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Abstract 
 

Personality neuroscience  aims to  find  associations between  brain  measures and 
personality traits.  Findings to  date  have  been  severely limited  by a  number of factors, including 
small  sample  size  and  omission  of out-of-sample  prediction.  We  capitalized  on  the  recent 
availability of a  large  database, together with  the  emergence  of specific criteria  for best 
practices in  neuroimaging  studies of individual  differences.  We  analyzed  resting-state  functional 
magnetic resonance  imaging  data  from 867  young  healthy adults in  the  Human  Connectome 
Project (HCP) database. We  attempted  to  predict personality traits from the  “Big  Five”, as 
assessed  with  the  NEO-FFI test, using  individual  functional  connectivity matrices.  After 
regressing  out potential  confounds such  as age, sex, and  IQ, we  used  a  cross-validated 
framework, together with  test-retest replication, to  quantify how well  the  neuroimaging  data 
could  predict each  of the  five  personality factors, as well  as two  superordinate  factors (“α” and 
“β”). To  obtain  a  more  comprehensive  set of findings, we  tested  three  different preprocessing 
pipelines for the  fMRI data, two  brain  parcellation  schemes, and  two  different linear models for 
prediction. Across all  24  results (test/retest; 3  processing  pipelines; 2  parcellation  schemes; 2 
models) we  found  no  consistent evidence  for predictability for any of the  five  personality traits 
with  the  exception  of Openness, and  the  superordinate  β  factor (“personal  growth/ plasticity”). 
As a  benchmark, we  showed  that we  could  replicate  prior reports of predicting  IQ from the  same 
dataset.  Best predictions in  all  cases were  around  r=0.2, thus only accounting  for about 4% of 
the  variance.  We  conclude  with  a  discussion  of the  potential  for predicting  personality from 
neuroimaging  data  and  make  specific recommendations for the  field. 
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Introduction 
Personality refers to  the  relatively stable  disposition  of an  individual  that influences 

long-term behavioral  style  (Back, Schmukle, & Egloff, 2009; Furr, 2009; Hong, Paunonen, & 
Slade, 2008; Jaccard, 1974).  It is especially conspicuous in  social  interactions, and  in 
emotional  expression. It is what we  pick up  on  when  we  observe  a  person  for an  extended  time, 
and  what leads us to  make  predictions about general  tendencies in  behaviors and  interactions 
in  the  future.  Often, these  predictions are  inaccurate  stereotypes, and  they can  be  evoked  even 
by very fleeting  impressions, such  as merely looking  at photographs of people  (Todorov, 2017). 
Yet there  is also  good  reliability (Viswesvaran  & Ones, 2000) and  consistency (B. W. Roberts & 
DelVecchio, 2000) for many personality traits currently used  in  psychology, which  can  predict 
real-life  outcomes (Brent W. Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007).  

There  are  strong  arguments for the  biological  basis of personality traits. Many of the 
personality traits similar to  those  used  to  describe  human  dispositions can  be  applied  to  animal 
behavior as well, and  again  they make  some  predictions about real-life  outcomes (Gosling  & 
John, 1999; Gosling  & Vazire, 2002).  For instance, anxious temperament has been  a  major 
topic of study in  monkeys, as a  model  of human  mood  disorders.  Hyenas show neuroticism in 
their behavior, and  also  show sex differences in  this trait as would  be  expected  from human 
data  (in  humans, females tend  to  be  more  neurotic than  males; in  hyenas, the  females are 
socially dominant and  the  males are  more  neurotic). Personality traits are  also  highly heritable. 
Anxious temperament in  monkeys is heritable  and  its neurobiological  basis is being  intensively 
investigated  (Oler et al., 2010). Twin  studies in  humans typically report heritability estimates for 
each  trait between  .4  and  .6  (Bouchard  & McGue, 2003; Jang, Livesley, & Vernon, 1996; 
Verweij  et al., 2010), even  though  no  specific genes account much  variance   (studies using 
common  single-nucleotide  polymorphisms (SNPs) report estimates between  0  and  0.2  (R. A. 
Power & Pluess, 2015; Vinkhuyzen  et al., 2012)).  

The  proximal  cause  of personality must come  from brain-environment interactions, since 
these  are  the  basis for all  behavior.  Some  aspects of personality have  been  linked  to  specific 
neural  systems -- for instance, behavioral  inhibition  and  anxious temperament have  been  linked 
to  a  system involving  the  medial  temporal  lobe  and  the  prefrontal  cortex (Birn  et al., 2014). 
Although  there  is now universal  agreement that personality is generated  through  brain  function 
in  a  given  context, it is much  less clear what type  of brain  measure  might be  the  best predictor 
of personality.  Neurotransmitters, cortical  thickness or volume  of certain  regions, and  functional 
measures have  all  been  explored  with  respect to  their correlation  with  personality traits (see 
(Turhan  Canli, 2006; Yarkoni., 2015) for reviews).  We  briefly summarize  this literature  next. 

