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Highlights

Different approaches to compute dynamic functional brain connectivity have
been proposed, each with their own assumptions.

We present a theoretical framework that encompasses a large majority of proposed
methods.

Our common framework facilitates comparisons between different methods and
illustrates their underlying assumptions.

Abstract

The research field of dynamic functional connectivity explores the temporal
properties of brain connectivity. To date, many methods have been proposed,
which are based on quite different assumptions. In order to understand in which
way the results from different techniques can be compared to each other, it is
useful to be able to formulate them within a common theoretical framework.
In this study, we describe such a framework that is suitable for many of the
dynamic functional connectivity methods that have been proposed. Our overall
intention was to derive a theoretical framework that was constructed such that
a wide variety of dynamic functional connectivity techniques could be expressed
and evaluated within the same framework. At the same time, care was given to
the fact that key features of each technique could be easily illustrated within
the framework and thus highlighting critical assumptions that are made. We
aimed to create a common framework which should serve to assist comparisons
between different analytical methods for dynamic functional brain connectivity
and promote an understanding of their methodological advantages as well as
potential drawbacks.
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Introduction

Investigations of dynamical functional connectivity (DFC) in the human brain
has become achievable owing to recent methodological developments. Foremost,
variations on the so called sliding window method have extensively been employed,
in which signal co-variance is computed for consecutive segments of the BOLD
fMRI signal intensity time series (1–4). Although variations of the sliding
window method have gained popularity among the possible routes to estimate
DFC, techniques based on other metrics have emerged, such as temporal ICA
(5), clustering (6,7), temporal derivatives (8) and change-point detection (9).
Advantages as well potential caveats for proposed DFC methods have been
outlined and discussed in several reviews and commentaries (2,10,11) as well as
their potential to provide a detailed map of the dynamics at a whole-brain level
(12–15).

The diversity of proposed strategies for DFC is a sign of methodological de-
velopment and progress within the field. But the current state of affairs also
makes it harder for researchers to be able to understand, interpret and compare
results pertaining to dynamic brain connectivity that have been derived by
different DFC analytical methods. Currently, there exist no common framework
for the theoretical basis of dynamic brain connectivity. This makes it difficult to
understand which assumptions that are made either implicitly or explicitly for
different DFC methods.

We believe that working towards the goal of a putative common framework
for DFC methods would be beneficial for several reasons. First, it would allow
researchers to understand which assumptions that are being made for their
DFC analyses. Second, it would provide the current manifold of suggested DFC
methodologies with a common scaffolding that would serve to assist in validating
and comparing different methods. Hence, a common framework would provide a
theoretical basis for understanding putative methodologically driven results in
dynamic brain connectivity.

The aim of this paper was to find a common ground for many of the proposed
DFC analysis strategies. However, we cannot claim that the framework presented
here is exhaustive and encompasses all methods, nor do we in this theoretical
work present quantitative comparisons and/or validation of previously proposed
DFC methods.

Methods

The data used here was included for the sole purpose of illustration of the concepts
described and not intended to provide a basis for a quantitative comparison
of the performance of different DFC methods. For this reason, we selected a
temporal segment of 50 image volumes of BOLD fMRI signal data extracted
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from three ROIs in a single subject (Figure 1A). Three regions were selected
instead of only two to illustrate the idea that some methods can utilize a
state space when handling multiple time series. The data originated from the
Beijing eyes open/eyes closed dataset that is publicly available (6) and we have
previously reported the preprocessing steps taken (16). We have here chosen
to illustrate the difference between different approaches to DFC estimation
based on empirical fMRI data rather than on simulated data. This was done
with the intent to show that the choice of method to investigate DFC in the
brain do have consequences when applied to actual acquired fMRI data and
not just in simulated scenarios. All DFC analysis after image preprocessing
was done in python 3 using the packages NumPy (17), SciPy (18), Statsmodels
(https://github.com/statsmodels/statsmodels], Matplotlib (19), and Teneto (20).

