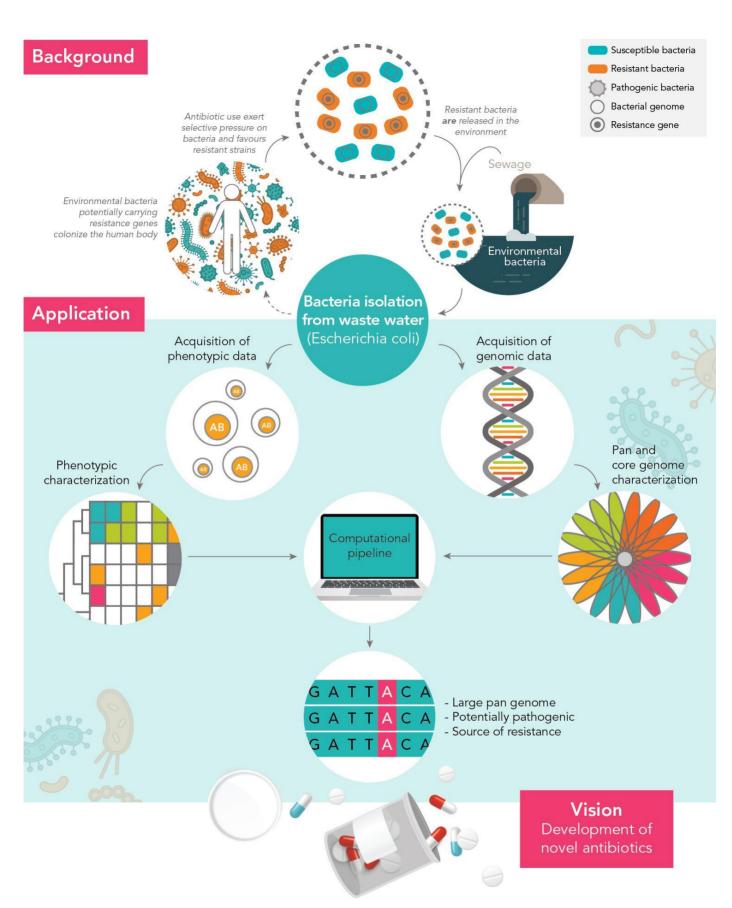
bioRxiv preprint doi: https://doi.org/10.1101/215210; this version posted November 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. 1 2 3 Whole genome analysis reveals pathogenic potential of multi-drug resistant wastewater 4 Escherichia coli 5 Norhan Mahfouz^{1,*}, Serena Caucci^{2,3,*}, Eric Achatz¹, Torsten Semmler⁴, Sebastian Guenther⁴, 6 Thomas U. Berendonk^{2,*}, and Michael Schroeder^{1,*,#} 7 8 ¹ Biotec, TU Dresden 9 ² Institute for Hydrobiology, TU Dresden 10 ³ United Nations University Institute for Integrated Management of Material Fluxes and of 11 Resources 12 ⁴ Institute of Microbiology und Epizootics, FU Berlin 13 * These authors contributed equally 14 # Correspondence: Michael Schroeder, ms@biotec.tu-dresden.de 15 Keywords: Antibiotic Resistance, Wastewater Treatment, Pan-Core genome, Environment 16 Conflict of interest statement: The authors declare no conflict of interest. 17 18

20

21 Abstract

22 Wastewater treatment plants play an important role in antibiotic resistance development. While it 23 has been shown that wastewater effluents contain resistant bacteria, resistance genes, and 24 antibiotics, there is little knowledge on the link between resistance genotype and phenotype. Here we present the first study, which combines a culture-based phenotypic screen with the 25 26 analysis of whole genome sequences for the indicator species *Escherichia coli* of the inflow and outflow of a sewage treatment plant. Our analysis reveals that nearly all isolates are multi-drug 27 28 resistant and many are potentially pathogenic. This holds in particular for the outflow of the 29 treatment plant. We devise a computational approach correlating genotypic variation and 30 resistance phenotype, which identifies known and candidate resistance genes. The identified 31 genes stem from the pan genome, which is large and thus reflects the genomic heterogeneity of a 32 treatment plant. Overall, the screen and analysis show that sewage treatment plants provide a 33 favourable environment for antibiotic resistance development and that resistant bacteria do not appear to suffer from a competitive disadvantage in wastewater. These findings should find 34 35 consideration in future improvements of wastewater treatment. 36


37

39

40 Introduction

In 1945, Alexander Fleming, the discoverer of Penicillin, warned of antibiotic resistance. Today, 41 42 the WHO echoes this warning, calling antibiotic resistance a global threat to human health. 43 Humans are at the center of the modern rise of resistance. The human gut (1), clinical samples (2, 3), soil (4, 5), and wastewater (6) all harbor resistant bacteria and resistance genes. At the 44 45 heart of modern resistance development is a human-centered network of clinics, industry, private 46 homes, farming, and wastewater. However, it is unclear, where antibiotic resistance emerges and 47 in particular, there are contradictory views on the role of wastewater treatment plants (6). On the 48 one hand, the harsh environment of a treatment plant appears unfavourable for resistant bacteria 49 (7), but on the other hand, it forms a very rich genetic reservoir, where highly diverse bacteria 50 mingle (6). Also, it is unclear, whether or not any bacteria with pathogenic potential emerge after 51 treatment. 52 To address these questions, we collected 1178 *Escherichia coli* isolates from a waste treatment 53 plant's inflow and outflow in the city of Dresden, Germany. We selected 20 antibiotics, which are 54 the most prescribed ones in the area from which the wastewater inflow originates (data provided by the public health insurer AOK). We analyzed the isolates' resistance to these 20 antibiotics 55 and selected 103 isolates for whole genome sequencing. Our analysis reveals that wastewater 56 57 outflow harbors multi-drug resistant Escherichia coli with pathogenic potential and very flexible 58 genomes harboring resistance genes.

60

- 62 Figure 1: Wastewater plays an important role in antibiotic resistance development. Wastewater E.
- 63 coli isolates are tested for antibiotic resistance and sequenced. Many isolates are multi-drug
- resistant and potentially pathogenic. Their large pan-genome is a source of potentially novel
- 65 resistance genes.
- 66

67 68

Results

69 Pathogenic potential. Escherichia coli strains exhibit great variation. Many exist as harmless 70 commensals in the human gut, but some are intra- (InPEC) or extra-intestinal pathogenic 71 Escherichia coli (ExPEC). To assess the pathogenic potential without in vivo testing, clinical 72 research has developed databases of virulence factors and genotyping schemes. The sequenced 73 isolates contain some 700 of the 2000 Escherichia coli virulence factors in the virulence factor 74 database (8), averaging to 153 and to 155 virulence factors per isolate for inflow and outflow, 75 respectively. Hence, there is no significant difference (Welch test, CI 95%) between inflow and 76 outflow. In particular, we found combinations of virulence factors for 16 isolates (see methods), 77 which are indicative of ExPEC. Eight of these 16 isolates were obtained from the outflow of the 78 treatment plant (see Fig. 2).

