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Abstract. Exploring the genetic diversity of microbes within the environment through metagenomic5

sequencing first requires classifying these reads into taxonomic groups. Current methods compare these6

sequencing data with existing biased and limited reference databases. Several recent evaluation studies7

demonstrate that current methods either lack sufficient sensitivity for species-level assignments or suffer8

from false positives, overestimating the number of species in the metagenome. Both are especially prob-9

lematic for the identification of low-abundance microbial species, e. g. detecting pathogens in ancient10

metagenomic samples. We present a new method, SPARSE, which improves taxonomic assignments11

of metagenomic reads. SPARSE balances existing biased reference databases by grouping reference12

genomes into similarity-based hierarchical clusters, implemented as an efficient incremental data struc-13

ture. SPARSE assigns reads to these clusters using a probabilistic model, which specifically penalizes14

non-specific mappings of reads from unknown sources and hence reduces false-positive assignments.15

Our evaluation on simulated datasets from two recent evaluation studies demonstrated the improved16

precision of SPARSE in comparison to other methods for species-level classification. In a third simula-17

tion, our method successfully differentiated multiple co-existing Escherichia coli strains from the same18

sample. In real archaeological datasets, SPARSE identified ancient pathogens with ≤ 0.02% abundance,19

consistent with published findings that required additional sequencing data. In these datasets, other20

methods either missed targeted pathogens or reported non-existent ones.21

SPARSE and all evaluation scripts are available at https://github.com/zheminzhou/SPARSE.22

1 Introduction23

Shotgun metagenomics generates DNA sequences directly from environmental samples, revealing uncultur-24

able organisms in the community as well as those that can be isolated. The resulting data represents a pool25

of all species within a sample, thus raising the problem of identifying individual microbial species and their26

relative abundance within these samples. Methods for such taxonomic assignment are either based on de27

novo assembly of the metagenomic reads, or take advantage of comparisons to existing reference genomes.28

Here we concentrate on the latter strategy, which relies on the diversity of genomes in ever-growing reference29

databases. This strategy has been instrumental in identifying many causative agents of ancient pandemics in30

reads obtained from archaeological samples by detecting genetic signatures of modern human pathogens [26].31

Published methods for taxonomic assignment can be divided into two categories. Taxonomic profilers32

maintain a small set of curated genomic markers, which can be universal (e. g. used in MIDAS [16]) or clade-33

specific (e. g. used in MetaPhlan2 [24]). Metagenomic reads that align onto these genomic markers are used to34

extrapolate the taxonomic composition of the whole sample. These tools are usually computationally efficient35

with good precision. However, they also tend to show reduced resolution for species-level assignment [23],36

especially when a species has a low abundance in the sample and, hence, may have few reads mapping to a37

restricted set of markers.38

Alternatively, taxonomic binners compare metagenomic reads against reference genomes to achieve read-39

level taxonomic classification. The comparisons can be kmer-based (e. g. Kraken [25] and One Codex [15])40

or alignment-based (MEGAN [6], MALT [5] and Sigma [1]). Binning methods based on kmers are usually41

fast, whilst alignment-based methods have greater sensitivity to distinguish the best match across similar42

database sequences. Benefiting from much larger databases in comparison to genomic markers used by43

profiling methods, binning methods usually detect more microbial species at very low abundance. However,44
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they also tend to accumulate inaccurate assignments (false positives) [23] due to the incompleteness of the45

databases, resulting in reads from unrepresented taxa being erroneously attributed to multiple relatives.46

While microbial species of low abundance are hard to identify by marker-based taxonomic profilers, the47

estimations of taxonomic binners can be hard to interpret due to their low precision. This problem especially48

limits their application to the in silico screening of microbial content in sequenced archaeological materials [8].49

Given that the ancient DNA fragments are expected to exist in low proportions in these samples, methods50

need to identify weak endogenous signatures hidden within a complex background that is governed by modern51

