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Abstract  
 
Whole blood transcriptional signatures distinguishing patients with active tuberculosis from 
asymptomatic latently infected individuals have been described but, no consensus exists 
for the composition of optimal reduced gene sets as diagnostic biomarkers that also achieve 
discrimination from other diseases. We have recapitulated a blood transcriptional signature 
of active tuberculosis using RNA-Seq, previously reported by microarray that discriminates 
active tuberculosis from latently infected and healthy individuals, also validated in an 
independent cohort. We show that an advanced modular approach, which preserves and 
presents a signature of the entire transcriptome, can better discriminate patients with 
active tuberculosis from both latently infected and acute viral and bacterial infections. We 
suggest a method of targeted gene selection across modules for constructing diagnostic 
biomarkers, more representative of the transcriptome that overcomes some limitations of 
existing techniques. Finally, we utilise the modular approach to demonstrate dynamic 
heterogeneity in a longitudinal study of recent tuberculosis contacts. 
 
 
 
Tuberculosis (TB) is the leading cause of global mortality from an infectious disease. In 
2016, there were 6.3 million new cases of TB disease and 1.67 million deaths and its 
diagnosis is problematic1. However, clinical disease represents one end of a spectrum of 
infection states. It is estimated that up to one third of all individuals worldwide have been 
infected with the causative pathogen, Mycobacterium tuberculosis, but the vast majority 
remain clinically asymptomatic with no radiological or microbiological evidence for active 
infection. This is termed latent TB infection (LTBI) and conceptually denotes a state in 
which M. tuberculosis persists within its host, while maintaining viability with the potential 
to replicate and cause symptomatic disease. Indeed, LTBI represents the primary reservoir 
for future incident TB, with 90% of all TB cases estimated to arise from reactivation of 
existing infection1,2. The risk of incident TB arising from existing LTBI is heterogeneous, 
poorly characterised and modifiable with anti-tuberculous treatment. Modelling studies 
indicate effective TB prevention to significantly reduce future TB incidence requires 
policies directed at the identification and treatment of LTBI3. However, implementation of 
mass screening programmes for this purpose are severely constrained by the size of the 
target population. Transformative advances in diagnostic tools that can effectively stratify 
TB risk in the LTBI population are therefore implicit to the realisation of systematic 
screening.   
 
The basis for LTBI heterogeneity rests with the limited scope of the tools we have available 
to identify the state. LTBI is inferred solely through evidence that immune sensitization 
has occurred, by the tuberculin skin test (TST) or the M. tuberculosis antigen-specific 
interferon-gamma (IFN-g) release assay (IGRA). Although these tests are both sensitive and 
specific for identifying exposure that has been associated with establishment of an 
adaptive immune response, neither distinguishes active from latent infection. Moreover, 
T-cell responses to mycobacterial antigens persist for several years after an infection has 
been treated, implying that these tests may not reliably inform the presence of viable 
organisms in vivo. For ‘true’ LTBI, in which the pathogen remains viable, it is envisaged 
that a dynamic equilibrium exists between the host immune response and the pathogen, 
with a shifting balance in favour of one or the other influencing the future risk of TB 
reactivation4. A recent study using highly sensitive radiological imaging with combined 
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Positron Emission Tomography and Computerised Tomography has reported evidence to 
support this dynamic state and demonstrated phenotypic imaging characteristics 
associated with the risk of developing TB among subjects with conventionally defined LTBI5. 
A proportion of these LTBI patients were identified with radiological features of subclinical 
active TB5, with a subgroup failing to respond to prophylactic LTBI treatment regimens. 
These observations support the view that injudicious use of LTBI chemoprophylaxis using 
presently available diagnostic tools for mass screening, risks promoting drug resistance in 
unrecognised active infection.  
 
We have previously characterised an interferon (IFN) inducible transcriptional signature of 
393 gene transcripts in whole blood that discriminates patients with active pulmonary TB 
(from high and low-incidence TB burden countries) from healthy individuals, patients with 
other chronic respiratory and systemic conditions, and the majority of patients with LTBI6,7. 
This TB signature revealed an unexpected dominance of type I IFN-inducible genes6 more 
frequently associated with viral infections8. We9-11 and others10-20 have since shown that 
elevated and sustained levels of type I IFN, result in an enhanced mycobacterial load and 
disease exacerbation in experimental models of TB. Similar findings of a blood signature in 
active TB patients have since been reported21-27, and our meta-analysis of 16 datasets, 
including many of these studies, identified 380 genes differentially abundant in active TB 
across all datasets28. However, there is a relative lack of concordance across studies that 
have reported a reduced and optimised diagnostic gene signature, although agreement 
exists for some of the pathways they represent21-23,29,30. While some genes overlap between 
the different reduced signatures, the overall composition of each reduced signature is 
unique, both in size and transcript profile. In this respect, we note that a consistent 
statistical approach to optimising gene selection has not been used across studies and 
where the approach was consistent, a different optimal reduced signature was reported 
for discriminating active TB from either LTBI and controls or other diseases22. Additionally, 
recent reports have demonstrated the failure of these signatures in discriminating between 
TB and other diseases such as pneumonia, highlighting their inadequacy as stand-alone 
diagnostic tests, and a need for more accurate tests26,27.  
 
We have previously observed and reported that 10 – 20% of subjects with IGRA positive LTBI 
in our studies had a transcriptional signature that overlapped with active TB patients and 
clustered with this group6. By definition, the transcriptional signature in this LTBI outlier 
group shares important similarities with the signature of active TB that requires further 
characterisation. Importantly, the biological significance of this statistical observation 
remains unclear. However, these observations support utilisation of a transcriptional 
approach to explore LTBI heterogeneity. In keeping with this, Zak et al.30 have recently 
reported evidence for a gene signature of TB several months in advance of clinical 
presentation with disease among a cohort of South African adolescents, suggesting that 
transcriptional signatures of TB in subjects with presumed LTBI may indicate either a high 
risk of progression to active disease or existing subclinical disease. The study was unable 
to determine a transition in the signature prior to developing TB and was limited by the 
confounding risk of new exposure in a high TB incidence setting. Utilisation of the 
transcriptome to interrogate immunological heterogeneity within the cohort was not 
undertaken and analysis was largely confined to the subgroup with IGRA defined LTBI, the 
assumption being that IGRA negative subjects do not have latent infection. However, a 
proportion of prospective TB cases identified in the study were IGRA negative at baseline30, 
suggesting either that this cohort had new exposure during prospective observation in a 
high TB incidence setting and / or that the IGRA test did not reliably inform underlying 
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LTBI. In this context, studies evaluating the diagnostic performance of IGRAs in 
microbiologically confirmed active TB report an overall sensitivity of approximately 85%31, 
implying that a proportion of M. tuberculosis infections may be missed using this test alone.  
 