79

80 Besides the presence of known virulence factors, the pathogenic potential can be assessed using genotyping with multi-locus sequence types (9) and phylogroups (10). Broadly, Escherichia coli 81 82 has, among others, four phylogroups, A, B1, B2 and D. Commensal Escherichia coli fall mostly into groups A and B1 and ExPEC into B2 and D (10). Fig. 2 shows a phylogenetic tree of the 83 84 sequenced wastewater *Escherichia coli* isolates along with the commensal phylogroups A (red) 85 and B1 (blue) and the pathogenicity-associated groups B2 (yellow) and D (green), as well as the finer-grained multi-locus sequence types. The tree is based on genomic variations compared to 86 87 the reference genome of Escherichia coli K12 MG1655. Fig. 2 reveals that nearly one third of 88 isolates belong to group B2 and D, in which ExPEC are usually found. In particular, B2 and D 89 include 14 of the 16 potential ExPEC isolates. Remarkably, half of the B2 and D isolates are from 90 the wastewater treatment plant's outflow.

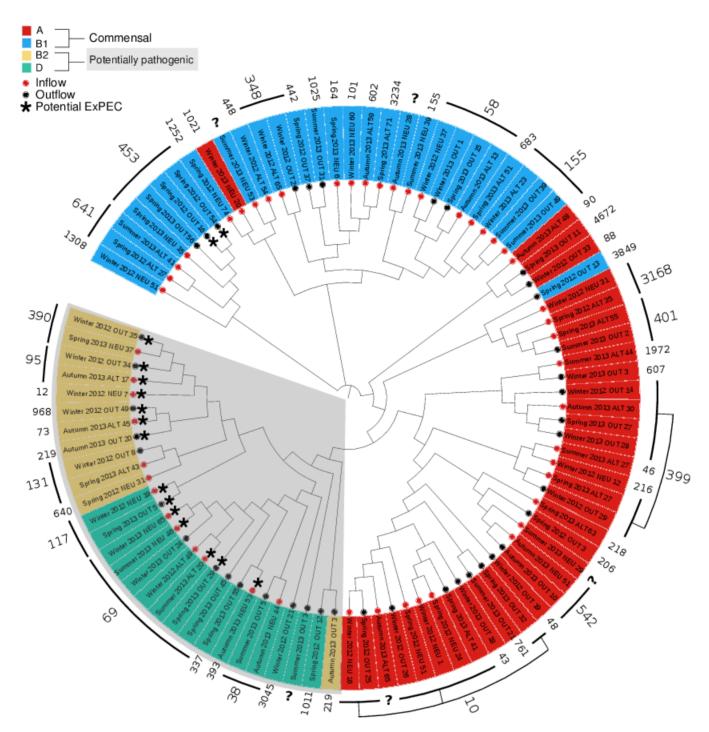


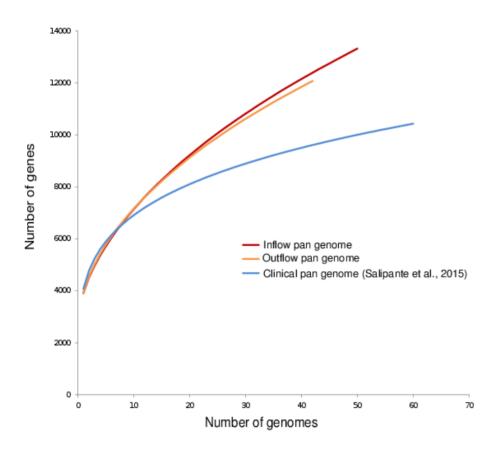
Figure 2: Phylogeny and pathogenic potential of wastewater *Escherichia coli*. Phylogenetic tree,
multi-locus sequence types, and phylogroups of 92 sequenced wastewater *Escherichia coli*isolates reveal 16 potential ExPEC isolates (marked with a black star) in phylogroups B2 (yellow)
and D (green), which are associated with pathogenicity. Half of the potentially pathogenic isolates
stem from the outflow of the treatment plant.

99

The wastewater pan-genome. The concept of evolution implies that genomes of organisms of the same species differ. Differences range from small single nucleotide polymorphisms to large genome rearrangements. As a consequence, *Escherichia coli* possesses a core of genes present in all genomes, as well as genes only present in some genomes, or even just in one. The union of all of these genes is called the pan-genome. It is believed, that the *Escherichia coli* core genome comprises around 1400-1500 genes, while the pan-genome may be of infinite size (11).

107

To assess the degree of genomic flexibility of the wastewater isolates, we relate the wastewater pan-genome and the wastewater core genome. At 16582 genes, the wastewater pan-genome is nearly six times larger than the wastewater core genome of 2783 genes, a reservoir of some 14000 genes. Despite this large reservoir, the size difference of nearly 1000 genes between the wastewater *Escherichia coli* core genome and the whole species core genome suggests that the full diversity of *Escherichia coli* is still not covered in our wastewater sample.


114

The balance between maintaining the core genome and spending energy on acquisition of new genetic material can be captured by the ratio of the core genome size and the average genome size, which is 4700 genes in our sample. This means that only 1400/4700 = 30% of genes in our wastewater *Escherichia coli* are core genes. Most of the non-core genes are very unique and appear only in one or two isolates each. More precisely, 50% of the pan-genome genes appear in only one or two isolates each. This implies that the wastewater *Escherichia coli* studied are highly individual.

122

But do *Escherichia coli* maintain such a rich genome after wastewater treatment? Fig. 3 shows that they do. The 42 *Escherichia coli* genomes of the plant's outflow comprise nearly 12000 genes and the pan-genome growth curves between in- and outflow are nearly identical, which means that wastewater treatment does not affect the genetic diversity of *Escherichia coli*. Fig. 3 also shows a clinical dataset of ExPEC and these clinical *Escherichia coli* are more homogeneous and hence their pan-genome is smaller. In contrast, the diversity of the wastewater *Escherichia coli* match other datasets comprising mixtures of commensal and pathogenic

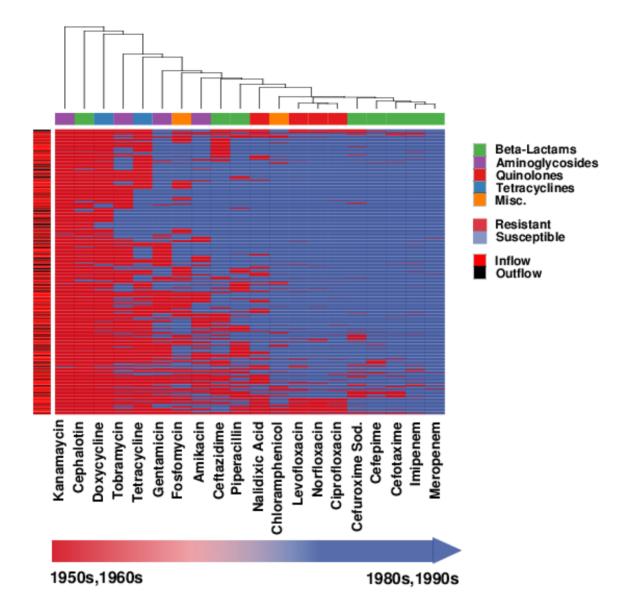
- 130 Escherichia coli, as well as Shigella genomes (see Table 1). This underlines the great diversity of
- 131 genomes before and after wastewater treatment and leads to the question whether these diverse
- 132 genomes harbour antibiotic resistance genes?

133

- 134 Figure 3: The pan-genome at the outflow has the same size as at the inflow, suggesting that
- highly flexible *Escherichia coli* emerge from a treatment plant. The wastewater pan-genome is
- 136 larger than a clinical pan-genome one and of similar size to (see Table 1) highly diverse samples
- 137 comprising pathogenic, commensal, and lab *Escherichia coli*, as well as *Shigella*.

