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Abstract 15	

The CCCTC-binding zinc finger protein (CTCF)-mediated network of long-range chromatin 16	

interactions is important for genome organization and function. Although this network has been 17	

considered largely invariant, we found that it exhibits extensive cell-type-specific interactions 18	

that contribute to cell identity. Here we present Lollipop—a machine-learning framework—which 19	

predicts CTCF-mediated long-range interactions using genomic and epigenomic features. Using 20	

ChIA-PET data as benchmark, we demonstrated that Lollipop accurately predicts CTCF-21	

mediated chromatin interactions both within and across cell-types, and outperforms other 22	

methods based only on CTCF motif orientation. Predictions were confirmed computationally and 23	

experimentally by Chromatin Conformation Capture (3C). Moreover, our approach reveals novel 24	

determinants of CTCF-mediated chromatin wiring, such as gene expression within the loops. 25	

Our study contributes to a better understanding about the underlying principles of CTCF-26	

mediated chromatin interactions and their impact on gene expression.   27	
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Introduction 28	
	29	

Higher-order chromatin structure plays a critical role in gene expression and cellular 30	
homeostasis1, 2, 3, 4, 5, 6, 7. Genome-wide profiling of long-range interactions in multiple cell-types 31	
revealed that CCCTC-binding factor (CTCF) binds at loop anchors and delimits the boundaries 32	
of Topologically Associating Domains (TADs)8, 9, 10, 11, suggesting that CTCF plays a central role 33	
in regulating the organization and function of the 3D genome12, 13.  Depletion of CTCF revealed 34	
that it is required for chromatin looping between its binding sites and insulation of TADs14, 15 , 35	
and disruption of individual CTCF binding sites deregulated the expression of surrounding 36	
genes16, 17, 18, 19. Mechanistically, many of the CTCF-mediated loops define insulated 37	
neighborhoods that constrain promoter-enhancer interactions13, and in some cases CTCF is  38	
directly involved in promoter-enhancer interactions9, 10, 20. 39	

The CTCF-mediated interaction network has been considered to be largely invariant across cell-40	
types. However, in studies of individual loci, cell-type-specific CTCF-mediated interactions were 41	
found to be important in gene regulation17, 21. Furthermore, CTCF binding sites vary extensively 42	
across cell-types22, 23. These findings suggest that the repertoire of CTCF-mediated interactions 43	
can be cell-type specific, and it is necessary to understand the extent and functional role of cell-44	
type-specific CTCF-mediated loops. If cell-type-specific interactions are prevalent and contribute 45	
to cellular function, it would be inappropriate to use the CTCF-mediated interactome derived 46	
from a different cell-type.  47	

CTCF-mediated loops can be mapped through Chromatin Conformation Capture (3C)-based  48	
technologies2. Among them, Hi-C9, 24 provides the most comprehensive coverage for identifying 49	
looping events. However, it requires billions of reads to achieve kilo-base resolution9. On the 50	
other hand, Chromatin Interaction Analysis using Paired End Tags (ChIA-PET) increases 51	
resolution by only targeting chromatin interactions associated with a protein of interest10, 25, 26. 52	
Recently developed protocols, including Hi-ChIP27 and PLAC-seq28, improved upon ChIA-PET 53	
in sensitivity and cost-effectiveness. Despite recent technical advances, experimental profiling 54	
of CTCF-mediated interactions remains difficult and costly, and few cell-types have been 55	
analyzed9, 10, 24, 29.  Therefore, computational predictions that take advantage of the routinely 56	
available ChIP-seq and RNA-seq data is a desirable approach to guide the interrogation of the 57	
CTCF-mediated interactome for the cells of interest.  58	

Here, we carried out comprehensive analysis of CTCF-mediated chromatin interactions using 59	
ChIA-PET data sets from multiple cell-types. We found that CTCF-mediated loops exhibit 60	
widespread plasticity and the cell-type-specific loops are biologically significant. Motivated by 61	
this observation, we developed Lollipop—a machine-learning framework based on random 62	
forests classifier—to predict the CTCF-mediated interactions using genomic and epigenomic 63	
features. Lollipop significantly outperforms methods based solely on convergent motif 64	
orientation when evaluated both within individual and across different cell-types. Our predictions 65	
were also experimentally confirmed by 3C. Moreover, our approach reveals novel determinants 66	
of CTCF-mediated chromatin wiring, such as gene expression within the loop. 67	

 68	
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Results 69	
CTCF-mediated chromatin interactions exhibit cell-type specificity  70	
We used the ChIA-PET2 pipeline30 and analyzed published ChIA-PET data sets from three cell-71	
lines (Supplementary Table 1): GM12878 (lympho-blastoid cells)10, HeLa-S3 (cervical 72	
adenocarcinoma cells)10, and K562 (chronic myelogenous leukemia cells)29. By using false 73	
discovery rate (FDR) ≤0.05 and paired-end tag (PET) number ≥2, we identified 51966, 16783, 74	
13076 high-confidence chromatin loops for GM12878, HeLa, and K562, respectively 75	
(Supplementary Table 2). A significant fraction of loops was found to be cell-type-specific 76	
(67.9%, 26.2%, and 21.5% of loops in GM12878, HeLa, and K562, respectively (Fig. 1a). It is 77	
worth noting that the higher number of loops and cell-type-specific loops observed in GM12878 78	
may be attributed to the higher sequencing depth of GM12878 ChIA-PET library 79	
(Supplementary Table 2). 80	

To elucidate what contributes to this plasticity, we compared the CTCF binding sites identified in 81	
ChIA-PET data sets across the three cell-lines. We found that only 36% of CTCF binding sites 82	
are constitutive (i.e., “+++”, Fig. 1b), consistent with previous reports22, 23. Besides cell-type-83	
specific binding sites, rewiring of shared binding sites also contributes to the cell-type-specific 84	
loops (Fig. 1c). 85	

Cell-type-specific CTCF-mediated loops contribute to gene regulation 86	
Loops shared among different cell-types exhibit significantly higher interaction strength than the 87	
cell-type-specific loops (Supplementary Fig. 1a), questioning whether the latter are biologically 88	
relevant. To address this question, we asked whether these loops are involved in gene 89	
regulation. We found that cell-type-specific loops harbor a significantly higher ratio of tandem 90	
CTCF motif orientation compared to shared loops (Supplementary Fig. 1b), suggesting their 91	
involvement in gene regulation, considering that tandem loops exhibit more regulatory potential 92	
than convergent ones10. 93	

