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Abstract: (216 words)  

With the advance of next-generation sequencing technologies, non-invasive prenatal 

testing (NIPT) has been developed and employed in fetal aneuploidy screening on 

13-/18-/21-trisomies through detecting cell-free fetal DNA (cffDNA) in maternal blood. 

Although Z test is widely used in NIPT nowadays, there is still necessity to improve its 

accuracy for removing a) false negatives and false positives, and b) the ratio of 

unclassified data, so as to reduce the potential harm to patients caused by these 

inaccuracies as well as the induced cost of retests. 

Employing multiple Z tests with machine-learning algorithm could provide a better 

prediction on NIPT data. Combining the multiple Z values with indexes of clinical 

signs and quality control, features were collected from the known samples and scaled 

for model training in support vector machine (SVM) discrimination. The trained model 

was applied to predict the unknown samples, which showed significant improvement. 

In 4752 qualified NIPT data, our method reached 100% accuracies on all three 

chromosomes, including 151 data that were grouped as unclassified by one-Z-value 

based method. Moreover, four false positives and four false negatives were corrected 

by using this machine-learning model.  

To our knowledge, this is the first study to employ support vector machine in NIPT data 

analysis. It is expected to replace the current one-Z-value based NIPT analysis in 

clinical use.  

Keywords: Next-generation sequencing (NGS), non-invasive prenatal testing (NIPT), 

Z test, support vector machine (SVM) 
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Maintext: 

Introduction: 

Non-invasive prenatal testing (NIPT), which was based on the discovery of cell-free 

fetal DNA (cffDNA) in maternal plasma and serum, has been applied in clinical use for 

fetal aneuploidy detection mainly on Down’s syndrome, Edward’s syndrome and 

Patau’s syndrome, respectively corresponding to 21-trisomy, 18-trisomy and 

13-trisomy [1-3]. Though the golden standard on prenatal diagnosis of fetal aneuploidy 

is the invasive amniocentesis that have a rate of 1/250 could lead to abortion, NIPT was 

sufficiently robust that the International Society for Prenatal Diagnosis [4], the 

National Society of Genetic Counselors [5], the American College of Obstetricians and 

Gynecologists and the Society for Maternal–Fetal Medicine [6] had published 

committee opinions, stating that cffDNA testing could be offered to pregnant women at 

high risk for fetal aneuploidy as a screening option after counseling.  

 

Except those employing deep sequencing or array-based methods, most NIPT were 

performed using the low-coverage next-generation sequencing (NGS) platforms such 

as Verifi [7], Materni21 [8], panorama [9], NIFTY [10] and so on. Generally, the reads 

generated on the sequencing platforms mentioned above were aligned to genomics 

position and counted as depth in bins of a certain size. Then the depth was normalized 

and compared with reference control of negative samples [1] or the internal reference 

chromosomes to measure the deviation [11]. Due to the deviation between the normal 

fetal diploid and abnormal fetal triploid was as small as around 2%-5%, Z test was 
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frequently employed in analysis to test whether the hypothesis that the value of 

unknown data is different from the mean of control data is accepted or not. 

 

However, some problems still need to be solved as follows: a) only one Z value may not 

be sufficient to give a correct prediction to each sample due to read distribution bias in 

individual case; b) fetal fraction, a factor proven to be crucial in trisomy determination 

in NIPT, was however not involved in sample discrimination in most of methods 

nowadays; c) the sample with Z score inside an ambiguous interval called “grey zone”, 

ranging from 1.96 to 4, would be failed in prediction and hence required a retest, 

resulting in multiplying the cost. As shown in Figure 1 and Supplementary Figure 1, the 

current one-Z-value based NIPT was not able to discriminate samples inside grey zone, 

especially when fetal fraction is around or less than 5%. Such problems mentioned 

above could result in higher cost of testing and delay of appropriate treatment. 

 

Therefore, it is meaningful to develop a more precise method for NIPT calling. The 

support vector machine (SVM) is an excellent tool for this purpose. It is a supervised 

machine learning algorithm that identifies an arbitrarily defined framework for 

discriminating query data using a model trained from selected features [12]. SVM has 

already shown high robustness and accuracy in fields [13], such as cancer subtype 

classification [14], splice site prediction [15] and single nucleotide polymorphism 

(SNP) prediction [16]. Considering the advantages of SVM that: 1) more features could 

give more accurate prediction and 2) feature co-linearity would not affect the 
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discrimination, SVM algorithm was selected to train models for NIPT prediction in this 

study. 

