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Protein function arises from a poorly defined pattern of cooperative energetic interactions between 

amino acid residues. Strategies for deducing this pattern have been proposed, but lack of 

benchmark data has limited experimental verification. Here, we extend deep-mutation technologies 

to enable measurement of many thousands of pairwise amino acid couplings in members of a 

protein family. The data show that despite great evolutionary divergence, homologous proteins 

conserve a sparse, spatially distributed network of cooperative interactions between amino acids 

that underlies function. This pattern is quantitatively captured in the coevolution of amino acid 

positions, especially as indicated by the statistical coupling analysis (SCA), providing experimental 

confirmation of the key tenets of this method. This work establishes a clear link between physical 

constraints on protein function and sequence analysis, enabling a general practical approach for 

understanding the structural basis for protein function. 

 

The basic biological properties of proteins -- structure, function, and evolvability -- arise from the pattern 

of energetic interactions between amino acid residues	 (1-5). This pattern represents the foundation for 

defining how proteins work, for engineering new activities, and for understanding their origin through the 

process of evolution. However, the problem of deducing this pattern is extraordinarily difficult. Amino 

acids act heterogeneously and cooperatively in contributing to protein fitness, properties that are not 

simple, intuitive functions of the positions of atoms in atomic structures (6). Indeed, the marginal stability 

of proteins and the subtlety of the fundamental forces make it so that many degenerate patterns of 

energetic interactions could be consistent with observed protein structures.  The lack of knowledge of this 

pattern has precluded effective mechanistic models for the relationship between protein structure and 

function. 
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In principle, an experimental approach for deducing the pattern of interactions between amino 

acid residues is the thermodynamic double mutant cycle (7-9) (TDMC, Fig. 1A). In this method, the 

energetic coupling between two residues in a protein is probed by studying the effect of mutations at 

those positions, both singly and in combination. The idea is that if mutations 𝑥 and 𝑦 at positions 𝑖 and 𝑗, 

respectively, act independently, the effect of the double mutation (∆𝐺'(
)*) must be the sum of the effects of 

each single mutant (∆𝐺') + ∆𝐺(
*). Thus, one can compute a coupling free energy between the two 

mutations (∆∆𝐺'(
)*) as: 

   ∆∆𝐺'(
)* = ∆𝐺') + ∆𝐺(

* − ∆𝐺'(
)*,    (1) 

the difference between the effect predicted by the independent effects of the underlying single mutations 

and that of the actual double mutant.  ∆∆𝐺'(
)* is typically proposed as an estimate for the degree of 

cooperativity between positions 𝑖 and 𝑗.  

However, there are serious conceptual and technical issues with the usage of the TDMC 

formalism for deducing the energetic architecture of proteins. First, ∆∆𝐺'(
)* is not the coupling between 

the amino acids present in the wild-type protein (the “native interaction”). It is instead the energetic 

coupling due to mutation, a value that depends in complex and unknown ways on the specific choice of 

mutations made (10). Second, global application of the TDMC method requires a scale of work matched 

to the combinatorial complexity of all potential interactions between amino acid positions under study. 

For even a small protein interaction module such as the PDZ domain (~100 residues, Fig. 1B)	 (11), a 

complete pairwise analysis comprising all possible amino acid substitutions at each position involves 

making and quantitatively measuring the equilibrium energetic effect of nearly two million mutations. 

Finally, even if these two technical issues were resolved, it is unclear how to go beyond the idiosyncrasies 

of one particular model system to the general, system-independent constraints that underlie protein 

structure, function, and evolvability. 
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Recent technical advances in massive-scale mutagenesis of proteins open up new strategies to 

address all these issues. In the PDZ domain, a bacterial two-hybrid (BTH) assay for ligand-binding 

coupled to next-generation sequencing enables high-throughput, robust, quantitative measurement of 

many thousands of mutations in a single experiment – a “deep mutational scan” (12-14). Parameters of 

the BTH assay are tuned such that the binding free energy between each PDZ variant 𝑥 and cognate 

ligand (∆𝐺.'/0) ) is quantitatively reported by its enrichment relative to wild-type before and after selection 

(∆𝐸), Fig. S1 and Supplementary Methods). This relationship enables extension of single mutational 

scanning to very large-scale double mutant cycle analyses – a “deep coupling scan” (DCS) study (15). 