Super-enhancers (SEs) are defined as stretches of chromatin that cluster multiple enhancers 94	
decorated with H3K27ac.  A recent study revealed that CTCF plays a critical role in the 95	
hierarchical organization of SEs31. Considering that SEs play critical roles in cell identity, 96	
development, and cancer32, 33, 34, we examined whether they are enriched within cell-type-97	
specific loops. Disease Ontology analysis using GREAT35 confirmed that these SEs are linked 98	
with the corresponding disease origin of the three cell-types (Supplementary Fig. 1c). 99	
Comparison of SEs in HeLa and K562 identified three sets of SEs: HeLa-specific, common, and 100	
K562-specifc. HeLa-specific SEs are significantly enriched within HeLa-specific loops, 101	
compared to common SEs (Fig. 1d left panel). Similarly, K562-specific SEs are preferentially 102	
enriched within K562-specific loops compared to common SEs (Fig. 1d left panel). The same 103	
conclusion was reached when we compared GM12878 vs HeLa as well as GM12878 vs K562 104	
(Fig. 1d central and right panels). Taken together, we found that cell-type-specific SEs are more 105	
likely to be associated with loops specific to that cell-type, suggesting the functional significance 106	
of cell-type-specific loops. 107	

Consistently, differentially expressed genes (DEGs) between the three cell types are 108	
significantly associated with cell-type-specific loops (Supplementary Fig. 1d). Ingenuity 109	
Pathway Analysis (IPA)36 revealed that DEGs between HeLa and K562 categorized based on 110	
loop association are enriched in distinct canonical pathways (Fig. 1e). Similar results were 111	
obtained in pair-wise comparisons between GM12878 and the other two cell lines 112	
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(Supplementary Fig.1e-f). For instance, Fig. 1f illustrates the loop architecture and epigenomic 113	
features of ROR2, a receptor involved in non-canonical Wnt signaling with a significant role in 114	
human carcinogenesis37, 38. ROR2 is highly expressed in K562 compared to HeLa, and these 115	
CTCF-mediated loops are present only in K562. The up-regulation of ROR2 expression is 116	
associated with a concomitant decrease of H3K27me3 and increase in H3K36me3 in the region, 117	
as well as the appearance of a K562-specific SE in the gene body.  118	

Altogether, cell-type-specific CTCF-mediated loops are prevalent and may play a significant role 119	
in the transcriptional programs of cell-type-specific genes. Therefore, we sought to develop a 120	
computational approach to infer the CTCF-mediated loops.  121	

An ensemble learning method to predict CTCF-mediated loops from genomic and 122	
epigenomic features 123	
We employed a random forest classifier, a tree-based ensemble learning method, to predict 124	
CTCF-mediated loops. This classification method takes into consideration the complex 125	
interactions among features and is robust against overfitting39, 40, 41. The pipeline, named 126	
Lollipop, aims to find an optimized combination of genomic and epigenomic features to 127	
distinguish interacting from non-interacting pairs of CTCF sites. The schema of the pipeline is 128	
shown in Fig. 2a. The trained model can be used to predict CTCF-mediated loops in the same 129	
or a different cell-type.  130	

For training purposes, the positive and negative loops were derived from ChIA-PET data sets10, 131	
29. To ensure confident labeling of positive loops, we used stringent criteria (FDR <= 0.05 and at 132	
least 2 PETs connecting the two anchors). Negative loops were constructed by random pairing 133	
of CTCF binding sites and were 5 times as abundant as the positive loops. Additional rules to 134	
select negative loops included: (a) lack of PET in the ChIA-PET dataset; and (b) absence in the 135	
list of identified interactions from the Hi-C experiments (see methods for details).  136	

A total of 77 features were derived from genomic and epigenomic data sets (Fig. 2a). Genomic 137	
features include loop length and features defined at the CTCF binding sites, including CTCF 138	
motif orientation, strength, and sequence conservation. We included loop length because it is an 139	
inherent determinant of contact frequency between two genomic regions42, and motif orientation 140	
pattern because CTCF anchors preferentially adopt a convergent motif orientation9. Epigenomic 141	
features include chromatin accessibility, a variety of histone modifications, and architectural 142	
proteins CTCF and Cohesin (RAD21). For the use of DNase-seq and ChIP-seq data sets, three 143	
types of features were used: (a) local features defined at the anchors, (b) in-between features 144	
defined over the loop region, (c) and flanking features defined over the region from the loop 145	
anchor to the nearest CTCF binding event outside the loop (Fig. 2b). The use of the in-between 146	
features was motivated by a recent study43 showing that signals over the loop regions were 147	
more important in predicting promoter-enhancer interactions than signals at anchors. In addition, 148	
given the insulator role of CTCF, we reasoned that the signals over the flanking regions might 149	
help to distinguish interacting from non-interacting CTCF binding sites. Finally, we also included 150	
gene expression within the looped region as a feature (see methods for details).   151	

Assessment of Lollipop’s performance within individual cell-types 152	
We employed Receiver Operator Characteristic (ROC) and Precision-Recall (PR) curves with 153	
10-fold cross-validation to assess the performance of Lollipop. To account for possible bias 154	
introduced by random partitioning of training data, we performed 5 iterations for cross-validation 155	
and reported the mean performance. For evaluation of Lollipop’s performance, two methods 156	
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were used for comparison. Both methods are inspired by the finding that the CTCF motifs in 157	
anchors preferentially adopt convergent orientation9, 10: (a) The naïve method, which pairs a 158	
CTCF-bound motif that resides on the forward strand to the nearest downstream CTCF-bound 159	
motif that resides on the reverse strand (Supplementary Fig. 2a); (b) The Oti method44, which 160	
iteratively applies the naïve method to CTCF binding sites selected by different signal intensity 161	
thresholds (see Supplementary Fig. 2b for illustration and methods for details). By doing so, 162	
the Oti method identifies more loops than the naïve method and partially recovers the nested 163	
structure of some CTCF-mediated loops.  164	

Fig. 3a-b show that Lollipop achieved an area under ROC curve (AU-ROC) value of ≥0.97 and 165	
area under PR curve (AU-PR) value of ≥0.86 in all cell lines. Compared to other methods, 166	
Lollipop achieved similar or higher precision and superior recall. The latter can be partially 167	
attributed to the failure of naïve and Oti methods to capture tandem loops or loops without 168	
CTCF motif on anchors, which account for a significant fraction of CTCF-mediated loops (64% 169	
for GM12878, 61% for HeLa, 49% for K562). We then independently evaluated Lollipop’s 170	
performance on convergent and non-convergent loops. Even on convergent loops, Lollipop 171	
achieved a superior recall score with a precision score comparable those of the naïve and Oti 172	
method (Fig. 3c). Furthermore, Lollipop also performed well in the prediction of non-convergent 173	
loops (Fig. 3d). In summary, Lollipop can account for the complexity of loop structures by 174	
integrating genomic and epigenomic features and outperforms methods that only consider the 175	
convergent CTCF motif orientation. 176	

