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Abstract 
 

Personality neuroscience aims to find associations between brain measures and 
personality traits.  Findings to date have been severely limited by a number of factors, including 
small sample size and omission of out-of-sample prediction.  We capitalized on the recent 
availability of a large database, together with the emergence of specific criteria for best 
practices in neuroimaging studies of individual differences.  We analyzed resting-state functional 
magnetic resonance imaging data from 884 young healthy adults in the Human Connectome 
Project (HCP) database. We attempted to predict personality traits from the “Big Five”, as 
assessed with the NEO-FFI test, using individual functional connectivity matrices.  After 
regressing out potential confounds (such as age, sex, handedness and fluid intelligence), we 
used a cross-validated framework, together with test-retest replication (across two sessions of 
resting-state fMRI for each subject), to quantify how well the neuroimaging data could predict 
each of the five personality factors. We tested three different (published) denoising strategies for 
the fMRI data, two inter-subject alignment and brain parcellation schemes, and three different 
linear models for prediction. As measurement noise is known to moderate statistical 
relationships, we performed final prediction analyses using average connectivity across both 
imaging sessions (1 h of data), with the analysis pipeline that yielded the highest predictability 
overall. Across all results (test/retest; 3 denoising strategies; 2 alignment schemes; 3 models), 
Openness to experience emerged as the only reliably predicted personality factor. Using the full 
hour of resting-state data and the best pipeline, we could predict Openness to experience 
(NEOFAC_O: r=0.24, R​2​=0.024) almost as well as we could predict the score on a 24-item 
intelligence test (PMAT24_A_CR: r=0.26, R​2​=0.044). Other factors (Extraversion, Neuroticism, 
Agreeableness and Conscientiousness) yielded weaker predictions across results that were not 
statistically significant under permutation testing. We also derived two superordinate personality 
factors (“α” and “β”) from a principal components analysis of the NEO-FFI factor scores, thereby 
reducing noise and enhancing the precision of these measures of personality. We could account 
for 5% of the variance in the β superordinate factor (r=0.27, R​2​=0.050), which loads highly on 
Openness to experience. We conclude with a discussion of the potential for predicting 
personality from neuroimaging data and make specific recommendations for the field. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/215129doi: bioRxiv preprint 

https://doi.org/10.1101/215129


Introduction 
Personality refers to the relatively stable disposition of an individual that influences 

long-term behavioral style ​(Back, Schmukle, & Egloff, 2009; Furr, 2009; Hong, Paunonen, & 
Slade, 2008; Jaccard, 1974)​.  It is especially conspicuous in social interactions, and in 
emotional expression. It is what we pick up on when we observe a person for an extended time, 
and what leads us to make predictions about general tendencies in behaviors and interactions 
in the future.  Often, these predictions are inaccurate stereotypes, and they can be evoked even 
by very fleeting impressions, such as merely looking at photographs of people ​(Todorov, 2017)​. 
Yet there is also good reliability ​(Viswesvaran & Ones, 2000)​ and consistency ​(B. W. Roberts & 
DelVecchio, 2000)​ for many personality traits currently used in psychology, which can predict 
real-life outcomes ​(Brent W. Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007)​.  

While human personality traits are typically inferred from questionnaires, viewed as 
latent variables they could plausibly be derived also from other measures.  In fact, there are 
good reasons to think that biological measures other than self-reported questionnaires can be 
used to estimate personality traits. Many of the personality traits similar to those used to 
describe human dispositions can be applied to animal behavior as well, and again they make 
some predictions about real-life outcomes ​(Gosling & John, 1999; Gosling & Vazire, 2002)​.  For 
instance, anxious temperament has been a major topic of study in monkeys, as a model of 
human mood disorders.  Hyenas show neuroticism in their behavior, and also show sex 
differences in this trait as would be expected from human data (in humans, females tend to be 
more neurotic than males; in hyenas, the females are socially dominant and the males are more 
neurotic). Personality traits are also highly heritable.  Anxious temperament in monkeys is 
heritable and its neurobiological basis is being intensively investigated ​(Oler et al., 2010)​. Twin 
studies in humans typically report heritability estimates for each trait between .4 and .6 
(Bouchard & McGue, 2003; Jang, Livesley, & Vernon, 1996; Verweij et al., 2010)​, even though 
no individual genes account for much variance  (studies using common single-nucleotide 
polymorphisms (SNPs) report estimates between 0 and 0.2 ​(R. A. Power & Pluess, 2015; 
Vinkhuyzen et al., 2012)​).  

Just as gene-environment interactions constitute the distal causes of our phenotype, the 
proximal cause of personality must come from brain-environment interactions, since these are 
the basis for all behavioral patterns.  Some aspects of personality have been linked to specific 
neural systems -- for instance, behavioral inhibition and anxious temperament have been linked 
to a system involving the medial temporal lobe and the prefrontal cortex ​(Birn et al., 2014)​. 
Although there is now universal agreement that personality is generated through brain function 
in a given context, it is much less clear what type of brain measure might be the best predictor 
of personality.  Neurotransmitters, cortical thickness or volume of certain regions, and functional 
measures have all been explored with respect to their correlation with personality traits (see 
(Turhan Canli, 2006; Yarkoni., 2015)​ for reviews).  We briefly summarize this literature next and 
refer the interested reader to review articles and primary literature for the details. 
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The search for neurobiological substrates of personality traits 
Since personality traits are relatively stable over time (unlike state variables, such as 

emotions), one might expect that brain measures that are similarly stable over time are the most 
promising candidates for predicting such traits. The first types of measures to look at might thus 
be structural, connectional and neurochemical; indeed a number of such studies have reported 
correlations with personality differences. Here we briefly review studies using structural and 
functional magnetic resonance imaging (MRI) of humans, but leave aside research on 
neurotransmission (see ​(Turhan Canli, 2006; Yarkoni., 2015)​ for more exhaustive reviews). 
Although a number of different personality traits have been investigated, we emphasize those 
most similar to the “Big Five”, since they are the topic of the present paper (see below). 

Structural MRI studies 
Many structural MRI studies of personality to date have used voxel-based morphometry 

(VBM) ​(Blankstein, Chen, Mincic, McGrath, & Davis, 2009; Coutinho, Sampaio, Ferreira, 
Soares, & Gonçalves, 2013; DeYoung et al., 2010; Hu et al., 2011; Kapogiannis, Sutin, 
Davatzikos, Costa, & Resnick, 2013; W.-Y. Liu et al., 2013; Lu et al., 2014; Omura, Todd 
Constable, & Canli, 2005; Taki et al., 2013)​. Results have been quite variable, sometimes even 
contradictory (e.g., the volume of the posterior cingulate cortex has been found to be both 
positively and negatively correlated with agreeableness ​(Coutinho et al., 2013; DeYoung et al., 
2010)​). Methodologically, this is in part due to the rather small sample sizes (typically less than 
100; 116 in ​(DeYoung et al., 2010)​, 52 in ​(Coutinho et al., 2013)​) which undermine replicability 
(Button et al., 2013)​; studies with larger sample sizes ​(W.-Y. Liu et al., 2013)​ typically fail to 
replicate previous results.  

More recently, surface-based morphometry (SBM) has emerged as a promising measure 
to study structural brain correlates of personality ​(Bjørnebekk et al., 2013; Holmes et al., 2012; 
Rauch et al., 2005; Riccelli, Toschi, Nigro, Terracciano, & Passamonti, 2017; Wright et al., 
2006)​. It has the advantage of disentangling several geometric aspects of brain structure which 
may contribute to differences detected in VBM, such as cortical thickness ​(Hutton, Draganski, 
Ashburner, & Weiskopf, 2009)​, cortical volume, and folding ​. ​Although many studies using SBM 
are once again limited by small sample sizes, one recent study ​(Riccelli et al., 2017)​ used 507 
subjects to investigate personality, although it had other limitations (e.g., using a correlational, 
rather than a predictive framework ​(Dubois & Adolphs, 2016; Woo, Chang, Lindquist, & Wager, 
2017; Yarkoni & Westfall, 2017)​).  

There is much room for improvement in structural MRI studies of personality traits. The 
limitation of small sample sizes can now be overcome, since all MRI studies regularly collect 
structural scans, and recent consortia and data sharing efforts have lead to the accumulation of 
large publicly available datasets ​(Job et al., 2017; Miller et al., 2016; Van Essen et al., 2013)​. 
One could imagine a mechanism by which personality assessments, if not available already 
within these datasets, are collected later ​(Mar, Spreng, & Deyoung, 2013)​, yielding large 
samples for relating structural MRI to personality.  Lack of out-of-sample generalizability, a 
limitation of almost all studies that we raised above, can be overcome using cross-validation 
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techniques, or by setting aside a replication sample. In short: despite a considerable historical 
literature that has investigated the association between personality traits and structural MRI 
measures, there are as yet no very compelling findings because prior studies have been unable 
to surmount this list of limitations.  

Diffusion MRI studies 
Several studies have looked for a relationship between white-matter integrity as 

assessed by DTI and personality factors ​(Cohen, Schoene-Bake, Elger, & Weber, 2008; Kim & 
Whalen, 2009; Westlye, Bjørnebekk, Grydeland, Fjell, & Walhovd, 2011; Xu & Potenza, 2012)​. 
As with structural MRI studies, extant focal findings often fail to replicate with larger samples of 
subjects, which tend to find more widespread differences linked to personality traits ​(Bjørnebekk 
et al., 2013)​. The same concerns mentioned in the previous section, in particular the lack of a 
predictive framework (e.g., using cross-validation), plague this literature; similar 
recommendations can be made to increase the reproducibility of this line of research, in 
particular aggregating data ​(Miller et al., 2016; Van Essen et al., 2013)​ and using out-of-sample 
prediction ​(Yarkoni & Westfall, 2017)​.  

Functional MRI studies 
Functional MRI (fMRI) measures local changes in blood flow and blood oxygenation as a 

surrogate of the metabolic demands due to neuronal activity ​(Logothetis & Wandell, 2004)​. 
There are two main paradigms that have been used to relate fMRI data to personality traits: 
task-based fMRI and resting-state fMRI.  

Task-based fMRI studies are based on the assumption that differences in personality 
may affect information-processing in specific tasks ​(Yarkoni., 2015)​. Personality variables are 
hypothesized to influence cognitive mechanisms, whose neural correlates can be studied with 
fMRI. For example, differences in neuroticism may materialize as differences in emotional 
reactivity, which can then be mapped onto the brain ​(T. Canli et al., 2001)​. There is a very large 
literature on task-fMRI substrates of personality, which is beyond the scope of this overview. In 
general, some of the same concerns we raised above also apply to task-fMRI studies, which 
typically have even smaller sample sizes ​(Yarkoni, 2009)​, greatly limiting power to detect 
individual differences (in personality or any other behavioral measures). Several additional 
concerns on the validity of fMRI-based individual differences research apply ​(Dubois & Adolphs, 
2016)​ and a new challenge arises as well: whether the task used has construct validity for a 
personality trait. 