The  search  for neurobiological  substrates of personality traits 
Since  personality traits are  stable  over time, one  might expect that brain  measures that 

are  similarly stable  over time  are  the  most promising  candidates for predicting  such  traits. The 
first types of measures to  look at may thus be  structural, connectional  and  neurochemical; 
indeed  a  number of such  studies have  reported  correlations with  personality differences. Here 
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we  briefly review studies using  structural  and  functional  magnetic resonance  imaging  (MRI) of 
humans, and  leave  aside  research  on  neurotransmission  (see  (Turhan  Canli, 2006; Yarkoni., 
2015) for more  exhaustive  reviews).  Although  a  number of different personality traits have  been 
investigated, we  emphasize  those  most similar to  the  “Big  Five”, since  they are  the  topic of the 
present paper (see  below). 

Structural  MRI studies 
Many structural  MRI studies of personality to  date  have  used  voxel-based  morphometry 

(VBM) (Blankstein, Chen, Mincic, McGrath, & Davis, 2009; Coutinho, Sampaio, Ferreira, 
Soares, & Gonçalves, 2013; DeYoung  et al., 2010; Hu  et al., 2011; Kapogiannis, Sutin, 
Davatzikos, Costa, & Resnick, 2013; W.-Y. Liu  et al., 2013; Lu  et al., 2014; Omura, Todd 
Constable, & Canli, 2005; Taki  et al., 2013), a  technique  based  on  spatially warping 
high-resolution  structural  scans from all  the  subjects into  the  same  volumetric template, 
segmenting  the  gray matter, and  then  performing  a  voxel-wise  comparison  of the  local 
concentration  of gray matter across subjects (Ashburner & Friston, 2000). Results from these 
studies have  been  quite  variable, sometimes even  contradictory (e.g., the  volume  of the 
posterior cingulate  cortex has been  found  to  be  both  positively and  negatively correlated  with 
agreeableness (Coutinho  et al., 2013; DeYoung  et al., 2010)). Methodologically, this is in  part 
due  to  the  rather small  sample  sizes (typically less than  100; 116  in  (DeYoung  et al., 2010), 52 
in  (Coutinho  et al., 2013)) which  undermine  replicability (Button  et al., 2013); studies with  larger 
sample  sizes (W.-Y. Liu  et al., 2013) typically fail  to  replicate  previous results.  We  will  take  up 
the  important issue  of replicability again  in  the  Discussion. 

More  recently, surface-based  morphometry (SBM) has emerged  as a  promising  measure 
to  study structural  brain  correlates of personality (Bjørnebekk et al., 2013; Holmes et al., 2012; 
Rauch  et al., 2005; Riccelli, Toschi, Nigro, Terracciano, & Passamonti, 2017; Wright et al., 
2006). It has the  advantage  of disentangling  several  geometric aspects of brain  structure  which 
may contribute  to  differences detected  in  VBM, such  as cortical  thickness (Hutton, Draganski, 
Ashburner, & Weiskopf, 2009), cortical  volume, and  folding . Although  many studies using  SBM 
are  once  again  limited  by small  sample  sizes, one  recent study (Riccelli  et al., 2017) used  507 
subjects to  investigate  personality. However, that study raises several  other important 
methodological  limitations, to  which  we  will  return  later in  our paper. Perhaps most notably, 
Riccelli  et al. (2017) used  a  purely correlational, rather than  a  predictive  framework (Dubois & 
Adolphs, 2016; Woo, Chang, Lindquist, & Wager, 2017; Yarkoni  & Westfall, 2017). There  was 
no  assessment of the  generalizability of the  findings, and  most of the  reported  relationships may 
thus have  resulted  simply from overfitting  the  study sample, together with  potentially 
questionable  statistical  thresholding  (Woo, Krishnan, & Wager, 2014).  

There  is much  room for improvement in  structural  MRI studies of personality traits. The 
limitation  of small  sample  sizes can  now be  overcome, since  all  MRI studies regularly collect 
structural  scans, and  recent consortia  and  data  sharing  efforts have  lead  to  the  accumulation  of 
large  publicly available  datasets (Job  et al., 2017; Miller et al., 2016; Van  Essen  et al., 2013). 
One  could  imagine  a  mechanism by which  personality assessments, if not available  already 
within  these  datasets, are  collected  later (Mar, Spreng, & Deyoung, 2013), yielding  large 
samples for relating  structural  MRI to  personality.  Lack of out-of-sample  generalizability, a 
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limitation  of almost all  studies that we  raised  above, can  be  overcome  using  cross-validation 
techniques, or by setting  aside  a  replication  sample. In  short: despite  a  considerable  historical 
literature  that has investigated  the  association  between  personality traits and  structural  MRI 
measures, there  are  as yet no  very compelling  findings because  prior studies have  been  unable 
to  surmount this list of limitations.  