Indeed, the throughput of DCS is so high that it enables the study of double mutant cycles in several 

homologs of a protein family in a single experiment. Thus, DCS provides a first opportunity to deeply 

map the pattern and evolutionary conservation of interactions between amino acid residues in proteins, a 

strategy to reveal the fundamental constraints contributing to protein function. 

We focused on a region of the binding pocket of the PDZ domain, a protein-interaction module 

that has served as a powerful model system for studying protein energetics (13, 16). PDZ domains are 

mixed αβ folds that typically recognize C-terminal peptide ligands in a binding groove formed between 

the α2 and β2 structural elements (Fig. 1B). We created a library of all possible single and double 

mutations in the nine-residue α2 helix of five sequence-diverged PDZ homologs (PSD95pdz3, PSD95pdz2, 

Shank3PDZ, SyntrophinPDZ, and Zo-1PDZ, Fig. 1C) (36 position pairs × 5 homologs, with 171 single + 

12,996 double mutations + wild-type per homolog = 65,840 total variants) and measured the effect of 

every variant on binding its cognate ligand (Figs. 1D-E and Table S1). Independent trials of this 

experiment show excellent reproducibility (Fig. S2), and propagation of errors suggests an average 

experimental error in determining binding free energies of ~0.3 kcal/mol. Filtering for sequencing quality 

and counting statistics, we were able to practically collect 56,694 double mutant cycles (87% of total) for 

the α2 helix for all five homologs, with an average of 315 cycles per position pair per homolog (Table 

S1). Thus, we can (1) analyze the distributions of double mutant cycle coupling energies for nearly all 
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pairs of mutations in the α2 helix and (2) study the divergence and conservation of these couplings over 

the five homologs.  

We first addressed the problem of how to estimate native coupling energies from mutant cycle 

data. In general, the effect of a mutation at any site in a protein is a complex perturbation of the 

elementary forces acting between atoms, with a net effect that depends on the residue eliminated, the 

residue introduced, and on any associated propagated structural effects. Thus, the distribution of 

thermodynamic couplings at any pair of positions over many mutation pairs could in principle be arbitrary 

and difficult to interpret. However, we find surprising simplicity in the histograms of coupling energies. 

In general, the data follow a double-Gaussian distribution, with either both mean values centered at zero 

or with one of the means different from zero (Fig. 2, and Figs. S3-S8). Indeed, most distributions are 

centered close to zero, with just a few position pairs displaying two distinct populations. This result holds 

not only for the individual PDZ homologs selected (Figs. S3-S7) and for the average over homologs (Fig. 

2), but also for DCS in an unrelated protein (GB1, Fig. S8, and (15)), suggesting that the binary character 

of couplings may be universal in proteins. A simple mechanistic model is that the observed free energy of 

ligand binding arises from a cooperative internal equilibrium between two functionally distinct 

conformational states, with mutations at some sites capable of dramatically perturbing this equilibrium 

(Fig. S9). Indeed, such a two-state internal equilibrium has been observed in PDZ domains, and is part of 

an allosteric regulatory mechanism controlling ligand binding (17). Thus, the population-weighted mean 

of the distribution of coupling energies for each position pair (Fig. 2, dashed lines) provides an empirical 

estimate of the native interaction between amino acids through mutagenesis.  

Two technical points are worth noting. First, the spread of the distributions is large, generally 

exceeding the estimated magnitude of the native interactions (Fig. 2). This means (1) that traditional 

mutant cycle studies carried out with specific choices of mutations are more likely to just reflect the 

choice of mutations rather than the native interaction, and (2) that the only way to obtain good estimates 

of the native interaction between residues is to average over the effect of many double mutant cycles per 
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position pair. Second, we find that the BTH/sequencing approach displays such good reproducibility that 

it is possible to detect coupling energies with an accuracy that is on par with the best biochemical assays. 

For example, the average standard deviation in mean coupling energies for position pairs over four 

independent experimental replicates in PSD95pdz3 is ~0.06 kcal/mol. Thus, we can map native amino acid 

interactions with high-throughput without sacrificing quality. 