138

Ref	Pan	Core	Strains	Path.	Comm.	Lab	Shig.
This study	16582	2783	92	28	62	0	0
Kaas et al., 2012 ¹⁵	16373	1702	186		171		15
Vieira et al., 2011 ¹³	14986	1957	29	21	8	0	6
Gordienko et al., 2013 ¹²	12000	2000	32	16	6	3	7
Lukjancenko et al., 2010 ¹⁶	13000	1472	53	35	11	7	0
Rasko et al., 2008 ¹⁷	13000	2344	17	14	1	2	0
Touchon et al., 2009 ¹⁴	11432	1976	20	10	3	0	7


139

140 Table 1: Highly diverse samples comprising pathogenic, commensal, and lab *Escherichia coli*, as

141 well as Shigella.

142

146	Resistance genes in the wastewater pan-genome. Wastewater Escherichia coli are known to
147	host antibiotic resistance genes. While there are many known resistance genes (see e.g. CARD
148	(12)), they fall mostly into a few groups, such as beta-lactamases. Here, we seek to confirm and
149	expand the space for candidate resistance genes. Firstly, we measured antibiotic resistance in all
150	1178 isolates to the 20 antibiotics. Fig. 4 reveals a high degree of resistance and huge
151	differences between different antibiotics, including a general trend indicating greater resistance to
152	antibiotics that have been available for longer. Concretely, antibiotics from the 50s and 60s have
153	a significantly different number of resistances than the more recent antibiotics (Welch test, p-
154	value < 0.0025). However, there is no significant difference in the number of resistances between
155	isolates from the inflow and the outflow (p-value 0.0001), suggesting that wastewater treatment is
156	not affecting resistance at all.
157	

160 Figure 4: 1178 Wastewater Escherichia coli isolates are tested for antibiotic resistance to 20

161 antibiotics. Nearly all isolates are multi-drug resistant. Generally, isolates are more susceptible to

- 162 betalactams and fluoroquinolones than to tetracyclins and aminoglycosides. Surprisingly, the
- 163 outflow isolates show similar resistance as inflow (p-value 0.0001), suggesting that wastewater
- 164 treatment is not reducing resistance development.
- 165

159

168	Next, we correlated the presence of each gene in the sequenced isolates with their phenotypic
169	antibiotic resistance profiles. We excluded meropenem and imipenem, since nearly all isolates
170	are susceptible. For each of the 18 remaining antibiotics, we list the top ten candidate resistance
171	genes in Table 2. These 180 genes comprise 88 unique confirmed genes, including many well-
172	known resistance genes, such as efflux pumps (MT1297 and <i>emr</i> E), membrane and transport
173	proteins (<i>aida-I, yia</i> V, <i>yij</i> K, <i>pit</i> A, <i>ics</i> A, and <i>pag</i> N), tetracycline (<i>tet</i> A, <i>tet</i> R, and <i>tet</i> C),
174	chloramphenicol (<i>cat</i>), and piperacillin (the beta lactamase <i>bla</i> 2) resistance genes. However, the
175	180 genes also comprise a large number of open reading frames encoding hypothetical proteins
176	(41) and genes not yet linked to antibiotic resistance (116). These genes have to be studied
177	further to determine whether they are novel resistance genes or just correlating (e.g. because
178	they are on the same genetic element with a resistance gene). All but three of the known and the
179	potentially new resistance genes are present in some isolates obtained from the treatment plant's
180	outflow.

	Amikacin	Gentamicin	Kanamycin	Tobramycin	Doxycycline	Tetracycline	Cefepime	Cefotaxime	Ceftazidime	Cefuroxime Sod.	Cephalotin	Piperacillin	Ciprofloxaci n	Levofloxacin	Nalidixic Acid	Norfloxacin	Chloramphe nicol	Fosfomycin
1	Hypothetical Protein	4- hydroxyaceto phenone monooxygen ase hapE	Transposase IS200 like protein	Autotransport er precursor aida-I	Tetracycline resistance protein, class B tetA	Oxygen- dependent choline dehydrogena se betA	Ash protein family protein	Hypothetical Protein	cell division protein	Type-1 restriction enzyme R protein hsdR	GTPase era	Beta- lactamase TEM precursor bla	Virulence regulon transcriptiona I activator virB	Transposon Tn10 protein tetD	Mercuric resistance operon regulatory protein merR	Transposon Tn10 protein tetD	Chlorampheni col acetyltransfer ase cat	In Sift
2	Caudovirales tail fiber assembly protein	Phosphoade nosine phosphosulfa te reductases	putative multidrug- efflux transporter/M T1297	putative protease yhbU precursor	Tetracycline repressor protein class B tetR	NAD/NADP- dependent betaine aldehyde dehydrogena se betB	Fibronectin type III protein	Hypothetical Protein	Plasmid stability protein	Type I restriction enzyme EcoKI M protein hsdM	Prophage CP4-57 regulatory protein alpA	Transposon Tn3 resolvase tnpR	Sporulation initiation inhibitor protein Soj	Tetracycline resistance protein, class B tetA_1	Mercuric resistance prote <i>i</i> n merC	Tetracycline resistance protein, class B tetA_1	Streptomycin 3''- adenylyltransf erase ant1	Putative DNA- invertase Rac pinR
3	Swarming motility protein ybiA	putative multidrug- efflux transporter/M T1297	Phosphotran sferase enzyme family protein	Chaperone protein dnaK	Transposon Tn10 TetC protein tetC	HTH-type transcriptiona l regulator betl	Transcription al activator perC	Transcription al activator perC	HTH-type transcriptiona l regulator cmtR	mrr restriction system protein	Hypothetical Protein	Tyrosine recombinase xerD	putative HTH-type transcriptiona I regulator	Tetracycline repressor protein class B from transposon Tn10 tetR	mercuric transport protein merT	Tetracycline repressor protein class B from transposon Tn10 tetR	Chromosome- partitioning ATPase soj	Transcription al repressor dicA
4	Phospholipas e ytpA	Phosphotran sferase enzyme family protein	Hypothetical Protein	putative ABC transporter ATP-binding protein yjjK	HTH-type transcriptiona l regulator cmtR	Tetracycline resistance protein, class B tetA	Hypothetical Protein	Hypothetical Protein	Phage- related minor tail protein	Outer membrane protein IcsA precursor	Hypothetical Protein	Acetyltransfer ase (GNAT) family protein	DNA-binding transcriptiona l regulator dicC	Transposon Tn10 protein tetC	Mercuric transport protein periplasmic component precursor merP	Transposon Tn10 protein tetC	parG	Hypothetical Protein
5	Carbonic anhydrase 1 cynT	Hypothetical Protein	Streptomycin 3''- adenylyltrans ferase ant1	cell envelope integrity inner membrane protein tolA	Tetracycline resistance protein, class C tetA	Tetracycline repressor protein class B tetR	Hypothetical Protein	Hypothetical Protein	Phage tail protein E	Hypothetical Protein	Hypothetical Protein	Virulence regulon transcriptiona I activator virB	Hypothetical protein	putative HTH-type transcriptiona I regulator	Anti-adapter protein iraM	CAAX amino terminal protease self- immunity	Hypothetical Protein	Hypothetical Protein
6	Hypothetical Protein	Hypothetical Protein	Hypothetical Protein	Inner membrane protein yiaV precursor	putative inner membrane transporter yedA	Transposon Tn10 TetC protein tetC	Chromosome partition protein smc	Hypothetical Protein	Hypothetical Protein	Fibronectin type III protein	Transposon Tn10 tetD protein	Transposase	LysinetRNA ligase IysS	DNA-binding transcriptiona I regulator dicC	Hypothetical protein	mRNA interferase pemK	Hypothetical Protein	Hypothetical Protein
7	Xanthine dehydrogena se molybdenum- binding subunit xdhA	Hypothetical Protein	Zinc- responsive transcriptiona l regulator	Entericidin B membrane lipoprotein	Tetracycline repressor protein class A from transposon 1721 tetR	High-affinity choline transport protein betT	Hypothetical Protein	Invasin	Hypothetical Protein	Hypothetical Protein	putative multidrug- efflux transporter/M T1297	Tetracycline resistance protein, class B tetA	Transposon Tn10 protein tetD	Hypothetical protein	Mercuric reductase merA_1	Antitoxin peml	Acetyltransfer ase (GNAT) family protein	Molybdenum cofactor biosynthesis protein A
8	Nicotinate dehydrogena se FAD- subunit ndhF	Hypothetical Protein	merE protein	Low-affinity inorganic phosphate transporter 1 pitA	Hypothetical Protein	Formate dehydrogena se H fdhF	Aldehyde- alcohol dehydrogena se adhE	Hypothetical Protein	Tyrosine recombinase xerC	Hypothetical Protein	Phosphotran sferase enzyme family protein	Tetracycline repressor protein class B tetR	Tetracycline resistance protein, class B tetA_1	CAAX amino terminal protease self- immunity	Hypothetical protein	putative HTH-type transcriptiona I regulator	putative multidrug- efflux transporter/M T1297	ATP- dependent zinc metalloprote ase ftsH4
9	Nicotinate dehydrogena se small FeS subunit ndhS	Phage polarity suppression protein psu	Phosphoade nosine phosphosulfa te reductases	Methyl- accepting chemotaxis protein II tar	Transposon Tn10 tetD protein	S-fimbrial protein subunit sfaH	Aldehyde- alcohol dehydrogena se adhE	Hypothetical Protein	Hypothetical Protein	Hypothetical Protein	Outer membrane protein pagN precursor	Transposon Tn10 tetC protein	Tetracycline repressor protein class B transposon Tn10 tetR	mRNA interferase pemK	zinc- responsive transcriptiona l regulator	DNA-binding transcriptiona l regulator dicC	Phosphotrans ferase enzyme family protein	Molybdenum cofactor biosynthesis protein A
10	putative fimbrial-like protein ElfG precursor elfG	DNA primase traC	Caudovirales tail fiber assembly protein	Leucine- specific- binding protein precursor livK	putative multidrug- efflux transporter/M T1297	Beta- lactamase TEM precursor bla	Cob(I)yrinic acid a,c- diamide adenosyltran sferase yvqK	Type-1 restriction enzyme R protein hsdR	Hypothetical Protein	Hypothetical Protein	Tetracycline resistance protein, class B tetA	Multidrug transporter emrE	Transposon Tn10 protein TetC	Antitoxin Peml	MerE protein	Caudovirales tail fiber assembly protein	Leucine- specific- binding protein precursor livK	Hypothetical Protein