Feature analysis identified novel determinants of CTCF-mediated chromatin loops 177	
Considering that convergent motif orientation does not suffice to identify CTCF-mediated loops, 178	
we ranked features that significantly improve the performance, by measuring the mean 179	
decrease impurity during training the random forests classifier45. We found that the average 180	
binding intensity of CTCF and Cohesin (RAD21) at the loop anchors are the most important 181	
features (Fig. 4a and Supplementary Fig. 3a), suggesting that sites with stronger CTCF and 182	
Cohesin binding are more likely to become anchors (Supplementary Fig. 3b), consistent with 183	
the observation that that these proteins are important for chromatin interactions14, 15. In addition, 184	
loop length and motif orientation pattern were amongst the top features, in agreement with 185	
previous results9, 42. The list also includes features defined within loop regions, among which 186	
gene expression was of particular interest. Regions inside positive loops exhibit significantly 187	
lower gene expression levels compared to negative loops (Fig. 4b). This finding is supported by 188	
similar trends exhibited by histone marks for active gene bodies H3K79me2 and H3K36me3 189	
(Supplementary Fig. 3c). Another interesting feature is the standard deviation of CTCF and 190	
Cohesin binding at the anchors (Fig. 4a). We therefore examined the relative fluctuation, 191	
defined as standard deviation divided by average intensity, of CTCF and Cohesin on anchor 192	
pairs of the positive and negative loops. As shown in Fig. 4c and Supplementary Fig. 3d, 193	
anchor-pair CTCF and RAD21 have significantly lower relative fluctuation in positive loops than 194	
in negative loops.   195	

While CTCF binding at anchors is clearly critical for looping, formation of a loop requires wiring 196	
(i.e. physical interaction) between specific pair of anchors. We therefore asked what features 197	
contribute to the wiring. To this end, we changed negative loops to be random pairings of actual 198	
anchors, and then reanalyzed feature importance. As shown in Supplementary Fig. 3e, length, 199	
motif-orientation and expression are strongly contributing, whereas CTCF and Cohesin binding 200	
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at anchors become much less important. It is worth noting that more in-between features 201	
showed up in the list, compared to those in Fig. 4a and Supplementary Fig. 3a.  202	

As the features employed are correlated (Fig. 4d and Supplementary Fig. 3f), the feature 203	
importance scores might be skewed. To validate the ranking of feature importance, we applied 204	
the Recursive Feature Elimination method to evaluate the performance of the recursively 205	
reduced feature set. The results are consistent with the feature ranking from the mean decrease 206	
impurity (Supplementary Table 3). Last, performance evaluation under different feature sets 207	
suggests that near-optimal performance can be achieved by using ~16 features (Fig. 4e). 208	
These features include those derived from CTCF and RAD21 binding, loop length, CTCF motif 209	
orientation, gene expression, as well as epigenetic features (Supplementary Table 3). 210	

Assessment of Lollipop’s performance across cell-types 211	
Having demonstrated Lollipop’s superior performance within individual cell-types, we next used 212	
the model trained in one cell-type to make predictions and assessment in another cell-type (see 213	
methods for details). This is more realistic and challenging, as a large number of CTCF-214	
mediated loops are cell-type-specific. In all three cell-types Lollipop achieved AU-ROC ≥ 0.93 215	
and AU-PR ≥ 0.79 (Fig. 5a-b), only moderately lower than its performances within individual 216	
cell-types (Fig. 3a-b). It is worth noting that Lollipop outperforms motif-orientation based 217	
methods (Fig. 5a-b). Given that a loop consists of a pair of anchors and the wiring between 218	
them, we then dissected Lollipop’s predictive power on anchors and wiring, respectively. For 219	
assessment of anchor prediction, we evaluated Lollipop by comparing the anchor usage of the 220	
predicted loops with that of loops identified from ChIA-PET in the target cell-type. For 221	
assessment of wiring prediction, we constructed negative loops by random pairing of actual 222	
anchors in the target cell-type (see methods for details). Fig. 5c-d show the PR curves 223	
demonstrating that Lollipop performed reasonably well in both, and better in predicting anchors 224	
than in predicting wiring. The results in terms of ROC (Supplementary Fig. 4a-b) are consistent 225	
with those in terms of PR.  226	

Evaluation of de novo predictions of CTCF-mediated loops  227	
After training Lollipop in individual cell-types, we then applied it to scan the genome of the same 228	
cell-type to make de novo genome-wide predictions. Lollipop predicted 67855, 38274, 32237 229	
loops in GM12878, HeLa and K562, respectively. Notably, the number of predicted loops in 230	
GM12878 is much larger than those of the other two cell-types, due to the much larger number 231	
of loops identified by ChIA-PET in GM12878 (see last column of Supplementary Table 2). 232	
These loops were used in training the model and thus affect the number of predicted loops. 233	
Indeed, if we down-sample the GM12878 ChIA-PET library to 15% so that the number of called 234	
loops is on par with those in K562 and HeLa (see last column of Supplementary Table 2), the 235	
number of predicted loops is comparable to the number of predictions in K562 and HeLa.  236	

As shown in Supplementary Fig. 5a, a large fraction of the predicted loops (48%, 73% and 77% 237	
for GM12878, HeLa and K562, respectively) was not supported by ChIA-PET under the 238	
stringent criterion of FDR<=0.05 and PET>=2 used for defining positive loops. However, if we 239	
relaxed the stringency to PET>=1 in ChIA-PET, the fraction of predicted loops not supported by 240	
ChIA-PET was significantly reduced, to 24%, 42% and 50% in GM12878, HeLa and K562, 241	
respectively.  Similar result can be obtained with the down-sampled GM12878 library 242	
(Supplementary Fig. 5b). This observation raises the question of whether the predicted loops 243	
with less or no ChIA-PET support are indeed false positives. To address this question, we 244	
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carried out the following computational as well as experimental evaluations on those predicted 245	
loops without any ChIA-PET support.  246	

First, we used the published Hi-C contact matrices for GM12878 and K5629 (see methods for 247	
details) to evaluate these loops, and found that they have significantly higher contact 248	
frequencies than pairs of randomly-chosen genomic loci (Fig. 6a). For fair comparison, the 249	
control regions were sampled to have a length distribution matching those of the target loops. 250	
Second, we randomly selected two such cases and performed 3C experiments. Fig. 6b shows 251	
the sequence of the ligation junctions from the long-range interactions (PRKAG2-KMT2C and 252	
PDE6A-PDGFRB) in Hela. 3C-qPCR further confirmed the contact frequency of the PRKAG2-253	
KMT2C loop in respect to neighboring HindIII fragments (Supplementary Fig. 5d).  254	