The other paradigm, resting-state fMRI, offers a solution to the sample size problem, as 
resting-state data is often collected alongside other data, and can easily be aggregated in large 
online databases ​(Biswal et al., 2010; Eickhoff, Nichols, Van Horn, & Turner, 2016; Poldrack & 
Gorgolewski, 2015; Van Horn & Gazzaniga, 2013)​. It is the type of data we used in the present 
paper.  Resting-state data does not explicitly engage cognitive processes that are thought to be 
related to personality traits. Instead, it is used to study correlated self-generated activity 
between brain areas while a subject is at rest. These correlations, which can be highly reliable 
given enough data ​(Finn et al., 2015; Laumann et al., 2015; Noble et al., 2017)​, are thought to 
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reflect stable aspects of brain organization ​(Xilin Shen et al., 2017; S. M. Smith et al., 2013)​. 
There is a large ongoing effort to link individual variations in functional connectivity (FC) 
assessed with resting-state fMRI to individual traits and psychiatric diagnosis (for reviews see 
(Dubois & Adolphs, 2016; Orrù, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012; S. M. 
Smith et al., 2013; Woo et al., 2017)​.  

A number of recent studies have investigated functional connectivity markers from 
resting-state fMRI and their association with personality traits ​(Adelstein et al., 2011; Aghajani et 
al., 2014; Baeken et al., 2014; Beaty et al., 2014, 2016; Gao et al., 2013; Jiao et al., 2017; Lei, 
Zhao, & Chen, 2013; Pang et al., 2016; Ryan, Sheu, & Gianaros, 2011; Takeuchi et al., 2012; 
Wu, Li, Yuan, & Tian, 2016)​. Somewhat surprisingly, these resting-state fMRI studies typically 
also suffer from low sample sizes (typically less than 100 subjects, usually about 40), and the 
lack of a predictive framework to assess effect size out-of-sample. One of the best extant 
datasets, the Human Connectome Project (HCP) has only in the past year reached its full 
sample of over 1000 subjects, now making large sample sizes readily available. To date, only 
the exploratory “MegaTrawl” ​(S. Smith et al., 2016)​ has investigated personality in this 
database; we believe that ours is the first comprehensive study of personality on the full HCP 
dataset, offering very substantial improvements over all prior work. 
 

Measuring Personality 
 Although there are a number of different schemes and theories for quantifying 

personality traits, by far the most common and well validated one, and also the only one 
available for the Human Connectome Project dataset, is the five-factor solution of personality 
(aka “The Big Five”).  This was originally identified through systematic examination of the 
adjectives in English language that are used to describe human traits. Based on the hypothesis 
that all important aspects of human personality are reflected in language, Raymond Cattell 
applied factor analysis to peer ratings of personality and identified 16 common personality 
factors ​(Cattell, 1945)​. Over the next 3 decades, multiple attempts to replicate Cattell’s study 
using a variety of methods (e.g. self-description and description of others with adjective lists and 
behavioral descriptions) agreed that the taxonomy of personality could be robustly described 
through a five-factor solution ​(Borgatta, 1964; Fiske, 1949; Norman, 1963; G. M. Smith, 1967; 
Tupes & Christal, 1961)​.  Since the 1980s, the Big Five has emerged as the leading 
psychometric model in the field of personality psychology ​(Goldberg, 1981; Robert R. McCrae & 
John, 1992)​. The five factors are commonly termed “openness,” “conscientiousness,” 
“extraversion,” “agreeableness,” and “neuroticism.” 

While the Big Five personality dimensions are not based on an independent theory of 
personality, and in particular have no basis in neuroscience theories of personality, proponents 
of the Big Five maintain that they provide the best empirically-based integration of the dominant 
theories of personality, encompassing the alternative theories of Cattell, Guilford and Eysenck 
(Amelang & Borkenau, 1982)​. Self-report questionnaires, such as the NEO-FFI ​(Robert R. 
McCrae & Costa, 2004)​, can be used to reliably assess an individual with respect to these five 
factors. Even though there remain critiques of the Big Five ​(Block, 1995; Uher, 2015)​, its 
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proponents argue that its five factors “are both necessary and reasonably sufficient for 
describing at a global level the major features of personality" ​(R. R. McCrae, Costa - American 
Psychologist, & 1986, 1986)​.  

The present study 
As we emphasized above, personality neuroscience based on MRI data confronts two 

major challenges. First, nearly all studies to date have been severely underpowered due to 
small sample sizes ​(Button et al., 2013; Schönbrodt & Perugini, 2013; Yarkoni, 2009)​. Second, 
most studies have failed to use a predictive or replication framework (but see ​(Deris, Montag, 
Reuter, Weber, & Markett, 2017)​), making their generalizability unclear -- a well-recognized 
problem in neuroscience studies of individual differences ​(Dubois & Adolphs, 2016; Gabrieli, 
Ghosh, & Whitfield-Gabrieli, 2015; Yarkoni & Westfall, 2017)​. The present paper takes these 
two challenges seriously by applying a predictive framework, together with a built-in replication, 
to a large, homogeneous resting-state fMRI dataset. We chose to focus on resting-state fMRI 
data to predict personality, because this is a predictor that could have better mechanistic 
interpretation than structural MRI measures (since ultimately it is brain function, not structure, 
that generates the behavior on the basis of which we can infer personality). 

Our dataset, the Human Connectome Project resting-state fMRI data (HCP rs-fMRI) 
makes available over 1000 well assessed healthy adults.  With respect to our study, it provided 
three types of relevant data:  (1) substantial high-quality resting-state fMRI (2 sessions per 
subject on separate days, each consisting of two 15 minute runs, for 1 hour total); (2) 
personality assessment for each subject (using the NEO-FFI 2); (3) additional basic cognitive 
assessment (including fluid intelligence and others), as well as demographic information, which 
can be assessed as potential confounds. 

Our primary question was straightforward:  given the challenges noted above, is it 
possible to find evidence that any personality trait can be reliably predicted from fMRI data, 
using the best available resting-state fMRI dataset together with the best generally used current 
analysis methods?  If the answer to this question is negative, this might suggest that studies to 
date that have claimed to find associations between resting-state fMRI and personality are false 
positives (but of course it would still leave open future positive findings, if more sensitive 
measures are available).  If the answer is positive, it would provide an estimate of the effect size 
that can be expected in future studies; it would provide initial recommendations for data 
preprocessing, modeling, and statistical treatment; and it would provide a basis for 
hypothesis-driven investigations that could focus on particular traits and brain regions.  As a 
secondary aim, we wanted to explore the sensitivity of the results to the details of the analysis 
used and gain some reassurance that any positive findings would be relatively robust with 
respect to the details of the analysis; we therefore used a few (well established) combinations of 
inter-subject alignment, preprocessing, and learning models. This is not intended as a 
systematic, exhaustive foray into all choices that could be made; such an investigation would be 
extremely valuable, yet is outside the scope of this work.  
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Methods 

Dataset 
We used data from a public repository, the 1200 subjects release of the Human Connectome 
Project (HCP) ​(Van Essen et al., 2013)​.  The HCP provides MRI data and extensive behavioral 
assessment from almost 1200 subjects. Acquisition parameters and “minimal” preprocessing of 
the resting-state fMRI data is described in the original publication ​(Glasser et al., 2013)​. Briefly, 
each subject underwent two sessions of resting-state fMRI on separate days, each session with 
two separate 15 minute acquisitions generating 1200 volumes (customized Siemens Skyra 3 
Tesla MRI scanner, TR = 720 ms, TE = 33 ms, flip angle= 52°, voxel size = 2 mm isotropic, 72 
slices, matrix = 104 x 90, FOV = 208 mm x 180 mm, multiband acceleration factor = 8). The two 
runs acquired on the same day differed in the phase encoding direction, left-right and right-left 
(which leads to differential signal intensity especially in ventral temporal and frontal structures). 
The HCP data was downloaded in its minimally preprocessed form, i.e. after motion correction, 
B​0​ distortion correction, coregistration to T​1​-weighted images and normalization to MNI space 
(the T1w image is registered to MNI space with a FLIRT 12 DOF affine and then a FNIRT 
nonlinear registration, producing the final nonlinear volume transformation from the subject's 
native volume space to MNI space). 

Personality assessment, and personality factors 
The 60 item version of the Costa and McCrae Neuroticism/Extraversion/Openness Five 

Factor Inventory (NEO-FFI), which has shown excellent reliability and validity ​(Robert R. 
McCrae & Costa, 2004)​, was administered to HCP subjects. This measure was collected as part 
of the Penn Computerized Cognitive Battery ​(R. C. Gur et al., 2001; Ruben C. Gur et al., 2010)​. 
Note that the NEO-FFI was recently updated (NEO-FFI-3, 2010), but the test administered to 
the HCP subjects is the older version (NEO-FFI-2, 2004). 

The NEO-FFI is a self-report questionnaire -- the abbreviated version of the 240-item 
Neuroticism / Extraversion / Openness Personality Inventory Revised (NEO-PI-R ​(Paul T. Costa 
& McCrae, 1992)​). For each item, participants reported their level of agreement on a 5-point 
Likert scale, from strongly disagree to strongly agree.  

The Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism 
scores are derived by coding each item’s answer (strongly disagree = 0; disagree = 1; neither 
agree nor disagree = 2; agree = 3; strongly agree = 4) and then reverse coding appropriate 
items and summing into subscales. As the item scores are available in the database, we 
recomputed the Big Five scores with the following item coding published in the NEO-FFI 2 
manual, where * denotes reverse coding : 

● Openness: ​(3*, 8*, 13, 18*, 23*, 28, 33*, 38*, 43, 48*, 53, 58)   
● Conscientiousness: ​(5, 10, 15*, 20, 25, 30*, 35, 40, 45*, 50,  55*, 60)  
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● Extraversion: ​(2, 7, 12*, 17, 22, 27*, 32, 37, 42*, 47, 52, 57*)  
● Agreeableness: ​(4, 9*, 14*, 19, 24*, 29*, 34, 39*, 44*, 49, 54*, 59*) 
● Neuroticism: ​(1*, 6, 11, 16*, 21, 26, 31*, 36, 41, 46*, 51, 56 ) 

We note that the Agreeableness factor score that we calculated was slightly discrepant with the 
score in the HCP database due to an error in the HCP database in not reverse-coding item 59 
at that time (downloaded 06/07/2017).  This issue was reported on the HCP listserv ​(Gray, 
2017)​. 

To test the internal consistency of each of the Big Five personality traits in our sample, 
Cronbach’s alpha was calculated.  