Diffusion  MRI studies 
Diffusion  Tensor Imaging  (DTI) is a  neuroimaging  method  that measures the  diffusion   of 

water molecules along  axonal  fibers to  identify white  matter tracts (Le  Bihan  et al., 2001). 
Several  studies have  looked  for a  relationship  between  white-matter integrity as assessed  by 
DTI and  personality factors (Cohen, Schoene-Bake, Elger, & Weber, 2008; Kim & Whalen, 
2009; Westlye, Bjørnebekk, Grydeland, Fjell, & Walhovd, 2011; Xu  & Potenza, 2012). As with 
structural  MRI studies, extant focal  findings fail  to  replicate  with  larger samples of subjects which 
tend  to  find  more  widespread  differences linked  to  personality traits (Bjørnebekk et al., 2013). 
The  same  concerns mentioned  in  the  previous section, in  particular the  lack of a  predictive 
framework (e.g., using  cross-validation), plague  this literature; similar recommendations can  be 
made  to  increase  the  reproducibility of this line  of research, in  particular aggregating  data  (Miller 
et al., 2016; Van  Essen  et al., 2013) and  using  prediction  rather than  correlation  (Yarkoni  & 
Westfall, 2017).  

Functional  MRI studies 
Functional  MRI (fMRI) measures local  changes in  blood  flow and  blood  oxygenation  as a 

surrogate  of the  metabolic demands due  to  neuronal  activity (Logothetis & Wandell, 2004). 
There  are  two  main  paradigms that have  been  used  to  relate  fMRI data  to  personality traits: 
task-based  fMRI and  resting-state  fMRI.  

Task-based  fMRI studies are  based  on  the  assumption  that differences in  personality 
may affect information-processing  in  specific tasks (Yarkoni., 2015). Personality dimensions are 
tentatively mapped  onto  cognitive  mechanisms, whose  neural  correlates can  be  studied  with 
fMRI. For example, differences in  neuroticism may materialize  as differences in  emotional 
reactivity, which  can  then  be  mapped  onto  the  brain  (T. Canli  et al., 2001). There  is a  very large 
literature  on  task-fMRI substrates of personality, which  is beyond  the  scope  of this overview. In 
general, some  of the  same  concerns we  raised  above  also  apply to  task-fMRI studies, which 
typically have  even  smaller sample  sizes (Yarkoni, 2009), greatly limiting  power to  detect 
individual  differences (in  personality or any others). Several  additional  concerns on  the  validity 
of fMRI-based  individual  differences research  apply (Dubois & Adolphs, 2016) and  a  new 
challenge  arises as well: whether the  task used  has construct validity for a  personality trait. 

The  other paradigm, resting-state  fMRI, offers a  solution  to  the  sample  size  problem, as 
resting-state  data  is often  collected  alongside  other data, and  can  easily be  aggregated  in  large 
online  databases (Biswal  et al., 2010; Eickhoff, Nichols, Van  Horn, & Turner, 2016; Poldrack & 
Gorgolewski, 2015; Van  Horn  & Gazzaniga, 2013). It is the  type  of data  we  used  in  the  present 
paper.  Resting-state  data  does not explicitly engage  cognitive  processes that are  thought to  be 
related  to  personality traits. Instead, it is used  to  study correlated  self-generated  activity 
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between  brain  areas while  a  subject is at rest. These  correlations, which  can  be  highly reliable 
given  enough  data  (Finn  et al., 2015; Laumann  et al., 2015; Noble  et al., 2017), are  thought to 
reflect stable  aspects of brain  organization  (Xilin  Shen  et al., 2017; S. M. Smith  et al., 2013). 
There  is a  large  ongoing  effort to  link individual  variations in  functional  connectivity (FC) 
assessed  with  resting-state  fMRI to  individual  traits and  psychiatric diagnosis (for reviews see 
(Dubois & Adolphs, 2016; Orrù, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012; S. M. 
Smith  et al., 2013; Woo  et al., 2017).  

A number of recent studies have  investigated  functional  connectivity markers from 
resting-state  fMRI and  their association  with  personality traits (Adelstein  et al., 2011; Aghajani  et 
al., 2014; Baeken  et al., 2014; Beaty et al., 2014, 2016; Gao  et al., 2013; Jiao  et al., 2017; Lei, 
Zhao, & Chen, 2013; Pang  et al., 2016; Ryan, Sheu, & Gianaros, 2011; Takeuchi  et al., 2012; 
Wu, Li, Yuan, & Tian, 2016). Somewhat surprisingly, these  resting-state  fMRI studies also  suffer 
from low sample  sizes (typically less than  100  subjects, usually about 40), and  the  lack of a 
predictive  framework to  assess effect size  out-of-sample. One  of the  best extant datasets, the 
Human  Connectome  Project (HCP) has only in  the  past year reached  its full  sample  of over 
1000  subjects, now making  large  sample  sizes readily available. To  date, only the  exploratory 
“MegaTrawl” (S. Smith  et al., 2016) has investigated  personality in  this database; we  believe 
that ours is the  first comprehensive  study of personality on  the  full  HCP dataset. 
 