Table 2: Known and candidate resistance genes from correlation of genomes to resistance phenotype. Top 10 genes for 18 antibiotics.

185 **Discussion**

186 **The cost of resistance.** There is a debate on whether the evolution of resistance is a 187 competitive disadvantage. Some evidence indicates that resistant bacteria may be outcompeted 188 by susceptible bacteria (13) and that they may be collaterally sensitive (14), i.e. resistant bacteria 189 may become susceptible through an appropriate co-treatment. In contrast, it appears that our 190 isolates do not suffer from evolutionary disadvantages despite their resistance and the harsh 191 environment of wastewater treatment. The latter includes the reduction of the bacterial population 192 as indicated by a reduction in biochemical oxygen demand, which is part of secondary 193 wastewater treatment. Despite this bacterial reduction, wastewater outflow has similar resistance 194 levels as the inflow. These findings support evidence (15) that bacteria can compensate for the 195 cost of resistance. 196 Pathogenic potential and resistance. Ultimate proof for pathogenicity can only be obtained

197 from in vivo studies. However, the pathogenic potential can be assessed from an analysis of a 198 genome for virulence markers. Here we chose to consider three independent approaches: 199 classification by phylogenetic groups, by multi-locus sequence tags, and by identification of 200 specific virulence factors (see methods). While the three approaches showed consistent results, 201 they are by no means proof for pathogenicity, since there can be exceptions to these 202 classification rules. As an example, consider the strain ed1a, which belongs to the phylogenetic 203 group B2, but it is not pathogenic in mice (16). Similarly, pathogenicity may not only arise from the 204 acquisition of genes, but also from the loss (17). Regarding resistance there are similar 205 confounding factors. Escherichia coli is inherently resistant to kanamycin and cephalotin, which is 206 also clearly shown in Fig. 4. More generally, antibiotic resistance is ancient (18) and naturally 207 occurring in the environment. Nonetheless, there are pronounced differences between pristine 208 and human environments (19). This is also supported by Fig. 4, which shows that antibiotics 209 introduced in the 50s and 60s have more resistances than those introduced later (p-value < 210 0.0025), which suggests, that the naturally occurring resistances do not play a major role in the 211 emergence of observed resistances.

212

213 From clinic to river. We have shown that there are *Escherichia coli* at the wastewater outflow, 214 which are multi-drug resistant and have pathogenic potential. But are they abundant enough to 215 have an impact in the aquatic system they are released into? They do. The percentage of 216 possibly pathogenic *Escherichia coli* in the outflow is considerable and may correspond to a large 217 absolute amount. If an average of 100 Escherichia coli colony forming units (CFU) are released per ml. then 10¹³ CFUs per day are released (assuming a release of 10⁵ m³ per day). This is in 218 accordance with Manaia et al., who showed that 10¹⁰-10¹⁴ CFU of ciprofloxacin-resistant bacteria 219 220 are released by a mid-sized wastewater treatment plant (20). Furthermore, a study in a Japanese 221 river shows the presence of pathogenic Escherichia coli. Gomi et al. (21) sequenced over 500 222 samples from the Yamato river and most of their prevalent multi-drug resistant and clinical strains 223 are also present in our samples. In a related study, Czekalski et al. found that particle-associated 224 wastewater bacteria are the responsible source for antibiotic resistance genes in the sediments of 225 lake Geneva in Switzerland (22). Assuming that the river Elbe is comparable to these aquatic 226 systems, it suggests, that clinic and river are connected with wastewater treatment plants in 227 between.

228 **Composition of phylogroups**. It is interesting to compare the breakdown into phylogenetic 229 groups of wastewater *Escherichia coli* to compare samples from human and animal

environments. It is, e.g., known that the phylogenetic group B2 is more abundant among

commensal *Escherichia coli* from human faeces (43%) than from farm animals (11%) (23).

232 Therefore, the composition of wastewater *Escherichia coli* as shown in Fig. 2 resembles

233 commensal *Escherichia coli* from farm animals more closely. Similarly, Tenaillon find that groups

A and B1 make up one third in human faeces (23), whereas we find two thirds. This suggests that

animal waste plays an important role for resistance of waste water bacteria.