Each of the Big Five personality traits can be decomposed into further facets ​(P. T. 
Costa Jr & McCrae, 1995)​, but we did not attempt to predict these facets from our data. Not only 
does each facet rely on fewer items and thus constitute a noisier measure, which necessarily 
reduces predictability from neural data ​(Gignac & Bates, 2017)​; also, trying to predict many traits 
leads to a multiple comparison problem which then needs to be accounted for (for an extreme 
example, see the HCP “MegaTrawl” ​(S. Smith et al., 2016)​).  

Despite their theoretical orthogonality, the Big Five are often found to be correlated with 
one another in typical subject samples. Some authors have suggested that these 
inter-correlations suggest a higher-order structure, and two superordinate factors have been 
described in the literature, often referred to as {α / socialization / stability} and {β / personal 
growth / plasticity} ​(Blackburn, Renwick, Donnelly, & Logan, 2004; DeYoung, 2006; Digman, 
1997)​. The theoretical basis for the existence of these superordinate factors is highly debated 
(Robert R. McCrae et al., 2008)​, and it is not our intention to enter this debate. However, these 
superordinate factors are less noisy (have lower associated measurement error) than the Big 5, 
as they are derived from a larger number of test items; this may improve predictability ​(Gignac & 
Bates, 2017)​. Hence, we performed a principal component analysis on the 5 factor scores to 
extract 2 orthogonal superordinate components, and tested the predictability of these from the 
HCP rs-fMRI data, in addition to the original five factors. 

While we used resting-state fMRI data from two separate sessions (typically collected on 
consecutive days), there was only a single set of behavioral data available; the NEO-FFI was 
typically administered on the same day as the second session of resting-state fMRI ​(Van Essen 
et al., 2013)​. 

Fluid intelligence assessment 
An estimate of fluid intelligence is available as the ​PMAT24_A_CR​ measure in the HCP 

dataset. This proxy for fluid intelligence is based on a short version of Raven’s progressive 
matrices (24 items) ​(Bilker et al., 2012)​; scores are integers indicating number of correct items. 
We used this fluid intelligence score for two purposes: i) as a benchmark comparison in our 
predictive analyses, since others have previously reported that this measure of fluid intelligence 
could be predicted from resting-state fMRI in the HCP dataset ​(Finn et al., 2015; Noble et al., 
2017)​; ii) as a de-confounding variable (see “Assessment and removal of potential confounds” 
below). Note that we recently performed a factor analysis of the scores on all cognitive tasks in 
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the HCP to derive a more reliable measure of intelligence; this g-factor could be predicted better 
than the 24-item score from resting-state data ​(Dubois, Galdi, Paul, & Adolphs, 2018)​.  

Subject selection 
The total number of subjects in the 1200-subject release of the HCP dataset is N=1206. We 
applied the following criteria to include/exclude subjects from our analyses (listing in 
parentheses the HCP database field codes). i) Complete neuropsychological datasets. Subjects 
must have completed all relevant neuropsychological testing (PMAT_Compl=True, 
NEO-FFI_Compl=True, Non-TB_Compl=True, VisProc_Compl=True, SCPT_Compl=True, 
IWRD_Compl=True, VSPLOT_Compl=True) and the Mini Mental Status Exam 
(MMSE_Compl=True). Any subjects with missing values in any of the tests or test items were 
discarded. This left us with N = 1183 subjects. ii) Cognitive compromise.  We excluded subjects 
with a score of 26 or below on the MMSE, which could indicate marked cognitive impairment in 
this highly educated sample of adults under age 40 ​(Crum, Anthony, Bassett, & Folstein, 1993)​. 
This left us with N = 1181 subjects (638 females, 28.8 +/- 3.7 y.o., range 22-37 y.o). 
Furthermore, iii) subjects must have completed all resting-state fMRI scans 
(3T_RS-fMRI_PctCompl=100), which leaves us with N = 988 subjects. Finally, iv) we further 
excluded subjects with a root-mean-squared frame-to-frame head motion estimate 
(Movement_Relative_RMS.txt) exceeding 0.15mm in any of the 4 resting-state runs (threshold 
similar to ​(Finn et al., 2015)​). This left us with the final sample of N = 884 subjects (Table S1; 
475 females, 28.6 +/- 3.7 y.o., range 22-36 y.o.) for predictive analyses based on resting-state 
data. 

Assessment and removal of potential confounds 
We computed the correlation of each of the personality factors with gender (​Gender​), 

age (​Age_in_Yrs​, restricted), handedness (​Handedness​, restricted) and fluid intelligence 
(​PMAT24_A_CR​). We also looked for differences in personality in our subject sample with other 
variables that are likely to affect FC matrices, such as brain size (we used ​FS_BrainSeg_Vol​), 
motion (we computed the sum of framewise displacement in each run), and the multiband 
reconstruction algorithm which changed in the third quarter of HCP data collection 
(​fMRI_3T_ReconVrs​). Correlations are shown in ​Figure 2a​ below. We then used multiple linear 
regression to regress these variables from each of the personality scores and remove their 
confounding effects. 

Note that we do not control for differences in cortical thickness and other morphometric 
features, which have been reported to be correlated with personality factors (e.g. ​(Riccelli et al., 
2017)​). These likely interact with FC measures and should eventually be accounted for in a full 
model, yet this was deemed outside the scope of the present study. 

The five personality factors are intercorrelated to some degree (see Results, ​Figure 2a​). 
We did not orthogonalize them-- consequently predictability would be expected also to correlate 
slightly among personality factors.  
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It could be argued that controlling for variables such as gender and fluid intelligence 
risks producing a conservative, but perhaps overly pessimistic picture. Indeed, there are well 
established gender differences in personality ​(Feingold, 1994; Schmitt, Realo, Voracek, & Allik, 
2008)​, which might well be based on gender differences in functional connectivity (similar 
arguments can be made with respect to age ​(Allemand, Zimprich, & Hendriks, 2008; Soto, John, 
Gosling, & Potter, 2011)​ and fluid intelligence ​(Chamorro-Premuzic & Furnham, 2004; 
Rammstedt, Danner, & Martin, 2016)​).  Since the causal primacy of these variables with respect 
to personality is unknown, it is possible that regressing out sex and age could regress out 
substantial meaningful information about personality.  We therefore also report supplemental 
results with a less conservative de-confounding procedure -- only regressing out obvious 
confounds which are not plausibly related to personality, but which would plausibly influence 
functional connectivity data: image reconstruction algorithm, framewise displacement, and brain 
size measures.  

Data preprocessing 
Resting-state data must be preprocessed beyond “minimal preprocessing”, due to the           

presence of multiple noise components, such as subject motion and physiological fluctuations.            
Several approaches have been proposed to remove these noise components and clean the             
data, however the community has not yet reached a consensus on the “best” denoising pipeline               
for resting-state fMRI data ​(Caballero-Gaudes & Reynolds, 2016; Ciric et al., 2017; Murphy &              
Fox, 2017; Siegel et al., 2016)​. Most of the steps taken to denoise resting-state data have                
limitations, and it is unlikely that there is a set of denoising steps that can completely remove                 
noise without also discarding some of the signal of interest. Categories of denoising operations              
that have been proposed comprise tissue regression, motion regression, noise component           
regression, temporal filtering and volume censoring. Each of these categories may be            
implemented in several ways. There exist several excellent reviews of the pros and cons of               
various denoising steps ​(Caballero-Gaudes & Reynolds, 2016; T. T. Liu, 2016; Murphy, Birn, &              
Bandettini, 2013; J. D. Power et al., 2014)​.  

Here, instead of picking a single denoising strategy combining steps used in the             
previous literature, we set out to explore three reasonable alternatives, which we refer to as A,                
B, and C (​Figure 1c​). To easily apply these preprocessing strategies in a single framework,               
using input data that is either volumetric or surface-based, we developed an in-house, Python              
(v2.7.14)-based pipeline (mostly based on open source libraries and frameworks for scientific            
computing, including SciPy (v0.19.0), Numpy (v1.11.3), NiLearn (v0.2.6), NiBabel (v2.1.0),          
Scikit-learn (v0.18.1) ​(Abraham et al., 2014; K. Gorgolewski et al., 2011; K. J. Gorgolewski et               
al., 2017; Pedregosa et al., 2011; Walt, Colbert, & Varoquaux, 2011)​) implementing the most              
common denoising steps described in previous literature.  

Pipeline A reproduces as closely as possible the strategy described in ​(Finn et al.,              
2015) and consists of seven consecutive steps: 1) the signal at each voxel is z-score               
normalized; 2) using tissue masks, temporal drifts from cerebrospinal fluid (CSF) and white             
matter (WM) are removed with third-degree Legendre polynomial regressors; 3) the mean            
signals of CSF and WM are computed and regressed from gray matter voxels; 4) translational               
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and rotational realignment parameters and their temporal derivatives are used as explanatory            
variables in motion regression; 5) signals are low-pass filtered with a Gaussian kernel with a               
standard deviation of 1 TR, i.e. 720ms in the HCP dataset; 6) the temporal drift from gray matter                  
signal is removed using a third-degree Legendre polynomial regressor; 7) global signal            
regression is performed. 

Pipeline B​, described in ​(Ciric et al., 2017; Satterthwaite, Wolf, et al., 2013)​, is              
composed of four steps in our implementation: 1) normalization at voxel-level is performed by              
subtracting the mean from each voxel’s time series; 2) linear and quadratic trends are removed               
with polynomial regressors; 3) temporal filtering is performed with a first order Butterworth filter              
with a passband between 0.01 and 0.08 Hz (after linearly interpolating volumes to be censored,               
cf. step 4); 4) tissue regression (CSF and WM signals with their derivatives and quadratic               
terms), motion regression (realignment parameters with their derivatives, quadratic terms and           
square of derivatives), global signal regression (whole brain signal with derivative and quadratic             
term), and censoring of volumes with a root-mean-squared (RMS) displacement that exceeded            
0.25 mm are combined in a single regression model. 

Pipeline C​, inspired by ​(Siegel et al., 2016)​, is implemented as follows: 1) an automated               
independent component (IC)-based denoising was performed with ICA-FIX ​(Salimi-Khorshidi et          
al., 2014)​. Instead of running ICA-FIX ourselves, we downloaded the FIX-denoised data which             
is available from the HCP database; 2) voxel signals were demeaned and 3) detrended with a                
first degree polynomial; 4) CompCor, a PCA-based method proposed by ​(Behzadi, Restom,            
Liau, & Liu, 2007) was applied to derive 5 components from CSF and WM signals; these were                 
regressed out of the data, together with gray matter and whole-brain mean signals; volumes              
with a framewise displacement greater than 0.25 mm or a variance of differentiated signal              
(DVARS) greater than 105% of the run median DVARS were discarded as well; 5) temporal               
filtering was performed with a first-order Butterworth band-pass filter between 0.01 and 0.08 Hz,              
after linearly interpolating censored volumes. 

