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Abstract

Identification of neuromarkers accurately predicting cognitive characteristics from a single, 

standardised MRI scan could be tremendously useful in basic psychology and clinical practise. In

a recent article, Rosenberg et al. (Nat Neurosci, 19, 165-171, 2016) argue that whole-brain 

functional network strength is a broadly applicable neuromarker of sustained attention. They 

claim that this marker accurately predicts performance from task related as well as resting state 

activity. Here, we discuss the applicability and generalizability in the context of three 

methodological concerns: Simulations show that the statistical methods for the 1) initial 

validation analyses as well as 2) internal validation using leave-one-out cross validation, are 

biased towards significance; 3) simple and complex models are compared suboptimally. Overall, 

we find that the article of Rosenberg et al. provides sufficient proof that network strength is 

associated with attentional capacity that it is not possible to say to which extent, and for this 

reason we argue that it cannot be concluded that the network is a broadly applicable 

neuromarker. 
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Being able to accurately predict cognitive characteristics of an individual based on a single, 

standardised brain scan could be tremendously useful in basic neuroscientific research and in 

clinical practise. The topic is currently receiving significant scientific interest with NeuroImage 

dedicating a special issue to it (Calhoun et al., 2017) and Trends in Cognitive Sciences publishing

a Feature Review specifically on examining individual differences using functional magnetic 

resonance imaging (fMRI) (Dubois and Adolphs, 2016). 

In a young field such as this, new methodologies for analyses are proposed, and the limits of 

what can be accomplished are tested. In a recent article, Rosenberg and colleagues (2016) did 

exactly this within the field of sustained attention. They created network models, referred to as 

Sustained Attention Network (SAN) models, from fMRI data and, using these, they claimed to 

demonstrate “that whole-brain functional network strength provides a broadly applicable 

neuromarker of sustained attention” (p. 165). The claim was backed by analyses showing that the

marker accurately predicted not only task performance from task-related activity, but also from 

resting state activity, and the identified network predicted symptoms of attention deficit 

hyperactivity disorder (ADHD) from resting state activity in a separate sample. 

While we find that the authors convincingly demonstrate that functional connectivity is 

associated with  (sustained) attentional capacity, we would like to raise some methodological 

concerns, which leave us in doubt about how to interpret the created network models and, more 

generally, whether the article can be taken as evidence that whole-brain functional connectivity is

indeed a broadly applicable neuromarker of sustained attention, or simply one of presumably 

many moderately predictive neural characteristics. 

Our points generally fall within two overall domains, 1) specific methodological concerns and 2)

a broader discussion of predictive modelling. We begin by summarising the main analysis 

applied in Rosenberg et al. and we present three specific methodological concerns: 1a) the 

network validation analysis and 1b) the correlations obtained from cross validation constitute 

biased tests, and 1c) complex and simple models were not compared in a principled manner. 

Before presenting our discussion we briefly comment on two valid analyses reported in 

Rosenberg et al., and what might be concluded from them. We then present a broader discussion 
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of predictive modelling in the context of neuromarkers where we begin by 2a) briefly discussing 

the term ’neuromarker’ as it appears in central claims of Rosenberg et al. Afterwards we discuss 

2b) how to measure predictive power. We present these points within the frame of the central 

claims that the neuromarker is robust (p. 165, p. 169), predictive (pp. 165-70), and broadly 

applicable (p. 165), and in the final part of the comment we generalise our discussion and make 

recommendations for future studies predicting individual differences and identifying 

neuromarkers.

2. Summary of the general analysis method of Rosenberg et al. (2016)

The main data of the Rosenberg et al. study was the fMRI BOLD signal recorded during a 

sustained attention task and during resting, and the general method for model building was as 

follows: The brain of each participant was divided into 268 distinct nodes, and the BOLD signal 

of all constituent voxels was averaged within each node, creating 268 mean BOLD time courses. 

To examine the connectivity across areas, the authors defined a correlation matrix of the 268 

nodes in their atlas (a 268 x 268 matrix where only the upper/lower triangular is of interest – a 

total of 35778 correlations). Next, these 35778 correlation coefficients were correlated with task 

performance, d´, in the sustained attention task, and significant results at a threshold of p<0.01 

were used in further analyses. The correlations of the remaining data were transformed into the 

real numbers by Fisher's z, and the negative and positive network strengths were defined as the 

sum of negative/positive z-values respectively. This general procedure for obtaining network 

strengths was used in a series of analyses as we describe below: a network validation analysis, 

internal validation tests using cross-validation (here, network strengths were created and tested 

on different participants), and external validation tests (here, models were built and tested on 

different datasets). 