 

Three types of Z tests were employed in analysis: Z_baseline, Z_chromosome and 

Z_sample. Each type of Z test was performed twice: one with the negative control, and 

the other with the assumed positive control. The latter was lack in most of NIPT 

currently, however it is very important for removing false positives. Actually NIFTY of 

BGI performed student’s T tests on both negative control and assumed positive control 

following by a logarithmic likelihood odds ratio calculation [10], however it ignored 

the variances inside samples and between chromosomes as well as other clinical 

features. Combining multiple Z values with indexes of clinical signs and quality control, 

a support-vector machine algorithm was employed to train models for accurately 

discriminate the NIPT samples, especially the “grey zone” NIPT results as well as those 

falsely predicted before.  
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Materials and Methods: 

Specimen source 

This study was based on a retrospective analysis of data prospectively generated on 

consecutive clinical samples for the NIPT from March to July 2016 at GuangZhou 

DaAn Clinical Laboratory Centre that was one of nine laboratories approved to report 

official NIPT result for clinical use in mainland China since late 2014.  

All specimens were processed by NIPT pipeline provided by DaAn Gene Co. Ltd., 

using reagent kit and semi-conductor sequencing platform certified by Chinese Food 

and Drug Administration (CFDA). The reported results were output through a 

CFDA-certified standard operation protocol (SOP) and a DaAn Gene’s compiled 

bioinformatics plugin named “Seqboost” developed on the basis of Liao et al ‘s paper 

in 2013 [17] that described a one-Z-value based NIPT approach on semi-conductor 

sequencing platform. Since all the CFDA-certified NIPT reports were restricted on the 

three chromosomes 13, 18 and 21, our study would specially focus on the detection of 

these specified chromosomes. 

 

Data summary 

In total 5518 NIPT data were collected during the period from two semi-conductor 

sequencers located in the lab in Guangzhou (See Table 1). Forty-seven of them were 

positives, including five for trisomy 13, fifteen for trisomy 18 and twenty-seven for 

trisomy 21. Average age of pregnant mother with negative results was 31.57 (95% CI: 

15-51), smaller than the average age of ones with positive results (32.83, 95% CI: 

17-47). Another 500 negative samples were recruited as reference negative control for 

NIPT calling. 
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As shown in Supplementary Table 1, a series of values were listed to demonstrate the 

information of these data, including “Z_run” as the Z scores output by Seqboost in 

one’s run, “Real_state” as the results confirmed by prenatal or postnatal diagnosis, 

fetal fraction predicted using SeqFF [18], peak value of read length, maternal age and 

gestational week. According to CFDA’s NIPT policy and DaAn Gene’s SOP, Z score 

= 3 is the cutoff to distinguish negatives and positives. Hence in routine NIPT, the 

data with “Z_run � 3” would be regarded as positive, meaning it’s significantly 

deviated from the baseline of reference dataset; while those with “Z_run < 3” would 

be regarded as negative. Hence, the data predicted as positive with “Real_state = -1” 

as negative were false positives; those predicted as negative with “Real_state = 1” as 

positive were false negatives.  

 

Of these 5518 data, 766 data with unique reads fewer than 3,000,000 or predicted 

fetal fraction less than 5% were labeled as “QC-filtered” on the basis of quality 

control (QC) according to the SOP. The remaining QC-pass 4752 data were 

categorized into three groups for specified chromosomes on the basis of the principle 

of statistics: Group “N” as those with Z scores smaller than 1.96, meaning not 

significant higher than baseline of reference dataset (p > 0.05); Group “P” as those 

with Z scores larger than 4, meaning significant higher than baseline of reference 

dataset (p < 0.0001); Group “Unclassified” as those with Z scores between 1.96 and 4, 

meaning retest is required for double check in nowadays’ NIPT. For each specified 

chromosome, data in Groups “N” and “P” were employed to train models and conduct 

internal validation in this study. Data in Group “Unclassified” and “QC-filtered” were 

used in performance test, as well as the six false positives and nine false negatives 

happened in previous NIPT reports. 
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Feature selection and data reanalysis 

Reads generated from semi-conductor sequencer were already trimmed and mapped 

to hg19, following by recalibration and realignment through Ion Torrent Suite 

Software. Then unique reads were obtained by using ‘samtools view –F 1024 –q 10’ 