Measuring  Personality 
 Although  there  are  a  number of different schemes and  theories for quantifying 

personality traits, by far the  most common  and  well  validated  one, and  also  the  only one 
available  for the  Human  Connectome  Project dataset, is the  five-factor solution  of personality 
(aka  “The  Big  Five”).  This was originally identified  through  systematic examination  of the 
adjectives in  English  language  that are  used  to  describe  human  traits. Based  on  the  hypothesis 
that all  important aspects of human  personality are  reflected  in  language, Raymond  Cattell 
applied  factor analysis to  peer ratings of personality and  identified  16  common  personality 
factors (Cattell, 1945). Over the  next 3  decades, multiple  attempts to  replicate  Cattell’s study 
using  a  variety of methods (e.g. self-description  and  description  of others with  adjective  lists and 
behavioral  descriptions) agreed  that the  taxonomy of personality could  be  robustly described 
through  a  five-factor solution  (Borgatta, 1964; Fiske, 1949; Norman, 1963; G. M. Smith, 1967; 
Tupes & Christal, 1961).  Since  the  1980s, the  Big  Five  has emerged  as the  leading 
psychometric model  in  the  field  of personality psychology (Goldberg, 1981; Robert R. McCrae  & 
John, 1992). The  five  factors are  commonly termed  “openness,” “conscientiousness,” 
“extraversion,” “agreeableness,” and  “neuroticism.” 

While  the  Big  Five  personality dimensions are  not based  on  an  independent theory of 
personality, and  in  particular have  no  basis in  neuroscience  theories of personality, proponents 
of the  Big  Five  maintain  that they provide  the  best empirically-based  integration  of the  dominant 
theories of personality, encompassing  the  alternative  theories of Cattell, Guilford  and  Eysenck 
(Amelang, Borkenau  - Zeitschrift fuer Differentielle  und, & 1982, 1982). Self-report 
questionnaires, such  as the  NEO-FFI (Robert R. McCrae  & Costa, 2004), can  be  used  to 
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reliably assess an  individual  with  respect to  these  five  factors. Even  though  there  remain 
critiques of the  Big  Five  (Block, 1995; Uher, 2015), its proponents argue  that its five  factors “are 
both  necessary and  reasonably sufficient for describing  at a  global  level  the  major features of 
personality" (R. R. McCrae, Costa  - American  Psychologist, & 1986, 1986).  

The  present study 
As we  emphasized  above, personality neuroscience  based  on  MRI data  confronts two 

major challenges. First, essentially all  studies to  date  have  been  severely underpowered  due  to 
small  sample  sizes (Button  et al., 2013; Schönbrodt & Perugini, 2013; Yarkoni, 2009). Second, 
most studies have  failed  to  use  a  predictive  or replication  framework (but see  (Deris, Montag, 
Reuter, Weber, & Markett, 2017)), making  their generalizability unclear -- a  well-recognized 
problem in  neuroscience  studies of individual  differences (Dubois & Adolphs, 2016; Gabrieli, 
Ghosh, & Whitfield-Gabrieli, 2015; Yarkoni  & Westfall, 2017). The  present paper takes these 
two  challenges seriously by applying  a  predictive  framework, together with  a  built-in  replication, 
to  a  large, homogeneous resting-state  fMRI dataset.  

Our dataset, the  Human  Connectome  Project resting-state  fMRI data  (HCP rs-fMRI) 
makes available  over 1000  well  assessed  healthy adults.  With  respect to  our study, it provided 
three  types of relevant data:  (1) high-quality resting-state  fMRI (2  sessions per subject on 
separate  days, each  consisting  of two  15  minute  runs); (2) personality assessment for each 
subject (using  the  NEO-FFI 2); (3) additional  basic cognitive  assessment (IQ and  others, as well 
as demographic information).  (1) permitted  replication  between  the  sessions, (2) permitted 
analysis of item-wise  scores (for instance, to  derive  superordinate  personality factors, which  we 
also  explore), and  (3) permitted  careful  elimination  of possible  confounds by regressing  them 
out of the  personality scores. 

Our primary question  was straightforward:  given  the  challenges noted  above, is it 
possible  to  find  evidence  that any personality trait can  be  reliably predicted  from fMRI data, 
using  the  best available  resting-state  fMRI dataset together with  the  best current analysis 
methods?   If the  answer to  this question  is negative, this might suggest that studies to  date  that 
have  claimed  to  find  associations between  resting-state  fMRI and  personality are  false  positives 
(but of course  it would  still  leave  open  future  positive  findings, if more  sensitive  measures are 
available).  If the  answer is positive, it would  provide  an  estimate  of the  effect size  that can  be 
expected  in  future  studies; it would  provide  specific recommendations for data  preprocessing, 
modeling, and  statistical  treatment; and  it would  provide  a  basis for hypothesis-driven 
investigations that could  focus on  particular traits and  brain  regions. 