What do the data tell us about the pattern of amino acid interactions? Figure 3 shows heat maps of 

the estimated native coupling energies between all pairs of amino acids within the α2 helix for each PDZ 

homolog. The data demonstrate both idiosyncrasy and conservation of amino acid couplings in paralogs 

of a protein family. For example, helix positions 3-4 show moderate couplings in two of the domains 

(PSD95pdz3 and SyntrophinPDZ, Fig. 3a and 3d) but not in the other homologs. Similarly, coupling between 

positions 7-8 is shared by PSD95pdz3, PSD95pdz2, and Zo1PDZ (Figs. 3A, 3B, and 3E) but not in the other 

two homologs. In contrast, all pairwise interactions between positions 1, 4, 5, and 8 show a systematic 

pattern of energetic coupling in all homologs tested. Thus, each PDZ domain displays variations in the 

pattern and strength of amino acid energetic couplings, but also includes a set of evolutionarily conserved 

couplings at a few positions. We take the conserved couplings to represent the most fundamental 

constraints underlying PDZ function, with the homolog-specific couplings indicating more specialized or 

even serendipitous couplings. 

To isolate the fundamental couplings, we averaged all the double mutant cycle data over all 

mutations and over the five PDZ homologs tested, resulting in a matrix of evolutionarily conserved 

pairwise thermodynamic couplings (Fig. 4A). This analysis reinforces the result that positions 1, 4, 5, and 

8 comprise a cooperative network of cooperative functional positions in the PDZ domain family, and the 

remainder, even if in direct contact with each other or with ligand, contribute less and interact 

idiosyncratically. The conserved couplings form a chain of physically contiguous residues in the tertiary 

structure that both contact (1, 5, 8) and do not contact (4) the ligand (Fig. 4B). Interestingly, position 4 is 

part of a distributed allosteric mechanism in some PDZ domains for regulating ligand binding (17), 
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providing a biological role for its energetic connectivity with binding pocket residues. Overall, the pattern 

of couplings does not just recapitulate all tertiary contacts between residues (compare Fig. 4A with 4E, 

white and black circles) or the pattern of internal backbone hydrogen bonds that define this secondary 

structure element. Instead, conserved amino acid interactions in the PDZ α2 helix are organized into a 

spatially inhomogeneous, cooperative network that underlies ligand binding and allosteric coupling.  

This result begins to expose the complex energetic couplings underlying protein function, but also 

highlights the massive scale of experiments required to deduce this information for even a few amino acid 

positions. How can we generalize this analysis to deduce all amino acid interactions in a protein, and for 

many different proteins? There are potential strategies for pushing deep mutational coupling to larger 

scale, but quantitative assays such as the BTH are difficult to develop, mutation libraries grow 

exponentially with protein size, and the averaging over homologs will always be laborious, expensive, 

and incomplete.  

A different approach is suggested by understanding the rules learned in this experimental study 

for discovering relevant energetic interactions within proteins. The bottom line is the need to apply two 

kinds of averaging. Averaging over many mutations provides an estimate of native interaction energies 

between positions, and averaging the mutational effects over an ensemble of homologs separates the 

idiosyncrasies of individual proteins from that which is conserved in the protein family. Interestingly, 

these same rules also comprise the philosophical basis for a class of methods for estimating amino acid 

couplings through statistical analysis of protein sequences. The central premise is that the relevant 

energetic coupling of two residues in a protein should be reflected in the correlated evolution 

(coevolution) of those positions in sequences comprising a protein family	 (16, 18-20). Statistical 

coevolution also represents a kind of combined averaging over mutations and homologs, and if 

experimentally verified, would (unlike deep mutational studies) represent a scalable and general approach 

for learning the architecture of amino acid interactions underlying function in a protein. The data 
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collected here provides the first benchmark data to deeply test the predictive power of coevolution-based 

methods.  

One approach for coevolution is the statistical coupling analysis (SCA), a method based on 

measuring the conservation-weighted correlation of positions in a multiple sequence alignment, with the 

idea that these represent the relevant couplings	 (16, 21). In the PDZ domain family (~1600 sequences, 

pySCA6.0 (22)), SCA reveals a sparse internal organization in which most positions evolve in a nearly 

independent manner and a few (~20%) are engaged in a pattern of mutual coevolution	(16, 21, 22). In this 

case, the coevolving positions are simply defined by the top eigenmode (or principal component) of the 

SCA coevolution matrix, and represent a biologically important allosteric mechanism connecting the β2-

β3 loop with the α1-β4 surface through the binding pocket and the buried α1 helix (Fig. 1B, and (23)). 