3. Methodological concerns

3.1 Network validation analysis

To validate the use of network strength as a summary statistic, two tests were performed based 

on the above-mentioned preselection of data: A test of no correlation between d´ and the negative

and positive network. For these tests, large r (0.95 and -0.97) and low p (1.3 x 10-13 and 2.4 x 10-
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15) values were obtained, and the authors concluded that “[n]etwork strength correlated with d′ 

across subjects, validating its use as a summary statistic” (p. 166). However, as it had already 

been tested that every data point used to calculate the negative and positive network strength 

correlated with d′ in a particular direction, the analysis becomes circular (see e.g. Kriegeskorte et

al., 2009), and a significant result is not surprising. Therefore, in our view, the test cannot be used

as validation. 

Furthermore, a reader may be tempted to conclude from the reported test statistics (as indeed the 

Nature Neuroscience News and Views article (Smith, 2016) covering the study does), but the 

reported p-values are very difficult to interpret, the distribution of parameters will be off, 

estimates biased and confidence intervals artificially narrow, making such conclusions 

meaningless.

To illustrate these issues, we performed a simulation showing that significant results are obtained

the majority of times that Rosenberg et al.’s network validation test is applied to random data. 

We created a simulated data set for which d´ was Gaussian with a mean=2 and SD=1 (similar to 

the values reported by Rosenberg et al.) and with 300 “edges” of independent, uniformly 

distributed correlation coefficients (range: -.95 to .95), but with d´ and the correlation 

coefficients simulated independently. 500 simulations were performed to emulate the analysis of 

the positive network. The p-values obtained are presented in Figure 1a and should follow the 

blue uniform distribution if the method were unbiased, but instead a bimodal distribution was 

obtained with the majority of the distribution falling under p = 0.05. 

------------------------------------------FIGURE 1 ABOUT HERE------------------------------------------

3.2 Prediction analysis using leave-one-out cross validation (LOOCV)

Following the network validation test, the authors performed prediction analyses on two fMRI 

data types – data acquired during task performance and data acquired during rest – using a 

standard LOOCV procedure (see e.g. Hastie et al., 2009) to avoid overfitting. The models were 

built separately for each training set in the same manner as for the network validation analysis, 

and predictions were made for the d´ of the left-out participant. Analyses were performed for the 
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positive and negative network strengths as well as for a general linear model based on the two. 

All analyses were evaluated by examining the Pearson correlation between observed and 

predicted d´ values. For the analyses based on task related activity, r was between 0.84 and 0.87 

whereas r was between 0.43 and 0.49 for analyses based on resting state data. A main question is 

how to interpret these correlation tests used to “assess predictive power” (p. 166).

3.2.1 Correlations and R^2 type statistics

In a simple linear regression of x on y, the coefficient of determination, r2, defined as the 

proportion of variance in y explained by x (i.e. one minus the ratio of residual to total variation), 

is calculable as the squared Pearson correlation of x and y. In a multiple regression, r2 can be 

calculated as the squared Pearson correlation between the observed and fitted y’s. However, as 

will be exemplified below, this no longer holds when the fitted values are obtained by cross 

validation and one generally obtains two different measures by defining an r2-type measure as 

the proportion of explained variance (using a cross validated version of residual and total 

variation) contra the squared Pearson correlation between observed and fitted. The latter 

definition is taken by the authors (p. 166). 

This approach of calculating and testing correlation between observed and LOO predictions 

entails some methodological pitfalls. Consider a simple example where there are no features 

available, and we estimate from an intercept-only model thus predicting the left out individual by

the mean of the n-1 remaining data points. Here, the LOO prediction and left out observed will 

be independent, but estimating the Pearson correlation from the sample of n pairs yields a perfect

minus one (and thus an r2 of one). This clear discrepancy stems from the fact that the calculation 

of the Pearson correlation allows for a recalibration of the model, i.e. a new intercept and slope is

fitted. The Pearson correlations are consequently very hard to interpret and will usually be over-

dimensioned. Some of these points are also discussed in a recent online blog (Schwarzkopf, 

2015).

