
transcriptional circuits and the cofactors involved in TE regulation remains incompl ete.

Therole of coding gene mutations in the alteration of gene network iswell
known, providing valuable information on the regulation of coding genes by genes
mutated in cancer. However, how mutations affect transcription of TE has not been well

characterized. By understanding the changes in TE expression with respect to specific
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mutations in cancer, we can gain novel insght into how TE expression is regulated by the
genes that are mutated in cancer.

In this study, we performed a comprehensive analysis of the expression of TE in
acute myeloid leukemia (AML) transcriptome. We analyzed the mutation specific
aterations in expression of TE and characterized their expression pattern to
transcriptional networks. We identified a TE expression signature that predicts prognosis
in AML, paving way for the development of novel biomarkers for prognostication in

AML.

RESULTS:
Mutation specific dysregulation of TE expresson in AML: Mutationsin AML are
associated with distinct alterations in the expression of coding genes®®, which provides
insight into gene regulation. In order to investigate the effect of mutations on the
expression of TE and identify possible mechanism for regulation of TE in the context of
AML, weinvestigated the relationship between specific mutations and expression of TE
in AML. We analyzed the transcriptome from 178 AML patientsin the cancer genome
atlas (TCGA) using Arkas™®, an RNA sequence analysis pipeline that provides detailed
annotation information for TE and ENSEMBL non-TE (non-TE) transcripts. The non-TE
includes protein-coding genes, pseudogenes, long non-coding RNA (IncRNA), and short
non-coding RNA.

The TE and non-TE were normalized together using voom™ log, counts per
million (CPM) expression. We used the multivariate empirical Bayesian linear model to

study the effect of various mutations on the expression of TE *. For this, we used the
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mutational status of 178 AML patients asindependent predictors and TE expression as
response. Hierarchical filtering, coupled with Benjamini-Hochberg (BH) false discovery
rate (FDR) g.value threshold of 0.05, identified the total number of significantly (BH
g.value <0.05) altered expression of TE transcripts (AE-TE) with respect to each
mutation. TP53 mutation was associated with the most number (49) of AE-TE, with 40
showing down regulation (Figure 1A). Thiswas followed by NPM 1 mutation (36), with
20 showing down regulation. Mutations in Cohesin complex (SMC1A, STAG2, SMC3)
were associated with the 3" most number of AE-TE, with SMC1A mutation being
associated with 28 AE-TE (mostly exhibiting down regulation). RUNX1, inv (16) and
MLL gene rearrangement were mostly associated with up regulation of TE. Although
methylation has been shown to regulate the expression of TE "®', DNMT3A and TET2
mutations instead showed the lowest number of AE-TE.

TE biotypes exhibited specific alteration patterns with respect to mutational status
(Figure 1B and 1C). LINE1 and ERVK were mostly down regulated with respect to
mutations, whereas ERV 3 and ERV 1 exhibited up-regulation. ERVL showed both up and
down regulation with respect to mutational status. Further, specific TE biotypes such as
ERV1, ERVL, and L1 predominantly exhibited down-regulation with respect to TP53
mutation, and up-regulation with respect to MLL. partner rearrangement. These findings
demonstrate a non-uniform regulation pattern of the expression of various TE transcripts
and biotype predicted by mutation status, suggesting that that the common mutationsin

AML are associated with adistinct pattern of ateration in TE expression.
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Correlating the transcript network with the expression of TE: Regulation of TE
expression and its downstream effects are not fully understood. TE are key regulators of
coding gene expression #9122 They are known to activate the interferon pathway,
induce DNA breaks and DNA damage response. Distinct TE transcripts possibly mediate
these varied effects. In order to gain insight into this, we correlated the normalized
expression of TE biotypes with transcript networks. For this, the smilarly expressed non-
TE transcripts were grouped together, forming transcript modules® (Y-axisin Figure 2).
These modules were then correlated with the expression of specific TE biotypes (X-axis
in Figure 2). The number of non-TE transcripts that were altered in expression within
each module, predicted by various mutations was measured. Mutations with high total
number of significant altered expression of non-TE for each module were depicted (left
column of Y-axis). This 3-way correlation matrix provided detailed information on the
association between mutations, transcript networks, and the expression of various TE
biotypesin AML.