Inter-subject alignment, parcellation, and functional connectivity 
matrix generation 

An important choice in processing fMRI data is how to align subjects in the first place. 
The most common approach is to warp individual brains to a common volumetric template, 
typically MNI152. However, cortex is a 2D structure; hence, surface-based algorithms that rely 
on cortical folding to map individual brains to a template may be a better approach. Yet another 
improvement in aligning subjects may come from using functional information alongside 
anatomical information - this is what the multimodal surface matching (MSM) framework 
achieves ​(Robinson et al., 2014)​. MSM-All aligned data, in which intersubject registration uses 
individual cortical folding, myelin maps, and resting-state fMRI correlation data, is available for 
download from the HCP database. 

Our prediction analyses below are based on functional connectivity matrices. While 
voxel- (or vertex-) wise functional connectivity matrices can be derived, their dimensionality is 
too high compared to the number of examples in the context of a machine-learning based 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/215129doi: bioRxiv preprint 

https://paperpile.com/c/MrfAi9/3C4v+x1n5B
https://paperpile.com/c/MrfAi9/Xk95
https://paperpile.com/c/MrfAi9/JyIf
https://paperpile.com/c/MrfAi9/JyIf
https://paperpile.com/c/MrfAi9/R1le
https://paperpile.com/c/MrfAi9/R1le
https://paperpile.com/c/MrfAi9/zKKT
https://doi.org/10.1101/215129


predictive approach.  PCA or other dimensionality reduction applied to the voxelwise data can 
be used, but this often comes at the cost of losing neuroanatomical specificity.  Hence, we work 
with the most common type of data: parcellated data, in which data from many voxels (or 
vertices) is aggregated anatomically and the signal within a parcel is averaged over its 
constituent voxels. Choosing a parcellation scheme is the first step in a network analysis of the 
brain ​(Sporns, 2013)​, yet once again there is no consensus on the “best” parcellation. There are 
two main approaches to defining network nodes in the brain: nodes may be a set of overlapping, 
weighted masks, e.g. obtained using independent component analysis (ICA) of BOLD fMRI data 
(S. M. Smith et al., 2013)​; or a set of discrete, non-overlapping binary masks, also known as a 
hard parcellation ​(Glasser, Coalson, et al., 2016; Gordon et al., 2014)​. We chose to work with a 
hard parcellation, which we find easier to interpret. 

Here we present results based on a classical volumetric alignment, together with a 
volumetric parcellation of the brain into 268 nodes ​(Finn et al., 2015; X. Shen, Tokoglu, 
Papademetris, & Constable, 2013)​; and, for comparison, results based on MSM-All data, 
together with a parcellation that was specifically derived from this data ​(Glasser, Coalson, et al., 
2016)​ (​Figure 1d​).  

Timeseries extraction simply consisted in averaging data from voxels (or grayordinates) 
within each parcel, and matrix generation in pairwise correlating parcel time series (Pearson 
correlation coefficient). FC matrices were averaged across runs (all averaging used Fisher-z 
transforms) acquired with left-right and right-left phase encoding in each session, i.e. we derived 
two FC matrices per subject, one for REST1 (from REST1_LR and REST1_RL) and one for 
REST2 (from REST2_LR and REST2_RL); we also derived a FC matrix averaged across all 
runs (REST12). 

Test-retest comparisons  
We applied all three denoising pipelines to the data of all subjects. We then compared               

the functional connectivity (FC) matrices produced by each of these strategies, using several             
metrics. One metric that we used follows from the connectome fingerprinting work of ​(Finn et al.,                
2015)​, and was recently labeled the identification success rate (ISR) ​(Noble et al., 2017)​.              
Identification of subject S is successful if, out of all subjects’ FC matrices derived from REST2,                
subject S’s is the most highly correlated with subject S’s FC matrix from REST1 (identification               
can also be performed from REST2 to REST1; results are very similar). The ISR gives an                
estimate of the reliability and specificity of the entire FC matrix at the individual subject level,                
and is influenced both by within-subject test-retest reliability as well as by discriminability             
amongst all subjects in the sample. Relatedly, it is desirable to have similarities (and              
differences) between all subjects be relatively stable across repeated testing sessions.           
Following an approach introduced in ​(Geerligs, Rubinov, Cam-Can, & Henson, 2015)​, we            
computed the pairwise similarity between subjects separately for session 1 and session 2,             
constructing a N​subjects​×N​subjects matrix for each session. We then compared these matrices using             
a simple Pearson correlation. Finally, we used a metric targeted at behavioral utility, and              
inspired by ​(Geerligs, Rubinov, et al., 2015)​: for each edge (the correlation value between a               
given pair of brain parcels) in the FC matrix, we computed its correlation with a stable trait                 
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across subjects, and built a matrix representing the relationship of each edge to this trait,               
separately for session 1 and session 2. We then compared these matrices using a simple               
Pearson correlation. The more edges reliably correlate with the stable trait, the higher the              
correlation between session 1 and session 2 matrices. It should be noted that trait stability is an                 
untested assumption with this approach, because in fact only a single trait score was available               
in the HCP, collected at the time of session 2. We performed this analysis for the measure of                  
fluid intelligence available in the HCP (​PMAT24_A_CR​) as well as all Big Five personality              
factors.  

Prediction models 
There is no obvious “best” model available to predict individual behavioral measures 

from functional connectivity data ​(Abraham et al., 2016)​. So far, most attempts have relied on 
linear machine learning approaches. This is partly related to the well-known “curse of 
dimensionality”: despite the relatively large sample size that is available to us (N=884 subjects), 
it is still about an order of magnitude smaller than the typical number of features included in the 
predictive model. In such situations, fitting relatively simple linear models is less prone to 
overfitting than fitting complex nonlinear models.  

There are several choices of linear prediction models. Here, we present the results of 
two methods that have been used in the literature for similar purposes: ​1)​ a simple, “univariate” 
regression model as used in ​(Finn et al., 2015)​, and further advocated by ​(Xilin Shen et al., 
2017)​, preceded by feature selection; and  ​2)​ a regularized linear regression approach, based 
on elastic-net penalization ​(Zou & Hastie, 2005)​. We describe each of these in more detail next. 

Model (1) is the simplest model, and the one proposed by ​(Finn et al., 2015)​, consisting                
in a univariate regressor where the dependent variable is the score to be predicted and the                
explanatory variable is a scalar value that summarizes the functional connectivity network            
strength (i.e., the sum of edge weights). A filtering approach is used to select features (edges in                 
the FC correlation matrix) that are correlated with the behavioral score on the training set: edges                
that correlate with the behavioral score with a p-value less than 0.01 are kept. Two distinct                
models are built using edges of the network that are positively and negatively correlated with the                
score, respectively. This method has the advantage of being extremely fast to compute, but              
some main limitations are that i) it condenses all the information contained in the connectivity               
network into a single measure and does not account for any interactions between edges and ii)                
it arbitrarily builds two separate models (one for positively correlated edges, one for negatively              
correlated edges; they are referred to as the positive and the negative models ​(Finn et al.,                
2015)​) and does not offer a way to integrate them. We report results from both the positive and                  
negative models for completeness.  

To address the limitations of the univariate model(s), we also included a multivariate             
model. ​Model (2) kept the same filtering approach as for the univariate model (discard edges for                
which the p-value of the correlation with the behavioral score is greater than 0.01); this choice                
allows for a better comparison of the multivariate and univariate models, and for faster              
computation. Elastic Net is a regularized regression method that linearly combines L1- (lasso)             
and L2- (ridge) penalties to shrink some of the regressor coefficients toward zero, thus retaining               
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just a subset of features. The lasso model performs continuous shrinkage and automatic             
variable selection simultaneously, but in the presence of a group of highly correlated features, it               
tends to arbitrarily select one feature from the group. With high-dimensional data and few              
examples, the ridge model has been shown to outperform lasso; yet it cannot produce a sparse                
model since all the predictors are retained. Combining the two approaches, elastic net is able to                
do variable selection and coefficient shrinkage while retaining groups of correlated variables.            
Here however, based on preliminary experiments and on the fact that it is unlikely that just a few                  
edges contribute to prediction, we fixed the L1 ratio (which weights the L1- and L2-               
regularizations) to 0.01, which amounts to almost pure ridge regression. We used 3-fold nested              
cross-validation (with balanced “classes”, based on a partitioning of the training data into             
quartiles) to choose the alpha parameter (among 50 possible values) that weighs the penalty              
term.  

Cross-validation scheme 
In the HCP dataset, several subjects are genetically related (in our final subject sample, 

there were 410 unique families). To avoid biasing the results due to this family structure (e.g., 
perhaps having a sibling in the training set would facilitate prediction for a test subject), we 
implemented a leave-one-family-out cross-validation scheme for all predictive analyses.  

Statistical assessment of predictions 
Several measures can be used to assess the quality of prediction. A typical approach is 

to plot observed vs. predicted values (rather than predicted vs. observed ​(Piñeiro, Perelman, 
Guerschman, & Paruelo, 2008)​). The Pearson correlation coefficient between observed scores 
and predicted scores is often reported as a measure of prediction (e.g. ​(Finn et al., 2015)​), given 
its clear graphical interpretation. However, in the context of cross-validation, it is incorrect to 
square this correlation coefficient to obtain the coefficient of determination R​2​, which is often 
taken to reflect the proportion of variance explained by the model ​(Alexander, Tropsha, & 
Winkler, 2015)​; instead, the coefficient of determination R​2 ​should be calculated as:  

                                 ​                                                         (1)1 R2 =  −  
∑
n

i = 1
( y  − y  )i i

2

∑
n

i = 1
( y  − y  )i

︿

i
2

 

where ​n​ is the number of observations (subjects), y is the observed response variable, y̅ is its 
mean, and ŷ is the corresponding predicted value. Equation (1) therefore measures the size of 
the residuals from the model compared with the size of the residuals for a null model where all 
of the predictions are the same, i.e., the mean value y̅. In a cross-validated prediction context, 
R​2 ​can actually take negative values (in cases when the denominator is larger than the 
numerator, i.e. when the sum of squared errors is larger than that of the null model)! Yet 
another, related statistic to evaluate prediction outcome is the Root Mean Square Deviation 
(RMSD), defined in ​(Piñeiro et al., 2008)​ as:  
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RMSD as defined in (2) represents the standard deviation of the residuals. To facilitate 
interpretation, it can be normalized by dividing it by the standard deviation of the observed 
values: 
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nRMSD thus has a very direct link to R​2​ (3); it is interpretable as the average deviation of each 
predicted value to the corresponding observed value, and is expressed as a fraction of the 
standard deviation of the observed values. 