To illustrate this point, we extended the simulation from the network validation analysis to 

include leave-one-participant-out cross validation and in each case calculated the correlation 

between observed and predicted d’. A test for no association was performed for each simulation, 
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and the distribution of the resulting p-values is given in Figure 1b. As the data is simulated under

the null hypothesis, the p-values should follow the uniform distribution shown as the horizontal, 

blue line, but as they do not, the approach is biased.

Another and related consideration worth mentioning pertains to the classical bias-variance trade-

off of cross validation estimation of errors with LOO constituting one end of the scale being 

close to unbiased for the true error but with high variation due to a high positive covariation 

between estimates (owing to very similar training sets) (Hastie et al., 2009; Kohavi, 1995). In 

general, one would usually chose a middle ground such as five or ten fold cross validation

(Varoquaux et al., 2017). 

While we agree with the commendable practise of addressing overfitting by resampling, it is 

unclear how the reported statistic is to be interpreted, and as shown by simulations, the 

corresponding test is biased. For this reason, we are in doubt what can be concluded on the basis 

of the LOOCV test reported by Rosenberg et al. – it is difficult to evaluate whether the findings 

are robust and whether the predictive power is large enough to support a claim of broad 

applicability.

3.3 Model Selection and Complexity

The authors perform the following analyses to justify the applied level of model complexity. 

First, two tests were performed with the goal of examining whether d´ was “more closely related 

to the strength of the whole network than to the strength of individual edges”. They compared the

strength of the correlation between d´ and the network strength measure previously obtained to 

the strongest correlation between d´ and a single edge. For the positive network, the test was not 

significant (p = 0.2) whereas it was for the negative network (p = 2.4 x 10-6), which led the 

authors to conclude that the network strength captured individual d´ variability better than any 

single edge. The main purpose of this test thus seems to be whether the selection threshold of p =

0.01 provides better results when applied to the data set than the much more conservative 

threshold of using the best single edge. Secondly, they test what they call “lesioned” matrices, 

models excluding one of eight canonical networks. They generally find that little changes in the 

explanatory power of the model although in multiple cases, the correlation coefficients for the 
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simpler models are in fact higher than for the full model. Surprisingly, at the end of this section 

the authors caution against simpler models due to the connectivity characteristics of the most 

important nodes.

The motivation for the model selection is not addressed by the authors. Rosenberg et al. used 

multiple univariate tests for no correlation between connectivity parameters and the dependent 

measure with an a priori threshold as a choice of feature exclusion and weighted the remaining 

features equally when calculating the summary statistic to be used in modelling. This approach 

seems a bit ad hoc as the applied Steiger’s z test will not take into account the variability 

stemming from calculating and ranking correlations from the edges. We note that other methods 

for data reduction exist (e.g. various component or association analyses), and these can be 

applied to the independent variables alone and thus provide a more principled approach. 

Supervised approaches that could have been applied include shrinkage regression or other 

penalisation methods, where one estimates the regularisation parameters (Hastie et al., 2009). 

When simple, off-the-cuff analyses are employed, it might be of interest to try to assert the 

sensitivity of the model to subsidiary specifications (e.g. varying the threshold for feature 

selection). This becomes increasingly true when the model is presented as one representing a 

whole-brain network. Additionally, we would argue that it is suboptimal that the motivation for 

choosing a specific model complexity is excluded from the loop when performing cross 

validation for internal validation.

A main focus of Rosenberg et al. is on the predictive capacity of complex brain network models, 

and although the authors do not claim that their identified model is optimal, they caution against 

oversimplifying predictive networks to a handful of regions (p. 168) or single features (p. 165), 

but based on the reported tests, one might just as well have cautioned against making 

assumptions about whole brain networks. We believe that simple and full models could be 

compared more systematically. A more principled approach is varying complexity while 

penalizing the number of variables as more explanatory features cannot reduce explanatory 

power on the same data. Often one combines such procedures with resampling techniques such 

as bootstrapping or cross validation to compensate for overfitting.
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Based on the reported tests, it cannot be concluded that all parts of the reported network are 

related to attention (in fact, it appears this is not the case). The external validation tests discussed 

below do not resolve this issue.