We observed that the TE biotypes formed distinct clusters based on its association
with non-TE transcript modules, indicating diversity among TE biotypes. L1 was
clustered furthest from ERV biotypes. Diversity was also observed among various ERV
biotypes. For instance, the distinct sub-clusters that contained ERV 1 held large distance
from ERV3, ERVL and ERVK, indicating distinct association patterns. Though these
findings do not prove direct functional relationship between TE biotypes and the

transcript networks, they support diverse functionality of each TE subtype.
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Transcript network analysisin TP53 mutated AML exhibitsunique signature: TP53
was associated with the most alteration in the expression of non-TE transcriptsin the
most number of transcript modules (Figure 2). Interestingly, TP53 was also associated
with the highest number of alterations in expression of TE transcripts and non-TE (Figure
1A and Supplement Figure 1). In order to gain further insight into the association
between non-TE network and TE in TP53 mutated AML, we generated a TP53 mutation
specific network analysis (Figure 3A) using significantly altered non-TE (AE-non-TE)
(Supplement Figure 1A) and AE-TE (Figure 1A) with respect to TP53 mutation. TP53
mutation was associated with 6809 AE-non-TE and 40 AE-TE (BH g.value <0.05,
minimum absolute log-fold-change 0.2). Of the 6809 TP53 mutation specific AE-non-
TE, 3918 were clustered into 7 modules with sufficient connectivity metrics as previously
described . The 40 AE-TE were correlated to the principle component (PC) 1 of each 7
modulesin the TP53 specific-network. Interestingly, the module 1 of the TP53 mutation
specific network predominantly non-protein-coding transcripts. (722 (58%) InCRNAS,
157 pseudogenes (13%), 45 short non-coding RNAS (sncRNAS) (4%), and only 320
protein coding (26%)) (supplementary Table 3). It was also the only down regulated
module with respect to TP53 mutation. In comparison, the other 6 modules had far less
non-protein-coding RNA transcripts: modules 2, 3, 4, 5, and 6 held more than 100
transcriptsin their modules and contained 703 (82.5%), 635 (74.6%), 377 (95%), 377
(99%) and 134 (95.7%) protein-coding genes respectively. Module 1 was also the only
module to be statistically correlated to the TP53 specific AE-TE expression: 37/40 AE-
TE had a gtatistically significant positive correlation to the expression of module 1. The

non-coding RNAsin module 1 (IncRNAs, pseudogenes, and sncRNAS) were down-
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regulated with respect to TP53 mutation and were significantly positively associated with
the expression of TP53 specific AE-TE. These two independent analyses associating the
expression of TE and non-TE, in the context of TP53 mutation, showed a correlative link
between different non-coding RNA classes with a common pattern of dysregulation in

TP53 mutated AML. This may indicate that the mechanism of dysregulation of INCRNA,
sncRNA and psedogenes may have acommon link to the dysregulation of TE expression

in the context of TP53 mutation in AML.

We sought to understand if this pattern of dysregulation of non-coding RNA
classesis unique to TP53 mutation. For this, we tested the rates of dysregulation of
different classes of non-TE in other mutations and compared it to TP53 mutation (Figure
3B). We measured the ratio of transcripts predicted to be down-regulated to that of up-
regulated within each class of non-TE (protein coding, INcRNA, pseudogenes and small-
NcRNA) for each mutation. TP53 mutation, which was associated with the mot
dysregulation of both TE and non-TE transcripts, exhibited high level of suppression of
non-coding non-TE classes and activation of protein coding-RNA. Other mutations were

primarily associated with up-regulation of non-TE non-coding RNA classes.

These findings indicate that TP53 mutation in AML was associated with a unique
signature of suppression of various classes of non-protein coding RNA and that this was

linked with suppression of TE.

Prediction of prognosisusing TE expression in AML: Expression of coding genes and
non-coding genes such as microRNAS has been shown to predict the surviva of many

cancers including AML %%, We investigated whether expression of TE can similarly
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predict prognosisin AML and if so, which TE are associated with good and bad
prognosis. For this, the transcriptome from the 178 adult AML patientsin TCGA was
split into training and a test cohort. Initial discovery of the TE associated with prognosis
was done in the training cohort and subsequently validated in the test cohort. In addition,
further validation was performed in an independent 284 pediatric AML ?*, and 19

relapsed adult AML % patients.