To address some of these questions, we undertook RNA Sequencing (RNA-Seq) of our earlier 
Berry et al.6 cohorts and additionally set up a prospective cohort study at Leicester (UK) in 
subject groups of incident TB and recent TB contacts, respectively. In the Leicester cohort, 
we performed systematic longitudinal sampling and clinical characterisation first, to 
validate our TB signature using RNA-Seq in a new and independent cohort of individuals 
with active TB and LTBI, and secondly to provide longitudinal data in a low TB incidence 
setting. Using an advanced modular approach for characterising transcriptional signatures, 
we now identify important similarities and differences between active TB, LTBI and other 
diseases that informs limitations of existing signatures and provides a template for targeted 
gene selection using information from the entire transcriptome. We also demonstrate 
utilisation of the modular approach to characterise phenotypes of LTBI among recent close 
contacts of TB.  
 
Results 
 
RNA-Seq reproduces the gene-signature developed using microarray recapitulating the 
clustering of active TB and LTBI cases  
 
We validated our microarray-derived blood 393-transcript signature6 in patients with active 
TB using RNA-Seq in the Berry London and South Africa cohorts showing identical clustering 
of active TB and LTBI cases (Supplementary Figure 1a and 1b). A 373-gene signature was 
then independently re-derived from the Berry London RNA-Seq data (Supplementary 
Figure 1c; Supplementary Table 1; Figure 1a) and validated in the Berry South Africa 
cohorts (Figure 1a) and a new Leicester cohort (Supplementary Table 2; Figure 1b).  
Consistent with our previous microarray signature, the RNA-Seq signature was absent in the 
majority of individuals with LTBI and healthy controls, and identified with perfect 
agreement the LTBI subjects that cluster with active TB, henceforth referred to as LTBI 
outliers, in both Berry cohorts (Supplementary Figure 1b and 1d). A similar proportion of 
outliers were also observed in the Leicester cohort (Figure 1b; Supplementary Figure 1e). 
There was great similarity in the composition of the microarray and RNA-Seq based 
signatures, with over-abundance of IFN-inducible genes and under-abundance of B- and T-
cell genes (data not shown) as previously reported6. This was supported by an in silico 
cellular deconvolution analysis of the RNA-Seq that showed diminished percentages of CD4, 
CD8 and B cells in the blood of active TB patients, and an increase in 
monocytes/macrophages and neutrophils (Supplementary Figure 2), in keeping with our 
previous findings using flow cytometry6.  
 
 
Evaluation of published TB gene signatures identifies overlap with, and poor 
discrimination from gene expression in acute viral infections 
 
Applying the published 27-gene and 44-gene signatures of Kaforou et al.22 and the 16-gene 
signature of Zak et al.30 to the Berry and Leicester TB cohorts, a high specificity and 
sensitivity for discriminating active TB and LTBI was identified with all three signatures 
across all three cohorts (Figure 1c). This was supported by single sample Gene Set 
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Enrichment Analysis32 (ssGSEA), demonstrating high enrichment of the Zak et al. signature30 
in active TB and a low enrichment in healthy controls and the majority of LTBI patients 
(Figure 1d). We observed higher enrichment scores in the LTBI outlier groups (Figure 1a 
and b) of all three cohorts that overlapped with scores observed in active TB cohorts 
(Figure 1d). Higher enrichment scores were also noted in a small proportion of IGRA-ve 
individuals recruited as healthy controls (Figure 1d).  There was comparable discrimination 
in enrichment scores between TB and LTBI using all three signatures (Figure 2a), although 
the Kaforou 44-gene signature demonstrated greater overlap of enrichment scores between 
groups, suggesting poorer discriminatory performance. In this context, it is notable that of 
the three signatures, only the Kaforou 44-gene signature was developed to discriminate 
between active TB and other diseases (including infectious meningitis, pneumonia, gastric 
diseases and malignancies)22, rather than LTBI.  
 
The composition of all three signatures22,30 is dominated (≥50% of the signature) by IFN-
inducible genes (Supplementary Table 3), raising the possibility that they are not TB 
specific but may also be expressed in acute viral infections. We therefore evaluated 
enrichment of these signatures in two independent published datasets of influenza 
infection from Parnell et al.33 and Zhai et al.34 (Supplementary Table 4; Figure 2b and c). 
Subjects with influenza at baseline showed a high enrichment score for the three TB 
signatures as compared with healthy controls, which diminished with time, in keeping with 
recovery (Figure 2b and 2c). In keeping with this, all three signatures, developed for 
distinguishing active TB and LTBI, also demonstrated excellent discrimination between 
influenza (day 0) and healthy controls (Figure 2d), comparable with their performance for 
TB (Figure 1c). In contrast, enrichment scores for the three signatures, demonstrated 
heterogeneity in patients diagnosed with bacterial pneumonia from the Parnell study33, 
with little change over 5 days and poor discrimination from controls, consistent with our 
previous findings for this group6,7 (Figure 2e). 
 
 
A modular approach to transcriptional data analysis identifies clear differences in the 
signature of active TB and other pulmonary infections 
 
A limitation of the gene reduction methodologies22,30 used to date has been the 
prioritisation of the most discriminant genes, with little consideration to the correlation 
between the selected genes in this iterative process. Although non-selective and lacking 
subjective bias, this approach favours selection of a highly correlated gene set with a 
narrow immunological focus. In this context, limited diversity risks loss of specificity, with 
an increased likelihood of overlap between multiple pathologies and responses to different 
infections for a specific immune pathway. We therefore hypothesised that methodologies 
which incorporate information from the entire transcriptome may better inform 
development of a unique biosignature for TB. Weighted gene co-expression network 
analysis35 (WGCNA) is a well validated clustering technique for reducing high dimensional 
data into modules that preserve intrinsic relationships between variables within a network 
structure. When applied to the blood transcriptome, modules of co-ordinately expressed 
genes with a coherent functional relationship are generated. The complete transcriptome 
is thus expressed as a signature defined by the relative perturbation of individual modules.  
 
