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We present SAFE-clustering, a flexible and efficient cluster ensemble method for single-cell RNA-seq (scRNA-seq) 
data. Taking as input results from multiple clustering methods, SAFE-clustering generates more accurate and robust 
consensus clustering results. Assessment across 14 datasets with the number of clusters ranging from 3 to 14, and 
the number of single cells ranging from 49 to >32,000 showcases the advantages of SAFE-clustering 
(http://yunliweb.its.unc.edu/safe/) both computationally and in terms of performance. 

 

RNA sequencing (RNA-seq) has been widely used to study gene regulatory networks underlying the complex 
processes of cellular proliferation, differentiation and reprograming1–4. However, for most genes, their expression 
levels are found to vary dramatically across cell types and in different individual cells5–7. Therefore, bulk RNA-seq, 
measuring the average expression across many cells of different cell types, may mask the real functional capacities 
of each cell type2. Comparatively, single-cell RNA sequencing (scRNA-seq) enables researchers to investigate the 
cellular heterogeneity in gene expression profiles, as well as to determine cell types and predict cell fates, thus 
presenting enormous potential for cell biology and clinical applications1,3,8–12. 

Single-cell clustering provides intuitive identification and characterization of cell types from a mass of 
heterogeneous cells, which can itself be of interest13, and can be used as covariates in downstream differential 
expression analysis14. However, the high dimensionality of scRNA-seq data pose a grand challenge for unsupervised 
cell clustering15–17. One convenient method for single-cell clustering is k-means clustering on dimensional reduced 
data, where high dimensional data are first reduced into a lower dimensional subspace by principal component 
analysis (PCA) or t-Distributed Stochastic Neighbor Embedding algorithm (t-SNE)18 and then the lower-
dimensional data are clustered with k-means12,19. Because of the importance of clustering for scRNA-seq data, 
recently, several algorithms have been developed, including Seurat20, CIDR16, DIMM-SC14, SIMLR17 and SC321. 
However, none of the clustering algorithms is an apparent all-time winner across all datasets22. Discrepancies across 
methods occur both in the estimated number of clusters and in actual single-cell-level cluster assignment. These 
discrepancies are mainly due to the use of different characteristics of scRNA-seq data by different methods. 
Individual clustering methods may fail to reveal the true clustering behind a heterogeneous mass (of single cells in 
this case) when assumptions underlying the methods are violated. Therefore, it is highly challenging, if not 
impossible, to choose an optimal algorithm for clustering scRNA-seq data when no prior knowledge on cell types 
and/or cell type specific expression signatures are given. 

In the absence of one single optimal clustering method, cluster ensemble provides an elegant solution by  combining 
results from multiple individual methods into one consensus result23,24. Compared to individual solutions, ensemble 
methods exhibit two major advantages. First, ensemble improves clustering quality and robustness, as demonstrated 
in other contexts including analysis of cell signaling dynamics and protein folding25,26. Second, ensemble methods 
enable model selection. For example, we and others16,21,22 observe, in certain datasets, dramatically different 
estimates for the number of clusters across individual solutions. It is hard to decide on one single solution without 
any external knowledge or constraints. Cluster ensemble is able to estimate an optimal number of clusters by 
quantifying the shared information between the final consensus solution and individual solutions24. Although the 
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majority may not always be the most accurate in every case and for every cell, a consensus approach tends to 
outperform each individual method when the optimal method is not known in advance. However, to date, there is no 
published cluster ensemble approach across multiple types of clustering methods specifically designed for scRNA-
seq data. 

To bridge the gap, we have developed SAFE-clustering, Single-cell Aggregated (From Ensemble) clustering, to 
provide more stable, robust and accurate clustering for scRNA-seq data. In the current implementation, SAFE-
clustering first performs independent clustering using four state-of-the-art methods, SC3, CIDR, Seurat and t-SNE + 
k-means, and then combines the four individual solutions into one consolidated solution using one of three 
hypergraph partitioning algorithms: hypergraph partitioning algorithm (HGPA), meta-clustering algorithm (MCLA) 
and cluster-based similarity partitioning algorithm (CSPA)23. 

 

Results 

Overview of SAFE-clustering 

Our SAFE-clustering leverages hypergraph partitioning methods23 to ensemble results from multiple individual 
clustering methods. The current SAFE-clustering implementation embeds four clustering methods: SC3, Seurat, t-
SNE + k-means, and CIDR. Figure 1 shows the overview of our SAFE-clustering method. 