We randomly selected 99 (55%) patients into a training cohort, which ensured
proportions of gender and racial factors were well balanced in each split of the full data.
We performed a forward selection of TE transcripts that predict survival using univariate
Cox regression. The forward selection used an unpenalized univariate Cox proportional
hazard model with a significance threshold of 0.025 and 10-fold cross validation *®. This
identified 17 TE associated with prognosis (TEP, Figure 4A). Following the
identification of the TEP from the training cohort, we tested its ability to predict
prognosis using the test cohort (79, 45% of patients). A multivariate Cox proportional
hazard model using the TEP showed that the 17 TE covariates statistically distinguished
patients with good and poor prognosis (Figure 4B, log-rank test p.value = 0.0041, score
log-rank test=0.0027, wald test=0.0035). Upon testing the proportional hazards of the
Cox model assumption using two-sided p-values, the 17 TEP did not violate the
proportionality assumption. A 3-fold cross validation yielded a mean correspondence

index (c-index) %

of 0.55. Theinfluence of gender and race was not associated to the
TEP risk classification groups (gender Chi-square p.value=0.41; race Chi-sgquare

p.value=0.99).
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In order to further confirm the validity of the TEP in predicting prognosisin AML,
we used 2 independent cohorts (284 pediatric AML from TARGET and 19 relapsed adult
AML). The RNA-seq data from these independent cohorts was processed using Arkas as
previously described. Using the method described above to generate compound covariate
summary values for risk estimates using the TEP expression and the corresponding Cox
hazard estimates, we were able to stratify the 284 pediatric AML patients® into good and
poor risk (Figure 4C, log rank test p.value=4.95e-04, score log rank test p.value = 3.79e-
04, Wald test p.value=4.66e-04, N=284). Of the 17 TEP identified in TCGA, 16 were
expressed in TARGET; AluSx1 was not sufficiently expressed in TARGET with at least
2 read counts across 284 samples. The log-rank test on the multivariate Cox model using
the 16 TEP, without compounding hazard estimates into prognostic patient scores,
revealed a statistically significant difference from a null model (log-rank test p-
value=3.21e-05). Testing the Cox proportional hazards assumption using two-sided p-
values showed all 16 TEP alphalevels greater than 0.05. After 5-fold cross validation,
the c-index average across all folds was 0.584. This confirmed the validity of the 16 TEP
in pediatric AML.

A second independent validation was similarly performed on a cohort of relapsed
AML . Of the 17 TEP identified in TCGA, 14 TEP were expressed in the relapsed
cohort; LTR33, KER, AluSx1 were not expressed higher than 0.2 across 19 samples. The
TEP were able to stratify patients based on the differences in time to relapse between risk
groups (Figure 4D, log rank test p.value=7.17e-04, score log rank test p.value =2.26e-04,
Wald test p.value = 2.76e-03, N=19). The patient risk groups were formed using

unsupervised clustering of prognostic summary values determined by compounding
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hazard estimates and corresponding TEP expression values. Upon examination, the Cox
proportionality assumption was not violated using two-sided p-values. After 3-fold cross
validation yielded a c-index of 0.57. These results indicated the robustness of the
discovery algorithm that predicted prognosis usng TE expression in a large cancer cohort.

We then wanted to identify whether the TEP would independently improve the
mutation based risk stratification, which is a conventionally used biomarker for
prognostication in AML. For this, we first used a Cox regression analysis and stratified
the good-risk (N=99) and poor-risk (N=79) AML cohort using only the mutational
signature. The TEP were then used to sub-stratify the low-risk and poor-risk groups
identified by mutational status. In the mutation based low-risk group TEP signature re-
classified 39/99 patients to a higher-risk group (Figure 5A, log-rank test p.value=0.0233,
score log rank test p.value =0.0203, Wald test p.value=0.0222, N=99, Cox Assumption
was not violated using two-sided p-values). After 3-fold cross validation, the c-index
score of the TEP was on average 0.611 over all folds. Similarly the TEP expression
signature was able to independently sub-stratify mutationally ‘good-risk cohort’ into
better (40/79) and worse (39/79) groups (Figure 5B, log-rank test p.value=1.07e-03, scale
log-rank test p.value=8.33e-04, wald test p.value=1.11e-03, Cox proportionality was not
violated using two-sided p.value, 3 fold-CV c-index score=0.503).

Similarly, TEP were able to independently sub-stratify risk classifications based
on coding gene expression. The 17 TEP identified 41 poor risk patients from a pool of 83
good-risk patients identified based on gene expression (Figure 5C, log-rank test
p.value=0.0173, scale log-rank test p.value=0.0163, wald test p.value=0.0195, Cox

proportionality was not violated using two-sided p.value, 3 fold-CV c-index score=0.495).
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And, the 17 TEP identified 47 better risk patients from a pool of 93 poor-risk patients
identified by gene expression Figure 5D, (log-rank test p.value=2.61e-03, scale log-rank
test p.value=2.17e-03, wald test p.value=2.54e-04, Cox proportionality was not violated
using two-sided p.value, 3 fold-CV c-index score=0.457).