We applied WGCNA analysis to the blood transcriptional data from our Berry and Leicester 
TB cohorts, those TB cohorts published by Zak and Kaforou22,30, and to several others that 
included sample sets of other viral and bacterial infections33,34,36,37, together with our 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 9, 2017. ; https://doi.org/10.1101/216879doi: bioRxiv preprint 

https://doi.org/10.1101/216879


	 6 

previous cohorts of sarcoidosis and lung cancer7	as conditions that may mimic TB, all 
compared against their healthy controls (Figure 3; Supplementary Table 4 (Information 
of published cohorts), 5 (genes in each module) and 6 (module annotation)). The modular 
signature for active TB was qualitatively consistent across all the TB cohorts and absent in 
LTBI. The IFN-modules (lightgreen and yellow) were over-abundant in TB (Figure 3a) as we 
have previously published6,7 and also in acute influenza infection, but absent in bacterial 
infection6,7 (Figure 3b). However, we observed clear differences between TB and both 
influenza and other bacterial infections in the pattern of specific perturbation of other 
modules, including under-abundance of gene expression in the T-cell (blue and cyan) and 
B-cell (midnightblue) modules (Figure 3) for TB. On the other hand, we observed over-
abundance of genes in the Cell Proliferation/Metabolism (darkturquoise) module and 
under-abundance of genes associated with Haematopoeisis (pink) in severe influenza but 
not in TB (Figure 3). In this context, the classical approaches of gene signature reduction 
algorithms38-40 used by Kaforou et al. to distinguish TB from LTBI or TB from other 
diseases22, and Zak et al. to distinguish TB from LTBI, risk of progression30 are notable for 
formulating gene signatures that we show here map predominantly to the yellow module 
(Interferon/complement/myeloid), with many of these genes also over-abundant in both 
influenza cohorts (Supplementary Figure 3 and 4).  
 
 
Differential gene expression within modules informs gene selection to develop a 
powerful discriminatory transcriptional signature for active TB 
 
Interrogating the whole gene-set of the yellow module in TB, influenza and bacterial 
infection, we observed a subset of genes expressed specifically in TB (Figure 4, orange 
squares). Similarly, other genes were specifically expressed in influenza. Thus, although 
modular expression of the yellow module is comparable between TB and influenza, gene 
subsets within the module exhibit differential expression between the two conditions. This 
provides scope to select genes from this dominant module that can be used to develop a 
TB signature, while retaining discriminant value from viral infection. Using this rationale, 
we identified and extracted 303 unique gene candidates in the Berry London TB dataset 
that were selectively perturbed in TB, but not in any confounding viral infections, from all 
modules that contributed to and exhibited consistency across the TB datasets that we 
analysed (Figure 3; Supplementary Figure 5a; Supplementary Figure 5b). Using this gene 
set, we proceeded to develop a reduced gene signature to distinguish active TB from LTBI. 
We applied the Boruta algorithm39 based on random forest to this set of genes, yielding 61 
genes (Supplementary Figure 5c) that was further reduced by selecting the top 20 genes, 
ranked according to GINI score using Random Forest (Supplementary Figure 5d). Our 20-
gene signature (Figure 5a) included genes from six different modules (Supplementary 
Figure 5d), representing both over-abundance and under-abundance in TB. Using a 
modified Disease Risk Score (See Methods), we identified powerful discrimination between 
active TB and LTBI/controls in Berry London & South Africa and Leicester cohorts (Figure 
5b; Sensitivity/Specificity/Area under the curve for – Berry London 1/1/1, Berry South 
Africa 1/1/1, Leicester – 1/0.86/0.99). In contrast, the signature identified no difference 
between influenza and controls or between bacterial pneumonia and controls at any time-
point across five days (Figure 5c).  
 
 
LTBI outliers exhibit a distinct modular signature with features of Active TB 
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We have previously reported evidence for a small proportion of LTBI subjects that clustered 
with active TB using our 393-transcript signature6 that we refer to as an LTBI outlier group. 
This group was reproduced using RNA-Seq in the Berry cohorts (10.9%) and a similar 
proportion were also identified in our new Leicester cohort (10%) (Figure 1). To compare 
and contrast the signature of this group with active TB and the majority of LTBI resembling 
healthy controls (Supplementary Figure 1d and 1e), we specifically examined the WGCNA 
modular signature in LTBI outliers using the combined Berry London and South Africa 
datasets and Leicester datasets respectively, compared with healthy controls (Figure 6a). 
The modular signature of LTBI outliers in both datasets showed over-abundance of the 
lightgreen (IFN/Pattern recognition receptors) and yellow (IFN/Complement/myeloid) 
modules as seen in active TB (Figure 6a and 6b). This is entirely in keeping with our earlier 
finding that gene enrichment scores using the three published signatures of Kaforou and 
Zak (Figures 1d and 2a), all of which are comprised primarily of genes from the yellow 
module, were consistently higher in LTBI outliers. In addition to over-abundance of the IFN 
modules, the LTBI outlier group of the Leicester dataset showed changes in other modules 
also perturbed in active TB, suggesting a host response that is evolving towards the 
phenotype typically observed in active TB (Figure 6a). Of particular interest was the 
observation of under-abundance in the tan module (Th1 and NK cells) that is associated 
with IFN-g expression, a cytokine required for protection against TB13,41-47. Under-
abundance of this module was a consistent finding across all the TB datasets that we 
analysed (Figure 3, Figure 6) and was a characteristic shared with bacterial pneumonia.  
 
We performed differential gene expression analysis between active TB, LTBI outliers, and 
LTBI with outliers removed, and identified a set of 70 genes that was consistently 
upregulated in active TB and LTBI outliers compared to LTBI (without outliers) in both the 
Berry and Leicester datasets (Figure 6d; Supplementary Table 7), which were enriched 
for the IFN signalling pathway (data not shown).  
 
 
The modular transcriptional signature is dynamic and exhibits heterogeneity in recent 
TB contacts 
 
Longitudinal RNA-Seq was performed in a subset of our Leicester cohort (Methods; Figure 
7a) that included 15 IGRA–ve contacts, 16 IGRA+ve contacts, both of whom remained healthy, 
and 9 subjects recruited as contacts that were subsequently diagnosed with 
microbiologically confirmed TB during prospective observation (Figure 7a; Supplementary 
Table 8). Five contacts (4 IGRA+ve and 1 IGRA–ve) identified as outliers at baseline 
sequencing (Figure 1b) were included. 
 
In contrast with other studies, the control population of our Leicester cohort comprised 
subjects that were IGRA–ve contacts of TB. This is a group in which recent exposure to active 
TB is documented, placing them at higher risk of recently acquired infection. Our rationale 
for this approach was to evaluate whether transcriptional data may identify LTBI that is 
not detected using IGRA. The observations that: firstly, the Leicester control group had 
greater overlap in enrichment scores with the IGRA+ve LTBI group using the Zak and Kaforou 
signatures, compared with the Berry London cohort (Figure 1d and 2a); and secondly, one 
subject from this group was identified as an outlier, together suggest that IGRA testing 
alone may miss some M. tuberculosis infection. We therefore elected to define our TB 
contacts henceforth as IGRA+ve or IGRA–ve with no deterministic reference to LTBI. 
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The modular signatures of both IGRA–ve and IGRA+ve contacts qualitatively demonstrated 
considerable between-subject heterogeneity and some within-subject variability; a 
comparison between the groups suggested more transcriptional activity, in the form of a 
higher frequency and greater breadth of modules exhibiting overabundance and under-
abundance within the IGRA+ve group (Figure 7b and 7c). For the cohort that developed TB 
after recruitment to the study (Figure 7d), we stratified subjects on the basis of their 
longitudinal clinical course as true progressors (no evidence of TB at baseline, with features 
developing during observation); subclinical TB (objective evidence of pathology, usually as 
radiological change, in the absence of reported symptoms); and active TB (symptoms at 
baseline with either radiological or microbiological evidence for TB subsequently 
identified) (Supplementary Table 8). This stratification was performed to better 
understand the dynamic relationship between the modular signature and onset of TB.     
 