Benchmarking of SAFE-clustering across 14 datasets 

We benchmarked SAFE-clustering together with its four embedded individual clustering methods on 14 published 
scRNA-seq datasets4,27–34, reflecting a wide spectrum of experimental technology, sequencing depth, tissue origin, 
number and heterogeneity of single cells examined (details are summarized in Table 1 and supplementary Table S1). 
Among the 14 datasets, we examine two large peripheral blood mononuclear cells (PBMC) mixture datasets 
with >28,000 single cells were constructed by mixing single-cell datasets of purified cell types generated by the 10� 
Genomics34 as described in Sun et al14. Specifically, we created one dataset representing a “simple case” with 28,733 
single cells from three distinct cell types: CD56+ natural killer cells, CD19+ B cells and CD4+/CD25+ regulatory T 
cells; and the other dataset representing a “challenging case” with 32,695 single cells from three highly similar cell 
types: CD8+/CD45RA+ naive cytotoxic T cells, CD4+/CD45RA+/CD25- naive T cells and CD4+/CD25+ 
regulatory T cells.  

For the 14 datasets attempted, SAFE-clustering outperforms all the individual solutions in five datasets: 
Baron_human1, Baron_human3, Baron_mouse1, and the two PBMC mixture datasets (Figure 2; Figure S1). 
Furthermore, SAFE-clustering performs better than at least two individual methods in six additional datasets (Biase, 
Yan, Darmanis, Zeisel, and Baron_human2 and 4) (Figure 2; Figure S1). These results show that SAFE-clustering 
performs robustly well across various datasets. We also compared the estimated number of clusters and found that 
among individual methods, CIDR performs the best (Figure 3B); SC3 tends to overestimate the number of clusters 
(Figure 3A), while t-SNE + k-means tends to underestimate (Figure 3D). Our SAFE-clustering outperforms all 
individual solutions (Figure 3E and F), quantified by the average absolution deviation from the true/gold-standard 

cluster numbers (�� � �

�
∑ |�� 	 ��|� , where m is the number of datasets (=14 in our work); ��  is the estimated 

number of clusters; and �� is the true (or predefined gold/silver standard) number of cell types.  

For the simple case PBMC mixture dataset, both CIDR and SC3 yielded 3 clusters with Adjusted Rand Index 
(ARI)35 of 0.827 and 0.995, respectively (Figure 2). Seurat assigned the single cells into 16 clusters with an ARI of 
0.239. Also, Seurat failed to generate clustering results for three (out of 28,733) single cells because of <200 
expressed genes in these cells. For t-SNE + k-means, we applied Rtsne18 on the top 1,000 most variable genes to 
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save computing time and memory usage (Figure S2, identifying three clusters with an ARI of 0.976. Combining the 
four individual solutions, SAFE-clustering generated the most accurate result with an ARI of 0.995 (Figure 2 and 
S3A). Moreover, all the three single cells not clustered by Seurat were correctly assigned into their corresponding 
clusters by SAFE-clustering’s borrowing information from the remaining three individual solutions.  

For the challenging case PBMC mixture dataset, none of the four individual methods performed well, because 
CD4+/CD45RA+/CD25- naive T cells are quite similar to CD4+/CD25+ regulatory T cells. SC3 generated the most 
accurate individual solution, identifying two clusters with an ARI of 0.595 (Figure 2), followed by t-SNE + k-means 
(3 clusters and ARI = 0.405). Similar to the simple case, Seurat failed to generate clustering results for 28 single 
cells with <200 expressed genes, and resulted in 13 clusters with an ARI of 0.264. SAFE-clustering again 
outperformed all the four individual methods (Figure 2), correctly identifying three clusters with an ARI = 0.612 
(Figure 2 and S3B), correctly clustering 23 out of the 28 single cells which were not clustered by Seurat. These 
results strongly suggest that SAFE-clustering can provide robust and high quality clustering even under challenging 
scenarios. 