Overadl, thisindicated that the TEP could provide robust independent prognostic
value and can improve the prognostic ability obtained by either mutational status or

coding gene expression in AML.

Risk-stratification of AML based on a combination of mutationsand TEP
expression: In the previous analysis we showed that both mutations and TEP were able
to risk-stratify AML patients and that TEP added independent prognostic value to
mutation based risk stratification. We hence developed a composite model combining the
prognostic value of both the mutations and TEP expression to understand the relative
effect of mutations and TEP in various mutational sub-categories of AML. Using
mutations alone the 178 AML patients were classified in to 99 low-risk and 79 high-risk
patients. Thisrisk stratification based placed most of DNMT3A, TP53, RUNX and FLT3
mutationsinto high-risk category and NPM 1 mutation and inv (16) into low risk
category.

A PC analysis, using the expression of TEP as vectors, was done on the 178
patients, identifying patients with and without specific mutations (Figure 6A). This
provided information on the prognostic weight of the mutations relative to the effect of
TEP. Theresultsindicated that certain mutations (TP53, NPM1) showed significant

deviation of the center to the high-risk 3-dimensional space, suggesting that these
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mutations by themselves provided strong prognostic value. DNMT3A, FLT3 mutations
and inv (16) did not show significant deviation from the center, suggesting that patients
with those mutations comprised of prognositically diverse group. We predicted that in
these patients TEP would provide significant additional prognostic information.

TEP expression re-classified 39/99 mutation based low-risk and 40/79 mutation
based high-risk patients to worse and better prognosis respectively (Figure 6B). We
analyzed the mutational categories of patients that were reclassified in these groups
(Figure 6C). In the mutation based high-risk group, alarge majority of patients with
DNMT3A mutations, DNMT3A plus NPM 1 mutations, CEBPA mutations, FLT3 plus
NPM1 mutations (73% of patients with DNMT3A mutation, 67% of DNMT3A plus
NPM1 mutation, 75% of CEBPA mutation, and 64% of FLT3 plus NPM 1 mutations)
werere-classified as low-risk. In contrast, the TEP did not have a huge impact on
reclassifying TP53 mutated patients identified as high-risk based on mutation profile
(only 20% re-classified as low-risk). The low-risk patients (identified using mutational
profile) were similarly reclassified to high-risk patients usng TEP. Here, we observed
that TEP significantly influenced re-classification to a higher-risk group in patients with
mutationsin NRAS, FLT3, MLL rearrangement, and inv (16).

This suggested that AML patients with DNMT3A, CEBPA or FLT3 mutations,
MLL gene rearrangement and inv (16) constitute a diverse group with regardsto their
prognosis and that TEP provides significant prognostic information in these common
subtypes of AML. The utility of TEP in re-classifying TP53 mutated AML and NPM 1
mutated AML was minimal, suggesting that TP53 mutation and NPM 1 mutation

conferred strong risk prediction irrespective of the TEP expression status. These findings
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demonstrate that by incorporating the expression of 17 the TEP with the mutational
status, we can significantly improve the ability to predict prognosisin AML, particularly
in patients with common mutations such as DNMT3A, FLT3 mutations, MLL

reaarnagement and inv (16).

Discussion:

Thisisthefirst study to comprehensively characterize the expression of TE
expression at the transcript level, demonstrating novel roles for TE in cancer. Our study
shows a strong association between TP53 mutation and suppression of TE in AML, a
novel finding. Expression of TE is known to activate the viral recognition pathway "®.
Though suppression of TP53 has been previously shown to activate the expression of TE
and induce suicidal interferon response?’, our study showed that TP53 mutated AML
exhibited features of TE suppression. Interestingly, we also observed suppression of
several other classes of non-coding RNAS, including IncRNA and pseudogenes, many of
which form dsRNA, in TP53 mutated AM L. The contradiction between prior
experimental observation and our datain AML patientsin vivo could be due to
evolutionary biology of TP53 mutated AML in patients. Previous studies have shown that
clonal hematopoiesis with TP53 mutation, without evidence of leukemia, iscommon in
elderly individual **. This suggests that in early stages of TP53 mutation, the mutated
cloneisactively cleared asit is formed. Hence it ispossible that in the initial stages,
TP53 mutation leads to activation of TE and immune pathways, enabling clearance of the

mutated cells. But further clonal evolution in vivo via suppression of dsRNA may lead to
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escape from immune mediated attack of TP53 mutated cells, a hypothesis that needs to be
investigated.