[19]. Similar with the CFDA-certified DaAn Gene’s SOP, read-depth for each 

contiguous 20kb bin was calculated using the genomeCoverageBed program in 

BEDtools [20]. To remove the bias of read-depth distribution caused by data volume 

difference, GC content and casual sequencing bias respectively, three types of 

normalization were applied in four steps: 1) Intra-run normalization was used to 

eliminate the difference between each data; 2) Winsorization that was a 

transformation reducing the influence of outliers by moving observations outside a 

certain fractile in the distribution to that fractile [21], was employed to reduce the 

extreme read-depth among each contiguous window consisting of 15 bins of 20 kb; 3) 

LOESS was employed to remove GC-bias as written in Chiu’s paper [1]; 4) Intra-run 

normalization again due to steps 2) and 3) could induce bias of data size. Mean and 

standard deviation (s.d.) of read-depth of each chromosome were calculated for 

further statistic analysis.  

The normalized read-depth of each bin was added up every 15 bins to smooth the 

read-depth signal. Then the mean and standard deviation of merged read-depth on 

each chromosome was calculated to statistic analysis for fetal aneuploidy evaluation. 

For each data, six Z scores were called as described by the following formula:  

�_����	
��_��_��  �������������	.��
�..���	.��                  (1) 

where Z_baseline_vs_n means the Z score normalized to the average of reference 

negative samples on chromosome i, and ref. means the normalized read-depth values 
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of reference negative samples. 

�_����	
��_��_��  �������������	.������	����%/��
�..���	.��             (2) 

where Z_baseline_vs_p means the Z score normalized to the average of predicted 

reference positive data, fetal% means fetal DNA fraction. The predicted reference 

positive data is equal to the mean value of reference negative data multiplied by a 

factor ‘1+fetal%/2’ based on the assumption that half of fetal fraction would be 

increased when trisomy happens. 

�_���_��_��  �����������������������_�����
�..���	.��               (3) 

where Z_chr_vs_n means the Z score normalized to the internal reference autosome 

value that is the median of all averages of normalized read-depth in each autosome of 

this sample, which was similar in Lau’s paper [11].  

Similarly, we have: 

�_���_��_��  �����������������������_���������	����%/��
�..���	.��         (4) 

where Z_chr_vs_p means the Z score normalized to the predicted positive internal 

reference autosome value that is the median of predicted positive averages of 

normalized read-depth in each autosome of this sample. 

�_����	�_��_��  ���������	.���������
�������

 !��"!�#
                (5) 

where Z_sample_vs_n means the Z score normalized to the average of sample data, 

MAD means the median absolute deviation of read-depth, window means the number 

of windows on the chromosome i, and Sm is a factor equal to 1.4826 and makes 

�� �����
��
������  approximate to the standard deviation of read-depth of 

sample data.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/216689doi: bioRxiv preprint 

https://doi.org/10.1101/216689


�_����	�_��_��  ���������	.������	����%/���������
�������

 !��"!�#
          (6) 

where Z_sample_vs_pi means the Z score normalized to the mean value of predicted 

positive sample data. 

 

SVM discrimination 

Six Z values together with fetal fraction, peak value of read length, maternal age and 

gestational week, were collected for support vector machine classification. For the ten 

features selected for SVM classification model training, the six Z score-based features 

were essential because their distributions between negatives and positives were 

significant different (p < 2.2×10-16), while the other four features were not significant 

biased (See Table 2).  

 

Libsvm package [12] was employed to achieve SVM discrimination in this study. As 

described in the proposed SVM workflow (Figure 2), ten features were collected from 

the data in Groups “N” and “P” for model building on specified chromosomes. The 

six Z scores obtained from formula (1) to (6) do not need scaling due to they were 

already normalized, while the other 4 features including fetal fraction, peak value of 

read length, maternal age and gestational week, would be normalized to same scale 

ranging from 0 to 3 by the command ‘svm-scale –l 0 –u +3’. For the known data, ‘-s’ 

was used to save the scaling range, while ‘-r’ was used to restore the saved scaling 

range on unknown data. Then, the SVM model was constructed by ‘svm-train’, using 

SVM type ‘c-SVC’ for multiple classification and kernel type ‘RBF (radial basis 

function)’ for non-linear SVM model in default. This model was employed to do 

prediction by ‘svm-predict ’ in Libsvm package.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/216689doi: bioRxiv preprint 

https://doi.org/10.1101/216689


 

Performance test of SVM classification model in predicting NIPT data 

Firstly for the data in Groups “N” and “P” on specified chromosomes, an internal 

validation was done using the model built based on these data themselves. Importantly, 

the trained models were applied to predict the data in Group “Unclassified”, which 

was the most meaningful application in this study. As well, the models were applied 

to predict the data in Group “QC-filtered”. 