 

Benchmarking of three hypergraph partitioning algorithms in SAFE-clustering 

SAFE-clustering has three hypergraph partitioning algorithms implemented. Among them, CSPA is computationally 
expensive for datsets with large number of single cells because computational complexity increases quadratically 
with the number of single cells36. To assess the feasibility of the three algorithms on big datasets, we recorded the 
running time for the simple case of 28,733 cells. As the running time is insensitive to the number of clusters k, a 3-
way partitioning (that is, k was set at 3, the true cluster number) was performed, running each of the algorithms 100 
times. As expected, HGPA is ultrafast taking an average of 0.51 +/– 0.02 second per clustering (s/c), followed by 
MCLA, 8.26 +/– 1.54 s/c. CSPA is the slowest with ~576.64 +/– 0.74 s/c (Figure 4A). Finally and importantly, we 
would like to note that computational costs of these ensemble algorithms are negligible (HGPA and MCLA) or low 
(CSPA), compared to the computing costs of individual clustering methods (2.5-22 hours per clustering). 

Among the three ensemble algorithms, MCLA and CSPA results are deterministic conditional on any specified 
random number generator (RNG) seed. HGPA, however, generates stochastic results even with a specified RNG 
seed. To evaluate the stability of HGPA’s clustering results, we performed HGPA partitioning 100 times on the 
simple case dataset and calculated both Average Normalized Mutual Information (ANMI)24 and ARI for each run. 
Figure 4B shows that HGPA results, although relatively stable, vary slightly across different runs. Another 
consequence of HGPA’s stochasticity is that different numbers of cluster may be estimated. Therefore, SAFE-
clustering by default runs HGPA 10 times, selects the run with the median ANMI value among the 10 runs, and 
outputs the corresponding consensus result. 

To evaluate the performance of the three hypergraph partitioning algorithms, we performed ensemble clustering of 
the 14 datasets using each of them (namely HGPA, MCLA and CSPA) separately. Comparatively, MCLA is a clear 
winner: manifesting the highest ANMI in 13 out of the 14 benchmarking datasets (Figure 4C); and exhibiting the 
highest ARI in 12 out of the 14 datasets (Figure 4D). For the single dataset (Baron_human3) where MCLA is not the 
best according to ANMI, its ANMI (0.658) is a close match of the best (0.662 from CSPA). In addition, in this 
Baron_human3 dataset, if gauged using ARI, MCLA again outperforms all other methods with ARI = 0.507 and the 
second best ARI = 0.215 from CSPA. For the two datasets (Goolam and Ting) where MCLA is not the best 
according to the ARI metric, it is the close match second best with ARI = 0.513 and 0.429 respectively, compared 
with the best (from CSPA) with ARI = 0.556 and 0.465 respectively.  These results suggest that MCLA provides 
more accurate consensus clustering than the other two algorithms. Therefore, SAFE-clustering uses MCLA as the 
default partitioning algorithm.  
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Improving and running individual ensemble methods 

Individual methods capture different characteristics of scRNA-seq data. We observe relatively moderate 
similarity among solutions from individuals ensemble methods (Figure 5), consistent with findings from Freytag et 
al.22. These may reflect different methods capturing different aspects of information from the rather complex and 
high-dimensional scRNA-seq data, leading to different solutions, but no clear winner.    

Seurat. Seurat provides a “resolution” parameter to alter the granularity of the clustering results. However, the 
default “resolution” (= 0.8) tends to result in no clustering for small datasets, as shown in the SC3 paper21. To 
further evaluate the performance of Seurat on small datasets, we generated 100 subsets of samples from the 
Darmanis dataset, using stratified random sampling without replacement where each cell type was one stratum and 
single cells from each cell type were randomly selected according to the corresponding cell type proportion.  Our 
sampling strategy resulted in 61 - 239 single cells from the eight cell types, across the 100 generated datasets. The 
resolution was set to 0.6, 0.9 and 1.2, respectively, following the instruction of Seurat. Due to non-determination 
from random sampling, the sampling process and the downstream clustering were repeated 100 times for each 
resolution. The performance of different resolution is quantified by ARI according to published clustering. When 
sample size ranges from 61 to 150, Seurat clustering with resolution = 1.2 performs significantly better than 0.6 and 
0.9 (p < 0.05, Figure S4A), except for the case between resolution 0.9 and 1.2 in the subset of 120 cells (p = 0.124). 
Comparatively, only one cluster is identified in the subset of 61 cells when resolution = 0.6. When sample size 
increases to 210, resolution makes no difference.  

