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Abstract 
Studying developmental changes in white matter connectivity is critical for understanding 

neurobiological substrates of cognition, learning, and neuropsychiatric disorders. This becomes 

especially important during adolescence when a rapid expansion of the behavioral repertoire 

occurs. Several factors such as brain geometry, genetic expression profiles, and higher level 

architectural specifications such as the presence of segregated modules have been associated with 

the observed organization of white matter connections. However, we lack understanding of the 

extent to which such factors jointly describe the brain network organization, nor have insights into 

how their contribution changes developmentally. We constructed a multifactorial model of white 

matter connectivity using Bayesian network analysis and tested it with diffusion imaging data from 

a large community sample. We investigated contributions of multiple factors in explaining 

observed connectivity, including architectural specifications, which promote a modular yet 

integrative organization, and brain’s geometric and genetic features. Our results demonstrated that 

the initially dominant geometric and genetic factors become less influential with age, whereas the 

effect of architectural specifications increases. The identified structural modules are associated 

with well-known functional systems, and the level of association increases with age. This 

integrative analysis provides a computational characterization of the normative evolution of 

structural connectivity during adolescence.  

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/215152doi: bioRxiv preprint 

https://doi.org/10.1101/215152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Introduction 
 

The human brain, as depicted by a network of interconnected regions, acquires a distinctive structural and 

functional architecture over the course of development [1], [2]. This distinctive architecture has a 

hierarchical modular organization [3], with special hub regions that are theorized to facilitate the integration 

of modules [4], [5]. It is generally postulated that the structural organization of the brain provides a basis 

for the emergent functional systems [6] and thereby, of cognitive capacities [7]. Therefore, studying 

developmental changes in the white matter connectivity and resulting structural organization is critical for 

understanding neurobiological substrates of cognition [8], [9], learning [10], and psychiatric conditions 

[11]. This becomes especially important during adolescence and young adulthood when the human brain 

undergoes a protracted course of remodeling to support the rapid expansion of its behavioral repertoire 

[12].  

Various empirical studies have revealed several factors that are correlated with the observed white 

matter connectivity, including regional genetic expression profiles, brain geometry, and wiring costs of 

fibers [13]–[16]. Despite the significant correlation of these factors with the observed structural 

connectivity, they do not fully explain the distinctive organization of the brain network [14], [17]. For this 

reason, in addition to such intrinsic factors, several higher level factors, corresponding to certain 

architectural specifications (e.g. presence of segregated modules), have been also considered to explain 

distinctive features of the brain network organization [18]. All these findings highlight the need for a robust 

multifactorial analysis of the white matter connectivity. This multifactorial analysis is crucial to understand 

the extent to which multiple factors, such as brain geometry and architectural specifications, jointly 

describe the brain network organization. Such a multifactorial analysis can also reveal the temporal changes 

in the contribution of these factors during development, a topic that has been only sparsely studied.  

In this work, we have developed a multifactorial generative model of structural connectivity using 

Bayesian network analysis [19], [20]. This approach facilitates elucidating the contribution of different 

factors in explaining the empirical connectivity in a data-driven fashion, without necessarily assuming any 

causal theories regarding the formation of the network. One important advantage of generative models is 

that developmental effects can be studied by analyzing the evolution of model parameters across ages. 

 Using our generative model and diffusion imaging data of a large community sample of  youth, 

collected as a part of The Philadelphia Neurodevelopmental Cohort (PNC) dataset [11], we studied the 

contribution of certain architectural specifications, which promote a modular yet integrative architecture, 

and brain’s geometric and genetic features in explaining the observed structural connectivity. First, we 

investigated how much of the observed structural connectivity can be described by a base model of 

connectivity that includes only geometric and genetic factors. Then, we demonstrated how the inclusion of 

the architectural specifications increases the accuracy of the generative model in explaining the 

connectivity. Finally, we quantified the developmental effects in our multifactorial model in terms of the 

relative contributions of the factors across ages. 

Our results demonstrated that the initially dominant geometric and genetic factors become less 

influential with age, whereas the effect of higher level architectural specifications that promote a modular 

yet integrative organization increases. The identified structural modules of the brain are associated with 

well-known functional systems, and the level of association increases with age as well. This integrative 

analysis provides a computational characterization of the normative changes in structural connectivity in 

the human brain during the course of development. 
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MATERIALS AND METHODS 

 

Participants 

Institutional Review Board approval was obtained from the University of Pennsylvania and the Children’s 

Hospital of Philadelphia. We used a large sample of healthy young individuals (ages between 8-22 years) 

from the Philadelphia Neurodevelopmental Cohort (PNC) dataset [11], each assessed using diffusion MRI. 