Pan and core genome. We identified known and candidate resistance genes by correlating their
presence in the genome against their resistance phenotype across isolates. By virtue of this
correlation, the identified genes are not to be found in the core genome, but in the pan genome.
As many authors have pointed out, *Escherichia coli* has a large and flexible pan genome.
Lapierre *et al.* argue that *Escherichia coli* appears to have unlimited ability to absorb genetic

material and hence its pan genome is open (11). In a recent study comprising over 2000

242 genomes Land et al. put this into numbers and arrive at a pan genome of 60000-89000 gene 243 families for over 2000 sequenced *E. coli* genomes (24). This upper limit shows that the 244 wastewater pan genome of 16582 genes is still not the top. Nonetheless, it is considerably larger 245 than a clinical pan genome. These differences indicate the heterogeneity of genomes. Clinical 246 Escherichia coli genomes are not as diverse as the ones in a wastewater pool, which comprises 247 besides human faeces also animal waste. 248 **Random sampling and hypothesis-free analysis.** The initial 1178 isolates were sampled 249 randomly over different times of the year, from two different inflows and the outflow. In contrast,

were represented (see methods). Within a phenotype group isolates were chosen randomly. This random, but representative choice and the subsequent link from genotype to phenotype is an example of high-throughput hypothesis-free analysis. And although, there was no pre-defined resistance mechanism, which we aimed to hit, many of the well-known resistance genes were ranked high. This supports the hope that high-throughput, hypothesis-free methods such as deep sequencing will help to uncover novel resistance mechanisms and in particular that some of the

the 103 sequenced isolates were chosen in such way that all of the phenotypes encountered

257 candidate resistance genes will prove to have a causal link to resistance.

258

250

259 Conclusion

Overall, we have shown for the first time that *Escherichia coli* isolates from a wastewater outflow have pathogenic potential and large pan-genomes, which harbor known and novel candidate resistance genes. Together with the estimates on absolute *Escherichia coli* abundance, this means that despite treatment, there is a considerable pathogenic potential at the outflow of a wastewater treatment plant. These results underline the need to include wastewater treatment plants in the combat against antibiotic resistance.

266

267

268 Methods

Collection. 1178 samples were collected from the municipal wastewater treatment plant
Dresden, Germany. Samples were collected on 11/4/2012 (Spring 2012), 30/7/2012 (Summer
2012), 21/1/2013 (Winter 2012), 27/3/2013 (Spring 2013), 6/8/2013 (Summer 2013), 14/10/2013
(Autumn 2013), and 17/12/2013 (Winter 2013). Samples were collected either at the outflow
(OUT) or at one of two inflow locations (Altstadt ALT and Neutstadt NEU), representing the area
south and north of the river Elbe).

275 Isolation. Escherichia coli and total coliforms bacteria were enumerated via serial fold dilution 276 plating of the original wastewater (triplicate samples). Wastewaters were diluted in double distilled 277 water, until the enumeration of bacterial colonies was possible. Escherichia coli and coliform 278 counts were always performed in triplicates. The Escherichia coli colonies were selected and 279 picked after overnight growth at 37°C on a selective chromogenic media (OXOID Brilliance 280 Escherichia coli/Coliform Selective Agar, Basingstoke, England). To minimize the risk of colony 281 contamination, picked colonies were spiked a second time on the same selective media and pure 282 single colonies were grown overnight on LB media at 37°C and stored on glycerol stock at -80°C. 283 **Resistance phenotyping.** Antibiotic resistance phenotypes were determined by the agar 284 diffusion method using 20 antibiotic discs (OXOID, England) according to EUCAST (or CLSI 285 when EUCAST was not available) (13, 18). The selected drugs belong to the most commonly 286 prescribed antibiotics for diseases caused by bacteria according to the German health insurance 287 AOK Plus: piperacillin (100 μq), nalidixic acid (30 μq), chloramphenicol (30 μq), imipenem (10 μq), 288 cefotaxime ($30\mu g$), cephalotin ($30\mu g$), kanamycin ($30\mu g$), tetracycline ($30\mu g$), gentamicin ($10\mu g$), 289 amikacin $(30\mu g)$, ciprofloxacin $(5\mu g)$, fosfomycin $(50\mu g)$, doxycycline $(30\mu g)$, cefepime $(30\mu g)$, 290 ceftazidime ($10\mu q$), levofloxacin ($5\mu q$), meropenem ($10\mu q$), norfloxacin ($10\mu q$), cefuroxime sod. 291 $(30\mu g)$, tobramycin $(10\mu g)$ (25). After 24 hours of incubation at 37°C, the resistance diameters 292 were measured. Clustering of antibiotics and of isolates was performed using the R function 293 heatmap.2 from the R library (26) Heatplus and hierarchical clustering of matrices based on 294 Euclidean distances between isolates and between antibiotics.

295

296 **Sequencing.** To select isolates representative of phenotype, we clustered isolates according to 297 the diameters of inhibition zone against the 20 antibiotics using k-means clustering based on 298 Euclidean distances between isolates (vectors of 20 inhibition zone diameters). The analysis and 299 graphs were produced using R version 3.2.4 (26). As clusters may be highly skewed in number of 300 cluster members, we tested all cluster numbers from 1 to 100 and plotted within class sum of 301 squares against k. At k = 47, the sum of squares tails off and there is a steep local decrease, so 302 that k = 47 was fixed as k-means parameter. We obtained 103 isolates, which were subsequently 303 used for sequencing and further analysis. To further validate the choice, we plotted the average 304 number of resistances against number of isolates and antibiotics vs. number of isolates for the 305 total 1178 and the selected 103 isolates (see Supp Fig. 1) and concluded that both distributions 306 are roughly similar. 3000ng DNA were extracted from each of the 103 selected isolates using 307 MasterPure extraction kit (Epicentre) according to the manufacturer's instructions. Sequencing 308 was performed using Illumina Flex GL.

309

Assembly. Genomes were assembled with Abyss (version 1.5.2) (27). In order to optimize *k* for the best assembly, k-mer values had to be empirically selected from the range of 20-48 (see Supp. Fig. 2) on a per sample basis to maximize contiguity (3). To determine the k-mer length that achieved highest contiguity, the 28 assemblies per draft genome/isolate were compared based on *N50* values. 11 assemblies with an *N50* statistic of less than 5 \times 10⁴ bp were excluded (28).

2	1	7
З	Τ	1

318	Genes. Reference gene clusters were computed from 58 complete Escherichia coli genomes
319	(see Table 2) available in June 2015 from NCBI. Genes were identified in wastewater and
320	refererence genomes using Prokka (version 1.11) (29). Genes were clustered at 80% using CD-
321	HIT (30) (version 4.6.3, arguments -n 4 -c 0.8 -G 1 -aL 0.8 –aS 0.8 -B 1). Genes with over 90%
322	sequence identity, but only 30% coverage, as well as genes with 80% or greater identity and
323	covered to phage and virus sequences (31) were discarded. A gene cluster is defined to be
324	present in an isolate if there is a Prokka gene in the genome, which is longer than 100 amino
325	acids and has over 80% sequence identity and coverage against the gene cluster representative.
326	

Pan- and core-genome. To generate the pan- and core-genome size graph we followed the procedure in (3, 16). We had 92 genomes available. We varied *i* from one to 92. At each subset size *i*, we randomly selected *i* genomes and computed the sizes of the union (pan) and intersection (core) of gene clusters. This random selection was carried out 2000 times in each step.

332

Gene clusters to rank genes by correlation to phenotype. Prokka genes were identified in all isolate genomes and then clustered with CD-HIT at 60% sequence identity and 50% coverage (arguments -n 4 -c 0.6 -G 1 -aL 0.8 -aS 0.5 -B 1). A 80% identity cutoff was also tried but dismissed, because the 60% threshold yielded 25% less clusters while adequately clustering homologous gene sequences with lower sequence similarity. This threshold value is also supported by the widespread default use of the BLOSUM62 matrix, the basis of which is sequences clustered by 62% sequence identity.