  When applying Seurat to the four small datasets, Biase (
 � 49 single cells), Yan (
 � 90), Goolam (
 � 124) 
and Ting (
 � 187), we used all three resolutions. Overall, Seurat performed better with resolution = 1.2 (Figure 
S4B), with the exception of Goolam dataset, where clustering with resolution = 0.9 is the best. For Biase dataset, 
Seurat cannot distinguish different cell types with resolution = 0.6, but ARI reaching to 1 when resolution increases 
to 1.2. 

 

tSNE + k-means. Results from t-SNE + k-means are stochastic rather than deterministic. To mitigate the 
fluctuations across runs, we used the ADPclust R-package37 to first obtain clustering centroids. We compared the 
performance with and without this ADPclust centroid estimation step before k-means, on four datasets, Yan, 
Goolam, Darmanis and Baron_human2. Expression matrix was log-transformed and dimensionality reduced using t-
SNE. For each clustering strategy, t-SNE was carried out 100 times. The number of clusters ranged from 2 to (�� + 
2), where �� is the true number of clusters. As expected, ARI’s from the 100 datasets without ADPclust centroid 
estimation varied dramatically at most �’s attempted where k is the number of clusters fed to k-means (Figure S5). 
In contrast, with ADPclust centroid the estimation had much improved stability. 

 

SC3 

For the two PBMC mixture datasets, SC3 estimated 588 and 586 clusters for the simple and challenging case, 
respectively, dramatically deviating from the truth (� � 3 for both two datasets). A possible reason is that the low 
sequencing depth coupled with the large number of single cells resulted in weak signals not easily captured by the 
clustering algorithm (Vladimir Kiselev, personal communication). We therefore performed PCA plot visualization 
(using plotPCA function of scater R-package) to narrow down a reasonable range of �. PCA plot suggested 3 
distinct clusters for the simple case and 2 clusters for the challenging case (Figure S6). We therefore decided, for 
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SC3, on � � 3 for the simple case and � � 2 for the challenging case. SC3 ARI for the simple case at our selected 
� � 3 is 0.995 and for the challenging case at � � 2 is 0.595. 

Because of the issue revealed from the PBMC mixture datasets and because estimation of number of clusters can be 
separated from clustering per se, we ran SC3 for both datasets within a more reasonable range of �: from 2 to 7. 
Using the SC3 results from this range, we assessed the robustness of our SAFE-clustering method, holding all the 
other three individual methods constant. Figure S7 shows that ARI from SC3 fluctuates considerably (0.599 - 0.995 
and 0.596 - 0.768 for the simple and challenging case, respectively) when � increases from 2 to 7. Comparatively, 
results from our SAFE-clustering are much more stable (ARI ranges from 0.852 to 0.995 for the simple case and 
from 0.582 to 0.694 for the challenging case, respectively). These results suggest that even with a non-optimal � 
selected by one individual method, our SAFE-clustering ensemble method is able to generate robustly accurate 
results, because our ensemble method borrows information from the other contributing methods. Furthermore, 
SAFE-clustering correctly estimates the number of clusters (i.e., 3) for both the simple and the challenging case with 
SC3’s � ranging from 2 to 7. 

 

Discussion 

We present SAFE-clustering, an unsupervised ensemble method to provide fast, accurate and flexible clustering for 
scRNA-seq data. Generally speaking, the performances of individual clustering methods tend to vary, sometimes 
rather dramatically, across datasets. Moreover, there is no clear winner among many clustering methods across 
various datasets. We have benchmarked SAFE-clustering along with four individual clustering methods (SC3, CIDR, 
Seurat and t-SNE + k-means) on 14 published scRNA-seq datasets, which is the most comprehensive to date. 
Among the 14 datasets, SAFE-clustering outperforms all four individual solutions in five benchmarking datasets, 
and performs better than at least two individual methods in six datasets (Figure 2; Figure S1). For the two PBMC 
mixture datasets with 28,733 and 32,695 single cells respectively, SAFE-clustering accurately identifies the three 
cell types of ARI = 0.995 and 0.612 respectively (Figures 2 and S3). Moreover, SAFE-clustering provides the most 
accurate estimation on the number of cell types compared to the individual methods: SAFE-clustering’s average 
absolute deviation from true cluster numbers (3.357) is much smaller than that any of the four individual methods 
(average absolute deviation ranging from 4.143 to 6.214) (Figure 3F). These results suggest that SAFE-clustering 
produces more stable and accurate clustering across various datasets. Finally, SAFE-clustering is computationally 
efficient, with the additional hypergraph partitioning of individual methods’ cluster assignments taking less than 10 
seconds to cluster 28,733 cells, using the default MCLA algorithm (Figure 4A). We anticipate that SAFE-clustering 
will prove valuable for increasingly larger number of investigators working with scRNA-seq data. 
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ONLINE METHODS 