In a cross-validation scheme, the folds are not independent of each other. This means 
that statistical assessment of the cross-validated performance using parametric statistical tests 
is problematic ​(Combrisson & Jerbi, 2015; Noirhomme et al., 2014)​. Proper statistical 
assessment should thus be done using permutation testing on the actual data. To establish the 
empirical distribution of chance, we ran our final predictive analyses using 1000 random 
permutations of the scores (shuffling scores randomly between subjects, keeping everything 
else exactly the same, including the family structure).  
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Figure 1. Overview of our approach​. In total, we separately analyzed 36 different sets of 
results: 2 data sessions x 2 alignment/brain parcellation schemes x 3 preprocessing pipelines x 
3 predictive models (univariate positive, univariate negative, and multivariate). ​a​. The data from 
each selected HCP subject (N​subjects​=884) and each run (REST1_LR, REST1_RL, REST2_LR, 
REST2_RL) was downloaded after minimal preprocessing, both in MNI space, and in MSM-All 
space. The _LR and _RL runs within each session were averaged, producing 2 datasets that we 
call REST1 and REST2 henceforth.  Data for REST1 and REST2, and for both spaces (MNI, 
MSM-All) were analyzed separately. We applied three alternate denoising pipelines to remove 
typical confounds found in resting-state fMRI data (see ​c​). We then parcellated the data (see ​d​) 
and built a functional connectivity matrix separately for each alternative. This yielded 6 FC 
matrices per run and per subject. In red: alternatives taken and presented in this paper. ​b​. For 
each of the 6 alternatives, an average FC matrix was computed for REST1 (from REST1_LR 
and REST1_RL), for REST2 (from REST2_LR and REST2_RL), and for all runs together, 
REST12. For a given session, we built a (N​subjects​ x N​edges​) matrix, stacking the upper triangular 
part of all subjects’ FC matrices (the lower triangular part is discarded, because FC matrices are 
diagonally symmetric). Each column thus corresponds to a single entry in the upper triangle of 
the FC matrix (a pairwise correlation between two brain parcels, or edge) across all 884 
subjects.  There are a total of N​parcels​(N​parcels​-1)/2 edges (thus: 35778 edges for the MNI 
parcellation, 64620 edges for the MSM-All parcellation). This was the data from which we then 
predicted individual differences in each of the personality factors. We used two different linear 
models (see text), and a leave-one-family-out cross validation scheme. The final result is a 
predicted score for each subject, against which we correlate the observed score for statistical 
assessment of the prediction. Permutations are used to assess statistical significance. ​c​. Detail 
of the three denoising alternatives. These are common denoising strategies for resting-state 
fMRI. The steps are color-coded to indicate the category of operation they correspond to 
(legend at the bottom). See text for details. ​d​. The parcellations used for the MNI-space and 
MSM-All space, respectively. Parcels are randomly colored for visualization. Note that the 
parcellation used for MSM-All space does not include subcortical structures, while the 
parcellation used for MNI space does.  

Results 

Characterization of behavioral measures 

Internal consistency, distribution, and inter-correlations of personality 
traits 

In our final subject sample (N=884), there was good internal consistency for each 
personality trait, as measured with Cronbach’s α. We found: Openness, α = 0.76; 
Conscientiousness α = 0.81; Extraversion, α = 0.78; Agreeableness, α = 0.76; and Neuroticism, 
α = 0.85. These compare well with the values reported by ​(Robert R. McCrae & Costa, 2004)​. 
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Scores on all factors were nearly normally distributed by visual inspection, although the 
null hypothesis of a normal distribution was rejected for all but Agreeableness (using D’Agostino 
and Pearson’s ​(D’Agostino & Pearson, 1973)​ normality test as implemented in SciPy) (​Figure 
2b​).  

Although in theory the Big Five personality traits should be orthogonal, their estimation 
from the particular item scoring of versions of the NEO in practice deviates considerably from 
orthogonality.  This intercorrelation amongst the five factors has been reported for the NEO-PI-R 
(Block, 1995; Saucier, 2002)​, the NEO-FFI ​(Block, 1995; Egan, Deary, & Austin, 2000)​, and 
alternate instruments ​(DeYoung, 2006)​ (but, see ​(Robert R. McCrae et al., 2008)​). Indeed, in 
our subject sample, we found that the five personality factors were correlated with one another 
(​Figure 2a​). For example, Neuroticism was anticorrelated with Conscientiousness (​r = -0.41, p 
<10 ​-37​), Extraversion (r = -0.34, p < 10​-25​), and Agreeableness (r = -0.28, p <10​-16​), while these latter 
three factors were positively correlated with one another (all r>0.21). Though the theoretical 
interpretation of these inter-correlations in terms of higher-order factors of personality remains a 
topic of debate ​(DeYoung, 2006; Digman, 1997; Robert R. McCrae et al., 2008)​, we derived two 
orthogonal higher-order personality dimensions using a principal component analysis of the Big 5 
factor scores; we labeled the two derived dimensions α and β, following ​(Digman, 1997)​. The first 
component [α] accounted for 40.3% of the variance, and the second [β] for 21.6% (total variance 
explained by the two-dimensional PC solution was thus 61.9%). ​Figure 2c​ shows how the Big Five 
project on this two-dimensional solution, and the PC loadings.  

 

Figure 2​. ​Structure of Personality factors in our subject sample (N=884).​ ​a.​ The five personality 
factors were not orthogonal in our sample. Neuroticism was anticorrelated with Conscientiousness, 
Extraversion and Agreeableness, and the latter three were positively correlated with each other. 
Openness correlated more weakly with other factors. There were highly significant correlations with 
other behavioral and demographic variables, which we accounted for in our subsequent analyses by 
regressing them out of the personality scores (see next section). ​b. ​Distributions of the five 
personality scores in our sample. Each of the five personality scores was approximately normally 
distributed by visual inspection. ​c.​ Two-dimensional principal component projection; the value for 
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each personality factor in this projection is represented by the color of the dots. The weights for each 
personality factor are shown at the bottom. 

Confounding variables 
There are known effects of gender ​(Ruigrok et al., 2014; Trabzuni et al., 2013)​, age 

(Dosenbach et al., 2010; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015)​, handedness ​(Pool, 
Rehme, Eickhoff, Fink, & Grefkes, 2015)​, in-scanner motion ​(J. D. Power, Barnes, Snyder, 
Schlaggar, & Petersen, 2012; Satterthwaite, Elliott, et al., 2013; Tyszka, Kennedy, Paul, & 
Adolphs, 2014)​, brain size ​(Hänggi, Fövenyi, Liem, Meyer, & Jäncke, 2014)​ and fluid 
intelligence ​(Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Finn et al., 2015; Noble et al., 
2017)​ on the functional connectivity patterns measured in the resting-state with fMRI. It is thus 
necessary to control for these variables: indeed, if a personality factor is correlated with gender, 
one would be able to predict some of the variance in that personality factor solely from 
functional connections that are related to gender. The easiest way (though perhaps not the best 
way, see ​(Westfall & Yarkoni, 2016)​) to control for these confounds is by regressing the 
confounding variables on the score of interest in our sample of subjects. 

We characterized the relationship between each of the personality factors and each of 
the confounding variables listed above in our subject sample (​Figure 2a​). All personality factors 
but Extraversion were correlated with gender: women scored higher on Conscientiousness, 
Agreeableness and Neuroticism, while men scored higher on Openness. In previous literature, 
women have been reliably found to score higher on Neuroticism and Agreeableness, which we 
replicated here, while other gender differences are generally inconsistent at the level of the 
factors ​(Paul T. Costa, Terracciano, & McCrae, 2001; Feingold, 1994; Weisberg, Deyoung, & 
Hirsh, 2011)​. Agreeableness and Openness were significantly correlated with age in our 
sample, despite our limited age range (22-36 y.o.): younger subjects scored higher on 
Openness, while older subjects scored higher on Agreeableness. The finding for Openness 
does not match previous reports ​(Allemand et al., 2008; Soto et al., 2011)​, but this may be 
confounded by other factors such as gender, as our analyses here do not use partial 
correlations. Motion, quantified as the sum of frame-to-frame displacement over the course of a 
run (and averaged separately for REST1 and REST2) was correlated with Openness: subjects 
scoring lower on Openness moved more during the resting-state. Note that motion in REST1 
was highly correlated (r=0.72, p<10 ​-143​) with motion in REST2, indicating that motion itself may 
be a stable trait, and correlated with other traits. Brain size, obtained from Freesurfer during the 
minimal preprocessing pipelines, was found to be significantly correlated with all personality 
factors but Extraversion. Fluid intelligence was positively correlated with Openness, and 
negatively correlated with Conscientiousness, Extraversion, and Neuroticism, consistent with 
other reports ​(Bartels et al., 2012; Chamorro-Premuzic & Furnham, 2004)​. While the 
interpretation of these complex relationships would require further work outside the scope of this 
study, we felt that it was critical to remove shared variance between each personality score and 
the primary confounding variables before proceeding further. This ensures that our model is 
trained specifically to predict personality, rather than confounds that covary with personality, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/215129doi: bioRxiv preprint 

https://paperpile.com/c/MrfAi9/SCFh+sSn8
https://paperpile.com/c/MrfAi9/Ngg4+jH8Y
https://paperpile.com/c/MrfAi9/g2Rr
https://paperpile.com/c/MrfAi9/g2Rr
https://paperpile.com/c/MrfAi9/bO0h+7QeB+Ql3q
https://paperpile.com/c/MrfAi9/bO0h+7QeB+Ql3q
https://paperpile.com/c/MrfAi9/bO0h+7QeB+Ql3q
https://paperpile.com/c/MrfAi9/LGkz
https://paperpile.com/c/MrfAi9/SrYk+TJXr+tiH1T
https://paperpile.com/c/MrfAi9/SrYk+TJXr+tiH1T
https://paperpile.com/c/MrfAi9/MV9P
https://paperpile.com/c/MrfAi9/mFHgm+VYZnh+xkuW
https://paperpile.com/c/MrfAi9/mFHgm+VYZnh+xkuW
https://paperpile.com/c/MrfAi9/iqJE4+3Q6Fz
https://paperpile.com/c/MrfAi9/X5328+NCJ7
https://doi.org/10.1101/215129


although it may also reduce power by removing shared variance (thus providing a conservative 
result). 

Another possible confound, specific to the HCP dataset, is a difference in the image 
reconstruction algorithm between subjects collected prior to and after April 2013. The 
reconstruction version leaves a notable signature on the data that can make a large difference 
in the final analyses produced ​(Elam, 2015)​. We found a significant correlation with the 
Openness factor in our sample. This indicates that the sample of subjects who were scanned 
with the earlier reconstruction version happened to score slightly less high for the Openness 
factor than the sample of subjects who were scanned with the later reconstruction version 
(purely by sampling chance); this of course is meaningless, and a simple consequence of 
working with finite samples. Therefore, we also included the reconstruction factor as a confound 
variable. 

Importantly, the multiple linear regression used for removing the variance shared with 
confounds was performed on training data only (in each cross-validation fold during the 
prediction analysis), and then the fitted weights were applied to both the training and test data. 
This is critical to avoid any leakage of information, however negligible, from the test data into the 
training data. 