340

Tree. The phylogenetic tree of 92 isolates was built following the procedure of (32, 33)using
FastTree version 2.1 (34). Sequence reads were aligned to *Escherichia coli* K12 MG 1665 and
single nucleotide variant calling was carried out using GATK (35). Quality control for variant
calling was performed; variants supported by more than ten reads or likelihood score greater than
200 were always in the range of 84 – 99% of variants called per isolate with the exception of 2

isolates where only 59% and 60% of the variants were above the threshold for quality and

347 supporting reads. FastTree 2.1 (34) was then used to build the maximum likelihood tree based on

348 the sequences derived from variant calling.

349 **Phylogrouping.** For phylogrouping, the classification system established by Clermont *et al.* (10)

350 based on the genes chuA and yjaA and the DNA fragment TspE4.C2 was used. Blast was

351 performed to check each genome assembly for presence or absence of the aforementioned

352 elements with an identity cutoff \geq 90%.

353

354 **MLST.** Concerning epidemiology and Multi-Locus Sequence Typing, we used the webserver at

355 https://cge.cbs.dtu.dk/services/MLST/ that follows the MLST scheme in (36) for predicting MLSTs

356 from whole genome sequence data (37) . 92 Draft genome assemblies were submitted and

357 results were obtained; 5 isolates were unidentified demonstrating novel sequence types.

358

359 Virulence factors. Virulence factors protein sequences were downloaded from VFDB: Virulence

360 Factors database (8, 38). 2000 sequences which were *Escherichia coli* related were chosen.

361 Sequences were then clustered at 80% sequence identity using CD-HIT (version 4.6.3,

362 arguments -n 4 -c 0.8 -G 1 -aL 0.8 -aS 0.8 –B 1). A virulence factor was considered present in an

363 isolate's genome if there is a Prokka gene in the genome that has over 80% sequence identity

and coverage against the virulence factor cluster representative.

366

- ExPEC classification. There are intra- and extra-intestinal pathogenic *E.coli*, which can be
 classified from the presence of virulence factors (39-42). InPEC are characterised by the
 virulence factors stx1, stx2, escV, and bfpB. They are ExPEC if they contain over 20 of 58
 virulence factors afa/draBC, bmaE, gafD, iha cds, mat, papEF, papGII, III, sfa/foc, etsB, etsC, sitD
 ep, sitD ch, cvaC MPIII, colV MPIX, eitA, eitC, iss, neuC, kpsMTII, ompA, ompT, traT, hlyF, GimB,
 malX, puvA, yqi, stx1, stx2, escV, bfp, feob, aatA, csgA, fimC, focG, nfaE, papAH, papC, sfaS,
 tsh, chuA, fyuA, ireA, iroN, irp2, iucD, iutA, sitA, astA, cnf1, sat, vat, hlyA, hlyC, ibeA, tia, and pic.
- 374

375 **Data availability statement**

- 376 Genome assemblies of the analyzed isolates that support the findings of the study will be made
- available on the NCBI upon paper publication (see Table 3).

378 Accession numbers of novel whole genome assemblies of analyzed isolates.

		e genome asse	indies of analyzed isolates.
Bioproject	Biosample	Accession	strain
PRJNA380388	SAMN06641941	NBBP00000000	Escherichia coli Win2013_WWKa_OUT_3
PRJNA380388	SAMN06641940	NBBQ00000000	Escherichia coli Win2013_WWKa_OUT_29
PRJNA380388	SAMN06641933	NBBR00000000	Escherichia coli Win2013_WWKa_OUT_18
PRJNA380388	SAMN06641932	NBBS00000000	Escherichia coli Win2013_WWKa_OUT_24
PRJNA380388	SAMN06641931	NBBT0000000	Escherichia coli Win2013_WWKa_OUT_1
PRJNA380388	SAMN06641928	NBBU00000000	Escherichia coli Win2013_WWKa_NEU_65
PRJNA380388	SAMN06641927	NBBV0000000	Escherichia coli Win2013_WWKa_NEU_20
PRJNA380388	SAMN06641926	NBBW00000000	Escherichia coli Win2013_WWKa_NEU_60
PRJNA380388	SAMN06641901	NBBX00000000	Escherichia coli Win2013_WWKa_ALT_23
PRJNA380388	SAMN06641884	NBBY00000000	Escherichia coli Win2012_WWKa_OUT_49
PRJNA380388	SAMN06641883	NBBZ00000000	Escherichia coli Win2012_WWKa_OUT_8
PRJNA380388	SAMN06641882	NBCA00000000	Escherichia coli Win2012_WWKa_OUT_34
PRJNA380388	SAMN06641881	NBCB00000000	Escherichia coli Win2012_WWKa_OUT_35
PRJNA380388	SAMN06641880	NBCC00000000	Escherichia coli Win2012_WWKa_OUT_29
PRJNA380388	SAMN06641879	NBCD0000000	Escherichia coli Win2012_WWKa_OUT_26
PRJNA380388	SAMN06641878	NBCE00000000	Escherichia coli Win2012_WWKa_OUT_33
PRJNA380388	SAMN06641877	NBCF0000000	Escherichia coli Win2012_WWKa_OUT_21
PRJNA380388	SAMN06641876	NBCG0000000	Escherichia coli Win2012_WWKa_OUT_2
PRJNA380388	SAMN06641875	NBCH00000000	Escherichia coli Win2012_WWKa_NEU_7
PRJNA380388	SAMN06641874	NBCI0000000	Escherichia coli Win2012_WWKa_OUT_14
PRJNA380388	SAMN06641873	NBCJ0000000	Escherichia coli Win2012_WWKa_NEU_51
PRJNA380388	SAMN06641872	NBCK00000000	Escherichia coli Win2012_WWKa_NEU_31
PRJNA380388	SAMN06641871	NBCQ0000000	Escherichia coli Win2012_WWKa_NEU_37
PRJNA380388	SAMN06641870	NBCR00000000	Escherichia coli Win2012_WWKa_NEU_16
PRJNA380388	SAMN06641869	NBCS0000000	Escherichia coli Win2012_WWKa_NEU_19
PRJNA380388	SAMN06641868	NBCT00000000	Escherichia coli Win2012_WWKa_NEU_12
PRJNA380388	SAMN06641867	NBCU00000000	Escherichia coli Win2012_WWKa_ALT_65
PRJNA380388	SAMN06641866	NBCV0000000	Escherichia coli Win2012_WWKa_NEU_1
PRJNA380388	SAMN06641865	NBCW0000000	Escherichia coli Win2012_WWKa_ALT_49
PRJNA380388	SAMN06641864	NBCX00000000	Escherichia coli Win2012_WWKa_ALT_54
PRJNA380388	SAMN06641863	NBCY0000000	Escherichia coli Sum2013_WWKa_OUT_5
PRJNA380388	SAMN06641862	NBCZ0000000	Escherichia coli Sum2013_WWKa_OUT_39
PRJNA380388	SAMN06641861	NBDA0000000	Escherichia coli Sum2013_WWKa_OUT_49
PRJNA380388	SAMN06641860	NBDB0000000	Escherichia coli Sum2013_WWKa_OUT_3
PRJNA380388	SAMN06641859	NBDC00000000	Escherichia coli Sum2013_WWKa_OUT_31
PRJNA380388	SAMN06641858	NBDD0000000	Escherichia coli Sum2013_WWKa_OUT_2
PRJNA380388	SAMN06641857	NBDE0000000	Escherichia coli Sum2013_WWKa_OUT_21
PRJNA380388	SAMN06641856	NBDF0000000	Escherichia coli Sum2013_WWKa_NEU_53
PRJNA380388	SAMN06641855	NBDG0000000	Escherichia coli Sum2013_WWKa_NEU_46
PRJNA380388	SAMN06641854	NBDH0000000	Escherichia coli Sum2013_WWKa_NEU_39
PRJNA380388	SAMN06641853	NBD10000000	Escherichia coli Sum2013_WWKa_ALT_44
PRJNA380388	SAMN06641852	NBDJ0000000	Escherichia coli Sum2013_WWKa_NEU_29
PRJNA380388	SAMN06641851	NBDK00000000	Escherichia coli Spr2013_WWKa_OUT_27