Participants were excluded due to poor imaging data quality, or a history that suggested potential 

abnormalities of brain development such as medical problems that might affect brain function, inpatient 

psychiatric hospitalization, or current use of psychotropic medication. The final study sample included 818 

participants, with 361 males (mean age: 15.10 years, std: 3.44) and 457 females (mean age: 15.25 years, 

std: 3.33). 

 

Image Acquisition and Brain Network Construction 

Diffusion weighted magnetic resonance imaging (dMRI) scans were acquired for each individual. Quality 

assurance of the data was conducted to detect motion and scanner related artifacts and outliers, using the 

procedure described in [21]. The details of image acquisition and network construction are given in 

Supplementary Note S1 and illustrated in Fig. 1. Our pipeline included brain extraction using FSL [22], 

DWI de-noising using Slicer [23], tensor fitting using multivariate linear fitting [24], cortical/subcortical 

segmentation using Freesurfer [25], and probabilistic tractography (seeded from white matter / gray matter 

boundary) using the probtrackx utility of FSL [22].  

The final brain network of a participant had 86 nodes corresponding to the gray matter regions of 

interest (ROIs), including 34 cortical regions of the Desikan atlas [26], 8 subcortical regions, and 

cerebellum in the left and right hemispheres [25]. The complete list of regions is given in Supplemental 

File 1. The edges of the network had weights corresponding to the normalized number of streamlines 

between regions, as generated using probabilistic tractography. The edge weight between two regions i and 

j  was calculated as oij = (wij + wji)/2,   where wij = sij/vi ,  sij  is the streamline count between the 

regions, and vi is the volume (the number of voxels used for seeding) of the region i. The normalization by 

the region volume accounts for the differences in the region size. The final value was rounded to have 

integer valued edge weights. 

In order to prune possibly spurious connections, we used consistency based thresholding [27], 

keeping only the most consistent edges across all participants. Due to broadly ranging estimates of actual 

connection density in the literature [5], [27], [28], we repeated our experiments in a density range of 10-

30%, with different thresholds. Here, we report results for 15% density. Very consistent results were 

achieved for other density levels (results are provided in Supplementary Notes S8). 

 

Generative Model for Brain Connectivity 

A schematic illustration of the generative model is shown in Fig. 2. Given a set of prior expectations (𝐄) 

over the streamline counts between N regions, we model the observed streamline counts (𝐎) between the 

regions by a Dirichlet-Multinomial distribution, as proposed before [29], [30].   

 

p(𝐎|𝐄) =  ∏ (
oi!

∏ oij!
N
j=1

  
Γ(ei)

Γ(ti)
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Γ(tij)

Γ(eij)

N

j=1

)

N

i=1

 ,                                                 (1) 

 

where oi = ∑ oij
N
j=1 , ei = ∑ eij

N
j=1 , tij = oij + eij, and ti = ∑ tij

N
j=1 . The variables oij and eij represent the 

observed number of streamlines (oij) between regions i and j, and our prior expectations (eij) for the same. 
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In this study, we propose a novel base model of streamline connectivity by postulating specific 

expectations (eij) for the number of streamlines between regions, relying on their geometric and genetic 

features. We considered different mathematical expressions for modeling eij and selected the following 

one using Bayesian model comparison [31] (see Supplementary Note S2 for details).  

 

eij = cij
α  ×  gij

β
 .                                                                              (2) 

 

In the base model, cij corresponds to the Euclidean closeness (inverse of distance) of region centers, 

and the second factor gij  is the genetic similarity between regions. The unknown exponents, α and β, 

determine the contribution of each factor. 

In our experiments, the first factor cij  was different for each participant, calculated from their T1 

images. The second factor gij, however, was fixed for all participants, calculated using Allen Institute for 

Brain Science (AIBS) microarray expression dataset [32], as explained below. In order to facilitate a 

comparison between the contribution of different factors, both cij and gij were normalized to have the same 

maximum value with the observed number of streamlines (oij), for each participant individually. Then, the 

resulting matrix 𝐄 ≡ {eij} was normalized so that its summation is equal to the summation of observations 

𝐎 ≡ {oij}. This guarantees that the maximum likelihood solution of Eq. 1 is attained when eij = oij. 