(environmental) contamination. Furthermore, reads from archaeological samples are fragmented and have52

many nucleotide mis-incorporations due to postmortem DNA damage.53

We identify two challenges that limit the performance of species-level assignments. First and foremost,54

the reference database used for all taxonomic binnings are not comprehensive. The vast majority of microbial55

genetic diversity reflect uncultured organisms, which have only rarely been sequenced and analyzed. Even56

for the bacteria that have genomic sequences, their data are biased towards pathogens over environmental57

species. This leads to the next challenge where, due to the lack of proper references, reads from unknown58

sources can accidentally map onto distantly related references, mainly in two scenarios: 1) Foreign reads59

originating from a mobile element can non-specifically map to an identical or similar mobile element in a60

known reference. 2) Reads originated from Ultra-Conserved Elements (UCEs), which preserve their nucleotide61

sequences between species, can also non-specifically map to the same UCE in an existing genome.62

Addressing both of these challenges, we designed SPARSE (Strain Prediction and Analysis using Repre-63

sentative SEquences). In SPARSE, we index all genomes in large reference databases such as RefSeq into64

hierarchical clusters based on different sequence identity thresholds. A representative database that chooses65

one sequence for each cluster is then compiled to facilitate a fast but sensitive analysis of metagenomic66

samples with modest computational resources. Details are given in Section 2. Further, SPARSE implements67

a probabilistic model for sampling reads from a metagenomic sample, which extends the model described in68

Sigma [1] by weighting each read with its probability to stem from a genome not included in the reference69

database, hence considered as an unknown source. Details are given in Section 3.70

We evaluate SPARSE on three simulated datasets published previously [14, 21, 23]. Comparing SPARSE71

to several other taxonomic binning software in these simulations shows its improved precision and sensitivity72

for assignments on the species-level or even strain-level. We further evaluate SPARSE on three ancient73

metagenomic datasets, demonstrating the application of SPARSE for ancient pathogen screening. For all74

three datasets, SPARSE is able to correctly identify small amounts of ancient pathogens in the metagenomic75

samples that have subsequently been confirmed by additional sequencing in the respective studies.76

2 Database indexing77

2.1 Background78

Average nucleotide identity. To catalog strain-level genomic variations within an evolutionary context, we79

need to reconcile all the references in a database into comprehensive classifications. Since its first publication,80

the average nucleotide identity (ANI) in the conserved regions of genomes has been widely used for such a81

purpose [10]. In particular, 95 − 96% ANI roughly corresponds to a 70% DNA-DNA hybridization value,82

which has been used for ∼ 50 years as the definition for prokaryotic species.83

Marakeby et al. [13] proposed a hierarchical clustering of individual genomes based on multiple levels of84

ANIs. Extending from the 95% ANI species cut-off, it allows the classification of further taxonomic levels from85

superkingdoms to clones. However, the standard ANI computation adopts BLASTn [2] to align conserved86

regions between genomes, which is intractable to catalog large databases of reference genomes. We therefore87

rely on an approximation of the ANI by MASH [18] to speed-up comparisons.88

ANI approximation. MASH uses the MinHash dimensionality-reduction technique to reduce large genomes89

into compressed sketches. A sketch is based on a hash function applied to a kmer representation of a genome,90

and compression is achieved by only including the s smallest hash values of all kmers in the genome in the91
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sketch. Comparing the sketches of two genomes, MASH defines a distance measure under a simple Poisson92

process of random site mutation that approximates ANI values as shown in [18].93

Parameter estimation. Ondov et al. [18] already used MASH to group all genomes in RefSeq into ANI 95%94

clusters. We adopted slightly different parameters and extended it to an incremental, hierarchical clustering95

system. The accuracy of the MASH distance approximation is determined by both the kmer length k and96

the sketch size s. Increasing k can reduce the random collisions in the comparison but also increase the97

uncertainty of the approximation. We can determine k according to equation (2) in [18]:98

k = dlog|Σ|(n(1− q)/q)e,

where Σ is the set of all four possible nucleotides {A,C,G, T}, n is the total number of nucleotides and99

q is the allowed probability of a random kmer to be found in a dataset. Given n = 1 terabase-pairs (Tbp;100

current size of RefSeq) and q = 0.05, which allows a 5% chance for a random k-mer to be present in a 1 Tbp101

database, we obtain a desired kmer size k = 23. Increasing the sketch size s will improve the accuracy of102

the approximation, but will also increase the run time linearly. We chose s = 4000 such that for 99.9% of103

comparisons that have a MASH distance of 0.05, the actual ANI values fall between 94.5− 95.5%.104