	1		
PRJNA380388	SAMN06641844	NBDL0000000	Escherichia coli Sum2013_WWKa_ALT_41
PRJNA380388	SAMN06641843	NBDM0000000	Escherichia coli Sum2013_WWKa_ALT_27
PRJNA380388	SAMN06641842	NBDN0000000	Escherichia coli Spr2013_WWKa_OUT_56
PRJNA380388	SAMN06641841	NBDO0000000	Escherichia coli Sum2013_WWKa_ALT_20
PRJNA380388	SAMN06641840	NBJM0000000	Escherichia coli Spr2013_WWKa_OUT_5
PRJNA380388	SAMN06641839	NBJN0000000	Escherichia coli Spr2013_WWKa_OUT_55
PRJNA380388	SAMN06641838	NBJO0000000	Escherichia coli Spr2013_WWKa_OUT_32
PRJNA380388	SAMN06641837	NBJP0000000	Escherichia coli Spr2013_WWKa_OUT_45
PRJNA380388	SAMN06641822	NBJQ0000000	Escherichia coli Spr2013_WWKa_OUT_15
PRJNA380388	SAMN06641821	NBJR0000000	Escherichia coli Spr2013_WWKa_OUT_29
PRJNA380388	SAMN06641820	NBJS0000000	Escherichia coli Spr2013_WWKa_NEU_6
PRJNA380388	SAMN06641819	NBJT0000000	Escherichia coli Spr2013_WWKa_OUT_11
PRJNA380388	SAMN06641818	NBJU0000000	Escherichia coli Spr2013_WWKa_NEU_15
PRJNA380388	SAMN06641817	NBJV0000000	Escherichia coli Spr2013_WWKa_NEU_37
PRJNA380388	SAMN06641816	NBJW0000000	Escherichia coli Spr2013_WWKa_ALT_63
PRJNA380388	SAMN06641815	NBJX0000000	Escherichia coli Spr2013_WWKa_ALT_71
PRJNA380388	SAMN06641814	NBJY00000000	Escherichia coli Spr2013_WWKa_ALT_51
PRJNA380388	SAMN06641813	NBJZ0000000	Escherichia coli Spr2013_WWKa_ALT_55
PRJNA380388	SAMN06641812	NBKA0000000	Escherichia coli Spr2013_WWKa_ALT_43
PRJNA380388	SAMN06641811	NBKB0000000	Escherichia coli Spr2013_WWKa_ALT_27
PRJNA380388	SAMN06641810	NBKC00000000	Escherichia coli Spr2013_WWKa_ALT_41
PRJNA380388	SAMN06641809	NBKD0000000	Escherichia coli Spr2012_WWKa_OUT_37
PRJNA380388	SAMN06641808	NBKE00000000	Escherichia coli Spr2012_WWKa_OUT_54
PRJNA380388	SAMN06641807	NBKF00000000	Escherichia coli Spr2012_WWKa_OUT_25
PRJNA380388	SAMN06641806	NBKG0000000	Escherichia coli Spr2012_WWKa_OUT_3
PRJNA380388	SAMN06641805	NBKH00000000	Escherichia coli Spr2012_WWKa_OUT_16
PRJNA380388	SAMN06641804	NBKI0000000	Escherichia coli Spr2012_WWKa_OUT_13
PRJNA380388	SAMN06641803	NBKJ0000000	Escherichia coli Spr2012_WWKa_NEU_74
PRJNA380388	SAMN06641802	NBKK00000000	Escherichia coli Spr2012_WWKa_OUT_12
PRJNA380388	SAMN06641801	NBKL00000000	Escherichia coli Spr2012_WWKa_NEU_31
PRJNA380388	SAMN06641800	NBKM00000000	Escherichia coli Spr2012_WWKa_NEU_51
PRJNA380388	SAMN06641799	NBKN00000000	Escherichia coli Spr2012_WWKa_NEU_24
PRJNA380388	SAMN06641798	NBKO00000000	Escherichia coli Spr2012_WWKa_ALT_27
PRJNA380388	SAMN06641797	NBKP00000000	Escherichia coli Spr2012_WWKa_ALT_35
PRJNA380388	SAMN06641796	NBKQ00000000	Escherichia coli Aut2013_WWKa_OUT_3
PRJNA380388	SAMN06641793	NBKR00000000	Escherichia coli Aut2013 WWKa OUT 10
PRJNA380388	SAMN06641792	NBKS0000000	Escherichia coli Aut2013 WWKa OUT 20
PRJNA380388	SAMN06641791	NBKT00000000	Escherichia coli Aut2013_WWKa_NEU_51
PRJNA380388	SAMN06641789	NBKU00000000	Escherichia coli Aut2013_WWKa_NEU_53
PRJNA380388	SAMN06641788	NBKV00000000	Escherichia coli Aut2013_WWKa_NEU_44
PRJNA380388	SAMN06641786	NBKW00000000	Escherichia coli Aut2013 WWKa ALT 65
PRJNA380388	SAMN06641785	NBKX00000000	Escherichia coli Aut2013 WWKa NEU 28
PRJNA380388	SAMN06641784	NBKY00000000	Escherichia coli Aut2013 WWKa ALT 59
PRJNA380388	SAMN06641782	NBKZ0000000	Escherichia coli Aut2013_WWKa_ALT_48
PRJNA380388	SAMN06641780	NBLA0000000	Escherichia coli Aut2013_WWKa_ALT_45
PRJNA380388	SAMN06641779	NBLB0000000	Escherichia coli Aut2013_WWKa_ALT_30
PRJNA380388	SAMN06641778	NBLC00000000	Escherichia coli Aut2013_WWKa_ALT_17
PRJNA380388	SAMN06641777	NBLD0000000	Escherichia coli Aut2013_WWKa_ALT_13
PRJNA380388	SAMN06670745	NBNO00000000	Escherichia coli Win2012_WWKa_OUT_19