The static functional connectivity between the three selected BOLD signal time-
series were as follows: ROI1 and ROI2: r=-0.099, p=0.495; ROI1 and ROI3:
r=0.659, p<0.001; ROI2 and ROI3: r=-0.219, p=0.126. As stated above, the
ground truth of DFC for the selected time-series is unknown. However, our main
intention in this paper was to show that different assumptions regarding DFC
will lead to different estimates of connectivity. A statistical comparison of the
performance for different DFC methods was not the primary aim of this paper.
However, we have recently performed a detailed simulation and comparison study
of current methods to estimate DFC, and we refer the interested reader to (21).

Results

We observe that for the large majority of DFC methods published so far, a
prominent example being the sliding window method, the estimation of co-
variability between brain regions employs the Pearson correlation. This fact
makes correlation methods a good starting point to formulate a common the-
oretical framework. To start with, an estimate of the covariance between two
variables (i.e. how much they vary together) requires multiple observations. This
simple statement also holds the crux of the problem of DFC. Namely, to estimate
the connectivity at time-point t, we need to take into account more time-points
than just t itself. This becomes problematic when the ultimate aim is to obtain
a unique connectivity estimate at every time-point t.

Suppose that we have extracted the signal time-series for brain regions A and
B as A1, A2...AT and B1, B2...BT at [1, 2, 3...T ]. We are then interested in a
subset of time-points, St, such that St ⊂ T . The selected subset aims to inform
us about the connectivity that happens at t. Then, as we will show later, the
fundamental assumption and question for all DFC methods is what can be said
to be a reasonable assumption in how we choose St?

As alluded to previously, many DFC methods based on covariance measures use
the Pearson correlation coefficient to quantify covariance. This means that the
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Pearson correlation coefficient at every time-point t can be expressed as:

rt
A,B = corr(ASt , BSt) (1)

This is simply to say that the degree of correlation between regions A and B at
time-point t is the correlation calculated for the subset of time-points included
in St.

Eq. 1 can be illustrated using the sliding window method (without using a
taper). In this case, the selection of St consists of those time-points adjacent
in time with respect to t. For example, if the window length is 5, we would
have St = t− 2, t− 1, t, t+ 1, t+ 2 which would then be used to estimate the
signal covariance between regions A and B at time t. Thus, the fundamental
assumption of the sliding window method is that adjacent time-points close to t
can be used to estimate connectivity at t.

Another way to formulate the information in St, which contains time-points that
are to be included, is to create a weight-vector for all time points t (wt) which
has a length of T . In the sliding window example, the individual weights in the
weight-vector will be set 0 for time-point that are not included in St and to 1 if
they are included in St as follows

wt
u =

{
1 if u ⊂ St

0 if u 6⊂ St

(2)

So, the next question is what possible advantage does the introduction of weight-
vectors in this context bring? To answer that question, we start by changing
the Pearson correlation in eq. 1 to the weighted Pearson correlation with the
weights wt included as a weight-vector as follows

rt
A,B = corrw(A,B;w) (3)

The switch from Pearson to weighted Pearson correlation entails that for binary
weight-vectors (i.e. eq. 2), the formulation of equation 3 becomes identical to
equation 2. This is because the weighted Pearson correlation uses the weighted
mean and weighted variance in calculating the correlation. This effectively
ignores time-points with a zero weight and fully include time-points with a
weight set to one (for a longer discussion of the weighted Pearson correlation see
(20)). Two sample illustrations of the concept of weight-vectors in the case of
the sliding window method are given in Figures 1B-C.