Having shown that the predicted loops lacking ChIA-PET support could be real, we sought to 255	
understand why they were not observed in ChIA-PET. To this end, we performed scaling 256	
analysis in the ChIA-PET data of GM12878 cells, which received significantly higher sequencing 257	
coverage than those of K562 and HeLa (Supplementary Table 2). Specifically, we used the 15% 258	
down-sampled GM12878 ChIA-PET library to identify loops with the same approach employed 259	
for the full data set, and trained a classifier. We then applied this classifier to make genome-260	
wide predictions. Of the 33463 predicted loops, 12047 are without any support from the down-261	
sampled ChIA-PET data set. However, 46% of these loops find support in the full ChIA-PET 262	
library, and 20% of these loops even find significant support (Fig. 6c). This down-sampling 263	
process was repeated for 10 times and similar results were obtained (data not shown). Taken 264	
together, the scaling analysis suggests that insufficient sequencing depth contributes to the 265	
presence of predicted loops lacking support in ChIA-PET. 266	

Topological properties of CTCF-mediated interaction network and associated 267	
biological functions 268	
To gain a better understanding of these interactions, we took a systems approach to visualize 269	
and analyze the CTCF-mediated interactions. We constructed the CTCF-mediated interaction 270	
network by denoting the anchors as nodes and the long-range interactions as edges. As 271	
exemplified in Fig. 7a, where the interaction network on chromosome 1 (visualized using graph-272	
tool V2.22, https://graph-tool.skewed.de) is shown, the CTCF-mediated interactions form a 273	
disconnected network encompassing many linear-polymer-like components. This is dramatically 274	
different from the RNA-PolII-mediated interaction network46, which is dominated by one scale-275	
free connected graph46. This dramatic difference in topological structure is also manifested in 276	
the degree distributions (Supplementary Fig. 6), where the distribution for RNA PolII exhibits a 277	
fatter tail.  278	

It is worth noting that degrees of connections among the anchors vary. We therefore examined 279	
CTCF hubs, anchors involved in multiple interactions. Ranking anchors according to the 280	
degrees of connections, we defined hubs as those among the top 10% anchors and non-hubs 281	
as the bottom 10% (see methods for details), and identified 2914, 2111 and 1843 nodes for 282	
GM12878, HeLa and K562, respectively. Subsequent comparison between hubs and non-hub 283	
nodes revealed that hubs are (a) more conserved across cell-types than non-hubs, likely 284	
because they serve as the structural foci of genome organization in the nucleus, (b) 285	
characterized by significantly higher binding affinity for CTCF and Cohesin (Fig. 7c), and (c) 286	
associated with distinct biological functions. Gene ontology analysis35 showed that the hubs are 287	
preferentially associated with immunology-related functions in GM12878 and K562 cells, but not 288	
in HeLa cells (Fig. 7d), consistent with the cellular origin of these cell-lines. For example, the 289	
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hubs in GM12878 and K562 cells were found to be significantly associated with antigen binding, 290	
and the GM12878 hubs were significantly associated with the MHC (major histocompatibility 291	
complex) protein complex. MHC is a set of cell surface proteins that are essential for immune 292	
system, while MHC class II (MHC-II) genes encode cell-surface glycoproteins that present 293	
antigens to CD4 T cells to initiate and control adaptive immune responses47. Our results were 294	
consistent with previous studies47, 48 which found that CTCF plays an important role in 295	
controlling MHC-II gene expression.  296	

Discussion 297	
Here we showed that CTCF-mediated chromatin interactions exhibit extensive variations across 298	
cell-types. These cell-type-specific interactions are functionally important, as they are linked to 299	
differentially expressed genes and cell-type-specific SEs contributing to cell identity. However, 300	
genome-wide profiling of CTCF-mediated interactions is available in a very limited number of 301	
cell-types and conditions, as experimental approaches remain challenging and costly. Therefore, 302	
we developed Lollipop, a machine-learning framework, to make genome-wide predictions of 303	
CTCF-mediated loops using widely accessible genomic and epigenomic features. Using 304	
computational as well as experimental validations, we demonstrated that Lollipop performed 305	
well within and across cell-types. Analysis of the machine learning model revealed novel 306	
features associated with CTCF-mediated loops, and shed light on the rules underlying CTCF-307	
mediated chromatin organization. 308	

While previous studies focused on the significance of conserved CTCF binding at TAD 309	
boundaries or loop anchors, our study showed a significant proportion of CTCF-mediated 310	
interactions are cell-type-specific. Based on our analysis, both lineage-specific recruitment of 311	
architectural proteins and alternative wiring among available anchor sites contribute to the 312	
establishment of cell-type specificity. Although the process of establishing cell-type-specific is 313	
not well understood, it is conceivable that multiple factors combine to orchestrate a cell-type-314	
specific chromatin context to promote the formation of a loop. 315	

The convergent orientation of CTCF motifs at loop anchors is a prominent feature of CTCF-316	
mediated interactions9, 10, as it is also manifested by our model. However, model comparison 317	
demonstrated that motif orientation alone is limited in its predictive power, and inclusion of other 318	
features significantly improved the performance. Interestingly, we found that features for the 319	
loop regions, which are away from the anchors, contribute significantly to the predictive power, 320	
consistent with findings in enhancer-promoter interaction prediction43. Specifically, gene 321	
expression exhibits distinct distributions over positive loop regions compared to negative loops 322	
(Fig. 4b, and Supplementary Fig. 4c), which may be attributed to the enhancer-blocking role of 323	
CTCF loop anchors.   324	

In evaluating our predictions, we showed that false positives could be due to mislabeling in the 325	
testing data. As advances in experimental protocols and continuous decreases in sequencing 326	
cost would result in better training data in reference cell-types, it is likely that the performance of 327	
Lollipop would further improve. Since CTCF plays a major role in defining regulatory domains, 328	
results obtained from our approach can potentially be used as constraints in predicting 329	
enhancer-promoter interactions, which remains a major challenge. Overall, CTCF-mediated 330	
chromatin interactions are critical for genome organization and function, and our study provides 331	
a computational tool for the exploration of the 3D organization of the genome. 332	
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Materials and Methods  333	
Data availability 334	
GM12878 and HeLa ChIA-PET data were downloaded from Gene Expression Omnibus (GEO) 335	
with accession number GSE7281610. K562 ChIA-PET data was downloaded from ENCODE29 336	
with accession number ENCLB559JAA. High-resolution genome-wide Hi-C contact matrices 337	
were obtained from GEO with accession number GEO635259. DNase-Seq, ChIP-Seq and RNA-338	
Seq data were downloaded from ENCODE and were aligned to hg19. The accession numbers 339	
for the data used in this study were summarized in Supplementary Table 1.  340	

Lollipop is publically available in https://github.com/ykai16/Lollipop. 341	

Identification of CTCF-mediated loops from CTCF ChIA-PET data  342	
We employed ChIA-PET2 (v0.9.2)30 to identify CTCF-mediated loops. Briefly, ChIA-PET2 343	
involves linker filtering, PET mapping, PET classification, binding-site identification, and 344	
identification of long-range interactions. In the step of linker filtering, one mismatch was allowed 345	
in identifying reads with linkers. After linker removal, only reads with at least 15 bp in length 346	
were retained for further analysis for GM12878 and HeLa (read length = 150 bp). For K562, the 347	
read length was shorter (36 bp), therefore reads with at least 10 bp in length were retained for 348	
further analysis.  In other steps, default values for parameters were used. Only uniquely 349	
mapped reads were kept, and PETs were de-duplicated. Significant loops were identified with a 350	
value of false discovery rate (FDR) <= 0.05. We further required that they are supported by at 351	
least two PETs (i.e., IAB >= 2).  352	