2.2 SPARSE reference database105

We combine the hierarchical clustering of several ANI levels with the MASH distance computation to generate106

a representation of the current RefSeq [17] database. The construction of the SPARSE reference database is107

parallelized and incremental, thus the database can be easily updated with new genomes without a complete108

reconstruction.109

Hierarchical clustering. In order to cluster genomes in different levels, we defined 8 different ANI values110

L = [0.9, 0.95, 0.98, 0.99, 0.995, 0.998, 0.999, 0.9995], in which the genetic distances of two sequential levels111

differ by ∼ 2 fold. The first four ANI levels differentiate strains of different species, or major populations112

within a species. The latter four levels give fine-grained resolutions for intra-species genetic diversities, which113

can be used to construct clade-specific databases for specific bacteria.114

The SPARSE database D(S,L,K) is extended incrementally as shown in Algorithm 1, with S listing the115

sketches of all genomes already in the database and K being a hash containing the cluster assignments at116

each level l ∈ L for each key s ∈ S. A new genome is integrated by finding another genome in the database117

with the lowest distance using MASH, and clustering it with its nearest neighbour sn depending on the ANI.118

Algorithm 1 Incremental SPARSE database clustering

Input: SPARSE database D(S,L,K), list of new genomes G
Output: Extended SPARSE database D′(S,L,K)
1: for each genome g ∈ G do
2: sg = MashSketch(g)
3: sn = argmins∈SMashDistance(sg, s)
4: for 0 ≤ i ≤ |L| − 1] do
5: if L[i] ≤ 1−MashDistance(sg, sn) then
6: Push K[sn][i] to K[sg]
7: else
8: Push |S| to K[sg]
9: Push sg to S

In the SPARSE implementation, we parallelized the database construction by inserting batches of genomes119

at once and parallelizing sketch and distance computation, thereby scaling to the complexity of the problem.120

After being added to the database, the cluster assignment for a genome is fixed and never redefined. Therefore,121
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the insertion order of genomes can influence the database structure. Here we utilize prior knowledge from the122

community, so the SPARSE database is initialized first with all gold standard complete genomes in RefSeq,123

followed by representative and curated genomes. With this strategy, the whole RefSeq database with 101, 680124

genomes (Aug. 2017) can be downloaded and assigned into ANI levels in ∼ 23hrs, using 20 processes on a125

standalone server. Further insertion of 1, 000 new genomes (∼ 5MB) into an already established database126

takes ∼ 15mins.127

Representative database. To avoid mapping metagenomic reads to redundant genomes within the database,128

we construct a database of genome representatives for read assignment, similar to [9]. The representative129

database consists of the first genome from each cluster defined by ANI 99% and is indexed using bowtie2-130

build [11] with standard parameters. SPARSE indexes 20, 850 bacterial representative genomes in ∼ 4 hours131

using 20 computer processes. Representative databases of other ANI levels or clade-specific databases can also132

be built by altering the parameters. Furthermore, traditional read mapping tools such as bowtie2 [11] show133

reduced sensitivity for divergent reads. This is not a problem for many bacterial species, especially bacterial134

pathogens, because these organisms have been selectively sequenced. However, fewer reference genomes are135

available for environmental bacteria and eukarya. In order to map reads from such sources to their distantly136

related references, SPARSE also provides an option to use MALT [5], which is slower than bowtie2 and needs137

extensive computing memory, but can efficiently align reads onto references with <90% similarity.138

3 Metagenomic read sampling139

Given read mappings to the representative databases as input, we adapt a probabilistic model reconstructing140

the process of sampling reads from a metagenomic sample to assign reads onto reference genomes. We extend141

the model implemented in Sigma [1] by also considering that reads aligned to a genome in the reference142

database could still be originating from an unknown source, thus avoiding to overestimate the number of143

genomes present in the sample. We introduce a weighting for each read reflecting the probability to be144

sampled from an unknown genome, and show in Section 4 how this improves the precision of taxonomic145

assignments.146

Let E denote the set of both known and potentially unknown genomes in a metagenomic sample, and147

the set of reference genomes included in the SPARSE database is a subset G ∈ E. Let Pr(ri|E) be the148

probability of sampling a random read ri from any possible source, we have149

Pr(ri | E) = Pr(ri, G | E)Pr(ri | G).