Methods 

Dataset 
We  used  data  from a  public repository, the  1200  subjects release  of the  Human 

Connectome  Project (HCP) (Van  Essen  et al., 2013).  The  HCP provides MRI data  and 
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extensive  behavioral  assessment from almost 1200  subjects. Acquisition  parameters and 
“minimal” preprocessing  of the  resting-state  fMRI data  is described  in  the  original  publication 
(Glasser et al., 2013). Briefly, each  subject underwent two  sessions of resting-state  fMRI on 
separate  days, each  session  with  two  separate  15  minute  acquisitions generating  1200  volumes 
(customized  Siemens Skyra  3  Tesla  MRI scanner, TR = 720  ms, TE = 33  ms, flip  angle= 52°, 
voxel  size  = 2  mm isotropic, 72  slices, matrix = 104  x 90, FOV = 208  mm x 180  mm, multiband 
acceleration  factor = 8). The  two  runs acquired  on  the  same  day differed  in  the  phase  encoding 
direction, left-right and  right-left (which  leads to  differential  signal  intensity especially in  ventral 
temporal  and  frontal  structures). The  HCP data  was downloaded  in  its minimally preprocessed 
form, i.e. after motion  correction, B0 distortion  correction, coregistration  to  T1-weighted  images 
and  normalization  to  MNI space. 

Personality assessment, and  personality factors 
The  60  item version  of the  Costa  and  McCrae  Neuroticism/Extraversion/Openness Five 

Factor Inventory (NEO-FFI), which  has shown  excellent reliability and  validity (Robert R. 
McCrae  & Costa, 2004), was administered  to  HCP subjects. This measure  was collected  as part 
of the  Penn  Computerized  Cognitive  Battery (R. C. Gur et al., 2001; Ruben  C. Gur et al., 2010). 
Note  that the  NEO-FFI was recently updated  (NEO-FFI-3, 2010), but the  test administered  to 
the  HCP subjects is the  older version  (NEO-FFI-2, 2004). 

The  NEO-FFI is a  self-report questionnaire  -- the  abbreviated  version  of the  240-item 
Neuroticism / Extraversion  / Openness Personality Inventory Revised  (NEO-PI-R (Paul  T. Costa 
& McCrae, 1992)). For each  item, participants reported  their level  of agreement on  a  5-point 
Likert scale, from strongly disagree  to  strongly agree.  

The  Openness, Conscientiousness, Extraversion, Agreeableness and  Neuroticism 
scores are  derived  by coding  each  item’s answer (strongly disagree  = 0; disagree  = 1; neither 
agree  nor disagree  = 2; agree  = 3; strongly agree  = 4) and  then  reverse  coding  appropriate 
items and  summing  into  subscales. As the  item scores are  available  in  the  database, we 
recomputed  the  Big  Five  scores with  the  following  item coding  published  in  the  NEO-FFI 2 
manual, where  *  denotes reverse  coding  : 

● Openness: (3*, 8*, 13, 18*, 23*, 28, 33*, 38*, 43, 48*, 53, 58)   
● Conscientiousness: (5, 10, 15*, 20, 25, 30*, 35, 40, 45*, 50,  55*, 60)  
● Extraversion: (2, 7, 12*, 17, 22, 27*, 32, 37, 42*, 47, 52, 57*)  
● Agreeableness: (4, 9*, 14*, 19, 24*, 29*, 34, 39*, 44*, 49, 54*, 59*) 
● Neuroticism: (1*, 6, 11, 16*, 21, 26, 31*, 36, 41, 46*, 51, 56 ) 

We  note  that the  Agreeableness factor score  that we  calculated  was slightly discrepant with  the 
score  in  the  HCP database  due  to  an  error in  the  HCP database  in  not reverse-coding  item 59 
at that time  (downloaded  06/07/2017).  This issue  was reported  on  the  HCP listserv (Gray, 
2017). 

To  test the  internal  consistency of each  of the  Big  Five  personality traits in  our sample, 
Cronbach’s alpha  was calculated.  

Each  of the  Big  Five  personality traits can  be  decomposed  into  further facets (P. T. 
Costa  Jr & McCrae, 1995), but we  did  not attempt to  predict these  facets from our data. Not only 
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does each  facet rely on  fewer items and  thus constitutes a  noisier measure; also, trying  to 
predict many traits leads to  a  multiple  comparison  problem which  then  needs to  be  accounted 
for (for an  extreme  example, see  the  HCP “MegaTrawl” (S. Smith  et al., 2016)).  

As we  found  the  Big  Five  to  be  correlated  with  one  another in  our sample  of subjects, we 
performed  a  factor analysis (with  varimax rotation) on  the  60  item scores to  extract two 
superordinate  factors (Blackburn, Renwick, Donnelly, & Logan, 2004; DeYoung, 2006; Digman, 
1997) often  referred  to  in  the  literature  as {α / socialization  / stability} and  {β  / personal  growth  / 
plasticity}. We  also  tested  the  predictability of these  superordinate  factors from the  HCP rs-fMRI 
data, in  addition  to  the  original  five  factors, for a  grand  total  of 7  personality dimensions. 

While  we  used  resting-state  fMRI data  from two  separate  sessions (typically collected  on 
consecutive  days), there  was only a  single  set of behavioral  data  available; the  NEO-FFI was 
typically administered  on  the  same  day as the  second  session  of resting-state  fMRI (Van  Essen 
et al., 2013). 