We only considered long-range interactions whose length are less than 1 million bps (mb), for 353	
two reasons. First, vast majority of loops (93.2% for GM12878, 97.3% for HeLa, 98.1% for K562) 354	
are less than 1mb long. Similar observations were made in 10. Second, insulated neighborhoods, 355	
the CTCF loops having higher potential in regulation of gene expression, were found to range 356	
from 25 kb to 940 kb6, 16 (reviewed in 13). 357	

Comparison of CTCF-mediated loops among cell-types (Fig. 1a, Supplementary 358	
Fig. 1a-b) 359	
An anchor is considered as shared by two cell-types if the respective genomic regions 360	
delineating this anchor overlap in the two cell-type. A loop is considered as shared by two cell-361	
types if both anchors are shared by the two cell-types. A loop is considered cell-type specific if 362	
either of the two anchors are cell-type specific. The loops shared by all three cell-types were 363	
defined as GM12878 loops shared by both K562 and HeLa. 364	

Analysis of CTCF binding sites in three cell-types (Fig. 1b) 365	
CTCF peaks were determined by MACS249 in the ChIA-PET2 pipeline. A binding site was 366	
defined as peak summit +/- 500 bp. The binding sites in the three cell-types were classified into 367	
seven groups according to the overlapping pattern. Binding intensity for each site was 368	
represented by the log2 (RPKM) value over the summit +/- 2kb region. For each group, the 369	
binding sites were ordered in descending order according to binding intensity in a prioritized 370	
manner. Namely, CTCF binding sites present in GM12878 were ordered by their binding 371	
strengths in GM12878; CTCF binding sites not present in GM12878 were ordered by binding 372	
strengths in Hela and then in K562 accordingly. Seaborn (V 0.7.1, http://seaborn.pydata.org) 373	
was used to generate the heat map.  374	
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Super-enhancer analysis (Fig. 1d, Supplementary Fig. 1c) 375	
Super-enhancers (SEs) were identified by the Ranking Ordering of Super-Enhancers algorithm 376	
(ROSE33, 34), using H3K27ac ChIP-Seq data as input and default parameters. Identified super-377	
enhancers were then uploaded to Genomic Regions Enrichment of Annotations Tool (GREAT) 378	
V3.0.035 for GO analysis (Supplementary Fig. 1c). If a SE in one cell-type does not overlap 379	
with any SEs in a different cell-type, it is deemed as a SE specific to that cell-type. Otherwise, it 380	
is called a shared SE. We then counted the number of cell-type specific loops covering each 381	
type of SEs. The comparison between Hela and K562 is shown in Fig. 1d. For comparison 382	
between GM12878 and another cell-type, the GM12878 ChIA-PET data set is first randomly 383	
down-sampled to 15% of the original size so that the number of loops identified matched those 384	
from the ChIA-PET datasets of the other two cell-types (see Supplementary Table 2). Then 385	
analysis identical to that in Fig. 1d was carried out. The down sampling and follow-up analysis 386	
was repeated 10 times to ensure reproducibility, and standard-deviations were shown in the Fig. 387	
1d.  388	

Analysis of differentially expressed genes and their association with CTCF-389	
mediated loops (Fig.1e, Supplementary Fig. 1d, e, f) 390	
Each cell-line has two RNA-Seq replicates. Cufflinks V2.2.150 with default parameters (q-391	
value=0.05) was used to identify the differentially expressed genes (DEG).  392	

For comparison between HeLa and K562, a DEG was deemed to be associated with HeLa-393	
specific loops if it is within one or more HeLa-specific loops but not within any K562-specific 394	
loops. If a DEG is covered only by one or more shared loops, this DEG is deemed to be 395	
associated with shared loops. Following the criteria described above, we obtained three sets of 396	
DEGs respectively associating with HeLa-specific loops, shared loops, K562-specific loops. 397	
These three sets of DEGs were then subject to GO analysis using ‘Ingenuity Pathway Analysis’ 398	
36. The GO terms whose P-value are no less than 1e-3 in all three gene sets were then removed. 399	
The result is shown in Fig. 1e. Color key represents the -log10 (P-value). For comparison 400	
between GM12878 and another cell-type (Supplementary Fig. 1 e, f), the GM12878 ChIA-PET 401	
library is first randomly down-sampled to 15% of the original size so that the number of loops 402	
identified matched those of the ChIA-PET libraries from the other two cell-types.  403	

For Supplementary Fig. 1d, non-DEG genes were those with the least significant expression 404	
changes as ranked by P-value, with group size matching to that of the corresponding DEG 405	
group. 406	

Identification of CTCF motif occurrences 407	
The position frequency matrix of CTCF for human was downloaded from Jaspar 2016 408	
(http://jaspar.genereg.net)51 . CTCF motif occurrences were identified by the FIMO package 409	
(V4.11.152) with the P-value < 1e-5. In total, 110879 motif occurrences were identified.   410	

Preparation of training data 411	
Positive loops were identified using ChIA-PET2 pipeline with FDR<=0.05 and IAB >=2, with loop 412	
length restricted to be in the range of 10 kb to 1mb. The choice of the lower limit of 10 kb is 413	
because the ChIA-PET-identified loops with length below 10 kb are likely caused by self-ligation 414	
in library preparation25. The reason for the upper limit of 1mb is given above. Negative loops 415	
were constructed by random pairing of CTCF binding sites, with loop length ranging from 10 kb 416	
to 1mb. The number of negative interactions was chosen to be 5 times that of the positive 417	
interactions. To ensure accurate labeling, we further required that the negative loops (1) do not 418	
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receive any ChIA-PET support; and (2) are not present in the CTCF-mediated interactions 419	
identified from the Hi-C experiments 9.  420	

Feature calculation (Fig. 2a, b) 421	
Genomic features include motif strength, motif orientation, conservation score and loop length. 422	
Motif strength represents how similar the underlying sequence is to the CTCF consensus motif. 423	
The motif strength score was provided by FIMO52. The motif strength score of a CTCF binding 424	
site (summit +/- 1000bp) was represented by the strength of the motif occurrence within the site. 425	
If a CTCF binding site have more than one motif occurrences, the highest score was used. If 426	
there is no motif occurrence, 0 would be assigned. The feature of motif orientation was 427	
represented by the following rule: If neither anchor has CTCF motif, we assign a value of 0; If 428	
one anchor has no motif and the other has one or more than one motifs, we assign a value of 1; 429	
If both anchors have one or more motif occurrences, the orientation of each anchor is 430	
determined by the orientation of its strongest motif occurrence. Divergent orientation would be 431	
assigned a value of 2, tandem orientation would be assigned a value of 3, and convergent 432	
orientation would be assigned a value of 4. For conservation, we used the 100 way phastCons 433	
score downloaded from UCSC 434	
(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way)53. The conservation 435	
score of a CTCF binding site was defined as the mean value of the conservation score of each 436	
nucleotide in the summit +/- 20 bp region.  437	