Expression matrix normalization 

SAFE-clustering takes an expression matrix as input, where each column represents one single cell and each row 
corresponds to one gene or transcript. To make the data well-suited for all four individual clustering methods, 
Fragments/Reads Per Kilobase per Million mapped reads (FPKM/RPKM) data are converted into Transcripts Per 
Million (TPM); and UMI counts are converted into Counts Per Million mapped reads (CPM). For CIDR, SC3 and t-
SNE + k-means, the input expression matrix is log-transformed after adding ones (to avoid taking log of zeros). 

Clustering using four state-of-the-art methods 

CIDR. Given the normalized expression matrix, dropout candidates are identified and implicitly imputed to mitigate 
the impact of lowly expressed genes. Then, dissimilarity matrix (Euclidean distance) is calculated between single 
cells using the imputed data16. As CIDR performs principal coordinate analysis (PCoA) to reduce dimensionality, 
the number of principal coordinates (PCo’s) identified, representing the estimated data dimensionality, heavily 
influences the final clustering results. Here, the number of PCo’s is determined by the internal nPC function, default 
choice in CIDR. Alternatively, users can visually decide on an ideal number of PCo’s by selecting a threshold at a 
clear elbow from plotting the proportions of variations explained by the PCo’s (also generated by the nPC function). 

With the selected PCo’s, single cells are hierarchically clustered into ��������	
 clusters, with ��������	
 estimated 
using the Calinski-Harabasz Index38. 

SC3. Quality control (QC) metrics are calculated on the input expression matrix to detect potentially problematic 
genes and/or single cells. Although gene-level filtering is recommended by SC3, for 9 out the 14 benchmarking 
datasets, all genes would be filtered out and clustering cannot be performed. Therefore, we set the gene filtering 
option to be “FALSE”. In order to speed up computation, we first use the Tracy-Widom method39,40 to estimate the 

number of clusters, denoted by ���������. With the estimated ���������, matrices of Euclidean, Pearson and Spearman 
(dis)similarity metrics are calculated among single cells, followed by k-means clustering. Based on k-means results 
across the three different (dis)similarity matrices, a consensus matrix is computed using CSPA, followed by a 

hierarchical clustering to assign the single cells into ��������� clusters. 

For the two PBMC mixture datasets (both with > 5,000 single cells), support vector machines (SVM) is employed to 
further speed up computation. Specifically, a subset of single cells is randomly selected to form the training dataset 
where a SVM model with a linear kernel is constructed, using the svm function in R-package e1071. The default 
minimum number of single cells to run SVM is set to be 5,000 (SC3 option svm_max = 5,000). The trained SVM is 
then used to predict the cluster labels of the remaining single cells. 

Seurat. Seurat embeds an unsupervised clustering algorithm, combining dimension reduction with graph-based 
partitioning methods. First, expression matrix is filtered to remove genes expressed in <3 single cells and single 
cells with <200 expressed genes. Then, the expression data of each single cell is scaled to a total of 10,000 
molecules and log-transformed following the procedure described in Macosko et al.41. After that, undesired sources 
of variations are regressed out. Single cells with <200 expressed genes would be considered as “NA” in the final 
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Seurat clustering results. Data dimensionality is reduced via principal component analysis (PCA) with the principal 
components (PCs) selected by the nPC function in the CIDR package. Graph-based clustering is carried out using 
the smart local moving algorithm (SLM)42 with the resolution parameter set to be 0.9. For small datasets, Seurat has 
been reported not to work well21 and has a tendency to assign all single cells into one cluster when the resolution 
parameter is set to be 0.9. We therefore increase the resolution parameter from 0.9 to 1.2 when the number of single 
cells is less than 200. 

t-SNE + k-means. t-SNE followed by k-means clustering is a popular method for single cell clustering. Here, we use 
the Rtsne package with default parameters to reduce normalized expression data into two dimensions. However, 
when the number of input single cells is small, users may run into the problem that the default perplexity of 30 is too 
big. Since t-SNE has been shown to be fairly robust across perplexity values ranging from 5 to 5018, we set the 
perplexity to be 10 when the input data contain <200 single cells. 