Recent report suggested that TP53 mutated AML are highly susceptible to
treatment with hypomethylating agents®*, the mechanism of which is not known. In our
study, despite low expression of TE and other non-coding RNA, the gene network
analysis showed a moderately activated interferon gene pathway in TP53 mutated AML.
Hypomethylating agents have been shown to activate the expression of TE and the
downstream interferon leading to cancer cell death ", We speculate that the specific gene
expression signature of TP53 mutated AML (low dsRNA with active interferon gene
expression) may make the leukemic cells vulnerable to further increase in dsRNA
mediated activation of interferon and its resultant immune mediated cell death.

Our findings and previous work suggests that TP53 is a regulator of non-coding
RNAs including TE. The mechanism of its regulation and whether it is a repressor or
activator of TE expression in vivo in hematopoi etic stem/progenitor cellsand AML
leukemic cells needs to be investigated.

Although methylation has been previously shown to regulate the expression of TE
"8 our study showed very little association between mutations in methylation regulating
genes (DNMT3A and TET2) and dysregulation of TE expression. However, we found
strong association between mutationsin TP53, NPM1, MLL and the cohesion complex.
M echanism of how these genes regulate TE expression will be needed.

In the past, assumptions have been made generalizing the function of TE asa
whole without understanding their diversity. Most studies describe activated TE

expression to be advantageous to the cancer cell by promoting genomic instability and
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hence cellular heterogeneity and cancer progression. However, recent studies describe
their role in promoting cancer cell death via activating immune pathways "2, In this
context, we recently showed that leukemic stem cellsin AML, which are the most
resilient to treatment, have suppressed TE expression . A recent study also reported that
TE is suppressed in chemotherapy resistant cancer cells®. Here, we similarly show that
TE are suppressed in high-risk AML, particularly in TP53 mutated AML. These findings
demonstrate that suppression of TE in cancer could possibly play arolein cancer
evolution by protecting the cells from immune mediated cell death. TE constitutes a
diverse group of transcripts, which likely have diverse function, as demonstrated by our
network analysis correlating various TE biotypes with coding gene modules. It islikely
that some of the TE that have active transpositioning activity promote tumorigenesis,
whereas most others that have defective transpositioning activity perform other functions
such as regulating coding gene expression and interferon activation via dsRNA
recognition pathways.

Thisisthefirst study demonstrating the utility of TE expression signaturein
predicting prognosisin cancer. Our initial discovery using alarge adult AML
transcriptome database was validated in 2 independent cohorts, including alarge pediatric
AML cohort. We have identified 17 TEP transcripts that can be devel oped as a biomarker
for prediction of survival in AML. Interestingly, the TE transcripts were associated with
either good or bad prognosis and TE transcripts within the same class/type were
associated with varying hazard estimates, indicating diversity within TE. For example,

LTR34 and MERS89, both from ERV 1 biotype, were associated with good and bad
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prognosis, respectively. We predict that individual TE transcripts are as diverse as coding
genesin ther function.

Piggback derived 5 (PGBDS5), which belongs to the DNA element family, was
recently identified to be associated with poor prognosisin rhabdomyosarcoma®. PGBD5
was then shown to exert its effect by interacting with HPRT1 and THAP9 genes.
Similarly, studying the mechanisms of how the 17 TEP transcripts influences prognoses
in AML may lead to novel understanding of the disease pathogenesis.

We propose an improved prognostic algorithm in AML utilizing mutational status
along with expression of the 17 TEP. TP53 and NPM 1 mutations by themselves
conferred strong prognoses (poor and good respectively) and TEP expression information
only marginally improved the risk classification. However, TEP significantly improved
risk stratification of AML patients with mutations such as DNMT3A and FLT3
mutations. The utility of TEP in risk stratifying AML needs to be further validated using
orthogonal assays in future studies.