Although the Dirichlet-Multinomial distribution is a natural choice for modeling relative strength of 

connectivity among regions and has been commonly used in the literature for similar purposes [20], [29], 

[30], the plausibility of our parametric model needs to be established prior to subsequent experiments. For 

this reason, we demonstrated that our generative model performs very similar to nonparametric models that 

have been developed for specialized purposes (see Supplementary Note S3 for details). 

 

Genome-wide Expression Profiles 

AIBS microarray expression dataset [32] consists of 3702 brain tissue samples from brains of six donors 

(5 males, 1 female, ages:24-57 years) [33]. Each sample is assessed by 58,692 probes. The expression 

levels were normalized across brains during comprehensive pre-processing steps [34], [35]. Among all 

probes available in the microarrays, we only considered the 17,348 uniquely annotated transcripts that are 

included in [36]. In order to select probes corresponding to the genes that are most relevant to brain 

function, we used the highest 10% of genes ranked by their differential stability (DS) indices [36]. 

Please refer to Supplementary Note S4 for details on our pipeline to calculate the genetic similarity 

between regions (gij). Our pipeline included steps to find correspondence between AIBS tissue samples 

and 86 regions of our atlas, to exclude genes with expression values that were not significantly different 

than the background expression level, to decrease the dimensionality using linear discriminant analysis 

(LDA), to calculate Pearson correlation between regional genome-wide expression profiles, and to adjust 

the genetic similarity values for distance between regions.  

 

Detection of Modules and Hubs 

Architectural specifications, corresponding to the presence of a modular structure and integrative hub 

regions, were imposed by modifying eij as 

 

e̅ij = eij + λzijeij ,                                                                       (3) 
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where the structure of the variable zij  encodes the architectural specifications. When assuming only 

modules but not hubs, zij is 1 if two regions are in the same module and -1 otherwise, and eij is calculated 

as in Eq. 2. Each module defines a cluster of regions that are densely connected to each other while only 

being sparsely connected to the regions outside their modules [37]. This model increases the number of 

expected streamlines between any two regions by λeij, if regions are in the same module, while decreasing 

the same if they are in different modules. When there are both modules and hubs, zij is 1 if two regions are 

in the same module, or at least one of them is a hub region and they are in the same hemisphere, and -1 

otherwise. In this case, the model expects hub regions to make more connections with all other regions. 

The same hemisphere constraint was used to relax this high demanding expectation.  

 

Inference of Model Parameters 

The unknown parameters α, β, and λ in Eq. 2,3 and the variable zij in Eq. 3 were estimated by maximizing 

the model likelihood in Eq. 1. This was performed for each participant individually. We estimated the 

unknown parameters for the three scenarios (base model, modular model, and modular yet integrated 

model) independently, in order to compare between the scenarios. Please refer to Supplementary Note S5 

for implementation details.  

 

Proportion of Explained Connectivity 

For each participant, we calculated three likelihood values, L, Lr, Le, corresponding to the likelihood of the 

model with expectations defined (1) by Eq. 2 or Eq. 3, (2) by the random model with eij = constant, and 

(3) by the empirical model with eij = oij (observed streamline counts), respectively. 

The random model (Lr) defines the expectations based on pure chance, whereas the empirical model 

(Le) is the maximum value that our generative model can reach. Thus, the measure 

 

ρ = (L − Lr) / (Le − Lr)                                                             (4) 

 

can be considered as a measure of the proportion of the observed connectivity that is explained by the 

generative model. Note that this measure has an upper bound of 1, and is comparable across participants. 

The contribution of different factors (e.g., distance or genetic similarity), can thus be quantified by 

calculating ρ values for models including single factors, or by comparing ρ values with and without using 

a specific factor in the model. 

 

Statistical Significance of Factors 

In order to calculate the statistical significance of the contribution of different factors (e.g., closeness or 

genetic similarity), we used the Wilcoxon signed-rank test to compare the Akaike Information Criterion 

(AIC) [31] values of two models with and without the selected factor. The null hypothesis assumes that 

difference between the two models follows a symmetric distribution around zero. Additionally, in order to 

assess the significance of identified modules, compared to randomly defined ones, we used permutation 

testing. The null hypothesis assumes that an increase in ρ value (Eq. 4), at least as high as the actual one, 

can be achieved by random assignment of regions into similarly sized modules. Details are provided in 

Supplementary Note S6. 