Results from k-means clustering can vary dramatically across different runs even with the same input data and same 
parameters23 because of random initial cluster centers. To mitigate this potentially highly stochastic behavior, we use 
the ADPclust R-package37 to first estimate the centroids. ADPclust can also estimate the number of clusters. 
Therefore, in our SAFE-clustering implementation, we perform k-means clustering using the centroids and number 
of clusters estimated through ADPclust. 

Hypergraph Partitioning Cluster Ensemble Algorithms 

After obtaining clustering results from different individual methods, we perform cluster ensemble to provide a 
consensus clustering using one of the three hypergraph-based partitioning algorithms: HGPA, MCLA and CSPA, as 
described in Strehl & Ghosh23. Moreover, certain single cell(s) may be excluded from clustering by some individual 
clustering method(s) due to quality control filter(s) of the corresponding method(s). Ensemble approach can provide 
a consolidated assignment for these single cells by borrowing information from solutions of the other methods. 

Hypergraph construction from cluster labels of individual clustering methods 

We start with transforming the output labels of each clustering method into a hypergraph. Briefly, for the ��
 
clustering method, we use ��� (note subscript j is omitted for presentation brevity) to denote the ��
  row of the 
hypergraph ��, which is the row vector for the cluster labels (coded as binary dummies or indicator functions) of the 

��
 single cell, where 

��� � �1, the ��
 cell �  the ���
 cluster
0, the ��
 cell #  the ���
  cluster$ 

and �� � 1, 2, … , &�, with &� being the total number of clusters from the ��
 clustering method. Here, each column is 

a hyperedge, representing one particular cluster identified by that method. An overall hypergraph � is constructed 
by combining individual hypergraphs (from individual methods). 

HGPA. HGPA directly partitions hypergraphs by cutting a minimal number of hyperedges. We adopt the approach 
described in Karypis et al.43, where the authors developed a fast and efficient multilevel hypergraph partitioning 
algorithm through recursive bisection. Specifically, we perform a �-way hypergraph partitioning using the shmetis 

program in the hMETIS package v. 1.543 for a range of �  from 2 to max*&�+ , � � 1, 2, 3, and 4  for the four 

different individual clustering methods and  &� again for the total number of clusters from the ��
  method. The 
parameter UBfactor is set at 5, so that in any bisection, each of the two partitions contains 45-55% of the total 
number of vertices.  
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MCLA. Unlike HGPA, MCLA starts with computing pairwise Jaccard similarities (��) among all the hyperedges. 

Specifically, for any two hyperedges �� and ��: 

�� � ����
�

��
� � ��

� � ����
�
 

where � and � � 1, … , �, where � is the total number of hyperedges, which equals to the sum of estimated cluster 
numbers from individual solutions. With the calculated similarity matrix, all the hyperedges are partitioned into � 
meta-clusters using the gpmetis program in the hypergraph partitioning package METIS v. 5.1.044.  

An association index �
������ is computed to represent the association between meta-cluster � and the ��	 single 
cell, by averaging the vertices ��	 of the corresponding hyperedges: 

�
������ � 1
��

� ��	

�

 

where � � �� is the set of hyperedges assigned in meta-cluster �. Each single cell is assigned to the meta-cluster 
with the highest association index. However, some of the � clusters may be empty due to no single cells having the 

highest association index with the cluster(s)23. Under that scenario, we will re-label the single cells into � ′ clusters, 

where � ′ is the number of non-empty clusters. 

CSPA. CSPA also starts with computing pairwise similarities. In contrast to MCLA, CSPA defines the similarity 
between two single cells to be 1 if they are always assigned to the same cluster, and 0 if they are never assigned to 
the same cluster. The � � � (where n is the number of single cells) similarity matrix � can be simply constructed by 

� � 1
� ��� 

where � is the overall hypergraph, and � is the total number of individual clustering methods, here J = 4. For CSPA, 
similar to MCLA, we also use the gpmetis program in the METIS v. 5.1.0 package44.   