Large adult and pediatric transcriptome data is available for multiple cancersin
TCGA and TARGET. This study establishes the analytical foundation to investigate the
role of TE in other cancers. Whether TEP identified in AML overlaps with other cancer
and pattern of TE dysregulation observed with TP53 mutated AML is common across

other cancers with TP53 mutation needs to be investigated.
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FIGURE LEGENDS:

Figure 1. Mutation specific alteration in expression of transposable elements. A) The
number of TE altered in expression (AE-TE) with respect to specific mutation.
(Hierarchical test FDR <0.05; BH adjusted; n=178). B) TE biotype dysregulation with
respect to specific mutation. Statistically significant coefficientstotal TE biotype sum
identified from multiple regression per mutation (hierarchical test FDR <0.05; BH
adjusted; n=178). C) A summary river-plot of mutation (top axis) specific dysregulation
of TE biotypes (sum of significant coefficients corresponding to TE) (bottom axis). Redis
estimated up-regulated, and blue is estimated down-regulated; purple indicates an even
mixture of both up and down regulated transcripts corresponding to the respective TE

biotype (hierarchical test FDR <0.05; BH adjusted; n=178).
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Figure 2. Corréating the transcript networ k with the expression of TE. Y-axis

represents transcript 'modules’ constructed by identifying non-TE transcripts based on
the co-expression patterns. The X-axis denotes canonical TE biotypes used for
correlating them. The centre figure represents the correlation matrix for the normalized
gene 'module’ expression and the TE type. * indicates significant associations (pearson

correlation p.value < 0.05). The panel to the |eft of the Y -axis depicts significant
(hierarchical test FDR <0.05; BH adjusted; n=178) average dysregulation of the non-TE

transcripts corresponding to each network module.

Figure 3. Transcript network analysisin TP53 mutated AML. A) TP53 specific sub-
networ k construction using TP53 specific dysregulated non-TE transcripts (AE-non-TE)
to TP53 specific AE-TE. The modules were constructed using the AE-non-TE asin
Figure 2. To the l€eft of Y-axis we represent the estimated altered expression of non-TE
corresponding to each module (adjusted p.value <0.05 ; Benjamini-Hochberg adjustment
method, minimum logFC 0.2). The x-axis depicts AE-TE predicted by TP53
dysregulation (adjusted p.value <0.05 ; Benjamini-Hochberg adjustment method,
minimum logFC 0.2). The bottom x-axis annotation bar depicts the estimated altered
expression per TE. The cellsin the association table indicate the correlation of
expression between the TE biotype and the PC1 of the module (pearson correlation
statistical significant (“*”) p.value<0.05). B) Comparison of dysregulation of non-TE
classes between different mutations. Mutational dysregulation relative proportions per
non-TE class. The y-axis depicts each mutation used to measure significant

dysregulation of non-TE (adjusted p.value <0.05 ; Benjamini-Hochberg adjustment
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method, minimum logFC 0.5). The x-axis depicts each class. The number in each cell
are the total number of significant altered expressed of the non-TE transcripts in each
class corresponding to each mutation. Purple indicates an increase in the proportion of
suppressed non-TE transcripts for each class. Green indicates an increase in the

proportion of activated non-TE transcripts similarly.

Figure4. Prediction of prognosisusing TE expression in AML. A) TE transcripts
identified to predict prognosisin AML (TEP). The left table shows favorable risk TEP,
estimated coefficients, biotype, and hazard estimates used in validation. The right table
similarly shows unfavorable risk TEP. B) Validation of TEP in TCGA in the test cohort
(N=79). Blueisfavorablerisk, and red is unfavorable risk. The y-axisis survival
probability and the x-axis is time in months of 2 unsupervised patient risk classification
groups determined by prognostic summary values (log-rank-test, score log-rank-test, and
Wald test p.value <0.05). C) Validation of the TEP in pediatric AML using TARGET
data set (N=284). Unsupervised classification groups were determined (log-rank-test,
score log-rank-test, and Wald test p.value <0.05, n= 284) using the TEP. D) Validation of
the TEP in adult relapsed (N=19). The y-axis represents relapse probability, and the x-
axistimein months. Unsupervised risk classification was similarly determined (log-

rank-test, score log-rank-test, and Wald test p.value <0.05) using TEP.

Figure 5. Utility of TE in improving mutation based and coding gene expr ession

based risk prediction. A) Improvement in prognostication of mutation based low-risk
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group (N=99). Sub-stratification using 17 TEP (log-rank-test, score log-rank-test, and
Wald test p.value <0.025, n= 99) of this cohort is represented. Favorablerisk isblue, and
unfavorablerisk identified in red.

B) Improvement in prognostication of mutation based high-risk group (N=79). Similar
sub-sratification usng 17 TEP (log-rank-test, score log-rank-test, and Wald test p.value
<0.0125).