We denote wi = Pr(ri, G|E) as the sampling probability, indicating the probability that ri is sampled from150

any known reference genome in G. On the other hand, Pr(ri | G) is the probability of generating ri given G151

and can be further separated as152

Pr(ri | G) =
∑
gj∈G

Pr(ri | gj)Pr(gj | G),

where Pr(gj |G) is the probability that a genome gj ∈ G was chosen to generate the read, and Pr(ri|gj) is153

the probability of obtaining read ri from gj . As in Sigma, given a uniform mismatch probability σ = 0.05,154

Pr(ri|gj) can be directly calculated from the alignment of ri to genome gi with x mismatches, and can be155

stored in a matrix Q, such that156

Qi,j = Pr(ri | gj) = σx(1− σ)l−x,

where l is the length of read ri. We next describe how the sampling probability wi is inferred, by giving a157

weight to each read that indicates the probability of being sampled from a known reference genome. Reads158

with a low weight do not influence the optimization process used to infer the optimal Pr(gj |G) for a complete159

metagenomic read dataset.160
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3.1 SPARSE sampling probability161

We model two scenarios that can lead to non-specific mappings of foreign reads.162

1) Since there is no systematic way of masking all mobile elements in a reference sequence, we evaluate the163

probability of a read being drawn from the core genome. We assume that highly conserved regions are part164

of the core genome, which has been vertically inherited, whereas variable regions likely represent horizontal165

gene transfers (HGTs). We denote this HGT probability as mi.166

2) We evaluate the probability of a read originating from an Ultra-Conserved Element (UCE), by com-167

paring the read depths of the aligned genome fragments with other regions in the genome. UCEs are so168

highly conserved that additional reads from divergent genomes are likely to map on to them, which results169

in a higher read depth than other regions. We denote this UCE probability as ni. Combining both cases as170

a joint probability, we infer a weight wi for each read as171

wi = mini.

HGT probability. Given any cluster t in ANI level k that consists of u references, a read ri can be assigned172

to either the core genome gc or accessory genome ga of this cluster. Given the number of references v ⊆ u173

the read aligns to, we can formulate the probability of the read originating from the core genome as174

Prt(gc|ri) =
Prt(ri|gc)Pr(gc)

Pr(ri)
=

Prt(ri|gc)Pr(gc)
Prt(ri|gc)Pr(gc) + Prt(ri|ga)(1− Pr(gc))

,

P rt(ri|gc) = pvc (1−pc)u−v, P rt(ri|ga) = pva(1− pa)u−v

(1)

where Pr(gc) is the prior probability of any read originating from a core genomic region, and pc and pa175

are the respective probabilities for core genomic fragments or accessory genomic fragments. Default prior176

probabilities in SPARSE are given in Table 1. Furthermore, a read can align to multiple clusters in the same177

ANI level k, so we average the probabilities of all such clusters for each read weighted by Q inferred from178

the read alignment:179

Prk(gc|ri) =

∑
t maxgj∈tQi,jPrt(gc|ri)∑

t maxgj∈tQi,j
.

Finally, we consider three different ANI levels for the core genome analysis (by default 90%, 95% and 98%),180

assigning a lower value for mi if the read does not map to the core genome at any of these ANI levels:181

mi = 1−
∏
k

(
1− Prk(gc|ri)

)
. (2)

Default values for the prior probabilities were inferred from a published study of core genes across multiple182

bacterial species [3]. We account for 1% of random deletions of core genes, which gives pc = 0.99. We also183

observed that <10% of all genes are core genes in bacterial species represented by many genomes. This results184

in
∑
Pr(gc) < 0.1 over all three ANI levels. We arbitrarily assigned a higher Pr(gc) for levels with lower185

ANI, because a sequence fragment is less likely to be part of a mobile element if it is coincidently present in186

more divergent genomes. Finally, ∼40% of the genes in a random genome are core genes. This gives mi ≈ 0.6187

when v = 1 and u = 1, which can be used to find empirical values of pa via equations 1 and 2.188

UCE probability. In order to compare the read coverage of each fragment in a reference genome gj with other189

fragments of the same genome, we split its sequence into k consecutive fragments fj,k using two uniform190

arbitrary lengths, 487 bps and 2000 bps. Here 487 is used because it is a prime, such that the ends of191

two fragments overlap only once per Mbp. Then the read depth in each fragment, dk, follows a Poisson192

distribution with parameter λ as the average number of reads per region and probability mass function193
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Table 1: Default prior probabilities for three ANI levels, values inferred from [3].