IQ assessment 
An  estimate  of fluid  intelligence  is available  as the  PMAT24_A_CR measure  in  the  HCP 

dataset. This proxy for IQ is based  on  a  short version  of Raven’s progressive  matrices (24 
items) (Bilker et al., 2012); scores are  integers indicating  number of correct items. We  used  this 
IQ score  for two  purposes: i) as a  benchmark comparison  in  our predictive  analyses, since 
others have  previously reported  that this measure  of IQ could  be  predicted  from resting-state 
fMRI in  the  HCP dataset (Finn  et al., 2015; Noble  et al., 2017); ii) as a  de-confounding  variable 
(see  “Assessment and  removal  of potential  confounds” below). 

Subject selection 
The  total  number of subjects in  the  1200-subject release  of the  HCP dataset is N=1206. 

We  applied  the  following  criteria  to  include/exclude  subjects from our analyses (listing  in 
parentheses the  HCP database  field  codes). i) Complete  datasets . Subjects must have 
completed  all  resting-state  fMRI scans (3T_RS-fMRI_PctCompl=100), as well  as the  Raven’s 
matrices intelligence  test (PMAT_Compl=True), the  NEO-FFI (NEO-FFI_Compl=True) and  the 
Mini  Mental  Status Exam  (MMSE_Compl=True). All  item scores must be  available  for the 
NEO-FFI. This left us with  N = 998  subjects. ii) Cognitive  compromise .  We  excluded  one 
subject with  a  score  of 26  or below on  the  MMSE, which  could  indicate  marked  cognitive 
impairment in  this highly educated  sample  of adults under age  40  (Crum, Anthony, Bassett, & 
Folstein, 1993). This left us with  N = 997  subjects. iii) In-scanner  motion. We  further excluded 
subjects with  a  root-mean-squared  frame-to-frame  head  motion  estimate 
(Movement_Relative_RMS.txt) exceeding  0.15mm in  any of the  4  resting-state  runs (threshold 
similar to  (Finn  et al., 2015)). This left us with  N = 880  subjects. iv) Outliers  on NEO-FFI 
responses . To  identify subjects who  produced  unusual  or inconsistent NEO-FFI responses, we 
used  a  robust outlier detection  method  (Leys, Klein, Dominicy, & Ley, 2018) in  the 
five-dimensional  space  spanned  by the  five  personality factors. As per recommendations in 
(Leys et al., 2018), we  used  a  robust Mahalanobis distance  based  on  the  Minimum Covariance 
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Determinant (with  a  breakdown  point of 0.25), and  a  threshold  based  on  the  chi-square  value 
with  5  degrees of freedom for quantile  99.9. This identified  13  outlier subjects, leaving  us with 
our final  sample  of 867  subjects (see  Table  S1 ), including  402  males (age  range  22-36). 

Assessment and  removal  of potential  confounds 
We  computed  the  correlation  of each  of the  personality factors with  Gender (Gender), 

Age  (Age_in_Yrs, restricted), IQ (PMAT24_A_CR ). We  also  looked  for differences in  personality 
in  our subject sample  with  variables that are  likely to  affect FC matrices, such  as brain  size  (we 
used  FS_BrainSeg_Vol), motion  (we  computed  the  sum of framewise  displacement in  each 
run), and  the  multiband  reconstruction  algorithm which  changed  in  the  third  quarter of HCP data 
collection  (fMRI_3T_ReconVrs). Correlations are  shown  in  Figure  2a  below. We  then  used 
multiple  linear regression  to  regress these  variables from each  of the  personality scores and 
remove  their confounding  effects. 

Note  that we  do  not control  for differences in  cortical  thickness and  other morphometric 
features, which  have  been  reported  to  be  correlated  with  personality factors (e.g. (Riccelli  et al., 
2017)). These  likely interact with  FC measures and  should  eventually be  accounted  for in  a  full 
model, yet this was deemed  outside  the  scope  of the  present study. 

We  should  also  note  that it turns out that the  five  personality factors are  in  fact correlated 
to  some  degree  (see  Results, Figure  2a ).  We  did  not orthogonalize  them-- consequently 
predictability would  be  expected  also  to  correlate  slightly among  personality factors.  

Data  preprocessing 
Resting-state data must be preprocessed beyond “minimal preprocessing”, due to the           

presence of multiple noise components, such as subject motion and physiological fluctuations.            
Several approaches have been proposed to remove these noise components and clean the             
data, however the community has not yet reached a consensus on the “best” denoising pipeline               
for resting-state fMRI data (Caballero-Gaudes & Reynolds, 2016; Ciric et al., 2017; Murphy &              
Fox, 2017; Siegel et al., 2016). Most of the steps taken to denoise resting-state data have                
limitations, and it is unlikely that there is a set of denoising steps that can completely remove                 
noise without also discarding some of the signal of interest. Categories of denoising operations              
that have been proposed comprise tissue regression, motion regression, noise component           
regression, temporal filtering and volume censoring. Each of these categories may be            
implemented in several ways. There exist several excellent reviews of the pros and cons of               
various denoising steps (Caballero-Gaudes & Reynolds, 2016; T. T. Liu, 2016; Murphy, Birn, &              
Bandettini, 2013; J. D. Power et al., 2014).  