To quantitatively evaluate the modular signatures in each group for their proximity to TB, 
we applied the modified disease risk score for our 20-gene signature (Supplementary 
Figure 6). Higher risk scores were generally observed in the IGRA+ve, compared with the 
IGRA–ve cohort, although there was considerable variability and overlap. Longitudinal 
observations suggest relative stability of the risk score in the majority of both IGRA+ve and 
IGRA–ve subjects that were examined. In contrast, 6 of the 9 subjects that were diagnosed 
with TB demonstrated high baseline modified disease risk scores that tended to increase 
further, prior to diagnosis of active TB. In the other 3 contacts (Subjects 245, 348 and 278) 
the modified disease risk score remained low at all time-points, before and at the time of 
TB diagnosis (Supplementary Figure 6c).  
 
To improve specificity, we additionally devised a weighted TB agreement score as a 
quantitative measure of proximity to TB, based on a composite of categorical scoring of 
agreement between the test signature and a reference signature for active TB across all 
23 modules (Methods). Baseline agreement scores demonstrated clustering near zero for 
IGRA–ve subjects (Supplementary Figure 7; Figure 8). In contrast, both the IGRA+ve group, 
and the group that developed TB exhibited a wide range of positive scores (Figure 8b and 
8c). Subjects identified as outliers (Figure 1b) had higher TB agreement scores than the 
majority of LTBI subjects that were not outliers (Figure 8b). However, some discordance 
between clustering outcomes and the TB agreement score was observed, with two subjects 
that were not outliers having TB agreement scores within the outlier range (subject 185 
and 040). Furthermore, the IGRA–ve subject categorised as an outlier (Subject 209) had a 
very low TB agreement score (Figure 8a), with resolution of the baseline module 
perturbations after 4 months (Figure 7b). Overall, the longitudinal within-subject 
expression of the modular TB signature in both the IGRA+ve and IGRA-ve cohorts could be 
categorised into three groups: i. Subjects that did not express the signature at any time-
point (9 of 15 IGRA-ve subjects and 6 of 16 IGRA+ve subjects); ii. Subjects that transiently 
expressed the signature in the first three to four months (4 of 15 IGRA-ve subjects and 6 of 
16 IGRA+ve subjects; iii) Subjects that had or developed a persistent TB signature at and 
beyond 4 months (2 of 15 IGRA-ve subjects and 4 of 16 IGRA+ve subjects)(Figure 8b). We did 
not observe subjects developing the signature de novo after 3 months. 
 
In the cohort that developed TB, 5 of the 9 subjects demonstrated high baseline modified 
disease risk scores that were similar to values observed in the 6 out of 16 IGRA+ve subjects 
(Figure 8c). In 7 of the 9 subjects a moderate to high TB agreement score was observed at 
the visit prior to TB diagnosis. For the remaining 2 subjects (Subject 245 and Subject 348), 
a modular signature of TB was not expressed. For Subject 245 an explanation may be that 
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this patient received antibiotics for bacterial pneumonia which are known to have 
immunosuppressive effects and therefore will diminish an immune signature. For Subject 
348 we have not identified potential confounding factors for this observation. Subjects 
categorised as true progressors exhibited a dynamic modular signature, with increasing TB 
agreement scores at all visit time-points within 2 months of diagnosis.  
 
 
 
Discussion 
 
We have recapitulated a blood transcriptional signature of active TB using RNA-Seq, 
previously reported by microarray6,22,23,28,48 that discriminates active TB from LTBI and 
healthy individuals, and is largely characterised by an over-abundance of IFN-inducible 
genes and an under-abundance of B and T cell genes. We show that an advanced modular 
approach, rather than a traditionally derived reduced gene set, is more robust in 
discriminating active TB patients from individuals with LTBI and acute viral and bacterial 
infections. Using this modular approach, we also demonstrate heterogeneity of LTBI in a 
prospective study of contacts of patients with active TB. 
 
RNA-Seq30 has now replaced microarray6,7,21-24,28,29,48-50 for transcriptional studies and the 
existing literature is limited by uncertainty regarding the equivalence of RNA-Seq and 
microarray. In this study, we repeated analysis of our previous Berry et al.6 cohorts using 
RNA-Seq and provide reassurance that RNA-Seq recapitulates outcomes derived using 
microarray. The vast majority of genes in our RNA-Seq derived 373-gene signature also 
comprised our original 393-gene transcript signature. Furthermore, there was equivalence 
in allocation of subjects to clusters, including those with LTBI that clustered with active 
TB.  
 
In transcriptomic studies of disease there has been focus on deriving reduced gene 
signatures to develop clinical diagnostics, with inconsistencies in both deriving and defining 
the optimal reduced gene signature. Studies defining signatures distinguishing active TB 
and LTBI21-23,28,30 are illustrative of this issue. We evaluated the diagnostic performance of 
some of the published reduced gene signatures22,30 on our independent TB cohorts and 
confirm excellent specificity and sensitivity for distinguishing active TB patients from those 
with LTBI. However, we identified dominance of IFN-inducible genes in these signatures 
and demonstrated enrichment of these signatures in published datasets of acute influenza 
infection, but not bacterial pneumonia. These observations highlight the lack of IFN-
inducible genes in the immunological response to bacterial pneumonia, which contrasts 
both TB and viral infection. It follows that discordance exists such that signatures optimised 
for discriminating active TB patients and healthy individuals, with and without LTBI, may 
not provide robust discrimination of TB from other pathologies and/or infectious diseases 
that may exhibit a similar clinical presentation. It is clear that IFN-inducible genes are 
dominant discriminators of active TB from healthy LTBI, leading to preferential selection 
of this gene set to define an optimal signature. However, this dominance precludes 
consideration of most other gene sets that may better inform discrimination from other 
diseases. This view is supported by differences in the reported signatures of Kaforou et 
al.22 that were independently derived to discriminate active TB from LTBI, or active TB 
from other diseases. The 44-gene signature, derived using the latter approach, included 
more genes and exhibited greater diversity but lost discriminatory power, when compared 
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with the 27-gene signature for discriminating LTBI from TB. These observations suggest 
that a trade-off exists between these two objectives and that a single signature may not 
be optimal for both. In a clinical context, the two objectives of a TB signature fulfil distinct 
requirements. A signature that discriminates active TB from LTBI is a useful screening tool 
for testing in healthy populations. Identification of an active TB signature when screening 
for LTBI can inform the need for further investigation. In contrast, a signature that 
discriminates active TB from other diseases would be applied for the investigation of unwell 
patients presenting with symptoms that suggest the possibility of TB.  
 