ANI Pr(gc) pc pa

90% 0.05 0.99 0.1
95% 0.02 0.99 0.2
98% 0.01 0.99 0.5

f(k, λ). Because of the complexity of the read alignments, we relax the probability of read depth in each194

fragment such that a wide range of read depths retain high probabilities:195

Pr(ri|fj,k) =


f(dk,λ/

√
2)

f(λ/
√
2,λ/
√
2)

for dk < λ/
√

2,

1 for λ/
√

2 ≤ dk ≤
√

2λ,
f(dk,

√
2λ)

f(
√
2λ,
√
2λ)

for
√

2λ < dk,

Since a read can again align to multiple genomes gj , we compute the UCE probability of a read as a weighted196

average of all its alignments. If a read aligns multiple times to the same genome gj with equal alignment197

score, we choose one fragment randomly. The UCE probability is then defined as198

ni =

∑
j(Qi,jPr(ri|fj,k))∑

j Qi,j
.

Thus a lower value of ni is the result from a deviation of the general coverage at the read position in199

comparison to the average coverage in the genome, indicating that the read is likely mapping to an ultra-200

conserved region in the genome.201

3.2 Optimization problem202

Knowing the weight wi for all reads ri in a whole metagenomic read set R, the task is then simplified to203

finding optimal Pr(gj |G) values that maximize the probability of the whole read set:204

maxPr(R|E) = max
∏
ri∈R

Pr(ri | E) = max
∏
ri∈R

(
wi
∑
gj∈G

Qi,jPr(gj |G)
)
.

The optimization problem can be solved by a non-linear programing (NLP) method. In SPARSE, we rely205

on a modified version of the function provided in Sigma [1].206

After optimizing Pr(gj |G), we finally assign a read to a potential reference by checking the following207

ratio of the computed probabilities:208

P (ri, gj) =
Pr(ri, gj |G)

Pr(ri, G)
=

Qi,j ∗ Pr(gj |G)∑
gj∈GQi,j ∗ Pr(gj |G)

. (3)

We may assign a read to multiple references, as long as
P (ri,gj)

maxg P (ri,g)
≥ 0.1. This allows a better abundance209

estimation for multiple strains from the same species, in which case a read cannot be assigned unambiguously210

to a single reference.211

Further, let ri ∈ B ⊂ R be all reads assigned to gj . For a read ri of length l with x mismatches in212

the alignment to its assigned reference, we have a nucleotide similarity of si,j = l−x
l . The weighted average213

similarity s̄B,j can be calculated as214
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s̄B,j =

∑
ri∈B

si,j wi P (ri, gj)∑
ri∈B

wi P (ri, gj)
.

Potentially, reads assigned to a single reference could still originate from several co-existing genomes,215

with varying degrees of diversity, in the metagenome. We can identify reads from more divergent sources216

by comparing si,j to their average similarity. If all reads assigned to a single reference originate from the217

same genome in the metagenome, we assume that the similarity of most reads complies with the average218

similarity over all reads. However, reads originating from very conserved regions show higher similarity than219

the average and provide a sampling bias. On the other hand, reads originating from different more divergent220

genomes, will show lower similarity which can be used to avoid overestimating the abundance of each cluster.221

Therefore we compute the expected average nucleotide identity s′ for ri as222

s′i,j = min (si,j , sB,j).

This similarity reflects the ANI between each read and the assigned reference and, as described in the next223

section, can be used to compute the abundance of each cluster in the metagenomic sample.224

3.3 ANI cluster abundances225

The equation miniP (ri, gj) describes the probability, for each read ri ∈ R, to be drawn from a region in226

reference gj that is part of the core genome (mi) and has even read depth in comparison to the whole227

chromosome (ni). In summary for all reads assigned to gj ,
∑
imini ∗ P (ri, gj) gives the frequency of reads228

originating from the core genome of gj . However, the desired read abundance for a reference gj needs to229

also include reads from the accessory genome. Such reads have been previously suppressed when computing230

mi. If we assume that all species have the same proportion of core genome, the relative abundances of their231

core genomes will be equal to the relative abundance of their whole genomes. However, since this is not the232

case [3], we need to normalize each mi computed previously. Given P (ri, gj) from Equation 3, for any ANI233

90% cluster t, we normalize mi for a read ri as234

m′i =

∑
gj∈t

∑
rk∈R,
s′k,j≥0.9

P (rk, gj)

∑
gj∈t

∑
rk∈R,
s′k,j≥0.9

mk P (rk, gj)
∗mi.