The reformulation of St into wt may at a first glance seem trivial. But the
introduction of the weight-vector wt allows us to generalize our formulation to
many other DFC methods that are based on computing co-variance. As we will
see, we can use wt and estimate dynamic connectivity with the weighted Pearson
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Figure 1: Illustration of the weight-vector formulation for different methods to
estimate co-variance in dynamic functional brain connectivity. (A) A sample of
three time-series extracted from a single BOLD fMRI resting-state session. (B)
Representations of the weight-vectors used for computing DFC for four different
methods at t = 10. The sliding window size was set to 15 and the tapered
sliding window used a Gaussian distribution. The spatial clustering was done by
the k-means algorithm (k=3) and for the spatial distance method we used the
Euclidean distance. (C) Same as (B) but for t = 14.
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correlation coefficient. This is because wt does not have to be binary nor does it
need its selection of supporting time points to be based on temporal proximity.

An extension of the sliding window approach is to use its tapered version. Here,
St is not only a binary selection of time-points, but they are also weighted
according to a statistical distribution (often a Gaussian distribution centered at
t). The idea here is that time-points closer to t in time should have a greater
impact on the estimate of the covariance at t. The tapered version of the sliding
window method may easily be rewritten in the weight-vector formalism and we
can use the weighted Pearson correlation to compute co-variance. This entails
that all weight-values of wt outside the tapered window are set to 0. Weight-
values within the tapered window are set according to their probability given
by the chosen distribution. Figures 1B-C show two examples of the tapered
weight-vector centered at different points in time.

Instead of choosing St based on time-points which are temporally close, it is
possible to choose St such that it emphasizes when the configuration of the state
space (i.e. the multi-dimensional space spanned by all the ROIs included in the
dFC analysis) is similar. This approach implies that time-points that are spatially
close are selected to be included in St. An example of this approach is given in
(7) where we constructed binary weight-vectors based on spatial clustering (using
k-means) of the state-space that was spanned by the BOLD fMRI time series
from all brain ROIs. This spatial clustering approach can then be used to divide
all time-points t = [1, ..., T ] into K different clusters. The assignment of clusters
are then based on spatial dimensions across all ROIs across the brain. The
individual weights in the weight-vector are set to 1 for all time-points belonging
to the same cluster as time-point t, otherwise they are set to 0. Examples of
binary weight vectors based on clustering of spatial patterns are shown in Figures
1B-C. The underlying assumption for dFC methods based on spatial clustering
becomes clear when comparing the cluster assignments in Figures 1B-C with the
signal amplitude of the ROIs shown in Figure 1A. Note that the weight-vectors
at t = 10 and t = 14 partly overlap for both sliding window techniques, but their
appearance are very different from the weight-vectors established by the spatial
clustering approach. Importantly, the weight-vector formalism described here is
able to capture the derivation of quite different DFC methods under the same
umbrella and the results are easily visualized and illustrated as exemplified in
Figure 1.

Similar to the tapered sliding window method, it is possible to extend the
spatial clustering approach for DFC analysis so that continuous values for the
weight-vector are employed when finding connectivity estimates that are based
on spatial dimensions. In (20), we bypassed the clustering step by estimating
the spatial distance between data time-points. The weight vector at t at index
u (wt

u) is computed by taking one over the Euclidean distance between the
spatial dimensions at time-point t and time-point u. Thus, every data-point in
time is assigned to a unique weight that can be described in the weight-vector
formulation given above. An example of DFC based on spatial distance is given
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in Figures 1B-C and it can be seen that there are distinct similarities in weight
values between the spatial clustering and spatial distance approach to DFC.

So far, we have illustrated how four different dynamic connectivity methods that
all uses the Pearson correlation (2 binary, 2 continuous; 2 based on temporal
proximity, 2 based on spatial proximity) can be formulated within a common
framework. Each method can be formulated in terms of covariance estimates that
are computed by weight-vectors and the weighted Pearson correlation technique.