C) Improvement in prognostication of coding gene expression based low-risk group
(N=83). Low risk patientsinitially identified by using expression of 409 non-TE
prognosticators were sub-stratified using TEP (log-rank-test, score log-rank-test, and
Wald test p.value <0.025). D) Improvement in prognostication of coding gene expression
based high-risk group (N=95). High-risk patientsinitially identified by using expression
of 409 non-TE prognosticators were sub-stratified using TEP (log-rank-test, score log-

rank-test, and Wald test p.value <0.0125, n= 95).

Figure 6. Risk- stratification of AML using Mutational profileand TEP. A) Principle
component analysis of 178 AML patients from TCGA using TEP expression. In each
panel, patients were classified based on presence or absence of the mutation and
identified the location of the mutated patients in the 3-dimensional space. The solid
triangles (‘A’) represent TEP risk categorization of low risk whereas crosses (‘+')
indicate high risk. Patients with mutations are represented in the respective color. B)

AML patients classified based on mutational profile vs. TEP. The mutation based risk
classification is depicted on the left. Each bar plot (3) depictsindependent risk

classification models using covariates such as mutations, 17 TEP, or mutations plus 17
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TEP. Highrisk (red) and low risk (blue) represents patient’s risk classification. The TEP
based risk stratification (right-most) similarly depicts bar plots (3) for each separate
model. C) Risk- adjustment based on TEP among different mutationsin AML. The top
panel represents the mutational profile based high risk reclassified using TEP. TEP sub-
stratified 79 patients, red indicates both models preserved high risk classification, blue
indicates TEP sub-stratified the mutational classification to the TEP adjusted low-risk. In
the bottom, we similarly depict the mutation profile of the 99 mutation based low-risk
cohort sub-gratified by TEP. Blue indicates that both classification models preserved the
patient as low-risk, and red indicates the TEP updated the mutational based low-risk to
high-risk. Each bar plot depicts the percentage in each preserved/updated risk-

stratification moddl.
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Figure 4

A.

favorable risk

TEP

MER21B
LTR79
Aludo

LTR14A
MSTB

LTR34

Strata

Strata

Strata
c

survival probability

unsupervised.group=2

survival probability

P
)
]

relapse probability

nesupervised.group=1

30
Time (months)

TEP coef | biotype hazard
- LTR33 0.034 ERVL 1.034
coef biotype hazard x MER110l  0.039 ERV1 1.04
-0.2 ERVL 0.82 = MERS51E 0.052 ERVA1 1.053
[} MER44C 0.06 TcMar 1.062
-0.16 ERVL 0.857 =
% HERV23 0.064 ERVA1 1.066
011 Alu 0.895 S AluSx1 0078 Alu  1.081
-0.06 ERVK 0.938 > KER 0.102 KER 1.108
-0.06 ERVL 0.947 ug ALRa 0.106 SAT 1.111
) S MER48 0.111 ERVA1 1.118
0.01 ERV1 0.988 TIGGER5 B 0.112 TcMar 1.118
MER89 0.124 ERVA1 1.132
050
025 p =0.0027 .
0.00
0 25 e (ﬂmms) 75 100
= 30 6 2 1 o
[] 25 75 100
Time (months)
1.00 "+
075
0% p = 0.00038
0.00
0 25 50 75 100 125
Time (months)
up=1 119 34 24 17 4 o
165 66 55 38 13 1
[) E3 50 75 100 125
Time (months)
1.00
025
p=0.0081
L B = Time (ﬁomhs) © ® ©
= 9 3 0 o o 1] o
10 8 5 1 1 1 o
13 % % % % %


https://doi.org/10.1101/217299
http://creativecommons.org/licenses/by-nc-nd/4.0/

8
g
[

W

100
= —
s < 075
S S5 0 >
£ ez
» o =
x @ £
68 o %8 0%
. 55
£ a
o
a 025 :g:> 025
p=002 p=0.00085
000 000
0 % EY 7 100 0 10 El [) )
Time (months) Time (months)
& unepsnissdgop=t{ 30 12 5 3 1 g ] w0 18 6 5 0
o=2{ 60 30 * 8 o gunaupelwsedgmmcz 30 8 1 0 0
) % E] % 160 ) ) E] %
Time (months) Time (months)
c. - D
.
.
100
075
®© ©
g 2 075
tz e
5 73
» o “®
‘5 g © '8 050
=g ca
=9 s =)
S p=001 T 025
p=0.01
000
0 2% 50 7 100 000
Time (months) 4 40 60 80
Time (months)
d group=1
Unsupervised graup 5t 18 8 s 0 £ wnswpenvisedgrovp=1{ 22 0 0 0
5 b 12 8 [ 5 ) | 0
0 % %0 s 100 0 0 E) 80
Time (months) Time (months)


https://doi.org/10.1101/217299
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dim 2 (19.53%)
Dim 2 (19.53%)