Extracting the coevolution pattern in the top eigenmode for just the α2 helix (Fig. 4C), we find that 

coevolution as defined by SCA in fact nearly quantitatively recapitulates the homolog-averaged 

experimental couplings collected here (𝑟4 = 0.82, 𝑝 = 10;<= by F-test, Fig. 4D). The predictions also 

hold for individual homologs (Fig. S10A-E), consistent with the premise that the essential physical 

constraints underlying function are deeply conserved. This relationship is robust to alignment size and 

method of construction (Fig. S11A-C), but depends on both of the basic tenets that underlie the SCA 

method – conservation-weighting (Fig. S11D-E) and correlation (Fig. S11 F-G) (22).  

Another approach for amino acid coevolution is direct contact analysis (DCA, (24, 25)), a method 

developed for the prediction of tertiary contacts in protein structures. DCA uses classical methods in 

statistical physics to deduce a matrix of minimal pairwise couplings between positions (𝐽'(, Fig. 4E) that 

can account for the observed correlations between amino acids in a protein alignment, with the hypothesis 

that the strong couplings in 𝐽'( will be direct contacts in the tertiary structure. Indeed, studies convincingly 

demonstrate that the top 𝐿/2 (where L is the length of the protein) couplings are highly enriched in direct 

structural contacts (26). Consistent with this, this method successfully identifies direct contacts in the 

PDZ α2 helix (Fig. 4E, compare heat map to white and black circles) to an extent that agrees with the 
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reported work. However, DCA-based predictions of functional energetic couplings between mutations are 

weakly (though significantly) related to the homolog-averaged experimental data (𝑟4 = 0.33, 𝑝 = 10;B 

by F-test, Fig. 4F-G). These results are similar or poorer for prediction of couplings in individual domains 

(Fig. S10G-K). Interestingly, a DCA model in which only the top pairwise couplings in 𝐽'( that define 

tertiary contacts are retained and the weaker non-contacting couplings are randomly scrambled shows 

predictions that are unrelated to the experimental data (𝑟4 = 0.05, 𝑝 = 0.09 by F-test, Fig. 4H). Thus, 

non-contact couplings in the DCA model, which represent noise from the point of view of structure 

prediction, contribute significantly to prediction of function. 

These findings clarify the current state of sequence-based inference of protein structure and 

function (27, 28). DCA successfully predicts contacts in protein structures in the top couplings, but in its 

current form, does not appear to capture the cooperative constraints that underlie protein function well. In 

contrast, SCA does not predict direct structural contacts well, but instead seems to more accurately 

capture the energetic couplings that contribute to protein function(s). As explained previously, these two 

approaches sample different parts of the information contained in a sequence alignment	 (29, 30), and 

therefore are not mutually incompatible. These results highlight the need to unify the mathematical 

principles of contact prediction and SCA-based energetic predictions towards a more complete model of 

information content in protein sequences. 

In summary, the collection of functional data for some 56,000 mutations in a sampling of PDZ 

homologs demonstrates an evolutionarily conserved pattern of amino acid cooperativity underlying 

function. This pattern is well-estimated by statistical coevolution based methods, suggesting a powerful 

and (given the scale of experiments necessary) uniquely practical approach for mapping the architecture 

of couplings between amino acids.  Indeed, the remarkable conclusion is that with a sufficient ensemble 

of sequences comprising the evolutionary history of a protein family, the pattern of relevant amino acid 

interactions can be inferred without any experiments. 
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Figure 1: A deep coupling scan (DCS) for the PDZ binding pocket. (A), The thermodynamic double 
mutant cycle (TDMC), a formalism for studying the energetic coupling of pairs of mutations in a protein. 
Given two mutations (𝑥 at postion 𝑖 and 𝑦 at position 𝑗), the coupling free energy between them is defined 
as the extent to which the effect of the double mutation (ΔG'(

)*) is different from the summed effect of the 
mutations taken individually (Δ𝐺') + Δ𝐺(