Functional genomic features include chromosome accessibility profiled by DNase-Seq, histone 438	
modifications, CTCF and Cohesin binding profiles profiled by ChIP-Seq, and gene expression 439	
profiled by RNA-Seq. DNase-Seq and ChIP-Seq data were de-duplicated and then subject to 440	
pre-processing to remove noise as follows. For DNase-Seq data, peaks were downloaded from 441	
ENCODE29. For ChIP-Seq data, SICER (V1.1)54 were used to identify enriched regions with 442	
FDR 1e-5. For histone modifications with diffused signal (H3K27me3, H3K36me3, H3K9me3, 443	
H3K79me2), window size = 200 bp, gap size = 600 bp were used. For other ChIP-Seq libraries, 444	
window size = gap size = 200 bp were used. For both DNase-Seq and ChIP-Seq, only reads 445	
located on signal-enriched regions were used for feature calculation. For RNA-Seq data, gene 446	
expressions were calculated using Cufflinks50 with default parameters.  Each dataset was 447	
characterized by three types of features: local features, in-between features and flanking 448	
features, as illustrated in Fig. 2b. Local features were defined around anchors, represented by 449	
the signal intensity (RPKM value) over the CTCF summit position +/- 2kb region. In-between 450	
feature is represented by the average signal intensity (RPKM value) over a presumed loop 451	
region. The value of the expression feature is defined as the average FPKM value of the genes 452	
whose promoters are located inside the presumed loop. The flanking features are represented 453	
by the RPKM value over the region from the loop anchor to the nearest CTCF binding event 454	
identified in the CTCF ChIP-Seq. 455	

Implementation of the naïve method and the Oti method (Supplementary Fig. 2) 456	
The naïve method is implemented by pairing a CTCF-bound motif that resides on the forward 457	
strand to the nearest downstream CTCF-bound motif that resides on the reverse strand 458	
(Supplementary Fig. 2a). The Oti method was introduced in 44. It ranked all the active motif 459	
sites in terms of CTCF peak strength in descending order. First all active motif sites were used 460	
to construct loops by the naïve method. Then, the same procedure was repeated for the top 461	
80%, top 60%, top 40% and top 20% active motif sites. The loops constructed in different 462	
rounds were then pooled together. The Oti method is illustrated in Supplementary Fig. 2b. 463	
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Performance evaluation within individual cell-types (Fig. 3) 464	
In Fig. 3c, d, the performance was evaluated at the looping probability cut-off of 0.5.   465	

Evaluation of feature importance (Fig. 4a, d, e and Supplementary Fig. 3a, e, f) 466	
Predictive importance scores of features were obtained from the “feature_importances 467	
“ attribute of the trained random forest classifier55. The ranking of the top 20 features was 468	
visualized in Fig. 4a and Supplementary Fig. 3a. Pearson correlations of the in-between 469	
features calculated in positive interactions were used to generate the correlation matrix. The 470	
correlation matrix was subject to hierarchical clustering, as shown in Fig. 4d and 471	
Supplementary Fig. 3f. Recursive Feature Elimination (RFE) method was used to validate the 472	
analysis of the feature importance. After each iteration, model performance was evaluated in 473	
terms of Area Under Receiver Operating Characteristics (AU-ROC) curve and Area Under 474	
Precision Recall (AU-PR) curve. The performance vs. feature number was plotted in Fig. 4e. 475	

For feature importance analysis of wiring prediction (Supplementary Fig. 3e). Negative data 476	
was prepared as follows: the anchors of positive loops were used to construct negative loops by 477	
random pairing. The number of negative loops were set to be 3 times that of positive loops. 478	
Other procedures on construction of negative loops were the same as described in the section 479	
of ‘Preparation of training data’. Positive data remained unchanged.  480	

Performance evaluation across cell-types (Fig. 5 and Supplementary Fig. 4) 481	
In the across-cell-type performance evaluation, the model trained in cell-type A was applied to 482	
the cell-type B, using training data prepared in B for evaluation of performance.  483	

For evaluation of anchor prediction, the anchors of positive loops in cell-type B were labeled 484	
positive, while the anchors belonging only to negative loops in cell-type B were labeled negative. 485	
The anchors of predicted loop were compared with positive and negative labels for evaluation of 486	
anchor prediction. This evaluation was repeated under different thresholds of looping probability 487	
to generate the PR and ROC curves (Fig. 5c and Supplementary Fig. 4a). 488	

For evaluation of wiring prediction, the anchors of positive loops in cell-type B were used to 489	
construct negative loops by random pairing. The model trained in cell-type A was then applied 490	
to the training data of cell-type B for evaluation. 491	

Computational evaluation of predicted CTCF-mediated loops (Fig. 6a, c and 492	
Supplementary Fig. 5a, b) 493	
Models trained in a cell-type was used to predict loops genome-widely in the same cell-type. 494	
Predicted loops were then compared with loops identified from ChIA-PET datasets and 495	
categorized into three groups. ‘Significant’ loops denote those supported by ChIA-PET under 496	
the stringent criterion of FDR<=0.05 and PET>=2. ‘With evidence’ loops denote those supported 497	
by ChIA-PET reads but do not meet the stringent criterion mentioned above. ‘No support’ loops 498	
denote those without any support from ChIA-PET. The numbers of loops in each group were 499	
shown in Supplementary Fig. 5a. 500	

Down sampling of ChIA-PET library in GM12878 cells: The ChIA-PET library was first randomly 501	
down-sampled to 15% of the original size, followed by loop identification using ChIA-PET2 and 502	
preparation of training data. Trained model was used to make genome-wide predictions. The 503	
predicted loops were categorized into three groups by comparing with loop calls using the 504	
down-sampled library, as described above. The result was shown in Supplementary Fig. 5b. 505	
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Evaluation of predicted loops without any ChIA-PET support using Hi-C data (Fig. 6a). 10 kb 506	
resolution Hi-C contact matrices for GM12878 and K5629 were used for validation. The contact 507	
matrices were normalized by Knight and Ruiz (KR) normalization vector9. For each cell-type, we 508	
collected contact frequencies from the contact matrix for those predicted loops without any 509	
ChIA-PET support. As a control, we chose a matching set of random pairs of genomic locations 510	
as anchors with matching length-distribution. We then collected the contact frequencies of this 511	
control set. The two contrasting distributions of contact frequencies are shown. HeLa cell was 512	
not included in this analysis because the Hi-C library and Hi-C derived contact matrix are not 513	
available.  514	