Performance evaluation using Average Normalized Mutual Information (ANMI). Since individual methods 
cluster the single cells into their own optimal number of clusters, we need to estimate an overall optimal cluster 

number �����  using each of the three ensemble algorithms. For this purpose, we have implemented consensus 

clustering for a set of �� � �2, 3, … , ���, where �� �  !"#�
$ and % � 1, 2, 3 and 4 again for the four individual 

clustering methods, using each of the three algorithms. We evaluate the performance at each �� by measuring the 
shared information between the inferred and true original cluster labels (i.e., mutual information) using the Average 
Normalized Mutual Information (ANMI) metric, defined in Strehl & Ghosh23: 

�*�
#+�, +
$  �  ∑ ∑ ���� log 0���� 1��

���

��
��� � ∑ ��� log 0��� 1 � ∑ ��� log 0��� 1��

���

��
���

2∑ ��� log 0��� 1 3 ∑ ��� log 0��� 1��

���

��
���  

         

where +� and +
 are the labels from ensemble and from the %�	 method with �� and �
 clusters, respectively. � is the 

total number of single cells; �� denotes the number of single cells assigned to a specific cluster 4 (4 � 1, 2, . . , �
) 

by method %; similarly �� denomtes the number of single cells assigned to cluster " (" � 1, 2, . . , ��) via ensemble; 
and ���  represents the number of single cells shared between cluster 4  (from the solution of the jth individual 

method) and cluster " (from the ensemble solution). 
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We calculate ANMI between each consensus/ensemble solution and each solution from the individual methods. For 
a particular ensemble solution, the average ANMI across individual methods quantifies its similarity to the solutions 
from individual methods. The ensemble solution with the highest average ANMI value (again, average across four 

individual methods) is selected as the final cluster ensemble +������ with the estimated cluster number �������: 

#+������, �������$  �  arg max
��,��

∑ �
 3 �*�
#+�, +
$�

��

∑ �

�

��

 

where �
 is the total number of single cells clustered by individual method %; and �� is the number of clusters from 

an ensemble solution. Note this “average” is more precisely a weighted average rather than a plain average across 
individual methods unless all methods clustered the same number of single cells (e.g., without removing or failing to 
cluster any single cell(s), �
 � � for all j’s). When users simultaneously employ multiple partitioning algorithms 
(note our default is one single algorithm), the optimal cluster ensemble is given by: 

#+������, �������$ �  argmax
��,�� ,�������,�� � "#$/&' �(��)

�*�
* 

Summary of SAFE-clustering 

Run four individual clustering methods and get a 9�+, matrix of cluster labels. n is the total number of single cells. 

Construct hypergraph � � :��, ��, �-, ��; 

For �=2 to �*.� // �*.� is either specified by user or is the maximum across the 4 individual methods 

          If MCLA == TRUE //Default partitioning method 

                           Do MCLA 

                                     Compute Jaccard similarity matrix ��/0 

                                     �-way partitioning using gpmetis 

        Compute association index ������ , � � 1, … , �; � � 1, … , �, and assign each single cell to 
the meta-cluster c with the largest AI metric 

        If there are empty clusters 

           Re-label into �1 non-empty meta-clusters 

                                     End 

   End 

            If HGPA == TRUE // If switched to TRUE by the user 

               Do HGPA  

                                     �-way partitioning using shmetis 

                             End 
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            If CSPA == TRUE // If switched to TRUE by the user 

             Do CSPA  

      Compute and normalized similarity matrix � 

      �-way partitioning using gpmetis 

                             End 

            Calculate �*�
 across ensemble algorithm(s) used 

            Return Consensus cluster labels +�� and �*�
 

End 

Return Optimal consensus result +������ of ������� clusters with the highest �*�
 (across attempted k’s) 

Benchmarking datasets. For performance evaluation, we carried out clustering analysis on 14 benchmark scRNA-
seq datasets (Table 1), using our SAFE-clustering and the four individual clustering methods. All these datasets have 
pre-defined gold/silver-standard (we call “true”) cell type information. We used default parameters for 12 out of the 
14 datasets, with the two exceptions being the 2 PBMC mixture datasets (each with >28,000 single cells). For SC3, 
gene-level filtering option was turned on only in five out of the 14 datasets (Yan, Goolam, Biase, Deng and Ting), 
because the remaining 7 datasets would each have zero genes surviving its quality filtering. For SC3 and t-SNE + k-
means, all reported results are from random seed 123. 