Here, instead of picking a single denoising strategy combining steps used in the             
previous literature, we set out to explore three reasonable alternatives, which we refer to as A,                
B, and C (Figure 1c ). To easily apply these preprocessing strategies in a single framework,               
using input data that is either volumetric or surface-based, we developed an in-house,             
Python-based customizable pipeline (mostly based on open source libraries and frameworks for            
scientific computing, including SciPy, Numpy, NiLearn, NiPype, Scikit-learn (Abraham et al.,           
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2014; K. Gorgolewski et al., 2011; K. J. Gorgolewski et al., 2017; Pedregosa et al., 2011; Walt,                 
Colbert, & Varoquaux, 2011)) implementing the most common denoising steps described in            
previous literature.  

Pipeline A reproduces as closely as possible the strategy described in (Finn et al.,              
2015) and consists of seven consecutive steps: 1) the signal at each voxel is z-score               
normalized; 2) using tissue masks, temporal drifts from cerebrospinal fluid (CSF) and white             
matter (WM) are removed with third-degree Legendre polynomial regressors; 3) the mean            
signals of CSF and WM are computed and regressed from gray matter voxels; 4) translational               
and rotational realignment parameters and their temporal derivatives are used as explanatory            
variables in motion regression; 5) signals are low-pass filtered with a Gaussian kernel with a               
standard deviation of 1 TR, i.e. 720ms in the HCP dataset; 6) the temporal drift from gray matter                  
signal is removed using a third-degree Legendre polynomial regressor; 7) global signal            
regression  is performed. 

Pipeline B, described in (Ciric et al., 2017; Satterthwaite, Wolf, et al., 2013), is              
composed of four steps in our implementation: 1) normalization at voxel-level is performed by              
subtracting the mean from each voxel’s time series; 2) linear and quadratic trends are removed               
with polynomial regressors; 3) temporal filtering is performed with a first order Butterworth filter              
with a passband between 0.01 and 0.08 Hz (after linearly interpolating volumes to be censored,               
cf. step 4); 4) tissue regression (CSF and WM signals with their derivatives and quadratic               
terms), motion regression (realignment parameters with their derivatives, quadratic terms and           
square of derivatives), global signal regression (whole brain signal with derivative and quadratic             
term), and censoring of volumes with a root-mean-squared (RMS) displacement that exceeded            
0.25  mm are  combined  in  a  single  regression  model. 

Pipeline C, inspired by (Siegel et al., 2016), is implemented as follows: 1) an automated               
independent component (IC)-based denoising was performed with ICA-FIX (Salimi-Khorshidi et          
al., 2014). Instead of running ICA-FIX ourselves, we downloaded the FIX-denoised data which             
is available from the HCP database; 2) voxel signals were demeaned and 3) detrended with a                
first degree polynomial; 4) CompCor, a PCA-based method proposed by (Behzadi, Restom,            
Liau, & Liu, 2007) was applied to derive 5 components from CSF and WM signals; these were                 
regressed out of the data, together with gray matter and whole-brain mean signals; volumes              
with a frame-wise displacement greater than 0.25 mm or a variance of differentiated signal              
(DVARS) greater than 105% of the run median DVARS were discarded as well; 5) temporal               
filtering was performed with a first-order Butterworth band-pass filter between 0.01 and 0.08 Hz,              
after linearly interpolating  censored  volumes. 

Inter-subject alignment, parcellation, and  functional  connectivity 
matrix generation 

An  important choice  in  processing  fMRI data  is how to  align  subjects in  the  first place. 
The  most common  approach  is to  warp  individual  brains to  a  common  volumetric template, 
typically MNI152. However, cortex is a  2D structure; hence, surface-based  algorithms that rely 
on  cortical  folding  to  map  individual  brains to  a  template  may be  a  better approach. Yet another 
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improvement in  aligning  subjects may come  from using  functional  information  alongside 
anatomical  information  - this is what the  multimodal  surface  matching  (MSM) framework 
achieves (Robinson  et al., 2014). MSM-All  aligned  data, in  which  intersubject registration  uses 
individual  cortical  folding, myelin  maps, and  resting-state  fMRI correlation  data, is available  for 
download  from the  HCP database. 

Our prediction  analyses below are  based  on  functional  connectivity matrices. While 
voxel- (or vertex-) wise  functional  connectivity matrices can  be  derived, their dimensionality is 
too  high  compared  to  the  number of examples in  the  context of a  machine-learning  based 
predictive  approach.  PCA or other dimensionality reduction  applied  to  the  voxelwise  data  can 
be  used, but this often  comes at the  cost of losing  neuroanatomical  specificity.  Hence, we  work 
with  the  most common  type  of data: parcellated  data, in  which  data  from many voxels (or 
vertices) is aggregated  anatomically and  the  signal  within  a  parcel  is averaged  over its 
constituent voxels. Choosing  a  parcellation  scheme  is the  first step  in  a  network analysis of the 
brain  (Sporns, 2013), yet once  again  there  is no  consensus on  the  “best” parcellation. There  are 
two  main  approaches to  defining  network nodes in  the  brain: nodes may be  a  set of overlapping, 
weighted  masks, e.g. obtained  using  independent component analysis (ICA) of BOLD fMRI data 
(S. M. Smith  et al., 2013); or a  set of discrete, non-overlapping  binary masks, also  known  as a 
hard  parcellation  (Glasser et al., 2016; Gordon  et al., 2014). We  chose  to  work with  a  hard 
parcellation, which  we  find  easier to  interpret. 