Authors of the HCP-MegaTrawl have used transformed variables (Age ​2​) and interaction 
terms (Gender x Age, Gender x Age ​2​) as further confounds ​(S. Smith et al., 2016)​. After 
accounting for the confounds described above, we did not find sizeable correlations with these 
additional terms (all correlations <0.008), and thus we did not use these additional terms in our 
confound regression. 

Preprocessing affects test-retest reliability of FC matrices 
As we were interested in relatively stable traits (which are unlikely to change much              

between sessions REST1 and REST2), one clear goal for the denoising steps applied to the               
minimally preprocessed data was to yield functional connectivity matrices that are as “similar” as              
possible across the two sessions. We computed several metrics (see Methods) to assess this              
similarity for each of our three denoising strategies (A, B, and C; cf ​Figure 1c​). Of course, no                  
denoising strategy would achieve perfect test-retest reliability of FC matrices since, in addition to              
inevitable measurement error, the two resting-state sessions for each subject likely feature            
somewhat different levels of states such as arousal and emotion.  

In general, differences in test-retest reliability across metrics were small when comparing            
the three denoising strategies. Considering the entire FC matrix, the Identification Success Rate             
(ISR) ​(Finn et al., 2015; Noble et al., 2017) was high for all strategies, and highest for pipeline B                   
(Figure 3a)​. The multivariate pairwise distances between subjects were also best reproduced            
across sessions by pipeline B ​(Figure 3b)​. In terms of behavioral utility, i.e. reproducing the               
pattern of correlations of the different edges with a behavioral score, pipeline A outperformed              
the others ​(Figure 3c)​. All three strategies appear to be reasonable choices, and we would thus                
expect a similar predictive accuracy under each of them, if there is information about a given                
score in the functional connectivity matrix.  
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We note here already that Neuroticism stands out as having lower test-retest reliability in              
terms of its relationship to edge values across subjects (​Figure 3c​). This may be a hint that the                  
FC matrices do not carry information about Neuroticism. 

 

 
Figure 3. Test-retest comparisons between spaces and denoising strategies​. ​a​.          
Identification success rate, and other statistics related to connectome fingerprinting ​(Finn et al.,             
2015; Noble et al., 2017)​. All pipelines had a success rate superior to 87% for identifying the                 
functional connectivity matrix of a subject in REST2 (out of N=884 choices) based on their               
functional connectivity matrix in REST1. Pipeline B slightly outperformed the others. ​b​.            
Test-retest of the pairwise similarities (based on Pearson correlation) between all subjects            
(Geerligs, Rubinov, et al., 2015)​. Overall, for the same session, the three pipelines gave similar               
pairwise similarities between subjects. About 25% of the variance in pairwise distances was             
reproduced in REST2, with pipeline B emerging as the winner (0.54 ​2​=29%). ​c​. Test-retest             
reliability of behavioral utility, quantified as the pattern of correlations between each edge and a               
behavioral score of interest ​(Geerligs, Rubinov, et al., 2015)​. Shown are fluid intelligence,             
Openness to experience, and Neuroticism (all de-confounded, see main text). Pipeline A gave             
slightly better test-retest reliability for all behavioral scores. MSM-All outperformed MNI           
alignment. Neuroticism showed lower test-retest reliability than fluid intelligence or Openness to            
experience.  
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Prediction of fluid intelligence (​PMAT24_A_CR​) 
It has been reported that a measure of fluid intelligence, the raw score on a 24-item 

version of the Raven’s Progressive Matrices (​PMAT24_A_CR​), could be predicted from FC 
matrices in previous releases of the HCP dataset ​(Finn et al., 2015; Noble et al., 2017)​. We 
generally replicated this result qualitatively for the de-confounded fluid intelligence score 
(removing variance shared with gender, age, handedness, brain size, motion, and 
reconstruction version), using a leave-one-family-out cross-validation approach. We found 
positive correlations across all 36 of our result datasets: 2 sessions x 3 denoising pipelines (A, B 
& C) x 2 parcellation schemes (in volumetric space and in MSM-All space) x 3 models 
(univariate positive, univariate negative, and multivariate learning models)  (​Figure 4a​, ​Table 1​). 
We note however that, using MNI space and denoising strategy A as in ​(Finn et al., 2015)​, the 
prediction score was very low (REST1: r=0.04; REST2: r=0.03). One difference is that the 
previous study did not use de-confounding, hence some variance from confounds may have 
been used in the predictions; also the sample size was much smaller in ​(Finn et al., 2015) 
(N=118; but N=606 in ​(Noble et al., 2017)​), and family structure was not accounted for in the 
cross-validation. We generally found that prediction performance was better in MSM-All space 
(​Figure 4a​, ​Table 1​).  

To generate a final prediction, we combined data from all four resting-state runs 
(REST12). We chose to use pipeline A and MSM-All space, which we had found to yield the 
best test-retest reliability in terms of behavioral utility (​Figure 3c​). We obtained r=0.22 
(R​2​=0.007, nRMSD=0.997) for the univariate positive model, r=0.18 (R​2​=-0.023, nRMSD=1.012) 
for the univariate negative model,  and r=0.26 (R​2​=0.044, nRMSD=0.978) for the multivariate 
model. Interestingly, these performances on combined data outperformed performance on 
REST1 or REST2 alone, suggesting that decreasing noise in the neural data boosts prediction 
performance. For statistical assessment of predictions, we estimated the distribution of chance 
for the prediction score under both the univariate positive and the multivariate models, using 
1000 random permutations of the subjects’ fluid intelligence scores (​Figure 4b​). For reference 
we also show parametric statistics thresholds for the correlation coefficients; we found that 
parametric statistics underestimate the confidence interval for the null hypothesis, hence 
overestimate significance. Interestingly, the null distributions differed between the univariate and 
the multivariate models: while the distribution under the multivariate model was roughly 
symmetric about 0, the distribution under the univariate model was asymmetric with a long tail 
on the left.The empirical, one-tailed p-values for REST12 MSM-All space data denoised with 
strategy A and using the univariate positive model,  and using the multivariate model, both 
achieved p<0.001 (none of the 1000 random permutations resulted in a higher prediction score).  
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Figure 4. Prediction results for de-confounded fluid intelligence (​PMAT24_A_CR​)​. ​a​. All 
predictions were assessed using the correlation between the observed scores (the actual 
scores of the subjects) and the predicted scores. This correlation obtained using the REST2 
dataset was plotted against the correlation from the REST1 dataset, to assess test-retest 
reliability of the prediction outcome. Results in MSM-All space outperformed results in MNI 
space. The multivariate model slightly outperformed the univariate models (positive and 
negative). Our results generally showed good test-retest reliability across sessions, although 
REST1 tended to produce slightly better predictions than REST2. Pearson correlation scores for 
the predictions are listed in ​Table 1​.​ Supplementary Figure 1 ​shows prediction scores with 
minimal deconfounding. ​b​. We ran a final prediction using combined data from all resting-state 
runs (REST12), in MSM-All space with denoising strategy A (results are shown as vertical red 
lines). We randomly shuffled the PMAT24_A_CR scores 1000 times while keeping everything 
else the same, for the univariate model (positive, top) and the multivariate model (bottom). The 
distribution of prediction scores (Pearson r, and R​2​) under the null hypothesis is shown (black 
histograms). Note that the empirical 99% confidence interval (shaded gray area) is wider than 
the parametric CI (shown for reference, magenta dotted lines), and features a heavy tail on the 
left side for the univariate model. This demonstrates that parametric statistics are not 
appropriate in the context of cross-validation. Such permutation testing may be computationally 
prohibitive for more complex models, yet since the chance distribution is model-dependent, it 
must be performed for statistical assessment.  
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Table 1. Test-retest prediction results using deconfounded scores.​ Listed are Pearson 
correlation coefficients between predicted and observed individual scores, for all behavioral 
scores and analytical alternatives (the two columns for each score correspond to the two 
resting-state sessions). See ​Supplementary Figure 1​ for results with minimal deconfounding. 

Prediction of the Big Five 
We established that our approach reproduces and improves on the previous finding that 

fluid intelligence can be predicted from resting-state functional connectivity ​(Finn et al., 2015; 
Noble et al., 2017)​. We next turned to predicting each of the Big Five personality factors using 
the same approach (including de-confounding, which in this case removes variance shared with 
gender, age, handedness, brain size, motion, reconstruction version and, importantly, fluid 
intelligence).  

Test-retest results across analytical choices are shown in ​Figure 5a​, and in ​Table 1​. 
Predictability was lower than for fluid intelligence (​PMAT24_A_CR​) for all Big Five personality 
factors derived from the NEO-FFI. Openness to experience showed the highest predictability 
overall, and also the most reproducible across sessions; prediction of Extraversion was 
moderately reproducible; in contrast, the predictability of the other three personality factors 
(Agreeableness and Neuroticism, and Conscientiousness) was low  and lacked reproducibility.  

It is worth noting that the NEO-FFI test was administered closer in time to REST2 than to 
REST1 on average; hence one might expect REST2 to yield slightly better results, if the 
NEO-FFI factor scores reflect a state component. We found that REST2 produced better 
predictability than REST1 for Extraversion (results fall mostly to the left of the diagonal line of 
reproducibility), while REST1 produced better results for Openness, hence the data does not 
reflect our expectation of state effects on predictability.  

Although we conducted 18 different analyses for each session with the intent to present 
all of them in a fairly unbiased manner, it is notable that certain combinations produced the best 
predictions across different personality scores - some of the same combinations that yielded the 
best predictability for fluid intelligence (​Figure 4​, above). While the findings strongly encourage 
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the exploration of additional processing alternatives (see Discussion), some of which may 
produce results yet superior to those here, we can provisionally recommend MSM-All alignment 
and the associated multimodal brain parcellation ​(Glasser, Coalson, et al., 2016)​, together with 
a multivariate learning model such as elastic net regression.  

Finally, results for REST12 (all resting-state runs combined), using MSM-All alignment 
and denoising strategy A, and the multivariate learning model, are shown in ​Figure 5b​ together 
with statistical assessment using 1000 permutations. Only Openness to experience could be 
predicted above chance, albeit with a very small effect size (r=0.24, R​2​=0.024).  
 

 
Figure 5. Prediction results for the Big Five personality factors​. ​a​. Test-retest prediction 
results for each of the Big Five. Representation is the same as in ​Figure 4a​. The only factor that 
showed consistency across parcellation schemes, denoising strategies, models and sessions 
was Openness (​NEOFAC_O​), although Extraversion (​NEOFAC_E​) also showed substantial 
positive correlations. See also ​Table 1​. ​b​. Prediction results for each of the (demeaned and 
deconfounded)​ ​Big Five, from REST12 FC matrices, using MSM-All inter-subject alignment, 
denoising strategy A, and the multivariate prediction model. The blue line shows the best fit to 
the cloud of points (its slope should be close to 1 (dotted line) for good predictions ​(Piñeiro et 
al., 2008)​). The variance of predicted values is noticeably smaller than the variance of observed 
values. 
 