380 Table **3:** Accession numbers of 92 de novo assembled *E. coli* genomes.

386387 References

388	1.	Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, Pan Y, Li J, Zhu L, Wang X, Meng Z, Zhao F, Liu D,
389		Ma J, Qin N, Xiang C, Xiao Y, Li L, Yang H, Wang J, Yang R, Gao GF, Zhu B. 2013.
390		Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut
391		microbiota. Nat Commun 4: 2151.
392	2.	Sommer MO, Dantas G, Church GM. 2009. Functional characterization of the antibiotic
393		resistance reservoir in the human microflora. Science 325: 1128-1131.
394	3.	Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, Butler-Wu SM, Lee C,
395		Cookson BT, Shendure J. 2015. Large-scale genomic sequencing of extraintestinal pathogenic
396		Escherichia coli strains. Genome Res 25: 119-128.
397	4.	Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. 2012. The shared
398	т.	
	-	antibiotic resistome of soil bacteria and human pathogens. Science 337 :1107-1111.
399	5.	Riesenfeld CS, Goodman RM, Handelsman J. 2004. Uncultured soil bacteria are a reservoir
400		of new antibiotic resistance genes. Environ Microbiol 6: 981-989.
401	6.	Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D.
402		2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and
403		genes spread into the environment: a review. Sci Total Environ 447: 345-360.
404	7.	Schaufler K, Semmler T, Pickard DJ, de Toro M, de la Cruz F, Wieler LH, Ewers C,
405		Guenther S. 2016. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce
406		Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages. Front Microbiol
407		7: 336.
	0	
408	8.	Yang J, Chen L, Sun L, Yu J, Jin Q. 2008. VFDB 2008 release: an enhanced web-based resource
409		for comparative pathogenomics. Nucleic Acids Res 36: D539-542.
410	9.	Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E, Guigon G, Carbonnelle E,
411		Lortholary O, Clermont O, Denamur E, Picard B, Nassif X, Brisse S. 2008. Phylogenetic and
412		genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9: 560.
413	10.	Clermont O, Bonacorsi S, Bingen E. 2000. Rapid and simple determination of the Escherichia
414		coli phylogenetic group. Appl Environ Microbiol 66: 4555-4558.
415	11.	Lapierre P, Gogarten JP. 2009. Estimating the size of the bacterial pan-genome. Trends Genet
416		25: 107-110.
417	12.	McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ,
418	12.	De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O'Brien JS,
419		Pawlowski AC, Piddock LJ, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL,
420		Thaker M, Wang W, Yan M, Yu T, Wright GD. 2013. The comprehensive antibiotic resistance
421		database. Antimicrob Agents Chemother 57: 3348-3357.
422	13.	Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse
423		resistance? Nat Rev Microbiol 8: 260-271.
424	14.	Pal C, Papp B, Lazar V. 2015. Collateral sensitivity of antibiotic-resistant microbes. Trends
425		Microbiol 23: 401-407.
426	15.	Schrag SJ, Perrot V, Levin BR. 1997. Adaptation to the fitness costs of antibiotic resistance in
427		Escherichia coli. Proc Biol Sci 264: 1287-1291.
428	16.	Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S,
429	20.	Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard
430		M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C,
431		Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C,
432		Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EP,
433		Denamur E. 2009. Organised genome dynamics in the Escherichia coli species results in
434		highly diverse adaptive paths. PLoS Genet 5 :e1000344.
435	17.	Maurelli AT, Fernandez RE, Bloch CA, Rode CK, Fasano A. 1998. "Black holes" and bacterial
436		pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and
437		enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A 95: 3943-3948.
438	18.	D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels
439		F, Debruyne R, Golding GB, Poinar HN, Wright GD. 2011. Antibiotic resistance is ancient.
440		Nature 477: 457-461.

441	19.	Durso LM, Miller DN, Wienhold BJ. 2012. Distribution and quantification of antibiotic
442		resistant genes and bacteria across agricultural and non-agricultural metagenomes. PLoS One
443		7: e48325.
444	20.	Manaia CM, Novo A, Coelho B, Nunes OC. 2010. Ciprofloxacin Resistance in Domestic
445	201	Wastewater Treatment Plants. Water Air and Soil Pollution 208 :335-343.
446	21.	Gomi R, Matsuda T, Matsumura Y, Yamamoto M, Tanaka M, Ichiyama S, Yoneda M. 2017.
447	21.	Whole-Genome Analysis of Antimicrobial-Resistant and Extraintestinal Pathogenic
448		Escherichia coli in River Water. Appl Environ Microbiol 83 .
449	22.	Czekalski N, Berthold T, Caucci S, Egli A, Burgmann H. 2012. Increased levels of
450	22.	multiresistant bacteria and resistance genes after wastewater treatment and their
451		dissemination into lake geneva, Switzerland. Front Microbiol 3: 106.
452	23.	Tenaillon O, Skurnik D, Picard B, Denamur E. 2010. The population genetics of commensal
453	23.	Escherichia coli. Nat Rev Microbiol 8: 207-217.
	24	
454 455	24.	Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G,
455		Wassenaar T, Poudel S, Ussery DW . 2015. Insights from 20 years of bacterial genome
456	25	sequencing. Funct Integr Genomics 15: 141-161.
457	25.	Caucci S, Karkman A, Cacace D, Rybicki M, Timpel P, Voolaid V, Gurke R, Virta M,
458		Berendonk TU. 2016. Seasonality of antibiotic prescriptions for outpatients and resistance
459	0.6	genes in sewers and wastewater treatment plant outflow. FEMS Microbiol Ecol 92 :fiw060.
460	26.	R Development Core Team. 2010. R: A language and environment for statistical computing,
461	~-	R Foundation for Statistical Computing, Vienna, Austria. <u>http://www.R-project.org</u> .
462	27.	Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: a parallel
463		assembler for short read sequence data. Genome Res 19: 1117-1123.
464	28.	Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T,
465		Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato J. 2005. Cell size and nucleoid
466		organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol
467		55: 137-149.
468	29.	Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30 :2068-
469		2069.
470	30.	Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of
471	0.4	protein or nucleotide sequences. Bioinformatics 22 :1658-1659.
472	31.	Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool.
473	22	Nucleic Acids Res 39: W347-352.
474	32.	Delsuc F, Brinkmann H, Philippe H. 2005. Phylogenomics and the reconstruction of the tree
475	22	of life. Nat Rev Genet 6: 361-375.
476	33.	Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. 2012. Statistics and
477	24	truth in phylogenomics. Mol Biol Evol 29: 457-472.
478	34.	Price MN, Dehal PS, Arkin AP. 2010. FastTree 2approximately maximum-likelihood trees
479	25	for large alignments. PLoS One 5:e9490.
480	35.	McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
481		Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a
482		MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res
483	26	20: 1297-1303.
484	36.	Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC,
485		Ochman H, Achtman M. 2006. Sex and virulence in Escherichia coli: an evolutionary
486	07	perspective. Mol Microbiol 60 :1136-1151.
487	37.	Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-
488		Ponten T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-
489	20	genome-sequenced bacteria. J Clin Microbiol 50 :1355-1361.
490	38.	Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q . 2005. VFDB: a reference database for
491	20	bacterial virulence factors. Nucleic Acids Res 33 :D325-328.
492	39.	Antikainen J, Tarkka E, Haukka K, Siitonen A, Vaara M, Kirveskari J. 2009. New 16-plex
493		PCR method for rapid detection of diarrheagenic Escherichia coli directly from stool samples.
494 405	40	Eur J Clin Microbiol Infect Dis 28 :899-908.
495	40.	Johnson JR, Russo TA. 2005. Molecular epidemiology of extraintestinal pathogenic
496		(uropathogenic) Escherichia coli. Int J Med Microbiol 295: 383-404.

497 41. Johnson JR, Stell AL. 2000. Extended virulence genotypes of Escherichia coli strains from
498 patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181:261-

499 272.

Fitout JD. 2012. Extraintestinal Pathogenic Escherichia coli: A Combination of Virulence with
 Antibiotic Resistance. Front Microbiol 3:9.

502