 

Consensus Modules 

The generative model of streamline counts (Eq. 1) was run individually for each participant. Therefore, the 

modular organization (that is, the number of modules and assignment of regions into modules) shows 
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differences between participants. In order to define a consensus of modular organization, we used the mean 

brain network (oij) and the mean closeness map (cij) of all participants, and estimated the unknown 

parameters α, β, λ, 𝐦i, 𝐡 again by maximizing the model likelihood in Eq. 1. Note that genetic factor gijwas 

already fixed for all participants.  

 

Functional Systems 

In order to study correspondence between identified structural modules and functional systems of the brain 

network, we assigned the 86 brain regions to 10 functional systems [38], namely auditory, cingulo-

opercular, default mode, dorsal attention, frontoparietal, motor, subcortical, ventral attention, visual, and 

others, using the definitions from Gu et al. 2014 [39] (see Supplementary File 1 for the complete list). 

This resulted in predefined functional systems that are common for all participants. 

In order to quantify the similarity between the alliance of regions determined by consensus structural 

modules and the functional system, we used Normalized Mutual Information (NMI) [40]. NMI quantifies 

the agreement between structural modules and functional systems in terms of the assignment of regions to 

same/different modules/systems. It has values between 0 and 1, where 1 indicates perfect agreement. 

Statistical significance of correspondence between structural modules and functional systems was assessed 

using permutation testing. Please refer to Supplementary Note S7 for details. 

 

RESULTS 

 

Plausibility of the Generative Model 

We compared the networks simulated by our generative model with those that were generated by a non-

parametric model [14]. Our model was able to better represent the observed streamlines counts as compared 

to the nonparametric model, while both models generated networks with similar topological features. 

Results are shown in Supplementary Fig. S2. We also compared the modules identified by our generative 

model to those that were identified by Louvain method for community detection [41]. We first detected 

modules using Louvain method and then detected the same number of modules using our model. There 

was a substantial agreement between identified modules. Results are shown in Supplementary Fig. S3.  

 

Base Model of Streamline Connections 

We first defined a base model of connectivity that includes only geometric and genetic factors. Illustration 

of the two factors (Fig. 3a), namely physical closeness and genetic similarity (cij, gij) provides an initial 

qualitative assessment of the contribution of the factors in explaining observed streamline counts between 

regions. According to Fig. 3a, physical closeness seems to be the dominant factor, with the overall 

organization of the observed connectivity matrix being very similar to the organization of the adjacency 

matrix defined by physical closeness. The most important specification that the genetic factor provides is 

the distinction between cortical, subcortical, and cerebellar regions. A closer look into the genetic 

similarity, however, reveals that the genetic similarity between regions is not homogenous inside the cortex, 

reflecting distinctions between different lobes. 

Note that for all following analyses, the generative model was run individually for each participant, and 

summary statistics were computed. The base model was run to infer participant-specific parameters (α, β, 

see Eq. 2) and to compute model likelihoods. We then computed the proportion of the observed 

connectivity that is explained by the model (ρ, see Eq. 4). The measure ρ quantifies the improvement over 

a random model and has a maximum value of 1.   

Our experiments revealed that the most dominant factor in describing streamline counts between 

regions was physical closeness (Fig. 3b, c). When using single factors alone, we had average (across all 
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participants) ρ of 0.60 and 0.05 for closeness and genetic similarity, respectively. Inclusion of the closeness 

factor increased ρ by 0.56 on average (95% CI: 0.559, 0.561) as compared to the model including only the 

genetic factors (Wilcoxon signed-rank test to compare AIC values, p < 1 × 10−16). The average increase 

in ρ was 0.003 (95% CI: 0.002, 0.004) with the inclusion of the genetic factor in the model including only 

closeness factor (Wilcoxon signed-rank test to compare AIC values, p < 1 × 10−16). Finally, when using 

the both factors (Fig. 3c, d), we observed the best model fit (ρ=0.61). Note that inclusion of a factor does 

not increase ρ in a linear fashion due to nonlinear dependencies between factors and the resulting model 

likelihood.  