To tackle the challenge of developing a single high performing TB signature, we explored 
WGCNA as a tool for systematic gene reduction into biologically meaningful modules that 
together represent the entire transcriptome. We determined consistency of the modular 
signature for active TB across our cohorts and other published datasets and demonstrated 
that, when taking into consideration all 23 modules, the signature in active TB was distinct 
from both viral and bacterial infections. Furthermore, we additionally identified gene 
clusters that were differentially expressed in TB but not influenza from within the modules 
of IFN signalling. This was an important observation as the opportunity to select specific 
genes from these dominant modules offered scope to improve the sensitivity of the 
signature and discrimination of TB from LTBI and other diseases.  Based on these findings 
we developed and evaluated a two-step approach for targeted gene selection to derive a 
TB signature. Modules perturbed in TB were first interrogated to establish a gene set 
comprising genes that are differentially expressed in TB compared with other diseases. A 
priori gene selection in this way provided a gene set with high TB specificity against other 
diseases. In the second step, traditional gene reduction methodology was applied to 
separate TB from LTBI using this gene set. As a proof of principle, we developed a 20-gene 
signature using this approach that was diverse in its representation, incorporating genes 
from 6 modules. We demonstrate here that this 20-gene signature had excellent sensitivity 
and specificity for discriminating active TB from LTBI, but did not discriminate either viral 
or bacterial infection from health, implying effectiveness to discriminate TB from other 
infections.  
 
Heterogeneity of LTBI was suggested in our previous study6 with the identification of an 
outlier group after clustering. In the present study, we identified a similar proportion of 
LTBI outliers in the new Leicester cohort. We demonstrated enrichment scores using the 
published signatures of Zak et al.30 and Kaforou et al.22 that were higher in outliers 
compared with other LTBI in both the Berry and Leicester cohorts, and overlapped with 
scores obtained in active TB. These observations suggested LTBI outliers are characterised 
by an overabundance of IFN-inducible genes, a view that was corroborated in their modular 
signatures demonstrating overabundance of the corresponding modules, together with 
identification of seventy selectively upregulated genes, common to both the Berry and 
Leicester LTBI outliers, which mapped to IFN signalling pathways. The clinical significance 
of these observations remains unclear, however the recent study of Zak et al.30 suggests 
expression of a TB-like signature, characterised by enrichment of IFN-inducible genes which 
we show from our analysis, may indicate either subclinical disease or increased risk of 
progression to TB within a few months.  
 
We utilised the modular signature for deeper characterisation of heterogeneity in recent 
TB contacts. We developed a weighted TB agreement score that provided a composite 
quantitative measure for defining the modular signature of TB. We identified instances of 
discordance for similarity with TB, between clustering and the modular weighted TB 
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agreement score that appeared to be driven by differences in the pattern of perturbation 
in modules other than those representing IFN signalling pathways, such that cumulative 
similarity in these less dominant modules was a significant determinant of the composite 
weighted agreement score. Our observations of low agreement scores for the IGRA-ve cohort 
is consistent with the absence of LTBI and likely to reflect a robust finding. In contrast, 
enrichment scores of the published signatures we tested indicated considerably more 
overlap of IGRA–ve subjects with the IGRA+ve group, again indicating impaired specificity of 
these signatures.  
 
We observed evidence of dynamic change in the modular signature of some TB contacts 
that can be categorised into three patterns of longitudinal expression that may reflect 
early immunological events following TB exposure. We suggest the absence of a signature 
at any time point may indicate the absence of infection being acquired. This pattern was 
seen in 60% of our IGRA-ve cohort and 37% of our IGRA+ve cohort. A transient signature may 
indicate an infection that was acquired but has either been controlled or cleared. In this 
context the observation that 25% of our IGRA-ve cohort demonstrated this pattern suggests 
that the blood transcriptional signature represents immune responses that precede priming 
and activation of IFN-g producing CD4 T-cells. Finally, subjects with an evolving and 
persistent modular TB signature may represent subjects that have acquired an infection 
requiring active control to maintain latency. This pattern was seen in 25% of IGRA+ve and 
15% of IGRA-ve subjects. These observations require validation in larger longitudinal 
cohorts, but do suggest that the blood transcriptome may offer a more sensitive approach 
to characterising the state of latent infection following TB exposure, with implications for 
better stratification of prospective TB risk.   
   
For our cohort of 9 subjects identified with TB during prospective observation, a high or 
rising TB agreement score was observed in the majority. This was most apparent in the 
subjects defined as true progressors. Our study was limited by small numbers and the 
identification of TB within a short period of prospective observation. We are therefore 
presently unable to comment on the dynamic properties of this response or determine the 
interval between the signature becoming detectable and manifestation of active TB. It is 
notable also that two subjects did not express a signature at any time point and yet went 
on to be diagnosed with TB. Interrogating the modules for these subjects indicates a weak 
transcriptional response that may suggest pathogen induced host immunomodulation, 
which is well recognised in active TB13,41. In keeping with this, we observed the TB 
agreement score dropping at the time of diagnosis in 4 subjects with evidence of prior 
signature expression.       
 
In conclusion, a modular approach to characterising the blood transcriptional signature in 
active TB is robust and confers specificity for evaluating important clinical outcomes and 
heterogeneity in LTBI, and its use improves the development of reduced gene signatures 
for discriminating active TB from LTBI and other infections.    
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Methods 
 
Study cohorts for analysis 
 
Cohorts analysed in Berry et al. 20106 using microarrays were subjected to RNA-Seq and 
analysed as part of this study. Test and validation sets, termed Berry London and Berry 
South Africa sets, respectively, based on the geographical location of patient recruitment, 
were retained for RNA-seq analysis in this study (Supplementary Figure 1a).  
 
An independent cohort was recruited (between 09/2015 and 09/2016) at the Glenfield 
Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK. The cohort consisted 
of active TB patients (n=53) and recent close contacts (n=108). Patients who were 
pregnant, immunosuppressed, had previous TB or previous treatment for LTBI were 
excluded from this study. All participants had routine HIV testing and patients with a 
positive result were excluded. Patients with active TB were confirmed by laboratory 
isolation of M. tuberculosis on culture of a respiratory specimen (sputum or 
bronchoalveloar lavage) with sensitivity testing performed by the Public Health Laboratory 
Birmingham, Heart of England NHS Foundation Trust, Birmingham, UK. All recent close 
contacts were IGRA tested using the QuantiFERON Gold In-Tube Assay (Qiagen) and were 
subsequently categorised as either IGRA negative (n=50) or IGRA positive (n=49). All 
participants were prospectively enrolled and sampled before the initiation of any anti-
mycobacterial treatment. A subset of subjects recruited initially as close contacts were 
identified with active TB during longitudinal assessment (n=9), based on microbiological 
confirmation of M. tuberculosis by culture or positive Xpert MTB/RIF (Cepheid). 
(Supplementary Tables 2 and 8; Figure 7a). The Research Ethics Committee (REC) for East 
Midlands – Nottingham 1, Nottingham, UK (REC 15/EM/0109) approved the study. All 
participants were older than 16 years and gave written informed consent. 
 