Obviously, the choice of weight-vector has consequences for the estimate of
dynamic connectivity. This is shown in Figures 2AB where the estimate of the
correlation between ROI 1 and ROI 2 is visualized. This Figure shows how
the resulting correlation is shaped by each of the different weight-vectors. The
resulting difference in correlation across the four methods as well as which data-
points that are included in the computation of co-variance is shown in Figure 2CD.
When t=10 (Figure 2C) all four methods result in negative weighted Pearson
correlation estimates, albeit with different magnitudes. At t=14 (Figure 2D), the
four methods yields very different results. Both of the sliding window methods
result in negative connectivity estimates whereas the spatial distance based
weighted correlation is close to zero and the spatial clustering approach yields a
positive correlation. In sum, the four methods give very different connectivity
estimates but, importantly, the weight-vector formulation introduced here provide
key insights to why this is so and it facilitates graphical comparisons between
methods as illustrated in Figures 1 and 2.

Thus, we have shown that the weight-vector formulation can adequately capture
all four DFC methods described so far. We can rephrase eq. 3 to include more
than two spatial (ROIs) regions:

Y = corrw(X;W ) (4)

where X consists of N number of data channels, and T time points. W consists
of T number of weight vectors. Finally, Y contains the resulting estimate of
dynamic functional connectivity for each time-point and all channels.

The formulation given in eq. 4 does not, as it currently stands, generalize to
all flavors of methods proposed to perform DFC. We will now show that eq. 4
can be extended, albeit more abstractly, to encompass other methods as well.
In order to do that, we need to include a optional transformation of the raw
data time-series and to allow for more flexibility in how different data time-series
are related to each other. An example of how such an extension of eq. 4 can
be formulated is to consider the DFC method proposed by (8). In Shine et al.
2015, the temporal derivative is used instead of the raw signal in their analysis
(i.e. a transform is used). Further, the relationship between two brain areas was
measured by multiplying the temporal derivatives of the signals with each other
(i.e. a relational function), and then finally, a temporal averaging using a window
function was carried out (a weight-vector). Thus, we can extend and generalize
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Figure 2: Visualization of BOLD fMRI signal values extracted from ROI 1 and
ROI 2 shown in Figure 1A and their relationship to the estimated co-variance for
the four DFC methods discussed in this paper. (A) Selection of data points that
contribute to the weight-vectors for all four DFC methods at t = 10. Purple-
yellow colours mark time-points which are given weights larger than 0. The red
circles mark t. Faded blue circles mark data-points that were not included in
the estimate of co-variance (i.e. their corresponding weights are 0). (B) Same as
in (A) but at t = 14. (C) Weighted Pearson correlation between ROI 1 and ROI
2 using the four different methods. (D) same as in (C) but for t = 14.
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eq. 4 so that it can encapsulate the method proposed by the Shine et al. First,
the temporal derivation of the raw data can be included by defining a transform
function U that acts on the raw data X as:

Y = corrw(U(X);W ) (5)

Obviously, when the raw signal is used, U is a simple function such that:

U(X) = X (6)

so nothing from the previous formulation is changed. In theory, U can be any
mathematical transform applied to the raw data prior to the computation of
co-variance. In the case of (8), U is the first temporal derivative of the raw data
X:

U(Xi,t) = Xi,t −Xi,t−1 (7)

It is rather straightforward to accommodate other kinds of data transforms. For
example, a transform that is commonly performed in the context of dynamic
functional brain connectivity is a reduction of data dimensionality. In this case,
U would be, for example, a principal component analysis transformation of the
raw data.

The second modification of eq. 4 to accommodate the (8) method is to estimate
the relationship between signal intensity time-courses. Instead of a covariance
estimate, the temporal derivatives of the signal time-courses from two voxels or
regions i and j are multiplied with each other and then divided by their standard
deviations. Thus, we need to substitute corrw in eq. 5 with a general relational
function R:

Yt = R(U(Xt);Wt) (8)

In the weighted Pearson correlation case, R(U(X);w) = corrw(U(X)). For the
temporal derivative case described in (8), R becomes:

R(U(Xi,j,t);wt) =
wt∑
u

(
u× U(Xi)× U(Xi)

σU(Xi) × σU(Xj)

)
(9)

In the formulation above, we incorporate both the multiplication of the temporal
derivatives and the moving average operation in w. We would like to point out
that the temporal derivative method is just an example. R is a general relation
function and it thus provide the means for any type of correlation or relation to
be used. Possible types of relations that can be expressed in R are numerous.
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For example, they may be non-parametric versions of the correlation coefficient
(e.g. a weighted Spearman rank correlation), other regression models such as
LASSO, Bayesian statistics to derive posterior distributions, different clustering
models or machine learning techniques. Table 1 outlines how many currently
used methods in the literature can be formulated with the formulation provided
in eq 8.