 

Comparison with other discrimination methods 

Other discrimination methods such as linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), decision tree (Dtree) and Neuron network (Nnet) were 

also tested on the same NIPT dataset in this study. An R package ‘MASS’ was applied 

to test LDA and QDA models built from the selected ten features. For Dtree and Nnet, 

R packages ‘party’ and ‘nnet’ were applied in this comparison of performance tests. 

Similar to the above statistic on the performance test of SVM models, the statistics of 

these four discrimination models were performed on three groups of data respectively: 

1) Group “N” and “P”; 2) Group “Unclassified”; 3) Group “QC-filtered”. For 

visualization of comparison, models built from two of the ten features by the five 

discrimination methods were tested, using feature 1 from formula (1) and feature 3 

from formula (3). The two-dimension hyper-planes for discrimination were plotted 

using ‘contour’ in R package ‘graphic’.  
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Results: 

 

Visualization of discrimination tools on two dimensions 

As an example shown in Figure 3，nearly all of five types of discrimination models 

illustrated good classification lines on the trained dataset (Groups “N” and “P”) using 

two out of ten features, except LDA that was with one false negative. The two 

features D1 and D3 were obtained from formula (1) and (3), representing two Z 

values normalized to different references (See Materials and Methods). A 3-D plot 

and its three 2-D plots were also given in Supplementary Figure 2 to show how SVM 

model works in discriminating negatives and positives. These results were for 

visualization of how discrimination tools separate the data, whereas in reality all of 

ten features would be employed. 

 

Performance of SVM classification models 

Table 3 demonstrated the performances of different discrimination models on NIPT 

prediction. As internal validations, the SVM models predict the training data with 100% 

accuracy on all three chromosomes. For chromosome 21, 4691 data were employed in 

model training, including 19 positives (Z score >=4) and 4672 negatives (Z score <= 

1.96). Of these 4691 data, 134 were effective as support vectors in model training, 

including 16 positives and 118 negatives. For chromosome 18, 4704 data were 

employed in model training, including 7 positives and 4697 negatives. Of these 4704 

data, 189 were effective as support vectors in model training, including 7 positives 
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and 182 negatives. For chromosome 13, 4710 data were employed in model training, 

including 4 positives and 4706 negatives. Of these 4710 data, 211 were effective as 

support vectors in model training, including 4 positives and 207 negatives.  

 

Importantly, the SVM classification model was employed to predict the other 

QC-pass data used to be regarded as “unclassified” (1.96< Z score < 4), which gave 

us a 100% accuracy prediction result. For chromosome 21, all 61 data in “grey zone” 

(1.3% of all QC-pass data) were accurately predicted using the training model, 

including 4 positives and 57 negatives. Actually, two of those 4 positives were 

wrongly regarded as “negative” before due to their Z scores were smaller than 3 (2.44 

and 2.52 respectively), however, the SVM classification model could predict them 

correctly. This suggested that some positives may be covered if only using Z score = 3 

as classification criteria, and SVM classification model could uncover such critical 

positives by training the known data. For chromosome 18, all 48 data in “grey zone” 

(1.0% of all QC-pass data) were accurately predicted using the training model, 

including 4 positives and 44 negatives. For chromosome 13, all 42 data in “grey zone”  

(0.9% of all QC-pass data) were accurately predicted as “negative” using the training 

model. In summary, all of the data could not be judged using only Z score (nearly 3% 

of all QC-pass data), were precisely predicted using the SVM algorithm with training 

the known data. This suggested that using SVM classification model could save 

around 3% of resource in retests. 
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Surprisingly, the SVM classification model also acted effectively in predicting the 766 

QC-filtered data. For chromosome 21, the model precisely predicted all the 

QC-filtered data, including 4 positives and 762 negatives. For chromosome 18, 762 

out of 766 data were correct (99.48%). One positive was wrongly predicted as 

“negative” with prediction probability 52%, while three negatives were incorrectly 

predicted as “positive” with predicted probabilities 50%, 92% and 99% respectively. 

For chromosome 13, 765 out of 766 data were correct (99.87%). Only one positive 

data that was regarded as “negative” with Z score = 2.79, was also incorrectly 

predicted as “negative” by the SVM model. This demonstrated that the SVM model 

could perform well in most of QC-filtered data but could not uncover all false 

negatives, suggesting that quality control is still necessary to guarantee the accuracy 

of NIPT.  