Additional TB datasets were retrieved from Gene Expression Omnibus (GEO) that included 
datasets from Kaforou et al. 201322 (GEO accession: GSE37250) and Zak et al. 201630(GEO 
accession: GSE79362, BioProject PRJNA315611, SRA SRP071965) (Supplementary Table 4). 
Other datasets with additional diseases downloaded from GEO included Parnell et al. 201133 
(GEO accession: GSE20346), Zhai et al. 201534 (GEO accession GSE68310), Herberg et al. 
201336 (GEO accession: GSE42026), Suarez et al. 201537 (GEO accession: GSE60244) and 
Bloom et al. 20157 (GEO accession: GSE42834) (Supplementary Table 4). 
 
 
RNA extraction, globin reduction, cDNA library preparation and RNA-Seq 
 
3 ml whole blood were collected by venepuncture into Tempus™ blood RNA tubes (Fisher 
Scientific UK Ltd), tubes were mixed vigorously immediately after collection, and then 
stored in a −80°C freezer prior to use. Total RNA was isolated from 1 ml whole blood using 
the MagMAX™ for Stabilized Blood Tubes RNA Isolation Kit (Applied Biosystems/Thermo 
Fisher Scientific) according to the manufacturer’s instructions. Globin RNA was depleted 
from total RNA (1.5–2 µg) using the human GLOBINclear kit (Thermo Fisher Scientific) 
according to manufacturer’s instructions. RNA yield of total and globin-reduced RNA was 
assessed using a NanoDrop™ 8000 spectrophotometer (Thermo Fisher Scientific). Quality 
and integrity of total and globin-reduced RNA were assessed with the HT RNA Assay reagent 
kit (Perkin Elmer) using a LabChip GX bioanalyser (Caliper Life Sciences/Perkin Elmer) and 
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assigned an RNA Quality Score (RQS). Samples (200 ng) with an RQS > 6 were used to prepare 
a cDNA library using the TruSeq Stranded mRNA HT Library Preparation Kit (Illumina). The 
tagged libraries were sized and quantitated in duplicate (Agilent TapeStation 
system), using D1000 ScreenTape and reagents (Agilent), normalised, pooled and then 
clustered using the HiSeq® 3000/4000 PE Cluster Kit (Illumina). The libraries were imaged 
and sequenced on an Illumina HiSeq 4000 sequencer using the HiSeq® 3000/4000 SBS kit 
(Illumina) at a minimum of 25 million paired end reads (75 bp) per sample.  
 
 
RNA-seq data analysis 
 
Raw paired-end RNA-seq data obtained for Berry London, Berry South Africa and Leicester 
cohorts was processed separately and subjected to quality control using FastQC (Babraham 
Bioinformatics) and MultiQC52. Trimmomatic53 v0.36 was used to remove adapters and filter 
raw reads below the 36 bases long and leading and trailing bases below quality 25. Filtered 
reads were aligned to the Homo sapiens genome Ensembl GRCh38 (release 86) using 
HISAT254 v2.0.4 with default settings and RF rna-strandedness including unpaired read 
reads resulting from Trimmomatic. Mapped and aligned reads were quantified to obtain 
gene-level counts using HtSeq55 v0.6.1 with default settings and reverse strandedness. Raw 
counts were processed using the bioconductor package edgeR56 v3.14.0 in R. Genes 
expressed with counts per million (CPM) >2 in at least 5 samples were considered and 
normalised using trimmed mean of M- values (TMM) to remove library-specific artefacts. 
Only protein coding genes were considered for subsequent analyses. Differentially 
abundant genes were calculated using likelihood ratio tests in edgeR by fitting generalized 
linear models to the non-normally distributed RNA-seq data. Genes with log2 fold change 
>1 or <-1 and false discovery rate (FDR) p-value < 0.05 corrected for multiple testing using 
the Benjamini-Hochberg (BH) method57 were considered significant. For subsequent 
analysis, voom transformation was applied to RNA-seq count data to obtain normalized 
expression values on the log2 scale. For Berry Combined dataset, raw counts from Berry 
London and South Africa cohorts were combined as one dataset and processed in edgeR as 
described above and batch effects were removed from log2 expression values using 
surrogate variable analysis (sva) using the bioconductor package sva58 in R. RNA-seq data 
obtained from Zak et al. 201630 in the SRA format were converted to fastq files using the 
SRA toolkit and processed as above.  
 
 
Microarray data analysis 
 
External microarray datasets retrieved from GEO as non-normalized matrices were 
processed in GeneSpring GX v14.8 (Agilent Technologies). Flags were used to filter out 
probe sets that did not result in a ‘present’ call in at least 10% of the samples, with the 
‘present’ lower cut-off of  0.8. Signal values were then set to a threshold level of 10, log2 
transformed, and per-chip normalised using 75th percentile shift algorithm. Next per-gene 
normalisation was applied by dividing each messenger RNA transcript by the median 
intensity of all the samples. The training, test and validation sets in Bloom et al. 20137 
were combined and batch effects were removed using sva58. In Kaforou et al. 201322, HIV+/- 
groups were combined and analysed as one dataset. In all datasets, multiple probes 
mapping to the same gene were removed and the probe with the highest inter-quartile 
range across all samples was retained, to match with the RNA-seq data. Differentially 
expressed genes were identified using the bioconductor package limma59 in R and only 
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genes with FDR p-value < 0.05 corrected for multiple testing using the BH method57 were 
considered significant. 
 
 
Gene signature enrichment analysis 
 
Enrichment of TB gene signatures was carried out on a per sample basis using single sample 
Gene Set Enrichment Analysis (ssGSEA)32 using the bioconductor package gsva60 in R. 
Enrichment scores were obtained similar to those from Gene Set Enrichment Analysis 
(GSEA) but based on absolute expression rather than differential expression32, to quantify 
the degree to which a gene set is over-represented in a particular sample. 
 