Performance is measured by the similarity between the estimated cluster labels (+2) and the true cluster labels (+�) 
using the Adjusted Rand Index (ARI)35: 

�<
�+2 , +��  �  ∑ 0���2 1�,� � =∑ 0��2 1� ∑ 0��2 1� > / 0�
21

12 =∑ 0��2 1� � ∑ 0��2 1� > � =∑ 0��2 1� ∑ 0��2 1� > / 0�
21

 

where � is the total number of single cells; �� and �� are the number of single cells in estimated cluster @ and in true 
cluster A, respectively; and ��� is the number of single cells shared by estimated cluster @ and true cluster A. 

Computing time reported in this work is all from running on an iMac with 3.4 GHz Intel Core 1.5, 32 GB 1600 MHz 
DDR3 of RAM and OS X 10.9.5 operating system.  

 

Software availability 

The source code for SAFE-clustering is available under http://yunliweb.its.unc.edu/safe/, and the package “SAFE” is 
currently under development. 
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Table 1. Major characteristics of the 14 benchmarking datasets. Table 1 lists several major characteristics of the 
14 benchmarking datasets, including organism origin, number of single cells, the numbers of true and estimated 
clusters by SAFE-clustering and four individual methods, as well as references.  

        #estimated clusters   

  organism #single 
cells 

#true 
clusters 

SC3 CIDR Seurat t-SNE + 
k-means 

SAFE-
clustering 

Ref 

Baron_human1 Human 1,937 14 23 3 12 9 13 27 

Baron_human2 Human 1,724 14 23 9 10 6 6 27 

Baron_human3 Human 3,605 14 37 5 12 10 20 27 

Baron_human4 Human 1,303 14 19 3 9 3 4 27 

Baron_mouse1 Mouse 822 13 18 13 9 4 8 27 

Biase Mouse 49 3 3 5 3 3 4 28 

Darmanis Human 420 8 11 7 5 4 7 4 

Deng Mouse 286 9 9 8 5 3 7 29 

Goolam Mouse 124 5 6 7 3 3 7 30 

Ting Mouse 187 7 13 10 5 10 10 31 

Yan Human 90 7 5 5 3 3 4 32 

Zeisel Mouse 3,005 9 32 5 13 4 14 33 

simple case 
PBMC mixture 

Human 28,733 3 3 3 17 3 3 34 

challenging 
case PBMC 
mixture 

Human 32,695 3 2 10 13 3 3 34 
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Figure 1. Overview of SAFE-clustering. Log-transformed expression matrix of scRNA-seq data are first clustered 
using four state-of-the-art methods, SC3, CIDR, Seurat and t-SNE + k-means; and then individual solutions are 
combined using one of the three hypergraph-based partitioning algorithms: hypergraph partitioning algorithm 
(HGPA), meta-cluster algorithm (MCLA) and cluster-based similarity partitioning algorithm (CSPA) to produce 
consensus clustering. 
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Figure 2. Benchmarking of SAFE-clustering in eight published datasets. Adjusted Rand Index (ARI) is 
employed to measure the similarity between inferred and true cluster labels. Detailed information of the eight 
datasets (Biase, Yan, Ting, Zeisel, Baron_human1, Baron_mouse1, and two PBMC mixture datasets) can be found 
in Table 1 and supplementary Table S1. 
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Figure 3. Accuracy evaluation of the inferred number of cluster. A-E. Correlations between inferred cluster 
numbers from SC3, CIDR, Seurat, t-SNE + k-means and SAFE-clustering, respectively, and the true cluster numbers, 
across the 14 benchmarking datasets. F. Average deviations between the inferred and the true numbers of clusters, 

measured by BC � �

*
∑ |�� � ��|* , where the number of datasets   equals to 14. 
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Figure 4. Benchmark of the three hypergraph partitioning algorithms: HGPA, MCLA and CSPA. A. Running 
time for 3-way partitioning of simple case PBMC mixture dataset with 28,733 single cells using each of the three 
partitioning algorithms. Each algorithm was applied 100 times. B. Stability of HGPA from 100 runs using simple 
case PBMC mixture dataset with 28,733 single cells. C. Similarity between consensus clustering and individual 
solutions in 14 benchmarking datasets, measured by Average Normalized Mutual Information (ANMI). D. 
Performance of the three partitioning algorithms, measured by ARI, across the 14 benchmarking datasets. 
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Figure 5. Similarity of solutions from individual clustering methods. A. Zeisel dataset; B. Baron_human3 
dataset; C. simple case PBMC mixture dataset; D. challenging case PBMC mixture dataset. 
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