 

Comparison with other discrimination models in performance 

Compared with other models, SVM is the only one to obtain 100% accuracy in both 

internal validation and prediction on data in grey zone (see Table 3). Both SVM and 

Nnet models obtained 100% accuracies in internal validation across three specified 

chromosomes. However, Nnet model did not give perfect predictions on the samples 

in grey zone, having three false negatives on chromosome 21 and one false negative 

on chromosome 18. The other three models did not perform well enough in internal 

validation or grey zone data prediction. It was shown that Dtree model was prone to 

have more false positives than false negatives in predicting. This suggested that SVM 
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could be the best algorithm to improve the accuracy of nowadays’ NIPT.  

 

Application in correcting previous false callings from one-Z-test based method 

In addition, we tested the model with four false positives and four false positives 

happened in previous time. These eight samples were wrongly predicted by Z 

score-based method. As shown in Table 4, all of eight samples were corrected by 

using the SVM classification model, according to the prediction probabilities. For the 

four false positives reported previously, values of features D1, D3 and D5 (three types 

of Z scores normalized to reference, see Methods) significantly exceeded 3, while 

values of features D2, D4 and D6 (three types of Z scores normalized to the predicted 

positives) also significantly lower than -3. This suggests that one-Z-test based method 

is not reliable in this situation. However, SVM model using multiple features could 

accurately predict the results. Besides, the SVM model performed well in correcting 

false negatives on chromosomes 18 and 21. Similarly, the four false negatives showed 

ambiguous values among features D1 to D6, suggesting that none of these six Z 

values could be reliable to do prediction independently. This further demonstrated that 

the SVM algorithm was better than the commonly used Z score-based classification 

approach.  

 

In summary, SVM has demonstrated its excellent performance in discrimination of 

NIPT results in this study, especially compared with the current one-Z-value based 

method. Our technique has higher sensitivity and specificity than all previously 
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reported approaches for the detection of chromosome 13/18/21 trisomies. With this 

improvement, it is expected to reduce the cost of retests on samples in grey zone as 

well as the cost caused by false positives and false negatives. As shown in Figure 2, 

we expect that the SVM model could be further improved if 1) more known data were 

validated and added up to model-training; 2) more impacted features were discovered 

and added up to model-training. Some other clinical signs such as the values from 

serological test could be employed together with NIPT data to do prediction.  
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Discussion: 

Our study has shown that the SVM discrimination model trained by known data could 

precisely predict the results for those three chromosomes in NIPT, especially for the 

QC-pass data. Compared with the early standard Z test-based NIPT approaches like 

Chiu et al ‘s [1], Chen et al ‘s [3] and Liao et al ‘s [17], our method considered fetal 

fraction, a factor proven to be important in NIPT analysis recently [18, 22, 23], in Z 

tests. BGI’s NIFTY employed a logarithmic likelihood odds ratio between binary 

hypotheses that took fetal fraction in consideration [10], and Yu et al improved the 

count-based analysis by adding another size-based approach [24]. However, these two 

approaches were based on one or two statistic values, such as Z > 3 [1] or L > 1 [10] 

to determine a sample as negative or positive. In fact, other information such as 

maternal age had been employed to correct bias of NIPT prediction [25]. In our 

SVM-based method, discrimination criterion was obtained using more information 

comparing with other existing NIPT algorithms.  

 

As shown in Figure 3 and Table 3, SVM models performed better than other on these 

NIPT datasets. For LDA and QDA, co-linearity between features could be one of 

reasons of lower accuracy in prediction, while SVM allows co-linearity between 

features. Both decision tree and neural network performed well in internal validation 

but not robust enough in prediction of data in grey zone. Nevertheless, it is still worth 

to keep testing these machine-learning algorithms if there are more features and more 

data in future, since our objective is to find the best approach for clinical use. 
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Temporarily, SVM showed the most robustness according to this study. For the ten 

features selected for current SVM model training, the four non-Z-value features 

actually were not significantly biased in distributions between negatives and positives, 

though IONA’s paper reported that maternal age was useful in correcting its NIPT 

results [25], which might be due to the differences in sample composition.  