 
Weighted gene co-expression network analysis (WGNCA) 
 
Modular analysis was performed using the WGCNA package in R. Modules were constructed 
using the Berry Combined dataset (combined Berry London and South Africa sets) using 
5,000 genes with highest covariance across all samples using log2 RNA-seq expression 
values. A signed weighted correlation matrix containing pairwise Pearson correlations 
between all genes across all samples was computed using a soft threshold of β = 14 to reach 
a scale-free topology. Using this adjacency matrix, the Topological Overlap Measure (TOM) 
was calculated, which measures the network interconnectedness and used as input to group 
highly correlated genes together using average linkage hierarchical clustering. The WGCNA 
dynamic hybrid tree-cut algorithm61 was used to detect network modules of co-expressed 
genes, with a minimum module size of 20. All modules were assigned a colour arbitrarily 
and annotated using Ingenuity Pathway Analysis (IPA) (QIAGEN Bioinformatics) and 
Literature Lab (Acumenta Biotech, Massachusetts, USA). For each module, module 
eigengene (ME) values were calculated, which represent the first principal component of a 
given module and summarize the gene abundance profile in that module. For each module, 
top 50 hub genes with high intramodular connectivity and a minimum correlation of 0.75 
were calculated and exported into Cytoscape v3.4.0 to create interaction networks.  
 
 
WGCNA module enrichment analysis  
 
Fold enrichment for the WGCNA modules was calculated using quantitative set analysis for 
gene expression (QuSAGE)62 using the bioconductor package qusage in R, to identify the 
modules of genes over- or under-expressed in a dataset compared to a control group. Linear 
mixed models were incorporated in the analysis using QGen algorithm in QuSAGE, and 
patients in datasets with repeated measures were modelled as random effects. Only 
modules with FDR p-value < 0.05 were considered significant. To test the modules in 
microarray datasets, only those modules with a >70% match in genes symbols was present 
in the microarray dataset. To obtain a modular profile of a disease group, single sample 
enrichment scores were calculated using ssGSEA and the average enrichment score of the 
control group was subtracted from the average enrichment score of the disease group. To 
obtain a modular profile on a single sample basis, average enrichment score of the control 
group was subtracted from the enrichment score of the sample.  
 
 
Class prediction 
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For classifying patients as active TB or latent TB, the random forest algorithm was used in 
caret63 package in R, using leave one out cross validation (LOOCV) over 1,000 iterations. 
For the Zak et al. 201630 and Kaforou et al. 201322 gene signatures, the Berry London set 
was used to train the model that was tested in Berry South Africa and Leicester cohorts to 
calculate the accuracy and the sensitivity and specificity of the gene signatures in 
classifying patient as active TB or latent TB. For the Zhai et al. 201534, the Influenza A 
group at Day 0 was randomly split into training (70%) and test (30%) sets to classify patients 
as infected with Influenza A or healthy controls.  
 
In order to develop a TB-specific gene signature, only genes significantly differentially 
expressed in Berry London set and not in other flu cohorts were considered, from only those 
modules that were perturbed in TB (a module was considered perturbed in TB if it followed 
a similar profile (up or down compared to control) in at least 4 of the 5 TB datasets (Berry 
London, Berry South Africa, Leicester cohort, Kaforou et al. 201322 and Zak et al. 201630), 
and given that for the 5th dataset the module did not reach significance when compared to 
control). These genes were then reduced using the Boruta39 package in R. Boruta is a 
feature selection wrapper algorithm based on random forest and is particularly useful in 
biomedical applications as it captures features by incorporating the outcome variable. 
Next, the features identified as predictive using Boruta were ranked using the GINI score 
in random forest and the top 20 genes were selected. For classifying patients as active TB 
or latent TB, the random forest algorithm was used in caret63 package in R, using LOOCV 
over 1,000 iterations. Each of the TB datasets was randomly split into training (70%) and 
test (30%) sets to classify patients as active TB or latent TB. For the Zhai et al. 201534, the 
Influenza A group at Day 0 was randomly split into training (70%) and test (30%) sets to 
classify patients as infected with Influenza A or healthy controls.  
 
 
Modified Disease Risk Score 
 
To test the TB-specific 20-gene signature, a modified version of the Disease Risk Score 
(DRS) established by Kaforou et al. 201322 was used. Briefly, the DRS is obtained from 
normalized data in a non-log space, by adding the total intensity of up-regulated transcripts 
and subtracting the total intensity of down-regulated transcripts from a gene signature. In 
this study, normalized CPM values were used for the RNA-seq data and non-log normalized 
expression values were used for microarray data. As part of the modification of the DRS, 
the absolute values of the total intensity of up-regulated transcripts and total intensity of 
down-regulated transcripts were added to obtain a composite score. 
 
 
Weighted TB Agreement Score 
 
This was a score developed to quantify the level of similarity of modular signatures 
between a test sample and a TB reference signature. The reference signature was defined 
according to the pattern of perturbation within individual modules that was consistent 
across all the TB dataset we examined. Individual modules that expressed perturbation in 
a single dataset not seen in the other datasets were assigned a signal of no perturbation. 
The pattern in the test set was compared with this reference for each module. Agreement 
with the reference was assigned a score of 1 for the given module and disagreement, 
defined as module perturbation in the opposing direction to the reference, was scored as 
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-1. For modules that failed to exhibit significant perturbation from control, a score of zero 
was assigned if the test sample did not agree with the reference. As the modules 
representing IFN signalling (yellow and light green) are dominant, agreement in 
perturbation with one or both of these modules was mandated for scores of the other 
modules to be valid. The weighted score was therefore calculated as the product of the 
sum of agreement scores for the 21 modules (excluding the yellow and lightgreen modules), 
with the score for the sum of agreement for the yellow and lightgreen modules. The sum 
of scores for the yellow and lightgreen modules was assigned as zero if negative. The final 
score was divided by 42 to normalise the scale between -1 and 1.  
 
 
Deconvolution analysis 
 
Deconvolution analysis for quantification of relative levels of distinct cell types on a per 
sample basis was carried out using CIBERSORT64. CIBERSORT estimates relative subsets of 
RNA transcripts using linear support vector regression. Cell signatures for 22 cell types were 
obtained using the LM22 database from CIBERSORT and grouped into 11 representative cell 
types. Fractions of cell types were compared across different groups using One-way ANOVA, 
and p-value < 0.05 was considered significant. 
 