Scaling analysis in GM12878 cells. Predicted loops belonging to the ‘No support’ group in the 515	
down-sampled ChIA-PET library (yellow slice in Supplementary Fig. 5b) were compared with 516	
the loops identified using the full GM12878 ChIA-PET library and categorized into three groups, 517	
as shown in Fig. 6b. 518	

Experimental validation using Chromosome Conformation Capture (3C) (Fig. 6b, 519	
Supplementary Fig. 5c-d) 520	
The loops used for experimental validation were randomly selected from the loops predicted by 521	
Lollipop but not observed in ChIA-PET, as described above. For the 3C assay, cells were fixed 522	
and nuclei were prepared as in ChIP experiments. Nuclei were resuspended in 500 μl 1.2X 523	
CutSmart buffer (NEB) with 14 μl 10% SDS, and incubated at 37°C for 1 hour. SDS was 524	
sequestered by the addition of 50 μl 20% Triton X-100, and incubated at 37°C for 1 hour. Next, 525	
5-20 μl “undigested” was reserved, and 400 U of HindIII was added to the remaining sample 526	
and digested overnight at 37°C with end-over-end rotation. The second day, 5-20 μl of 527	
“digested” material was reserved, and 40 μl of 20% SDS was added to remaining sample to 528	
inactivate HindIII by incubating at 65°C for 25 minutes. The samples were transferred to 15 mL 529	
conical tubes and diluted with the following 1.15X ligation buffer recipe: 352 μl 10X T4 ligase 530	
buffer (NEB), 2.71 ml water, and 187.5 μl 20% Triton X-100. Samples were incubated at 37°C 531	
for 1 hour. Next, 5000 U T4 ligase was added, and ligation took place with gentle end-over-end 532	
rotation at 16°C for 4 hours, and then 45 minutes at room temperature. Reverse crosslinking 533	
took place by the addition of 300 μg (30 μl) Proteinase K at 65°C, overnight. On day three, 300 534	
μg RNase-A was added, and samples were placed at 37°C for one hour. To begin DNA 535	
extraction, 4 ml of phenol-chloroform was added, samples were vortexed for a full minute, and 536	
centrifuged at 2,200 x g for 15 minutes. The aqueous phase was collected in a new 50 ml tube 537	
and diluted with an equal volume of water (4 ml) and with 800 μl of 2 M sodium acetate pH 5.6; 538	
next 20 ml of ethanol was added, samples were inverted 10 times, and placed at -80°C for 1-4 539	
hours to precipitate the DNA. The samples were centrifuged at 2,200 x g for 45 minutes at 4°C 540	
and washed with 70% ethanol. The 3C libraries were then allowed to dry briefly, without letting 541	
the pellet become dull. The libraries were re-suspended in 100-600 μl of 10 mM Tris. The 542	
digestion efficiency, as well as the quality and quantity of 3C libraries, were assessed before 543	
downstream analyses. The Q5 Taq polymerase (NEB) was used for PCR reactions using the 544	
following protocol: 98°C 30 sec, 35 cycles [98°C 10 sec, 70°C 15 sec, 72°C 10 sec], 72°C 2 545	
min. Reactions were run on 2% agarose gels and analyzed using the ImageLab software 546	
(BioRad). Bands were extracted and sequenced (Eurofins) to confirm specificity of primers and 547	
loop identity. Data points plotted in the contact matrix are the averages of duplicates ± StDev 548	
from two independent library preparations. Primers were designed using a uni-directional 549	
strategy 56 and used are provided in Supplementary Table 4.  550	
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Analysis of CTCF-mediated interaction network (Fig. 7) 551	
Construction of CTCF-mediated interaction network. We used nodes to represent anchors and 552	
edges to represent loops. Graph-tool (V2.22, https://graph-tool.skewed.de) was used for 553	
visualization of networks (Fig. 7a). In identification of hubs, anchors were ranked according to 554	
the degree of connection in descending order. Anchors with the same degree of connection 555	
were further ranked according to CTCF binding intensity in descending order. The top 10% 556	
anchors were defined as hubs, while the bottom 10% as non-hubs.  557	

Functional enrichment analysis of hubs (Fig. 7d). Hubs were uploaded to GREAT (V3.0.0) 35 for 558	
functional enrichment analysis. The whole set of CTCF anchors was used as background. The 559	
GO terms in ‘Molecular Functions’ with P-value<1e-4 in each cell-type were shown. 560	

 561	
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Supplementary Table 1: Used data sets 
  
Data GM12878 HeLa K562 
ChIA-PET GSE728164 GSE728164 ENCLB559JAA1,2 

Hi-C GSE635253  GSE635253 

DNase-Seq ENCFF000SKV1,2 ENCFF000SPJ1,2 ENCFF000SVI1,2 

RNA-Seq ENCFF000FBU1,2 

ENCFF000FBV1,2 
ENCFF158RCK1,2 

ENCFF169ZTB1,2 
GSM7653931,2 

ChIP-Seq 
(CTCF) 

ENCFF000ARG1,2 ENCFF000BAJ1,2 ENCFF000YLT1,2 

ChIP-Seq 
(RAD21) 

ENCFF000OBV1,2 ENCFF000XKH1,2 ENCFF084HTD1,2 

ChIP-Seq 
(H2AZ) 

ENCFF001SUD1,2 ENCFF000BAX1,2 ENCFF000BWO1,2 

ChIP-Seq 
(H3K4me1) 

ENCFF000ARY1,2 ENCFF000BBA1,2 ENCFF000BXK1,2 

ChIP-Seq 
(H3K4me2) 

ENCFF000ATG1,2 ENCFF000BCH1,2 ENCFF000BXT1,2 

ChIP-Seq 
(H3K4me3) 

ENCFF000ATS1,2 ENCFF000BCO1,2 ENCFF000BXW1,2 

ChIP-Seq 
(H3K9ac) 

ENCFF000ATY1,2 ENCFF000BCW1,2 ENCFF000BYK1,2 

ChIP-Seq 
(H3K9me3) 

ENCFF000AUH1,2 ENCFF000BBG1,2 ENCFF000BYT1,2 

ChIP-Seq 
(H3K27ac) 

ENCFF000ASI1,2 ENCFF000BBN1,2 ENCFF000BWZ1,2 

ChIP-Seq 
(H3K27me3) 

ENCFF000ASK1,2 ENCFF000BBS1,2 ENCFF000BXA1,2 

ChIP-Seq 
(H3K36me3) 

ENCFF000ASX1,2 ENCFF000BCC1,2 ENCFF000BXE1,2 

ChIP-Seq 
(H3K79me2) 

ENCFF000ATT1,2 ENCFF000BCQ1,2 ENCFF000BYC1,2 

ChIP-Seq 
(H4K20me1) 

ENCFF000AUT1,2 ENCFF000BDC1,2 ENCFF001QWY1,2 

ChIP-Seq 
Input 

ENCFF000AQZ1,2 ENCFF000BAI1,2 ENCFF000BVZ1,2 

ChIP-Seq 
Input 

ENCFF651WEV1,2 ENCFF469INX1,2 ENCFF000QEK1,2 

 
 
1Consortium, E. P. (2012). "An integrated encyclopedia of DNA elements in the human genome." Nature 489(7414): 57-74. 
 