Finally, we assign reads into clusters of all ANI levels according to the references contained in the cluster. For235

each cluster, we only assign reads if its similarity complies with the ANI level l of the cluster, i. e. s′i, j ≥ l.236

Thus the abundance of a cluster tl is computed as the sum of all read abundances assigned to all237

genomes in the cluster weighted by their probability to originate from an unknown genome. Therefore238

clusters containing only reads with small ni and mi probabilities will receive a low abundance value even if239

many reads are assigned to it.240

atl =
∑
gj∈tl

∑
ri∈R
s′i,j≥l

m′i ni P (ri, gj)

3.4 Taxonomic labels for ANI clusters241

We finally assign standard taxonomic designations to all clusters at all ANI levels, in order to interpret their242

biological meaning. Here we rely on a majority vote of all genomes in a cluster. However, the taxonomic243

levels are restricted to certain ANI levels. For example, species are distinguished at the ANI 95% level, and244

a species designation is therefore inappropriate for an ANI 90% cluster. Similarly, the taxonomic label for245

an ANI 95% cluster should not include any subspecies designations.246
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4 Evaluation247

4.1 Representative Database248

We ran SPARSE to index the RefSeq database that consists of 101, 680 complete or draft genomes into249

28, 732 clusters at ANI 99% level, which were further grouped into 18, 205 clusters at 95% ANI level, as250

shown in Fig. 1. Grouping all the genomes according to their species, the resulting representative database251

is much more evenly distributed, with a Pielou’s evenness [19] of J ′ = 0.9, comparing to J ′ = 0.51 for the252

whole RefSeq database. Over-representation of pathogenic organisms in the RefSeq database are largely due253

to repeated sequencing of nearly identical genomes rather than sequencing of intra-species genetic diversities.254

In particular, nearly half of the genomes in RefSeq are from the top 10 most sequenced bacterial species,255

which are all human pathogens. All these genomes were grouped into 615 clusters at ANI 99% level, which256

gives a 65-fold reduction of the data indexed for these species.257

Bacteria Virus Archaea Eukaryota

H. pylori
V. parahaemolyticus

NCBI RefSeq
(101,680)

    

ANI99 clusters
(28,732)

ANI95 clusters
(18,205)

S. pneumoniae

S. aureus

S. enterica

E. coli

M. 
tuberculosis

Fig. 1: Hierarchical clustering of 101, 680 genomes in NCBI RefSeq database (Aug. 2017) into 18, 205 ANI 95% clusters
using SPARSE. Each rectangle represents such a cluster at ANI 95% level, with its area relative to the total number
of genomes (top) or clusters at ANI 99% (bottom).

4.2 Simulated Data258

We ran SPARSE on three recent simulated datasets (Sczyrba et al. [23], McIntyre et al. [14] and Quince259

et al. [21]). For a fair comparison, the analyses for all datasets were based on a database built from NCBI260

RefSeq and taxonomy databases dated 22th June, 2015, which is the deadline for the comparison in [23] and261

also pre-dates the other two comparisons. We evaluated the performance of SPARSE as described in the262

respective papers for the read-level taxonomic binners, adopting their results for the compared methods. We263

also included Sigma using the same database as SPARSE in the comparison. We calculated sensitivity and264

precision based on the number of true-positives (TP; correctly assigned reads), false-positives (FP; incorrectly265

assigned reads), and false-negatives (FN; unassigned reads).266

All simulated reads in the McIntyre et al. [14] study were generated from published complete genomes.267