4. Permutation test

As mentioned above, the LOO estimates are dependent owing to similar training sets. This is 

noted by the authors in the last section of the Online Methods, and a permutation test for the 

association between task performance and edge connectivity had been performed to address the 

issue. In such an approach, one shuffles the response between individuals and repeats the 

prediction procedure thus supplying a correlation expected to belong to the null distribution of no

association. Repeating this gives an idea of the null distribution of the correlation and the 

quantile of the observed correlation in this distribution can be evaluated and interpreted as a p-

value. This nonparametric permutation distribution is a more correct way to handle the effect of 

dependence and bias, and therefore we believe that the corresponding p-values obtained in this 

analysis are more appropriate than the ones reported in the Results section, albeit we retain some 

scepticism as it is still difficult to interpret LOO correlations that form the basis for the 

permutations as discussed in section 3.2.

We take the result of this analysis to be a strong indication that connectivity in both the task and 

rest fMRI datasets are associated with performance in the behavioural task, but we are still not 

able to evaluate how predictive, and whether it is predictive enough to support the claim of broad

applicability. While the permutation test will address the bias stemming from the inflated 

correlations, it is still a difficult to interpret statistic that is being validated, and the approach 

does not offer an estimate of the magnitude with which the estimate should be shrunk. Rosenberg

et al. could nevertheless provide an idea of the shrinkage factor by supplying a plot of the 

permutation null distribution.

5. External validation

Rosenberg et al. place a large focus on testing the SAN model on external data sets. While 

testing a model on an external data set generally provides the most reliable measure of its 

performance, it also entails a substantial interpretational effort when the test data is sampled from
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a population different from the one on which the model was built. The external validation was 

performed on resting state data collected at Peking University consisting of 113 children and 

adolescents, some diagnosed with ADHD, some healthy controls, and the aim was to predict 

AHDH symptom severity. There is a substantial difference in multiple data attributes, e.g. the 

examined population, and as a consequence we cannot without extrapolation interpret the 

correlation as an estimate of the correlation mentioned in the internal data set. As such, the 

external data correlation does not provide a shrunken estimate. 

Another important point to keep in mind is that when performing external validation, statistical 

significance is dependent on the size of the validation sample, i.e. any nonzero effect will be 

found in a sufficiently large validation set. Therefore it is essential also in external validation to 

evaluate the quality of the prediction. 

The external validation performed in Rosenberg et al. shows a statistically significant correlation 

between the SA network and ADHD symptoms and further strengthens the conclusion that (parts 

of) the network and attention are associated. We return to the results of the analysis below in 

section 7, where we discuss how one might measure the quality of predictions. 

6. On neuromarkers

The term neuromarker is related to the more common medical term biomarker of disease, which 

can be thought of as “a characteristic that can be objectively measured and evaluated as an 

indicator of normal biological processes, pathogenetic processes, or pharmacologic responses to 

therapeutic intervention”  (Kropotov, 2016, pp. xxiii-xxiv).  It was possibly first defined by 

Gordon (2007) as essentially any objective neuroimaging index of brain structure or function as 

well as behavioural cognitive tests predictive of some type of disease, but has recently been used 

more broadly as a neural indicator of a cognitive process.

It is somewhat unclear if Rosenberg et al. hold a similar definition of the term neuromarker as 

they do not define it. Below, we evaluate the neuromarker proposed by Rosenberg et al. using 

classic criteria and by examining modelling choices and outcomes from a more traditional 

statistical perspective on predictive modelling.
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7. Measures of Predictive Power

Rosenberg et al. place a main focus on predictive modelling and taking the first step towards a 

brain-based measure of attention (p. 165, p. 170), yet model evaluation is done using only 

correlation coefficients, an approach more suited to models of association than prediction.  