 

Architectural Specifications of Brain Network 

With the inclusion of the architectural specifications that encodes the modular structure, we observed a 

significantly better model fit (ρ=0.70) (Fig. 3c, d), with average 0.096 increase in ρ (95% CI: 0.096, 0.098) 

compared to the base model (Wilcoxon signed-rank test to compare AIC values, p < 1 × 10−16). We also 

assess the significance of modules compared to randomly defined modules (permutation testing with 

random modules, p < 1 × 10−3). 

After imposing both modular structure and presence of hub regions, the average ρ was 0.72, which was 

a significant increase compared to the modular structure alone and to the base model (Wilcoxon signed-

rank test to compare AIC values, p < 1 × 10−16) (Fig. 3c). Thus, our analyses supported the hypothesis 

that architectural specifications have a significant role in explaining the observed streamline counts 

between regions.  

 

A Modular yet Integrative Organization 

We identified 6 consensus structural modules. Two pairs of symmetric modules and two modules extending 

to both hemispheres in Fig. 4a, b reflect the consensus of module assignments from all participants. The 

final assignment of regions into modules is given in Supplemental File 4. The consensus set of hub regions 

for all participants is illustrated in Fig. 4c.  

Additionally, we investigated how structural network organization is related to the functional 

specialization of regions. We calculated the similarity between the alliance of regions determined by the 

structural modules and the predefined functional systems using Normalized Mutual Information (NMI). 

This yielded an NMI value of 0.48 (permutation testing with random modules, p = 0.0003), suggesting a 

significant functional correlate of structural modules.   

 

Developmental Effects 

Participant-specific parameters (α, β, λ) and ρ values were studied across ages in order to show how model 

parameters and the contribution of different factors evolve during development. When the full model was 

run with the architectural specifications, we observed significant changes in the model parameters with 

age. The coefficient of the physical closeness (α) showed a significant developmental decrease (Pearson 

correlation coefficient r = −0.18, p = 5 × 10−7), while the coefficient of the genetic similarity (β) showed 

a significant increase (Pearson correlation coefficient r  = 0.12 , p = 0.0003 ). We also observed a 

significant increase in the parameter (λ) encoding architectural specifications corresponding to a modular 

yet integrative organization (Pearson correlation coefficient r = 0.26, p = 5 × 10−14). 

We observed a decreasing joint contribution of physical closeness and genetic similarity in the observed 

streamline counts (Fig. 5a, b, c). The proportion of explained connectivity (ρ) showed a significant 

decrease by age when using only genetic similarity (Pearson correlation coefficient r  = −0.14 , p =
5 × 10−5), only physical closeness (Pearson correlation coefficient r = −0.26, p = 4 × 10−14), and both 

(Pearson correlation coefficient r = −0.26, p = 1 × 10−14). 
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In contrast to the decreasing effect of the base model, the contribution of the architectural specifications 

in ρ was positively correlated with age (Fig. 5d, e). The relative change in ρ value as compared to the base 

model showed significant increase both for modular structure alone (Pearson correlation coefficient r =
0.27, p = 1 × 10−15) and for modular structure with hubs (Pearson correlation coefficient r = 0.32, p <
1 × 10−16). Additionally, the modularity coefficient (Q) that quantifies the extent that a network has a 

modular organization (that is, dense connections within modules, sparse connections between modules) 

[42] showed a significant increase by age (Pearson correlation coefficient r = 0.26, p < 4 × 10−14) (Fig. 

5f).  

We finally investigated how the relationship between structural network architecture and functional 

specialization of regions evolves during development. We calculated individual NMI values for each 

participant, by comparing alliance of regions determined by the structural modules and the predefined 

functional systems. We observed a significant positive correlation between individual NMI values and ages 

of participants (Pearson correlation coefficient r  = 0.11 , p = 0.002 ), indicating that the functional 

relevance of structural modules increases during development.  

 

DISCUSSION 

 

We investigated how multiple factors contribute towards explaining observed streamline counts, and how 

their effects change over the course of development. We found a dominant contribution of brain geometry 

in explaining the observed streamlines, with regional gene expression profiles contributing less, albeit 

significantly. However, the brain network organization could not be fully accounted for by only considering 

geometric and genetic features of brain regions. Architectural specifications, which promote segregated 

modules and integrative hub regions, explained a significant proportion of the observed connectivity. 

Notably, the extent to which these architectural specifications contribute towards explaining structural 

connectivity increased during development, relative to the contribution of geometry and genes. 

Additionally, the functional relevance of the structural modules increased during development. 