 

In conclusion, out study demonstrated an accurate SVM-based algorithm for trisomy 

detection on chromosome 21, 18 and 13, which was the first machine-learning 

approach using in this field to our knowledge. This machine-learning approach could 

be applied in detection of aneuploidy of other chromosomes or even 

micro-duplication and deletion. At this moment, sex chromosome aneuploidy 

screening was not included in current version of SVM-based method but would be 

developed if we had sufficient diagnosed cases.  
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Table 1 Demographic Subjects of pregnant women undergoing non-invasive prenatal testing (NIPT) for aneuploidies between 1 March and 31 July in 2016 

 

Subject a Total % of all Negative b 
% in 

group 
% of all Positive b 

% in 

group 
% of all P13 b 

% in 

group 
% of all P18 b 

% in 

group 
% of all P21 b 

% in 

group 
% of all 

 
5518 

 
5473 

 
99.18 45 

 
0.82  5 

 
0.09  14 

 
0.25  27 

 
0.49  

Age ac 31.58 (15-47) 31.83 (15-47) 
 

31.56 (20-43) 
 

31.2 (25-40) 
 

29.57 (23-42) 
 

32.59 (20-43) 
 

<24 700 12.69  691 12.63  98.71  9 20.00  1.29  0 0.00  0.00  4 28.57  0.57  5 18.52  0.71  

25-29 1285 23.29  1273 23.26  99.07  12 26.67  0.93  3 60.00  0.23  5 35.71  0.39  4 14.81  0.31  

30-34 1371 24.85  1368 25.00  99.78  3 6.67  0.22  0 0.00  0.00  1 7.14  0.07  3 11.11  0.22  

35-40 1741 31.55  1727 31.55  99.20  14 31.11  0.80  1 20.00  0.06  1 7.14  0.06  12 44.44  0.69  

>40 421 7.63  414 7.56  98.34  7 15.56  1.66  1 20.00  0.24  3 21.43  0.71  3 11.11  0.71  

Week ac 17.4 (8-37) 17.2 (8-37) 
 

15.91 (12-21) 
 

13.6 (12-15) 
 

16.21 (12-20) 
 

16.33 (12-21) 
 

<13 651 11.80  643 11.75  98.77  8 17.78  1.23  2 40.00  0.31  1 7.14  0.15  5 18.52  0.77  

14-27 4807 87.11  4770 87.16  99.23  37 82.22  0.77  3 60.00  0.06  13 92.86  0.27  22 81.48  0.46  

>28 60 1.09  60 1.10  100.00  0 0.00  0.00  0 0.00  0.00  0 0.00  0.00  0 0.00  0.00  

CostDay ac 10.39 (5-62) 10.38 (5-62) 
 

10.67 (6-18) 
 

10 (8-14) 
 

12.07 (7-18) 
 

10.11 (6-17) 
 

<7 956 17.33  947 17.30  99.06  9 20.00  0.94  0 0.00  0.00  2 14.29  0.21  7 25.93  0.73  

8-14 3963 71.82  3933 71.86  99.24  30 66.67  0.76  5 100.00  0.13  9 64.29  0.23  17 62.96  0.43  

15-21 561 10.17  555 10.14  98.93  6 13.33  1.07  0 0.00  0.00  3 21.43  0.53  3 11.11  0.53  

>22 38 0.69  38 0.69  100.00  0 0.00  0.00  0 0.00  0.00  0 0.00  0.00  0 0.00  0.00  

 

                                                       

a Age means the age of the pregnant mother while doing the NIPT; Week means the gestational week while doing the NIPT; CostDay means the time cost in our NIPT service.  
b Positive means the trisomy in either chromosome 13, 18 or 21. If none of these three chromosomes were found trisomy, the sample would be regarded as Negative in this study. P13 

means trisomy in chromosome 13; P18 means trisomy in chromosome 18; P21 means trisomy in chromosome 21. 
c Average values of relevant subjects with minimums and maximums in the brackets  

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 10, 2017. 

; 
https://doi.org/10.1101/216689

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/216689


Table 2 List of features employed in SVM classification 

 

Feature 
Number Feature Name Description 

SVM 
Scale p-value e 

D1 Z_baseline_vs_n Z value normalized to the 
baseline of control samples No < 2.2e-16 

D2 Z_baseline_vs_p 
Z value normalized to the 

baseline of predictive positive 
samples 

No < 2.2e-16 

D3 Z_chr_vs_n 
Z value normalized to the internal 

chromosome reference No < 2.2e-16 

D4 Z_chr_vs_p 
Z value normalized to the 
predictive positive internal 

chromosome 
No < 2.2e-16 

D5 Z_sample_vs_n Z value normalized to the 
baseline of control samples 

No < 2.2e-16 

D6 Z_sample_vs_p 
Z value normalized to the 

baseline of predictive positive 
samples 

No < 2.2e-16 

D7 Fetal Fetal fraction in maternal plasma Yes 0.7542 

D8 Peak 
Peak value of read length 

distribution Yes 0.6655 

D9 MA Maternal age Yes 0.2541 

D10 GW Gestational week Yes 0.5125 

 