There are two additional considerations regarding the general formulation in
equation 8. First, some methods for deriving estimates of DFC include a relational
function R that necessitates certain choices of weight-vectors. For example, the
hidden Markov model (HMM) is a possible choice of R. HMMs assume the
Markov property which implies that only the data acquired at t− 1 is required
in estimating the latent property at t. Thus, HMMs implicitly predetermine the
shape of the weight-vectors, i.e. a binary weight vector where the only non-zero
values are at t− 1 and t. However, despite the usage of methods that require
predetermined choices of Wt, researchers should be able to motivate why it is
appropriate as the choice of weight-vectors is an underlying assumption.

The final consideration regarding the theoretical formulation given in equation
8 is related to the shape of Yt. It may be dependent on U , Wt and R. For
example, the number of time-points will equal T in many methods but it may
be shrunk for certain dFC methods (for example, the sliding window methods
chops off (w− 1)/2 data-points at both the start and the end of the time-series).
Three commonly used formats for the results of dynamic functional connectivity
enclosed in Yt are 3 dimensional (node x node x time, Figure 3A), 2 dimensional
(component x time, Figure 3B), and 1 dimensional (time, Figure 3C). Note that
the variable time is always present for all three outputs, since this is an essential
property of dynamic functional connectivity analyses.

Discussion

In sum, we have shown that various methods to compute dynamic functional
connectivity, which may seem vastly different on the surface, can nevertheless
be unified into rather simple formulation. This provides a basis to understand
and appreciate how we can compare the performance, results and underlying
assumptions made for each method to compute DFC. To this end, we are
proposing a general formulation given by Y = R(U(X;W )) in which most
methods can be expressed.

The role of the formulation suggested here is to emphasize the assumptions
different methods use and assisting in comparing methods. This is a critical
aspect when evaluating the performance and caveats of different methods to
compute DFC. The framework presented highlights three different assumptions
that need to be made in all DFC methods: 1. The way in which the raw
data is to be transformed before estimation of co-variance (U). 2. A relational
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Figure 3: Different types of output from dynamic functional connectivity anal-
ysis using the data shown in Figure 1A. (A) A 3-dimensional representation
(node,node,time). A graphlet stack plot showing connectivity matrices every 5
volumes. Correlations are derived using the spatial distance method (Euclidean
distance). (B) A 2-dimensional representation (component,time) using 2 tempo-
ral ICA components. (C) A 1-dimensional representation (time). A vector of
state assignments following k-mean clustering (k = 3).
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function, R which quantifies the relationship between multiple data time-series. 3.
Weighting vectors W which define time-points that are to be used to support the
relational/covariance estimates. The first two assumptions are relatively trivial
and are present in many data analysis problems. In the context of neuroimaging
the choice of weight-vectors is perhaps more interesting as it is dictated by (1)
the imaging modality (i.e. temporal and spatial resolution) and (2) how the
brain works (i.e. speed of brain dynamics and the recurrence of spatial patterns).

While attempts to unify different but related problem formulations rarely con-
tributes novel insight to the field, our hope is that our theoretical platform will
assist researchers to understand the relationship between the many DFC methods
proposed in the literature that in a sense all aim to tackle the same question.
However, it can not be ruled out that some methods may fall outside the scope
of the framework present here. The framework presented here is intended to
assist method comparison and illustrate the underlying assumptions, not to be a
rigid definition of dynamic functional connectivity that all methods must adhere
to.
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