 

Wiring Costs and Genes 

The human brain develops under special sets of constraints reflected through its physical features. It is 

spatially embedded into a three-dimensional anatomical space and is subject to metabolic costs in forming 

axonal connections between regions [43], [44]. Many aspects of brain networks have been linked to such 

geometric and cost related constraints, via conservation principles such as minimization of wiring cost or 

energy consumption [45], [46]. Our results provide important insights into the contribution of geometry in 

explaining observed connectivity between regions, by quantifying the extent to which physical distance 

between regions explains the structural connectivity. The distance factor was the most dominant contributor 

in explaining the observed connectivity (Fig. 3). This finding is consistent with the major role of distance 

in the economy of human brain organization [15], [44], [47].  

The effect of regional gene expression levels in the formation of axonal connections has recently begun 

to be explored in postmortem tissue samples [13]. Notably, in human brains, gene expression profiles 

define only subtle differences between regions of the neocortex [32], [36], with significant genetic 

dissimilarities among major sections, namely cortex, subcortex, and cerebellum. Our results were 

consistent with this fact, as the main genetic differences were observed among these three major sections 

(Fig. 3).  
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Connectivity is More Than Wiring Costs and Genes 

It is expected that the brain network organization cannot be fully accounted for by wiring costs alone [14], 

[15], [17], [18], [48]. By using our generative model, we quantified the gap between the observed 

streamline counts and what is expected from a base model considering only geometric and genetic features 

of the regions. The proportion of the connectivity explained by the base model (ρ=0.61) pointed to the 

presence of other factors accounting for the unexplained portion. One possible hypothesis is that brain 

structural connectivity is shaped in order to balance the trade-off between operating cost minimization and 

the adaptive value of the resulting organization [44].  

 

Distinctive Architecture of Brain Network 

We demonstrated that the modular yet integrative organization of the brain, which has been commonly 

demonstrated for functional networks [4], is also evident in structural brain networks (Fig. 4). Our results 

supported the hypothesis that architectural specifications accompany geometric and genetic specifications 

in explaining the brain network organization [17]. Observed connectivity was explained best by a model 

that incorporates such architectural specifications related to the presence of modules and hubs (Fig. 3). 

Although our results demonstrated the importance of the architectural specifications, it is still unclear what 

other factors can be associated with these specifications. A promising future research direction can be the 

identification of molecular, as well as system-level features of the brain that correlate with this tendency 

to have a distinctive architecture. 

The identified structural modules showed noticeable symmetry between hemispheres. Notably, the 

alliance of regions in forming structural modules highlights their functional correlates. One pair of 

symmetric modules (modules 1,4 in Fig. 4) was mainly defined by regions of frontal and cingulate cortex, 

encompassing the default mode network, cingulo-opercular system, and ventral attention system. One 

module that extended to both hemispheres (module 2) mainly consisted of regions of the visual system, 

including fusiform, inferior temporal, lateral occipital, and lingual. Homotopic visual areas are densely 

connected through callosal connections [49], possibly in order to facilitate the continuity of perception 

[50]. This may explain the presence of this bi-hemispheric module. The same module also included left 

and right cerebellar cortices, that are again densely connected to each other. The division of the temporal 

lobe between modules can be putatively associated with the separation between visual and 

auditory/language pathways. Superior and medial temporal cortices were assigned to modules 0 and 5 that 

included mainly parietal and subcortical regions. The connections between superior temporal cortex and 

inferior parietal cortex constitute an integral part of the speech processing system [51], [52]. On the other 

hand, the inferior temporal cortex was assigned to the bi-hemispheric visual module. The ventral stream of 

visual processing utilizes connections between visual cortex and inferior temporal cortex [53], [54].  

Our analyses also demonstrated that the resulting modular organization of the structural brain network 

is significantly associated with emergent functional systems, supporting previous findings on the positive 

correlation between structural and fMRI-based functional connectivity [55], [56]. Elaborating the exact 

role of topological features, such as the presence of structural hubs, in facilitating links between structural 

modules and functional systems is a promising future research direction.  