                                                       

e Wilcoxon rank-sum test 
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Table 3 Performance of different discrimination models on NIPT prediction using ten selected features 

Chr21 
 

Group “N” & “P” Group “Unclassified” Group “QC-filtered” 

Model f 
Real 

status 
Prediction 

Sens. g Spec. Accu. 
Prediction 

Sens. Spec. Accu. 
Prediction 

Sens. Spec. Accu. 

  
N P N P N P 

SVM 
N 4672 0 

100.0% 100.0% 100.0% 
57 0 

100.0% 100.0% 100.0% 
762 0 

100.0% 100.0% 100.0% 
P 0 19 0 4 0 4 

LDA 
N 4672 0 

84.2% 100.0% 99.9% 
57 0 

25.0% 100.0% 95.1% 
761 1 

75.0% 99.9% 99.7% 
P 3 16 3 1 1 3 

QDA 
N 4669 3 

100.0% 99.9% 99.9% 
53 4 

75.0% 93.0% 91.8% 
762 0 

100.0% 100.0% 100.0% 
P 0 19 1 3 0 4 

Dtree 
N 4672 0 

100.0% 100.0% 100.0% 
51 6 

100.0% 89.5% 90.2% 
761 1 

100.0% 99.9% 99.9% 
P 0 19 0 4 0 4 

Nnet 
N 4672 0 

100.0% 100.0% 100.0% 
57 0 

25.0% 100.0% 95.1% 
761 1 

100.0% 99.9% 99.9% 
P 0 19 3 1 0 4 

Chr18 
 

Group “N” & “P” Group “Unclassified” Group “QC-filtered” 

Model 
Real 

status 
Prediction 

Sens. Spec. Accu. 
Prediction 

Sens. Spec. Accu. 
Prediction 

Sens. Spec. Accu. 

  
N P N P N P 

                                                       

f Corresponding R packages were employed to build models for each discrimination algorithms except SVM that applied libSVM. It is because libSVM is comparably applicable in 

clinical use. LDA means linear discriminant analysis; QDA means quadratic discriminant analysis; Dtree means decision tree; Nnet means Neural network. 
g Sens. is short for sensitivity; Spec. is short for specificity; and Accu. is short for accuracy. 
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SVM 
N 4697 0 

100.0% 100.0% 100.0% 
44 0 

100.0% 100.0% 100.0% 
759 3 

75.0% 99.6% 99.5% 
P 0 7 0 4 1 3 

LDA 
N 4697 0 

85.7% 100.0% 100.0% 
44 0 

50.0% 100.0% 95.8% 
762 0 

50.0% 100.0% 99.7% 
P 1 6 2 2 2 2 

QDA 
N 4697 0 

0.0% 100.0% 99.9% 
44 0 

0.0% 100.0% 91.7% 
762 0 

0.0% 100.0% 99.5% 
P 7 0 4 0 4 0 

Dtree 
N 4697 0 

100.0% 100.0% 100.0% 
40 4 

100.0% 90.9% 91.7% 
761 1 

100.0% 99.9% 99.9% 
P 0 7 0 4 0 4 

Nnet 
N 4697 0 

100.0% 100.0% 100.0% 
44 0 

75.0% 100.0% 97.9% 
759 3 

100.0% 99.6% 99.6% 
P 0 7 1 3 0 4 

Chr13 
 

Group “N” & “P” Group “Unclassified” Group “QC-filtered” 

Model 
Real 

status 
Prediction 

Sens. Spec. Accu. 
Prediction 

Sens. Spec. Accu. 
Prediction 

Sens. Spec. Accu. 