2Sloan, C. A., E. T. Chan, J. M. Davidson, V. S. Malladi, J. S. Strattan, B. C. Hitz, I. Gabdank, A. K. Narayanan, M. Ho, B. T. Lee, L. 
D. Rowe, T. R. Dreszer, G. Roe, N. R. Podduturi, F. Tanaka, E. L. Hong and J. M. Cherry (2016). "ENCODE data at the ENCODE 
portal." Nucleic Acids Res 44(D1): D726-732. 
 
3Rao, S. S., M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. 
S. Lander and E. L. Aiden (2014). "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping." 
Cell 159(7): 1665-1680. 
 
4Tang, Z., O. J. Luo, X. Li, M. Zheng, J. J. Zhu, P. Szalaj, P. Trzaskoma, A. Magalska, J. Wlodarczyk, B. Ruszczycki, P. Michalski, E. 
Piecuch, P. Wang, D. Wang, S. Z. Tian, M. Penrad-Mobayed, L. M. Sachs, X. Ruan, C. L. Wei, E. T. Liu, G. M. Wilczynski, D. 
Plewczynski, G. Li and Y. Ruan (2015). "CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for 
Transcription." Cell 163(7): 1611-1627. 
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Supplementary Table 2: Analysis results of ChIA-PET data sets 
	
Cell-type Raw reads 

(in million) 
 Unique 
PETs (in 
million) 

IAB >= 2 
loops 

FDR <= 
0.05 loops 

IAB >=2 and 
FDR <= 
0.05 loops 

GM12878 
(full reads) 

680 39.8 93914 73511 51966 

GM12878 
(15% reads) 

102 13.1 37125 22248 15569 

HeLa 531 21.1 42430 25047 16783 
K562 195 6.6 23884 23377 13076 
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Supplementary Table 3: Top-ranked features from the Recursive Feature 
Elimination analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

*Numbers inside the parentheses indicate the times of top-ranked feature set appears. 
*‘avg’ and ‘std’ represent the mean and standard deviation of the signal intensity on both anchors. ‘_left’ and ‘_right’ represent the flanking features while 
‘_in-between’ means the signal intensity in the loop region. 
 
 GM12878 

Top 1 
feature 

avg_RAD21 (5) 

Top 2 
features 

avg_CTCF, avg_RAD21 (3)  
motif_pattern, avg_RAD21 (2) 

Top 4 
features 

length, motif_pattern, avg_CTCF, avg_RAD21 (4) 
length, avg_CTCF, CTCF_in-between, avg_RAD21 (1) 
  

Top 8 
features 

length, motif_pattern, avg_motif_strength, avg_CTCF, std_CTCF, CTCF_in-between, avg_RAD21, expression (5) 

Top 16 
features 

length, motif_pattern, avg_motif_strength, HS_in-between, avg_H3K4me1, avg_H3K27ac, avg_CTCF, std_CTCF, CTCF_in-between, 
CTCF_left, CTCF_right, avg_RAD21, std_RAD21, RAD21_in-between, RAD21_left, expression (2) 
length, motif_pattern, avg_motif_strength, HS_in-between, HS_left, avg_H3K4me1, avg_H3K27ac, avg_CTCF, std_CTCF, CTCF_in-
between, CTCF_left, CTCF_right, avg_RAD21, std_RAD21, RAD21_in-between, expression (3) 

 HeLa 

Top 1 
feature 

avg_RAD21 (5) 
 

Top 2 
features 

length, avg_RAD21 (5)  

Top 4 
features 

length, motif_pattern, avg_CTCF, avg_RAD21 (5) 

Top 8 
features 

length, motif_pattern, avg_motif_strength, avg_CTCF, CTCF_in-between, avg_RAD21, std_RAD21, expression (3) 
length, motif_pattern, avg_motif_strength, avg_H3K4me1, avg_CTCF, avg_RAD21, std_RAD21, expression (2) 

Top 16 
features 

length, motif_pattern, avg_motif_strength, avg_HS, avg_H3K4me1, avg_CTCF, std_CTCF, CTCF_in-between, CTCF_left, 
CTCF_right, avg_RAD21, std_RAD21, RAD21_in-between, RAD21_left, RAD21_right, expression (5) 

 K562 

Top 1 
feature 

avg_CTCF (3) 
avg_RAD21 (2) 

Top 2 
features 

length, avg_CTCF (1) 
avg_CTCF, avg_RAD21 (3) 
length, avg_RAD21 (1) 
 

Top 4 
features 

length, avg_CTCF, CTCF_left, avg_RAD21 (5) 

Top 8 
features 

length, motif_pattern, avg_CTCF, std_CTCF, CTCF_in-between, CTCF_left, avg_RAD21, expression (3) 
length, motif_pattern, avg_CTCF, std_CTCF, CTCF_in-between, CTCF_left, avg_RAD21, RAD21_left (2) 
length, motif_pattern, HS_left, avg_CTCF, std_CTCF, CTCF_in-between, CTCF_left, avg_RAD21 (1) 
 
 

Top 16 
features 

length, motif_pattern, avg_motif_strength, HS_in-between, HS_left, avg_CTCF, std_CTCF, CTCF_in-between, CTCF_left, CTCF_right, 
avg_RAD21, std_RAD21, RAD21_in-between, RAD21_left, RAD21_right, expression (2) 
length, motif_pattern, avg_motif_strength, std_HS, HS_in-between, HS_left, avg_CTCF, std_CTCF, CTCF_in-between, CTCF_left, 
CTCF_right, avg_RAD21, std_RAD21, RAD21_in-between, RAD21_left, expression; (3) 
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Supplementary Table 4: Designed primers for 3C validation 
 
 

Primer 
Name Sequence (5’ to 3’) 

KMT2C_U2 FGGAGAGGATGATGGTGCTGTGTAT 
KMT2C_U1 CTTGATCGTTTCTCACTCCTTTCA 
KMT2C_L CTTGACTGTCACCTTCAGCTCATC 

KMT2C_D1 GACATACCAGAGCAATAACCTGGA 
KMT2C_D3 AGCAGCAAATGAATCAGCTCAG 
KMT2C_D4 AGTGGTGTCAATGCTGGTTTTC 
KMT2C_R ATCACTGTCTAGCTGCCCGTTC 

PDGFRB_L TATGCAGTGGTTTGTACCCTTG 
PDGFRB_R GTGGCACCATAATCATCCCTAT 
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