Predicting higher-order dimensions of personality (α and β) 
In previous sections, we qualitatively observed that decreasing noise in individual FC 

matrices by averaging data over all available resting state runs (REST12, 1 h of data) leads to 
improvements in prediction performance compared to session-wise predictions (REST1 and 
REST2, 30 min of data each). We can also decrease noise in the behavioral data, by deriving 
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composite scores that pool over a larger number of test items than the Big Five factor scores 
(each factor relies solely on 12 items in the NEO-FFI). The principal component analysis 
presented in ​Figure 2c​ is a way to achieve such pooling. We therefore next attempted to predict 
these two principal component scores, which we refer to as α and β, from REST12 FC matrices, 
using denoising A and MSM-all inter-subject alignment.  

α was not predicted above chance, which was somewhat expected because it loads 
most highly on Neuroticism, which we could not predict well in the previous section.  

β was predicted above chance (p ​1000​<0.002), which we also expected because it loads 
most highly on Openness to experience (which had  r = 0.24, R​2​=0.024; ​Figure 5b​). Since β 
effectively  combines variance from Openness with that from other factors (Conscientiousness, 
Extraversion, and Agreeableness; see ​Figure 2c​) this leads to a slight improvement in 
predictability, and a doubling of the explained variance ( β: r = 0.27, R​2​ = 0.050). This result 
strongly suggests that improving the reliability of scores on the behavioral side helps boost 
predictability ​(Gignac & Bates, 2017)​, just as improving the reliability of FC matrices by 
combining REST1 and REST2 improved predictability.  
 

 
Figure 6. Prediction results for superordinate factors/principal components α and β, 
using REST12 data (1h of resting-state fMRI per subject).​ These results use MSM-All 
inter-subject alignment, denoising strategy A, and the multivariate prediction model. As in 
Figure 5b​, the range of predicted scores is much narrower than the range of observed scores. 
a.​ The first PC, α, is not predicted better than chance. α loads mostly on Neuroticism (see 
Figure 2c​), which was itself not predicted well (cf. Figure 5). ​b.​ We can predict about 5% of the 
variance in the score on the second PC, β. This is better than chance, as established by 
permutation statistics (p<0.002). β loads mostly on Openness to Experience (see ​ Figure 2c​), 
which showed good predictability in the previous section.  
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Discussion 

Summary of results 
Connectome-based predictive modeling ​(Dubois & Adolphs, 2016; Xilin Shen et al., 

2017)​ has been an active field of research in the past years: it consists in using functional 
connectivity as measured from resting-state fMRI data to predict individual differences in 
demographics, behavior, psychological profile, or psychiatric diagnosis. Here, we applied this 
approach and attempted to predict the Big Five personality factors ​(R. R. McCrae & Costa, 
1987)​ from resting-state data in a large public dataset, the Human Connectome Project (N=884 
after exclusion criteria). We can summarize our findings as follows. 

1.  We found that personality traits were not only intercorrelated with one another, but 
were also correlated with fluid intelligence, age, sex, handedness and other measures.  We 
therefore regressed these possible confounds out, producing a residualized set of personality 
trait measures (that were, however, still intercorrelated amongst themselves). 

2.  Comparing different processing pipelines and data from different fMRI sessions 
showed generally good stability of functional connectivity across time, a prerequisite for 
attempting to predict a personality trait that is also stable across time. 

3.  We qualitatively replicated and extended a previously published finding, the 
prediction of a measure of fluid intelligence ​(Finn et al., 2015; Noble et al., 2017)​ from functional 
connectivity patterns, providing reassurance that our approach is able to predict individual 
differences when possible. 

4.  We then carried out a total of 36 different analyses for each of the five personality 
factors. The 36 different analyses resulted from separately analysing data from 2 sessions 
(establishing test-retest reliability), each with 3 different preprocessing pipelines (exploring 
sensitivity to how the fMRI data are processed), 2 different alignment and hard parcellation 
schemes (providing initial results whether multimodal surface-based alignment improves on 
classical volumetric alignment), and 3 different predictive models (univariate positive, univariate 
negative, and multivariate).  Across all of these alternatives, we generally found that the 
MSM-All multimodal alignment together with the parcellation scheme of Glasser et al. (2016) 
was associated with the greatest predictability; and likewise for the multivariate model (elastic 
net).  

5.   Among the personality measures, Openness to experience showed the most reliable 
prediction between the two fMRI sessions, followed by Extraversion; for all other factors, 
predictions were often highly unstable, showing large variation depending on small changes in 
preprocessing, or across sessions.  

6. Combining data from both fMRI sessions improved predictions. Likewise, combining 
behavioral data through principal component analysis improved predictions. At both the neural 
and behavioral ends, improving the quality of our measurements could improve predictions.  

7. We best predicted the β superordinate factor, with r=0.27 and R​2​=0.05. This is highly 
significant as per permutation testing (though, in interpreting the statistical significance of any 
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single finding, we note that one would have to correct for all the multiple analysis pipelines that 
we tested; future replications or extensions of this work would benefit from a pre-registered 
single approach to reduce the degrees of freedom in the analysis). 

Though some of our findings achieve statistical significance in the large sample of 
subjects provided by the HCP, resting-state functional connectivity still only explains at most 5% 
of the variance in any personality score. We are thus still far from understanding the 
neurobiological substrates of personality ​(Yarkoni., 2015)​ (and, for that matter, of fluid 
intelligence which we predicted at a similar, slightly lower level; but, see ​(Dubois et al., 2018)​). 
Indeed, based on this finding, it seems unlikely that findings from predictive approaches using 
whole-brain resting-state fMRI will inform hypotheses about specific neural systems that provide 
a causal mechanistic explanation of how personality is expressed in behavior.  

Taken together, our approach provides important general guidelines for personality 
neuroscience studies using resting-state fMRI data: i) operations that are sometimes taken for 
granted, such as resting-state fMRI denoising ​(Abraham et al., 2016)​, make a difference to the 
outcome of connectome-based predictions and their test-retest reliability; ii) new inter-subject 
alignment procedures, such as multimodal surface matching ​(Robinson et al., 2014)​, improve 
performance and test-retest reliability; iii) a simple multivariate linear model may be a good 
alternative to the separate univariate models proposed by ​(Finn et al., 2015)​, yielding improved 
performance.  

Our approach also draws attention to the tremendous analytical flexibility that is available 
in principle ​(Carp, 2012)​, and to the all-too-common practice of keeping such explorations 
“behind the scenes” and only reporting the “best” strategy, leading to an inflation of positive 
findings reported in the literature ​(Neuroskeptic, 2012; Simonsohn, Nelson, & Simmons, 2014)​. 
At a certain level, if all analyses conducted make sense (i.e., would pass a careful expert 
reviewer’s scrutiny), they should all give a similar answer to the final question (conceptually 
equivalent to inter-rater reliability ​(Dubois & Adolphs, 2016)​). 

Effect of subject alignment 
The recently proposed multimodal surface matching framework uses a combination of 

anatomical and functional features to best align subject cortices. It improves functional 
inter-subject alignment over the classical approach of warping brains volumetrically ​(Dubois & 
Adolphs, 2016)​. For the scores that can be predicted from functional connectivity, alignment in 
the MSM-All space outperformed alignment in the MNI space. However, more work needs to be 
done to further establish the superiority of the MSM-All approach. Indeed, the parcellations used 
in this study differed between the MNI and MSM-All space: the parcellation in MSM-All space 
had more nodes (360, vs. 268) and no subcortical structures were included. Also, it is unclear 
how the use of resting-state data during the alignment process in the MSM-All framework 
interacts with resting-state based predictions, since the same data used for predictions has 
already been used to align subjects.  Finally, it has recently been shown that the precise 
anatomy of each person’s brain, even after the best alignment,  introduces variability that 
interacts with functional connectivity ​(Bijsterbosch et al., 2018)​.  The complete description of 
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brain variability at both structural and functional levels will need to be incorporated into future 
studies of individual differences. 

Effect of preprocessing 
We applied three separate, reasonable denoising strategies, inspired from published 

work ​(Ciric et al., 2017; Finn et al., 2015; Satterthwaite, Elliott, et al., 2013; Siegel et al., 2016) 
and our current understanding of resting-state fMRI confounds ​(Caballero-Gaudes & Reynolds, 
2016; Murphy et al., 2013)​. The differences between the three denoising strategies in terms of 
the resulting test-retest reliability, based on several metrics, were not very large - yet, there were 
differences. Pipeline A appeared to yield the best reliability in terms of behavioral utility, while 
Pipeline B was best at conserving differences across subjects. Pipeline C performed worst on 
these metrics in our hands, despite its use of the automated artifact removal tool ICA-FIX 
(Salimi-Khorshidi et al., 2014)​; it is possible that performing CompCor and censoring are in fact 
detrimental after ICA-FIX (see also ​(Muschelli et al., 2014)​). Finally, in terms of the final 
predictive score, all three strategies demonstrated acceptable test-retest reliability for scores 
that were successfully predicted.  

The particular choices of pipelines that we made were intended to provide an initial 
survey of some commonly used schemes, but substantial future work will be needed to explore 
the space of possibilities more comprehensively. For instance, global signal regression - which 
was a part of all three chosen strategies - remains a somewhat controversial denoising step, 
and could be omitted if computing partial correlations, or replaced with a novel temporal ICA 
decomposition approach ​(Glasser et al., 2017)​.  The bandpass filtering used in all our denoising 
approaches to reduce high frequency noise could also be replaced with alternatives such as 
PCA decomposition combined with “Wishart rolloff” ​(Glasser, Smith, et al., 2016)​.  All of these 
choices impact the amount and quality of information in principle available, and how that 
information can be used to build a predictive model.  

Effect of predictive algorithm 
Our exploration of a multivariate model was motivated by the seemingly arbitrary 

decision to weight all edges equally in the univariate models (positive and negative) proposed 
by ​(Finn et al., 2015)​. However, we also recognize the need for simple models, given the 
paucity of data compared to the number of features (curse of dimensionality). We thus explored 
a regularized regression model that would combine information from negative and positive 
edges optimally, after performing the same feature-filtering step as in the univariate models. The 
multivariate model performed best on the scores that were predicted most reliably, yet it also 
seemed to have lower test-retest reliability. More work remains to be done on this front to find 
the best simple model that optimally combines information from all edges and can be trained in 
a situation with limited data.  
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Statistical significance 
It is inappropriate to assess statistical significance using parametric statistics in the case 

of a cross-validation analysis (​Figure 4b​). However, for complex analyses, it is often the 
preferred option, due to the prohibitive computational resources needed to run permutation 
tests. Here we showed the empirical distribution of chance prediction scores for both the 
univariate (positive)- and multivariate-model predictions of fluid intelligence (​PMAT24_A_CR​) 
using denoising pipeline A in MSM-All space (​Figure 4b​). As expected, the permutation 
distribution is wider than the parametric estimate; it also differs significantly between the 
univariate and the multivariate models. This finding stresses that one needs to calculate 
permutation statistics for the specific analysis that one runs. The calculation of permutation 
statistics should be feasible given the rapid increase and ready availability of computing clusters 
with multiple processors. We show permutation statistics for all our key findings, but we did not 
correct for the multiple comparisons (5 personality factors, multiple processing pipelines). 
Future studies should ideally provide analyses that are pre-registered to reduce the degrees of 
freedom available and aid interpretation of statistical reliability. 