  
N P N P N P 

SVM 
N 4706 0 

100.0% 100.0% 100.0% 
42 0 

NA 100.0% 100.0% 
765 0 

0.0% 100.0% 99.9% 
P 0 4 0 0 1 0 

LDA 
N 4706 0 

100.0% 100.0% 100.0% 
42 0 

NA 100.0% 100.0% 
765 0 

0.0% 100.0% 99.9% 
P 0 4 0 0 1 0 

QDA 
N 4706 0 

100.0% 100.0% 100.0% 
42 0 

NA 100.0% 100.0% 
765 0 

0.0% 100.0% 99.9% 
P 0 4 0 0 1 0 

Dtree 
N 4703 3 

100.0% 99.9% 99.9% 
25 17 

NA 59.5% 59.5% 
763 2 

100.0% 99.7% 99.7% 
P 0 4 0 0 0 1 
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Nnet 
N 4706 0 

100.0% 100.0% 100.0% 
42 0 

NA 100.0% 100.0% 
765 0 

100.0% 100.0% 100.0% 
P 0 4 0 0 0 1 
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Table 4 Correction of previous false negatives and false positives by current SVM model 

Sample Error type h Reported 

Z value 

D1 i D2 D3 D4 D5 D6 D7 D8 D9 D10 Probability 

of negative in 

SVM 

prediction 

Probability 

of positive in 

SVM 

prediction 

chr13               

13_FP_1 FP 3.61 7.80908 -18.4017 10.4249 -15.4931 8.12209 -19.1393 22.38411066 151.515 32 17 0.998877 0.00112284 

13_FP_2 FP 4.78 7.74425 -9.47269 9.7306 -7.34031 8.2322 -10.0696 14.70334619 130.36 25 17 0.998162 0.00183793 

chr18               

18_FN_1 FN 1.77 3.31662 -2.6893 5.82699 -0.108174 3.20528 -2.59902 5.63756896 119.412 42 17 1.71E-007 1 

18_FN_2 FN 1.43 5.54394 -3.20759 8.52815 -0.100806 5.79965 -3.35554 8.214781802 149.353 41 16 1.00E-007 1 

18_FP_1 FP 3.22 3.36731 -10.1558 4.56993 -8.8769 3.31148 -9.98747 12.69375338 153.482 26 17 0.984857 0.015143 

18_FN_3 FN 1.93 5.92865 -4.21056 6.68878 -3.41427 4.61288 -3.2761 15.25077553 148.944 27 18 2.13E-005 0.999979 

chr21               

21_FP_1 FP 2.27 2.17527 -10.4262 4.38166 -8.02835 2.35229 -11.2747 17.3586114 139.857 25 17 0.997866 0.00213356 

21_FN_1 FN 1.76 6.7041 -3.30991 8.41899 -1.47674 5.21281 -2.57365 13.79432935 150.056 36 12 0.00435514 0.995645 

                                                       

h FP means false positive and FN means false negative. 
i The definitions of features D1 to D10 were given in Table 2. 
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Figure Legends 

Figure 1. Density plot of Z values from current one-Z-test based NIPT. Negatives 

(only those with Z > 0 were shown) and positives are shown in dark and red 

respectively. Green dash indicates the cutoff of Z = 3 that was frequently used as a 

criterion in discrimination. Blue dashes shows the “grey zone” interval between Z = 

1.96 and 4, which means failure in discrimination and requires a retest. 

 

Figure 2. Pipeline of SVM-based NIPT in this study. The SVM model was trained 

from known data of both negatives and positives. The predicted results could be 

added up to known dataset for model rebuild after confirm by karotyping. 

 

Figure 3. A 2-D contour plot of five discrimination models on NIPT data of Group “N” 

and “P” on chromosome 21. Features D1 and D3 were applied in this visualization 

and represented as X-axis and Y-axis respectively. Dark solid points illustrate the 

negative samples and red solid points the positive samples. The five two-dimension 

hyper-planes for discrimination (green for SVM, blue for LDA, pink for QDA, purple 

for decision tree and orange for neuron network) were drawn on the basis of predicted 

categories, using ‘contour’ in R package ‘graphic’. 

 

Supplementary Figure 1. Z value distributions in simulation, showing the existing 

problem of current one-Z-test based NIPT. Each of the three normal distributions 

were simulated by bootstrapping 10,000 times for negative samples (green line), 
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positive samples with fetal fraction 5% (cyan line) and positive samples with fetal 

fraction 10% (red line) respectively. Yellow dash line means Z score equal to 3. Dark 

dash lines show the interval of grey zone. When fetal DNA fraction is around 5% that 

is possible to happen in real, it became difficult to distinguish positives and negatives 

from samples in grey zone. 

 

Supplementary Figure 2. 3-D contour plot and its relevant 2-D plots of SVM model 

on NIPT data of Group “N” and “P” on chromosome 21. Features D1 ,D3 and D7 

were applied in this visualization and represented as X-axis ,Y-axis and Z-axis 

respectively. Dark solid points illustrate the negative samples and red solid points the 

positive samples. 
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