 
Data availability 
 
Sequence data that support the findings of this study is being deposited in NCBI SRA 
SRPXXXX, under the BioProject code PRJNAXXXXXX (GEO accession: GSEXXXX). All other 
data that support the findings of this study are available upon request.  
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Figures 
 
Figure 1. Whole-blood transcriptional gene signatures in TB. a Heatmaps depicting 
unsupervised hierarchical clustering of active TB (red), LTBI (black) and control samples 
(purple) using a 373-gene signature derived using Berry London cohort and tested in Berry 
South Africa cohort, and (b) validated in an independent Leicester cohort. Gene expression 
values were averaged and scaled across the row to indicate the number of standard 
deviations above (red) or below (blue) the mean, denoted as row Z-score. c Receiver 
operating characteristic curves depicting the predictive potential of the 27-gene (TB vs. 
LTBI) and 44-gene (TB vs. other diseases (OD)) signatures from Kaforou et al.22 and the 16-
gene signature from Zak et al.30, in classifying a sample as TB or LTBI. d Bar graphs 
depicting enrichment scores derived from ssGSEA for active TB, LTBI and control samples 
from Berry London, Berry South Africa and Leicester cohorts using the 16-gene signature 
from Zak et al30. Purple, black and red bars represent control, LTBI and active TB samples, 
respectively, and * (control outliers), # (LTBI outliers) and § (active TB outliers) represent 
outlier samples. 
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Figure 2. Enrichment of transcriptional gene signatures in TB and other viral and 
bacterial infections. a Box plots depicting enrichment scores derived from ssGSEA using 
the 16-gene signature from Zak et al.30, and the 27-gene (TB vs. LTBI) and 44-gene (TB vs. 
other diseases (OD)) signatures from Kaforou et al.22 in tuberculosis datasets (Berry London, 
Berry South Africa and Leicester), and in datasets with additional diseases – (b) severe 
influenza cohort from Parnell et al.33, (c) Influenza A cohort from Zhai et al.34 with (d) 
receiver operating characteristic curves depicting the predictive potential of these 
signatures in classifying a sample as influenza A or control from Zhai et al.34, and (e) box 
plots for bacterial pneumonia cohort from Parnell et al.33.  
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Figure 2. 
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Figure 3. Modular transcriptional profiles of TB and other diseases. a Twenty-three 
modules of co-expressed genes derived using WGCNA from Combined Berry dataset (London 
& South Africa) were tested in TB datasets and (b) datasets with additional diseases. 
QuSAGE fold enrichment scores are depicted with red and blue indicating modules over- or 
under-expressed compared to controls. Colour intensity and size represent the degree of 
enrichment. Only modules with FDR p-value < 0.05 were considered significant and are 
depicted here. The enrichment scores for the lightgreen module for severe influenza cohort 
from Parnell et al.33 and influenza A cohort from Zhai et al.34 were greater than the 
maximum score depicted on the scale (i.e. > 1.3), and the actual scores are listed on the 
module. 
 
 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 9, 2017. ; https://doi.org/10.1101/216879doi: bioRxiv preprint 

https://doi.org/10.1101/216879


	 26 

Figure 4. Gene expression in TB compared to other viral and bacterial infections. a Log2 
fold changes for genes in the yellow module from Berry London cohort derived from active 
TB vs. controls (y-axis) compared to log2 fold changes derived from case vs. controls from 
other datasets (x-axis) in TB, and (b) datasets with other diseases (Herberg et al.36, Suarez 
et al.37, and time-course data from influenza A from Zhai et al.34, and severe influenza and 
bacterial pneumonia from Parnell et al.33). Shapes and colours represent significance 
associated with the fold changes (FDR p-value < 0.05) in either Berry London only (orange 
squares), respective dataset only (cyan diamonds), both (yellow circles) or neither (black 
triangles). 
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Figure 5. Whole-blood TB-specific 20-gene signature. a A 20-gene signature derived from 
genes significantly differentially expressed in Berry London cohort only, and not in other 
flu datasets (Supplementary 5b). b Box plots depicting the modified Disease Risk Scores 
in tuberculosis datasets and a receiver operating characteristic curve depicting the 
predictive potential of this 20-gene signature, in classifying a sample as TB or LTBI. c Box 
plots depicting the modified Disease Risk Scores in datasets with additional diseases and a 
receiver operating characteristic curve depicting the predictive potential of this 20-gene 
signature, in classifying a sample as influenza A or control. 
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Figure 6. Transcriptional profiles of LTBI outliers. a Twenty-three modules of co-
expressed genes derived using WGCNA from Combined Berry dataset (London & South 
Africa) and tested in Combined Berry dataset and Leicester cohort, with LTBI outliers as a 
separate group. QuSAGE fold enrichment scores are depicted with red and blue indicating 
modules over- or under-expressed compared to controls. Colour intensity and size 
represent the degree of enrichment. Only modules with FDR p-value < 0.05 were considered 
significant and are depicted here. b Interaction networks depicting the top 50 hub genes 
with high intramodular connectivity for the yellow, lightgreen and (c) tan modules. Each 
gene is represented as a square node with edges representing correlation between the gene 
expression profiles of the two genes (minimum Pearson correlation of 0.75). A key 
describing the four different partitions within each square node is shown, with each 
partition representing log2 fold changes for active TB (without outliers) and LTBI–Outliers 
from Berry Combined and Leicester cohorts, compared to respective controls (without 
outliers). Red and blue represent up- and down-regulated genes, respectively. In the tan 
module, the expression for IFNG is also shown, although it was not one of the top 50 hub 
genes. Boxplots depicting module eigengene expression, i.e. the first principal component, 
are also shown for the yellow, lightgreen and tan modules for samples from Berry Combined 
and Leicester datasets. d Volcano plots depicting differentially expressed genes for active 
TB (without outliers) and LTBI–Outliers compared to LTBI (without outliers) in the Berry 
Combined and Leicester datasets. Significantly differentially expressed genes (log2 fold 
change >1 or <-1, and FDR p-value < 0.05) are represented as red (upregulated) or blue 
(downregulated) dots, along with a Venn diagram and table summarising overlaps between 
these different comparisons.  
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Figure 6. 
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Figure 7. Modular transcriptional profiles of TB contacts followed over time. a 
Schematic depicting active TB patients and their contacts followed over time in the 
Leicester cohort. Purple, black and red represent IGRA-ve (controls), IGRA+ve (LTBI) and 
active TB patients, respectively. b Longitudinal modular profiles of TB contacts who 
remained IGRA-ve without developing TB (n=15), (c) TB contacts who remained IGRA+ve 
without developing TB (n=16), and (d) TB contacts who developed TB during the study 
(n=9). Enrichment scores derived using ssGSEA compared to the average enrichment scores 
of IGRA-ve controls are depicted, with red and blue indicating modules over- or under-
expressed compared to controls. Colour intensity and size represent the degree of 
enrichment. For each patient time course data is depicted with a sample at baseline 
followed by months from baseline. For the contacts who developed TB during the study, 
the time point when the contact was diagnosed with active TB in the clinic is represented 
in red letters. Representative modular TB profiles depicting modules that were perturbed 
in TB, are shown for visual comparison on either side of each modular figure. The x-axis 
depicts the time in months of recruitment for the study from Baseline.  
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Figure 7. 
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Figure 8. Whole-blood weighted-TB agreement score in TB contacts followed over time. 
a Bar plots depicting the weighted-TB agreement scores in TB contacts who remained IGRA-

ve (n=15), (b) TB contacts who remained IGRA+ve (n=16), and (c) TB contacts who developed 
TB during the study (n=9). For TB contacts who developed TB during the study, the time 
point when the contact was diagnosed with active TB in the clinic is represented by a red 
bar. 
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