This dataset is suitable for comparing the completeness of the databases, as well as the sensitivity of the268

read mapping approaches in different tools. Both SPARSE and Sigma were run on 18 samples that have269

read-level taxonomic labels. SPARSE binned all the samples in 10 hours with 20 processes. The precision270

and sensitivity of both tools in addition to six binning tools from [14] are summarized in Figure 2A. As271

expected, all tools reached a high precision of > 97%, but differed in their sensitivity. Benefiting from the272

representative database, SPARSE and Sigma assigned the highest numbers of reads into correct species. The273

difference between the two methods is due to their different strategies in the modeling, where Sigma assigned274

all reads to their possible references, whereas SPARSE filtered out unreliable mappings. An independent run275
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Fig. 2: Performances of SPARSE in simulated published datasets. The performance of all the tools in A and B, except
for SPARSE and Sigma, are obtained from the respective publications [23, 14]. SPARSE was run in parallel using
two different databases. [2015] uses database built from RefSeq at 2015, whereas [2017] uses up-to-date database.
A) All the simulated reads in McIntyre et al. [14] were derived from published genomes. B) The Sczyrba et al. [23]
used unpublished genomes for read simulations. C+D) Strain-level identification using the mocked E. coli datasets as
published in [21]. C) Left: The distance-based species tree forE. coli for 45 ANI 99% representative genomes plus the
five genomes used in [21] for mocked reads. The four largest ANI 98% clusters in E. coli are highlighted with colors.
Right: Each column shows one of the 16 mocked samples. The true relative abundances of E. coli strains in samples
(blue) and the relative abundances of predicted strains (red) in samples are shown as colored squares. D) Comparison
of true E. coli strain abundances versus SPARSE predictions. The dashed line indicates the linear regression of the
two values, with R2 = 0.9948 and p < 2.2e−16.

of SPARSE using the latest RefSeq database (Aug. 2017) assigned slightly more reads into species, but does276

not improve precision. This database consists of 20, 850 representative genomes, which is > 2 fold the number277

of representatives (9, 707) in RefSeq 2015.278

The datasets in Sczyrba et al. [23] are much more challenging, because all the reads were generated279

from sequencing of environmental isolates, many of which do not have closely related references in the 2015280

database. Furthermore, many reads do not have a known microbial species label, because they are not similar281

to any species in SILVA [20], which was used as the gold standard in this study. We ran both Sigma and282

SPARSE on the medium complexity datasets, and compared the results with the other methods (see Fig. 2f283

in [23]) for the recovery of microbial species (Fig. 2B). Using 80 processes, SPARSE ran through all four284

datasets in ∼ 40hours. All the taxonomic binners published in [23] obtained an average precision of < 30%285

at species level, except for taxator-tk [4] with a precision of 70% along with the lowest sensitivity (∼ 1.25%).286

The performance of Sigma is comparable to other binning tools, whereas SPARSE obtained an exceptionally287

high precision of ∼ 85% while still maintaining a sensitivity of ∼ 23%. Many incorrect taxonomic bins288

predicted in Sigma were suppressed in SPARSE, because they have low sampling probability wi to any of289

the existing references. Again, SPARSE was also run independently against the database built Aug. 2017.290

We recovered 63% of the species in the CAMI median datasets, with an average precision of 97%.291

Both benchmarks evaluate the performances of taxonomic binnings on or above species level, but give292

no resolution in intra-species diversity. DESMAN [21] allows reference-free recovery of strain-level variations293

based on uneven read depths of different strains across multiple samples. It has been compared with two other294

strain-level binning methods using mock E. coli samples [21]. Applying SPARSE to the same 20 genome295

mocks, we recovered 50/51 E. coli strains in all 16 samples without any additional strains (false positives),296

as shown in Fig. 2C. The only strain that was not recovered by SPARSE is 2011C-3493 in the 12th sample297

(Sample733 in [21]), which accounts for only ∼ 0.03% of all E. coli reads in the sample. We also obtained298

an almost exact correspondence between the relative abundances of the strains and the predictions (Fig. 2299

D). A linear regression of real abundances and the predictions gives an R2 = 0.9948 and p < 2.2e−16.300
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Table 2: Real archaeological datasets.