Figure 1c  is a plot of the predicted and simulated d´s from one of the LOO simulations 

mentioned above, where the blue line is the regression while the red is the identity (i.e. observed 

d´ = predicted d´) meant to exemplify that correlation does not signify predictive accuracy. We 

observe that the predictions fall within a much narrower set of values than those observed, 

illustrating another problem of the procedure: even though a high correlation between predicted 

and observed d´ is found, predictions may be biased toward the sample mean. We note that this 

phenomenon is also observed in Figure 1 of Rosenberg et al. The issue appears  more prominent 

for predictions based on resting state data for which the model predicts that all participants 

perform within a narrow intermediate range, and, as far as we can see, that children and 

adolescents diagnosed with ADHD should perform as well as or better than healthy university 

students. When models are created on the ADHD sample (which contains children/adolescents 

with/without an ADHD diagnosis) and tested on university students, the model appears to predict

that the students have ADHD symptoms comparable to the children/adolescents diagnosed with 

ADHD. It thus appears that the proposed neuromarker forms the basis of counterintuitive and/or 

inaccurate predictions. To us, this speaks against the claim of the immediate generalisability of 

the model, as one cannot meaningfully interpret a single new prediction but must first collect and

predict a sizeable sample from the new population to allow the model to recalibrate.

It is unclear why a measure of predictive power should be dependent on the similarity of the 

predictions as indeed the correlation is. Figure 1d shows two sets of points around the identity 

line, where the identity corresponds to perfect agreement. One sees that the set of blue circles 

have a lower correlation than the red triangles, the difference transcending that of statistical 

significance on a 5% level. However, the two sets have the exact same distance to the identity, 

the red being simply more heterogeneous. Another related property of the correlation that makes 

it unattractive as a predictive accuracy measure is that it is invariant to scaling of the axes. These 

properties, however, make the correlation an appropriate measure of discrimination, i.e. how 

easily it is to separate or rank the population based on the model. It is therefore also natural that 
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the correlation depends on the variance in the population since it is easier to discriminate in a 

heterogeneous population. 

An often used measure of predictive accuracy for continuous data is the mean square error 

(MSE), defined to be the expected squared deviation from observed to predicted. This has the 

advantage of often being relatable to the width of an asymptotic prediction interval and therefore 

giving a quantity that can be interpreted lucidly on the actual scale of the observations. Other 

measures include the Gini index and calibration curves, measures also relevant for discrete 

observations (Harrell, 2015). We believe such measures would be practically useful additions to 

the reported correlations.

Given that Rosenberg et al. propose a broadly applicable neuromarker and claim specifically that

the “SAN model can also predict symptoms of attention deficit hyperactivity disorder” (p. 165), 

they could additionally have supplemented the analysis by evaluation of predictive accuracy 

using standard methods for neuromarkers – such as sensitivity/specificity – instead of using only 

a method for evaluating predictive models in general. For example, Kropotov (2016, p. xxiii) 

mentions that an ideal neuromarker for ADHD should have a diagnostic sensitivity (probability 

of correct positives) of at least 80% and a diagnostic specificity (probability of correct negatives)

of at least 80%.

Sensitivity and specificity depends on a selected threshold (cut-off) value and are therefore 

typically reported for a range of thresholds. Such thresholds can be set for Rosenberg et al.’s data

predicting ADHD using the GLM data presented in Figure 3: a predicted d´ threshold is selected,

and the number of ADHD (hits) and non-ADHD (false alarms) children below this threshold can 

be counted, and from these, sensitivity and specificity can be calculated. Using this method, we 

found that a threshold achieving a specificity of around 80% results in a sensitivity of around 40-

45%. Similarly, to achieve a sensitivity of 80%, specificity is around 40-45%. With a more 

balanced threshold, we are able to achieve both sensitivity and specificity of around 60%. Thus, 

if we apply a standard method for neuromarker evaluation in the context of ADHD, the method 

of Rosenberg et al. does not appear to fulfil the sensitivity/specificity requirements and is only 

slightly better than random guessing. 
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Taken together, we thus believe that the model evaluation method of using r2 between the 

predicted and observed values have a number of disadvantages. As already pointed out, such 

measures are difficult to interpret when predictions are obtained by LOOCV. For predictions on 

healthy participants, the analyses could have been supplemented with accuracy measures such as 

the mean squared error. For predictions of ADHD symptoms, analyses could have been 

supplemented with more traditional evaluation measures for neuromarkers such as sensitivity 

and specificity. For both alternative evaluation methods, the results appear less impressive. 

8. Concluding discussion

In cognitive neuroscience, whether we define a neuromarker as a measurable neural indicator of 

a cognitive characteristic or disease, we would expect that neuromarker to be a precise and 

reliable surrogate. In their article, Rosenberg et al. (2016) claim that “whole-brain functional 

network strength provides a broadly applicable neuromarker of sustained attention” (p. 165). 