Will our findings reproduce? 
It is common practice in machine learning competitions to set aside a portion of your 

data and not look at it at all until a final analysis has been decided, and only then to run that 
single final analysis on the held-out data to establish out-of-sample replication. We decided not 
to split our dataset in that way due to its already limited sample size, and instead used a careful 
cross-validation framework, assessed test-retest reliability across data from different sessions, 
and refrained from adaptively changing parameters upon examining the final results. The 
current paper should now serve as the basis of a pre-registered replication, to be performed on 
an independent dataset (a good candidate would be the NKI enhanced dataset ​(Nooner et al., 
2012)​, which also contains assessment of the Big Five).  

On the relationship between brain and personality 
 ​The best neural predictor of personality may be distinct, wholly or in part, from the actual 

neural mechanisms by which personality expresses itself on any given occasion ​.  Personality 
may stem from a disjunctive and heterogeneous set of biological constraints that in turn 
influence brain function in complex ways ​(Yarkoni., 2015)​; neural predictors may simply be 
conceived of as “markers” of personality: any correlated measures that a machine learning 
algorithm could use as information, on the basis of which it could be trained in a supervised 
fashion to discriminate among personality traits.  Our goal in this study was to find such 
predictions, not a causal explanation (see ​(Yarkoni & Westfall, 2017)​).  It may well someday be 
possible to predict personality differences from fMRI data with much greater accuracy than what 
we found here. However, we think it likely that, in general, such an approach will still fall short of 
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uncovering the neural mechanisms behind personality, in the sense of explaining the proximal 
causal processes whereby personality is expressed in behavior on specific occasions.  

Subjective and objective measures of personality 
As noted already in the introduction, it is worth keeping in mind the history of the Big 

Five: they derive from factor analyses of words, of the vocabularies that we use to describe 
people. As such, they fundamentally reflect our folk psychology, and our social inferences 
(“theory of mind”) about other people. This factor structure was then used to design a self-report 
instrument, in which participants are asked about themselves (the NEO or variations thereof). 
Unlike some other self-report indices (such as the MMPI), the NEO-FFI does not assess 
test-taking approach (e.g. consistency across items or tendency toward a particular response 
set), and thus, offers no insight regarding validity of any individual’s responses. This is a notable 
limitation, as there is substantial evidence that NEO-FFI scores may be intentionally 
manipulated by the subject’s response set ​(Furnham, 1997; Topping & O’Gorman, 1997)​.  Even 
in the absence of intentional ‘faking’, NEO outcomes are likely to be influenced by an 
individual’s insight, impression management, and reference group effects. However, these 
limitations may be addressed by applying the same analysis to multiple personality measures 
with varying degrees of face-validity and objectivity, as well as measures that include indices of 
response bias. This might include ratings provided by a familiar informant, implicit-association 
tests (e.g. ​(Schnabel, Asendorpf, & Greenwald, 2008)​), and spontaneous behavior (e.g. ​(Mehl, 
Gosling, & Pennebaker, 2006)​).  Future development of behavioral measures of personality that 
provide better convergent validity and discriminative specificity will be an important component 
of personality neuroscience. 

 

Limitations and Future Directions 
There are several limitations of the present study that could be improved upon or 

extended in future work.  In addition to the obvious issue of simply needing more, and/or better 
quality, data, there is the important issue of obtaining a better estimate of variability within a 
single subject.  This is especially pertinent for personality traits, which are supposed to be 
relatively stable within an individual.  Thus, collecting multiple fMRI datasets, perhaps over 
weeks or even years, could help to find those features in the data with the best cross-temporal 
stability. Indeed several such dense datasets across multiple sessions in a few subjects have 
already been collected, and may help guide the intelligent selection of features with the greatest 
temporal stability ​(Gordon et al., 2017; Noble et al., 2017; Poldrack et al., 2015)​. Against 
expectations, initial analyses seem to indicate that the most reliable edges in FC from such 
studies are not necessarily the most predictive edges (for fluid intelligence; ​(Noble et al., 2017)​), 
yet more work needs to be done to further test this hypothesis.  It is also possible that shorter 
timescale fluctuations in resting-state fMRI provide additional information (if these are stable 
over longer times), and it might thus be fruitful to explore dynamic FC, as some work has done 
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(Calhoun, Miller, Pearlson, & Adalı, 2014; Jia, Hu, & Deshpande, 2014; Vidaurre, Smith, & 
Woolrich, 2017)​.  

No less important would be improvements on the behavioral end, as we alluded to in the 
previous section.  Developing additional tests of personality to provide convergent validity to the 
personality dimension constructs would help provide a more accurate estimate of these latent 
variables. Just as with the fMRI data, collecting personality scores across time should help to 
prioritize those items that have the greatest temporal stability and reduce measurement error.  

Another limitation is signal-to-noise. It may be worth exploring fMRI data obtained while 
watching a movie that drives relevant brain function, rather than during rest, in order to 
maximize the signal variance in the fMRI signal. Similarly, it could be beneficial to include 
participants with a greater range of personality scores, perhaps even including those with a 
personality disorder.  A greater range of signal both on the fMRI end and on the behavioral end 
would help provide greater power to detect associations. 

One particularly relevant aspect of our approach is that the models we used, like most in 
the literature, were linear.  Nonlinear models may be more appropriate, yet the difficulty in using 
such models is that they would require a much larger number of training samples relative to the 
number of features in the dataset.  This could be accomplished both by accruing ever larger 
databases of rs-fMRI data, and by further reducing the dimensionality of the data, for instance 
through PCA or coarser parcellations.  Alternatively, one could form a hypothesis about the 
shape of the function that might best predict personality scores and explicitly include this in a 
model. 

 A final important but complex issue concerns the correlation between most behavioral 
measures.  In our analyses, we regressed out fluid intelligence, age, and sex, amongst other 
variables.  But there are many more that are likely to be correlated with personality at some 
level.  If one regressed out all possible measures, one would likely end up removing what one is 
interested in, since eventually the residual of personality would shrink to a very small range.  An 
alternative approach is to use the raw personality scores (without any removal of confounds at 
all), and then selectively regress out fluid intelligence, memory task performance, mood, etc., 
and make comparisons between the results obtained (we provide such minimally deconfounded 
results in Supplementary Figure 2). This could yield insights into which other variables are 
driving the predictability of a personality trait.  It could also suggest specific new variables to 
investigate in their own right. Finally, multiple regression may not be the best approach to 
addressing these confounds, due to noise in the measurements. Specifying confounds within a 
structural equation model may be a better approach ​(Westfall & Yarkoni, 2016)​. 

Recommendations for Personality Neuroscience 
There are well known challenges to the reliability and reproducibility of findings in personality 
neuroscience, which we have already mentioned.  The field shares these with any other attempt 
to link neuroscience data with individual differences ​(Dubois & Adolphs, 2016)​. We conclude 
with some specific recommendations for the field going forward, focusing on the use of 
resting-state fMRI data. 
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i) Given the effect sizes that we report here (which are by no means a robust estimate, 
yet do provide a basis on which to build), we think it would be fair to recommend a minimum 
sample size of 500 or so subjects ​(Schönbrodt & Perugini, 2013)​ for connectome-based 
predictions. If other metrics are used, a careful estimate of effect size that adjusts for bias in the 
literature should be undertaken for the specific brain measure of interest (cf. ​(Anderson, Kelley, 
& Maxwell, 2017)​).  

ii) A predictive framework is essential ​(Dubois & Adolphs, 2016; Yarkoni & Westfall, 
2017)​, as it ensures out-of-sample reliability. Personality neuroscience studies should use 
proper cross-validation (in the case of the HCP, taking family structure into account), with 
permutation statistics. Even better, studies should include a replication sample which is held out 
and not examined at all until the final model has been decided from the discovery sample 
(advanced methods may help implement this in a more practical manner ​(Dwork et al., 2015)​). 

iii) Data sharing. If new data are collected by individual labs, it would be very important to 
make these available, in order to eventually accrue the largest possible sample size in a 
database. It has been suggested that contact information about the participants would also be 
valuable, so that additional measures (or retest reliability) could be collected ​(Mar et al., 2013)​. 
Some of these data could be collected over the internet. 

iv) Complete transparency and documentation of all analyses, including sharing of all 
analysis scripts, so that the methods of published studies can be reproduced. Several papers 
give more detailed recommendations for using and reporting fMRI data, see ​(Dubois & Adolphs, 
2016; Nichols et al., 2016; Poldrack et al., 2008)​. Our paper makes specific recommendation 
about detailed parcellation, processing and modeling pipelines; however, this is a continuously 
evolving field and these recommendations will likely change with future work. For personality in 
particular, detailed assessment for all participants, and justified exclusionary and inclusionary 
criteria should be provided. As suggested above, authors should consider pre-registering their 
study, on the Open Science Framework or a similar platform.  

v) Ensure reliable and uniform behavioral estimates of personality.  This is perhaps one 
of the largest unsolved challenges.  Compared with the huge ongoing effort and continuous 
development of the processing and analysis of fMRI data, the measures for personality are 
mostly stagnant and face many problems of validity. For the time being, a simple 
recommendation would be to use a consistent instrument and stick with the Big Five, so as not 
to mix apples and oranges by using very different instruments.  That said, it will be important to 
explore other personality measures and structures. As we noted above, there is in principle a 
large range of more subjective, or more objective, measures of personality.  It would be a boon 
to the field if these were more systematically collected, explored, and possibly combined to 
obtain the best estimate of the latent variable of personality they are thought to measure.  

(vi) Last but not least, we should consider methods in addition to fMRI and species in 
addition to humans.  To the extent that a human personality dimension appears to have a valid 
correlate in an animal model, it might be possible to collect large datasets, and to complement 
fMRI with optical imaging or other modalities.  Studies in animals may also yield the most 
powerful tools to examine specific neural circuits, a level of causal mechanism that, as we 
argued above, may largely elude analyses using resting-state fMRI. 
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Supplementary Table 1.​ ​List of HCP subjects included in the present study. 
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Supplementary Figure 1.​ Test-retest prediction results with minimal deconfounding. Only 
variables that are unlikely to be causally related to personality are regressed out of the scores: 
brain size, motion, and MB recon version. 
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