Metagenomic binning toolsa

Accession
(Details, # reads)

Pathogen
(% reads)

SPARSE Sigma Kraken One Codex MetaPhlan MIDAS

ERR650978 [7]
(1794AD Hungarian, 1.7M)

MT
(0.02%)

+ + −
(CD,ML)

+
(MA,SA)

− −

ERR1094783 [12]
(5300-yr-old Iceman; 15M)

H. pylori
(0.01%)

+ − +
(SE,VC)

+
(YE,YP)

+ −

ERR1018927 [22]
(Bronze Age human; 1.6M)

Y. pestis
(0.01%)

+ +
(VP)

− + − −

a +/− for the identification of the pathogen. Abbreviations for suspicious predictions in bracket (CD: Corynebacterium
diphtheriae; MA: M. avium; ML: M. leprae; MT: M. tuberculosis; SA: Staphylococcus aureus; SE: S. enterica; VC:
V. cholerae; VP: V. parahaemolyticus; YE: Y. enterocolitica; YP: Y. pseudotuberculosis).

4.3 Ancient Metagenomes301

We further evaluated SPARSE and five additional metagenomic tools on three real sets of ancient DNA302

reads (Mycobacterium tuberculosis from [7], Yersinia pestis from [22] and Helicobacter pylori from [12]) and303

summarised their results in Table 2. For all samples, the presence of the targeted pathogen, although in304

very low frequencies (≤ 0.02%), has been confirmed by additional sequencing in the respective publications.305

MIDAS [16] failed in all three samples and MetaPhlan2 [24] managed to identify H. pylori but failed in the306

other two samples. The results for these two marker-based approaches are consistent with the simulations307

discussed earlier. Kraken [25] and One Codex [15] are both based on kmer-based taxonomic assignment, but308

yielded different results. Kraken only identified H. pylori, whereas One Codex got positive results in all three309

samples. However both methods incurred a high number of false positives. For example, Kraken reported310

Salmonella enterica and Vibrio cholerae in the Iceman sample, whereas One Codex predicted two Yersiniae.311

All these predictions are inconsistent with results from other tools and analyses presented in the publications.312

Sigma identified two of three pathogens but inaccurately predicted V. parahaemolyticus, which is normally313

associated with seafood, for the human remains from the Bronze Age. SPARSE successfully identified all three314

targeted species without any additional suspicious pathogen, which highlights its application to archaeological315

samples.316

5 Conclusion317

The genetic signatures of specific microbes in metagenomic data, such as human pathogens, are often buried318

behind the majority of reads from genetically diverse environmental organisms. This is exemplified in the319

metagenomic sequencing of archaeological samples. Current taxonomic assignment methods compare the320

metagenomic data with databases that do not fully capture the diversity of microbial genomes. Among these321

tools, the marker-based taxonomic profilers fail to identify species at low abundances whereas whole genome322

based taxonomic binners give inaccurate predictions due to non-specific read mappings on ultra-conserved323

or horizontally transferred elements.324

SPARSE indexes existing reference genomes into a comprehensive database with automatic hierarchical325

clusterings of related organisms. This database is used as a reference for mapping of metagenomic reads.326

SPARSE penalizes unreliable mappings of reads from unknown sources, and integrates all remaining into327

a probabilistic model, in which reads were assigned to either an existing reference or unknown sources. In328

both simulations and real archaeological data, SPARSE outperforms all existing methods, especially in the329

precisions of species-level assignment. Furthermore, SPARSE managed to identify multiple strains of the330

same species even when they co-exist in the same sample.331

10

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/215707doi: bioRxiv preprint 

https://doi.org/10.1101/215707
http://creativecommons.org/licenses/by-nc/4.0/


6 Acknowledgements332

M.A., Z.Z., N.L. and N-F.A. were supported by Wellcome Trust (202792/Z/16/Z). Additional initial grant333

support was from BBSRC (BB/L020319/1).334

References335

1. Ahn, T.H., Chai, J., Pan, C.: Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveil-336

lance. Bioinformatics 31(2), 170–177 (2015)337

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of338

Molecular Biology 215(3), 403–410 (1990)339

3. Ding, W., Baumdicker, F., Neher, R.A.: panX: pan-genome analysis and exploration. bioRxiv 10.1101/072082340

(2016)341
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M., Van Dam, A., Kapel, C.M.O., et al.: Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago.385

Cell 163(3), 571–582 (2015)386

23. Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Dröge, J., Gregor, I., Majda, S., Fiedler, J.,387
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