While we do not doubt that the network has some predictive value for attention, we have 

presented three concerns related to the claim which we recount in the following adding a few 

recommendations for future studies using similar methods. 

First, we argued that two of the most central analyses, the network validation test and the 

LOOCV test are performed in a biased and difficult to interpret manner, and the analyses on the 

collected data therefore amount to a nonparametric association test (the permutation test) with no

working estimate of the effect.  In regards to the specific estimation of an r2 type statistic from 

cross validation we would recommend using the CV version of residual and total error in its 

calculation. We further argued that the correlations resulting from external validation cannot be 

taken as estimates in the internal data due to substantial differences in data and populations. For 

the same reason it is not clear how the correlations should be interpreted.

Second, we are concerned that a focus on “whole brain” connectivity could be misleading as 

model comparisons were not performed ideally, and the analyses that were conducted indicated 

that smaller networks were equally or more predictive. As a general recommendation, data 

reduction is usually unproblematic, at least in terms of overfitting, when it is done in an 

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/216697doi: bioRxiv preprint 

https://doi.org/10.1101/216697
http://creativecommons.org/licenses/by-nc-nd/4.0/


unsupervised manner, i.e. blinded to the response. Supervised learning where one selects features

using the response can be performed for example by maximising some information criterion that 

should penalise for model complexity. It is important to account for the resulting overfit when 

reporting model performance. As a final suggestion we propose that when a neuromarker of 

potential interest to classification is reported, its sensitivity and specificity (or similar measures) 

are part of the report as these could be of use to clinicians working with biomarkers. Proposing a 

neuromarker as broadly applicable could be misleading without an estimate of its accuracy.

Third, we argued that a narrow focus on difficult-to-interpret, relative predictive capabilities of 

the model makes it even more difficult to evaluate the predictive value of the model. As in 

clinical research in general, the methodological focus on significance testing, here whether the 

network significantly correlates with attention, is often of small interest. Rather the focus should 

be on the effect size and the certainty with which it was determined. While it is not obvious how 

we should measure an effect in predictive modelling, we have tried to argue that it should be 

constituted by more than a correlation. We also argue that estimates should be chosen and shrunk

to reflect a realistic performance of the model on a new sample, another point where we find the 

applied approach suboptimal. Claims of the network strength being a “robust” and “broadly 

applicable” predictor are consequently very difficult to verify from the article, and applicability 

outside the original dataset appears dependent on model recalibration. Furthermore, the authors 

do not specify their criteria for claiming broad applicability, thus making the claim even harder 

to evaluate.

When summarising a model, it is advisable to include multiple performance measures to describe

the performance. These measures will usually be too optimistically estimated which can be 

sought remedied by resampling for example by enhanced bootstrap (Efron, 1983; Harrell, 2015). 

Shrinkage can alternatively be built into the estimation in regularised regression, which involves 

tuning of regularisation parameter(s) and considerations on data scaling.

In summary, we find that the article by Rosenberg et al. provides ample proof that parts of the 

SAN network is associated with capacity for sustained attention through permutation tests and 

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/216697doi: bioRxiv preprint 

https://doi.org/10.1101/216697
http://creativecommons.org/licenses/by-nc-nd/4.0/


external validation. We argue, however, that the performed analyses do not warrant the 

conclusion that the network is a robust, broadly applicable, predictive neuromarker.
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Figure 1

Figure legend

Figure 1: Simulations. (a) Histogram of p-values from 500 simulations of the network validation 

analysis. The blue line represents the true uniform distribution, which is expected if analyses 

were unbiased. (b) Histogram of p-values from 500 simulations of the leave-one-out analysis. 

The blue line represents the true uniform distribution. (c) Scatter plot of observed against leave 

one out predictions on data simulated as in (b). The blue line represents the regression, the red is 

the identity. Note that predictions are biased towards the observed mean. (d) Scatter plot of 

artificial data to illustrate the connection between correlation and heteroscedasticity. The 

correlation of the blue circles is 0.27 (p=0.73) while the correlation of the red triangles is 0.95 

(p=0.05). However, the two point sets have the same distance to the identity (black line) with 

common MSE equal to 0.54. 
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