 

Brain Network Becomes Even More Distinctive During Development 

The human brain undergoes a protracted period of development from childhood to adulthood [57]–[59] 

that is assumed to be linked to the development of many sophisticated cognitive functions. Cognitive and 

behavioral changes occurring throughout childhood and adolescence [60] make these periods especially 

critical for investigations on changes of the white matter connectivity. 
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Developmental changes in the contribution of individual factors, as suggested by our results, presented 

an interesting picture of the developing brain during adolescence. The contribution of geometry in 

explaining streamline counts decreases over development, possibly implying that the links between wiring 

costs and the network organization of the brain weaken during development, with increasing emphasis on 

the adaptive value of the resulting organization. This possibility was further supported by the increasing 

effect of the architectural specifications that promote a modular organization (Fig. 5).  

 

Methodological Considerations 

Several practical limitations of the current work should be considered when evaluating the presented 

results. Measuring structural connectivity using diffusion tensor imaging may suffer from the inability to 

accurately describe the regions with crossing fibers [61]. More advanced imaging techniques with higher 

resolutions [62] can be used in future studies where such data has been collected. Furthermore, diffusion 

based tractography has method-specific biases in fiber lengths, making the resulting connectivity matrices 

biased towards short-range connections [61], [63]. Therefore, the reported strong contribution of Euclidean 

distance in explaining the observed streamline counts may be partly attributed to the short-range bias of 

tractography algorithms. In order to demonstrate the robustness of the reported results to such confounding 

factors, we used consistency based thresholding [27] to prune possibly spurious connections and repeated 

our experiments with different network density (threshold) levels. The relative contribution of all factors 

remained the same across different density levels, suggesting high reliability of our results 

(Supplementary Fig. S5). 

The geometric proximity of regions was computed using Euclidean distance. Other more sophisticated 

distance measures such as geodesic distance, defined within the white matter geometry, could also be used 

for the same purpose. However, this approach could lead to a circular argument when explaining 

connectivity by geometry, since white matter geometry needs to be defined by observed streamline 

connectivity. 

The blurring effect caused by head motion during image acquisition may introduce a spurious increase 

in the contribution of geometry, which will possibly be higher in younger participants. In order to have 

results robust to motion effects, we have used the comprehensive quality assurance pipeline as described 

in [21]. The primary measurement of in-scanner head motion was mean relative volume-to-volume 

displacement as determined by rigid-body motion correction. According to this motion metric, our sample 

(mean: 0.46mm, std: 0.4mm) included images with “excellent” and “good” quality (please refer to Table 1 

in Roalf et al. 2016). Nevertheless, more analyses can be done in future by including the amount of motion 

as a covariate, although which motion parameters to be included remains a current challenge.  

In our analyses, we defined a generative model of structural connectivity using a parametric model 

(Dirichlet-Multinomial). Thus, the measure ρ that we used to calculate the proportion of the observed 

connectivity explained by the model, is a reliable measure for the same, as long as the selected parametric 

model is an appropriate choice for our dataset. In order to demonstrate that our model can reliably describe 

structural connectivity, we compared it with several nonparametric models, validating the plausibility of 

our parametric choices (Supplementary Note S3). We also showed that the reported results do not change 

when using a more conventional measure of performance. Instead of using the measure ρ, we repeated our 

experiments using root mean square error (RMSE) between empirical networks and the ones that are 

generated by our model. The contributions of factors were stable across different metrics, highlighting 

reliability of our results (see Supplementary Note S9). 

Traditionally, hub regions are defined based on the degree, strength, centrality, or the participation 

coefficient distributions of the regions [64], [65]. For this reason, our definition of hubs based on certain 

architectural specifications may seem to be an unorthodox choice. We, therefore, showed that the identified 
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hub regions have high participation coefficients and betweenness centrality (see Supplementary Note 

S10). This suggests that using certain architectural specifications to identify hub regions provides similar 

results as compared to traditional definitions.  

The region-to-region genetic similarity was calculated from genome-wide expression levels of brain 

tissue samples from six different donors [33] of the Allen Brain Atlas [32]. The inter-regional genetic 

similarity factor was therefore same for all participants in our imaging sample. However, it is expected that 

the gene expression profiles, and hence the region-to-region similarities change over the course of 

development. The current expression profiles were computed using microarray data from adults (ages:24-

57 years), which precludes a detailed analysis using our sample of young individuals (ages:8-22). This 

important limitation should be considered when interpreting our genetic findings. However, our work 

presents an important first step in studying the contribution of gene expression to brain organization, 

notwithstanding the fact that our data does not have in vivo characterization of the brain’s transcriptional 

distribution. 