*), a measure of the interaction (or epistasis) between the two 
mutations (see Eq. 1, main text).  (B), Structural overlay of the five PDZ homologs used in this study 
(PSD95pdz3 (1BE9, white), PSD95pdz2 (1QLC, orange), ZO1pdz (2RRM, yellow), Shank3pdz (5IZU, gray), 
and Syntrophinpdz (1Z86, blue)), emphasizing the conserved αβ-fold architecture of these sequence-
diverse proteins (33% average identity, Table S1). Structural elements discussed in this work are 
indicated. (C), The nine-amino acid α2-helix, which forms one wall of the ligand-binding site. (D-E), The 
distribution of experimentally determined binding free energies, ∆𝐺.'/0 , for all single mutations (D, 
855/855) and nearly all double mutations (E, 56,694/64,980) in the α2-helix for the 5 PDZ homologs, 
with the affinity of wild-type PSD95pdz3 indicated (wt). The red lines indicate the independently validated 
range of the assay (Fig S1B); essentially all measurements fall within this range. These data comprise the 
basis for a deep analysis of conserved thermodynamic coupling in the PDZ family. 
	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/215368doi: bioRxiv preprint 

https://doi.org/10.1101/215368
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

	

Figure 2: Homolog-averaged pairwise thermodynamic couplings in the PDZ domain. Each subplot 
shows the distribution of coupling free energies (∆∆𝐺, see Eq. 1, main text) for all measured mutants at 
one pair of positions in the α2-helix (numbering per Fig. 1C) averaged over the five homologs. The 
distributions are fit to single or double Gaussians, using the Bayes Information Criterion to justify choice 
of model, and the position of zero coupling is indicated by the solid line and circle above. Population-
weighted mean values are represented by dashed lines. The data are remarkably well defined by the fitted 
models.  Most position pairs have distributions centered close to zero, with only six pairs comprising all 
pairwise couplings between positions 1, 4, 5, and 8 showing deviations.  For these pairs, distributions of 
mutational coupling follow either a single mode (1-4, 1-5) or two modes with one centered at zero (1-8, 4-
5, 4-8, 5-8); population-weighted mean values for these pairs are indicated.  Figures S3-S7 show these 
data for each homolog taken individually. 
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Figure 3: Conservation and idiosyncrasy in the pattern of energetic couplings over PDZ homologs.  
(A-E), Matrices of mutation averaged pairwise thermodynamic couplings for the α2-helix in each PDZ 
homolog.  The color scale is chosen to represent the full range of measured energetic couplings. The data 
show that some couplings are specific to individual homologs or shared by a subset of homologs, but that 
couplings between positions 1, 4, 5, and 8 are conserved over homologs.   
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Figure 4: Coevolution-based inference of energetic couplings.  (A), The homolog and mutation 
averaged couplings (corresponding to Fig. 2), displaying the evolutionarily conserved relationships 
between amino acids in the PDZ α2-helix. (B), Two views of the α2-helix, with positions engaged in 
conserved coupling in transparent surface representation, and ligand in yellow stick bonds.  These include 
three positions in direct contact with ligand (1, 5, 8) and one allosteric position buried in the core of the 
protein (4). (C), Coevolution of sequence positions corresponding to the top eigenmode of the SCA 
matrix, derived from an alignment of 1689 eukaryotic PDZ domains.  The data show that a subset of 
positions coevolve within the PDZ α2-helix. (D), The relationship between experimental homology-
averaged energetic couplings ( ΔΔ𝐺 ) and SCA-based coevolution. (E), The matrix of direct couplings 
(𝐽'() from the DCA method, with tertiary contacts in the PDZ structure (1BE9) indicated by white or 
black circles; by convention (25), trivial contacts between residues with sequence distance less than three 
are not shown. The data show that all top direct couplings identified by DCA are indeed tertiary structural 
contacts. (F), Mutation- and homolog-averaged energetic couplings inferred from the DCA model, 
computed precisely as for the experimental data in panel B; see Supplementary Methods for details. (G), 
The relationship between experimental ( ΔΔ𝐺 ) and DCA-inferred ( ΔΔ𝐸 ) couplings in the PDZ α2-
helix. (H), The relationship between experimental and DCA-inferred couplings from 𝐽'( in which top 
couplings defining contacts are preserved and all non-contact couplings are randomly scrambled. The data 
show that pairwise couplings in the DCA model between non-contacting positions contribute significantly 
to prediction of protein function. 
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