-10

Dim 2 (19.53%)
Dim 2 (19.53%)

-5

3
0

-10

FLT3
NPM1
Inv.16

I rRuUNX1

TP53
DNMT3A

Ml TFEL ARE LR

TEP
TEP

Mutations

»
c
ks}
=
g
=
1S

TEP.mutations

-10

-10 -5 0 5

Dim 1 (30.69%)

FLT3
w0
2
2 o4
£
~ -
£ i
8 f
7 P
e :
' T T T T
-10 -5 0 5
Dim 1 (30.69%)
RUNX1
w - :
+
g
3
L o
b ‘
£ H
a u
71 a
=) H

Dim 1 (30.69%)

g
:
;il

T T T T

-10 -5 0 5

Dim 1(30.69%)

n o d C
mbEmnsS X .
WSk 32
a > - c D
[ wZ = x

D CEBPA

—
— 2 P53}
—— o
E RUNX1
L k=
— - E IDH1
E g IDH2]
— 2 DNMT3A.alone;
— o
— 8 NPM1.ONMT3A]
—
[ — ~
— » NPM1.alone;
e ¥
— 4020 FLT3.NPM1
— — T FLT3.DNMT3A.NPM1
=_— FLT3.alone;
E—
—
_— CEBPA
— TET2]
— » RUNX1
N c
p— -E IDH1
T — ©
— =
=] IDH2)
— — £
__- C  DNMT3A.alone]
—1 °
T < NPM1 alone|
p— 7
— s FLT3 alonef
X~
2 MLLT10.partner;
T
g RUNX1.RUNX1T1
)
inv.16]
MLL partner

TEP.mutations

Mutation based
risk stratification

TEP based
risk stratification

67%

100%

4%

54%

o -
[ 5 number 10 15
[11%] oo
I
L =
= | =
N
[o% 0%
N =
L = 7 L
I
[1e] a6%
= i
I
[ 5 0
number



https://doi.org/10.1101/217299
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplement figure 1
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Similar to Figure 1, we examine the multiple regression measuring the non-TE ~ prevalent mutations. The prevalent mutations (5% prevalent) are on
the x-axis. The y-axis is the total number of dysregulated non-TE for that corresponding mutational predictive factor used in the linear model. Only
significant dysregulated non-TE were considered (hierarchical test, FDR method BH with significance level of 0.05).
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Supplement figure 215
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The x-axis is the explained variance per repeat elements using the true mutational profile as predictive
features in a linear model (red). The y-axis is the density distribution range. The grey distribution is
generated after randomly permuting the mutational profile. We’ve highlighted 3 TEP (table 1) in the
critical region suggesting that some of the TE prognosticators are statistically altered in expression in
this model.
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Supplement figure 3
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A) Survival analysis using 17 TEP in the TCGA test cohort (N=79).
The y-axis is survival probability. The x-axis is time in months.
Red is high risk classification, and blue is low risk. The groups
were formed using Cox proportional hazards model (without
applying any penalty in the model). Patient unsupervised groups
were formed using k-means clustering on the compound
prognostic summary values.
Similar unpenalized model to A). Using Target (N=284), using 16

B)

Q)

TEP.

Similar unpenalized to A). Validation in MSKCC (N=19) using 14

TEP. The y-axis is relapse probability.
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Supplement figure 5
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Supplement figure 6

Differential Expression Comparing High Risk to Low Risk Biotype

This compares TCGA full model
(N=178) contrasting the differential
expression using TEP classifications.
o] The high risk patients are compared
in a differential expression model to
the low risk patients in a simple
contrast (High.vs.Low). Differential
expression was modeled using the
high risk classification as the design
matrix, and an empirical Bayes linear

Biotype model was used to determine
1. , B Au differential expression between TEs
- i (adjusted p.value <0.05 , adjust
B ervL method is Benjamini-Hochberg). We
:E:” observed that for all TE biotypes the
B Mariner/Te1 low risk group has up-regulated
B8 oMer expression in comparison to the high
risk cohort.
The box plot depicts the log-FC
0 values on the y-axis calculated from
the linear model after FDR filtering.
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