When studying the relationship between the a priori functional systems and the structural modules, we 

defined a fixed set of functional systems using results from a study [38] that had used a young adult sample 

(mean-age: 25.2 years, std: 2.5 years). In order to have more reliable interpretations regarding the 

relationship between functional systems and structural modules, however, future investigations should 

consider the fact that the functional organization of the brain also changes throughout development [2]. 

Defining functional systems for each participant individually, using a multimodal dataset including 

functional imaging modalities, is a possible future direction to take. 

 

A Generic Model for Future Neuroscience Studies 

In this study, we considered effects of two intrinsic features, namely distance and gene expression, plus 

two architectural specifications corresponding to the presence of modules and hub regions. One advantage 

of the proposed methodology is the ease of inclusion of novel factors, including fiber lengths, cortical 

gyrification, and cytoarchitectonic or other histological properties of regions, providing a generic tool for 

future studies. Furthermore, probabilistic generative models can successfully represent different individual 

modalities of brain connectivity such as functional connectivity and can be used to model different 

modalities jointly. Multimodal connectivity is an especially exciting avenue of research to pursue.  

Employing generative models of brain connectivity may further advance network neuroscience by 

providing a means of modeling joint and possibly nonlinear contributions of multiple factors in describing 

structural and functional characteristics of the brain network. This may enable development of new 

methodologies in effectively identifying alterations in connectivity patterns that have been shown to be 

present in clinical samples [66], between sexes [67], and during learning [68] or development [69].  
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Figure 1. Image processing pipeline. The steps of the image processing and connectivity matrix 

construction pipeline are displayed as arrows between the rectangle boxes that represent inputs and outputs 

of the steps. The software tools used are given in parentheses.  
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Figure 2. Illustration of methodology and experiments. The generative model of streamline connectivity 

is constructed, using the expected number of connections and the observed streamline counts as the input. 

The expected number of connections are calculated based on the genetic and geometric (Euclidean 

closeness) relationships among regions, as well as by considering certain architectural specifications. After 

model fitting, the two main outcomes are the quantification of the contribution of different factors in 

explaining the observed streamline counts and the organization of brain regions. Finally, a developmental 

analysis to probe changes in these outcomes across ages is performed. 
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Figure 3. Contributions of multiple factors in explaining observed structural connectivity. (a) 

Illustration of connectivity matrices encoding observed streamline counts, physical closeness of regions, 

and genetic similarity between region. The matrices depict the strength of connectivity between regions, 

as measured by different factors. Rows and columns correspond to regions in the same order. Connectivity 

matrices are averaged across all participants and normalized to the range 0-1 for visualization purposes. 

(b) Coefficients (α, β, λ) of different factors in the generative model. Box plots summarize values across all 

participants. (c) The proportion of explained connectivity (ρ) by models including different sets of factors. 

The models including modules and hubs also include closeness and genetic similarity factors. All pairwise 

comparisons between models using Wilcoxon signed-rank test yield statistically significant differences. (d) 

Comparisons of mean ρ values between three models, namely the base model (closeness and genes), the 

modular model, and the modular yet integrative model.  
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Figure 4. Modules and hubs of the structural brain network. (a) 6 modules were identified with two 

bi-hemispheric (modules 2,3) and two symmetric pairs of modules. The alliance of regions into modules 

reflects the functional correlates of these modules. For instance, module 2 mainly consists of regions of the 

visual system. The modules 1 and 4 form a structural basis for several functional systems including the 

default mode network, cingulo-opercular system, and ventral attention system. Connections between 

regions of the module 0 constitute an integral part of the language processing system. (b) Visualization of 

same modules on axial and coronal slices. (c) Hub regions of the brain network. Hubs are mainly 

accumulated at the anterior, posterior, and temporal regions instead of being around the geometric center 

of the network that would be preferred by a geometric model of connectivity.  
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Figure 5. Developmental effects. (a,b,c) The proportion of explained connectivity as measured by ρ 

across ages, using (a) only genetic similarity factor, (b) only closeness factor, and (c) both. Pearson 

correlation coefficient (r) is given at the top of each figure. In all the three cases, explained connectivity 

shows a significant decrease over the course of development. The reverse is observed for the architectural 

specifications corresponding to the presence of (d) modules and (e) both modules and hubs. In (d) and (e), 

the relative increase in ρ compared to the base model (including both closeness and genetic similarity 

factors) is given. (f) Developmental change in the modularity coefficient (Q) that quantifies the extent that 

a network has a modular organization. 
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