Here  we  present results based  on  a  classical  volumetric alignment, together with  a 
volumetric parcellation  of the  brain  into  268  nodes (Finn  et al., 2015; X. Shen, Tokoglu, 
Papademetris, & Constable, 2013); and, for comparison, results based  on  MSM-All  data, 
together with  a  parcellation  that was specifically derived  from this data  (Glasser et al., 2016) 
(Figure  1d).  

Timeseries extraction  simply consisted  in  averaging  data  from voxels (or grayordinates) 
within  each  parcel, and  matrix generation  in  pairwise  correlating  parcel  time  series (Pearson 
correlation  coefficient). FC matrices were  averaged  across runs (all  averaging  used  Fisher-z 
transforms) acquired  with  left-right and  right-left phase  encoding  in  each  session, i.e. we  derived 
two  FC matrices per subject, one  for REST1  (from REST1_LR and  REST1_RL) and  one  for 
REST2  (from REST2_LR and  REST2_RL). 

Test-retest comparisons  
We applied all three denoising pipelines to the data of all subjects. We then compared               

the functional connectivity (FC) matrices produced by each of these strategies, using several             
metrics. One metric that we used follows from the connectome fingerprinting work of (Finn et al.,                
2015), and was recently labeled the identification success rate (ISR) (Noble et al., 2017).              
Identification of subject S is successful if, out of all subjects’ FC matrices derived from REST2,                
subject S’s is the most highly correlated with subject S’s FC matrix from REST1 (identification               
can also be performed from REST2 to REST1; results are very similar). The ISR gives an                
estimate of the reliability and specificity of the entire FC matrix at the individual subject level,                
and is influenced both by within-subject test-retest reliability as well as by discriminability             
amongst all subjects in the sample. Relatedly, it is desirable to have similarities (and              
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differences) between all subjects be relatively stable across repeated testing sessions.           
Following an approach introduced in (Geerligs, Rubinov, Cam-Can, & Henson, 2015), we            
computed the pairwise similarity between subjects separately for session 1 and session 2,             
constructing a Nsubjects×Nsubjects matrix for each session. We then compared these matrices using             
a simple Pearson correlation. Finally, we used a metric targeted at behavioral utility, and              
inspired by (Geerligs, Rubinov, et al., 2015): for each edge (the correlation value between a               
given pair of brain parcels) in the FC matrix, we computed its correlation with a stable trait                 
across subjects, and built a matrix representing the relationship of each edge to this trait,               
separately for session 1 and session 2. We then compared these matrices using a simple               
Pearson correlation. The more edges reliably correlate with the stable trait, the higher the              
correlation between session 1 and session 2 matrices. It should be noted that trait stability is an                 
untested assumption with this approach, because in fact only a single trait score was available               
in the HCP, collected at the time of session 2. We performed this analysis for the measure of IQ                   
available in the HCP (PMAT24_A_CR) as well as all Big Five personality factors and the two                
superordinate  factors.  

Prediction  models 
There  is no  obvious “best” model  available  to  predict individual  behavioral  measures 

from functional  connectivity data  (Abraham et al., 2016). So  far, most attempts have  relied  on 
linear machine  learning  approaches. This is partly related  to  the  well-known  “curse  of 
dimensionality”: despite  the  relatively large  sample  size  that is available  to  us (N=867  subjects), 
it is still  about an  order of magnitude  smaller than  the  typical  number of features included  in  the 
predictive  model. In  such  situations, fitting  relatively simple  linear models is less prone  to 
overfitting  than  fitting  complex nonlinear models.  

There  are  several  choices of linear prediction  models. Here, we  present the  results of 
two  methods that have  been  used  in  the  literature  for similar purposes: 1) a  simple, “univariate” 
regression  model  as used  in  (Finn  et al., 2015), and  further advocated  by (Xilin  Shen  et al., 
2017), preceded  by feature  selection; and   2) a  regularized  linear regression  approach, based 
on  elastic-net penalization  (Zou  & Hastie, 2005). We  describe  each  of these  in  more detail  next. 

Model (1) is the simplest model, and the one proposed by (Finn et al., 2015), consisting                
in a univariate regressor where the dependent variable is the score to be predicted and the                
explanatory variable is a scalar value that summarizes the functional connectivity network            
strength (i.e., the sum of edge weights). A simple filtering approach is used to select features                
(edges in the FC correlation matrix) that are correlated with the behavioral score on the training                
set: edges that correlate with the behavioral score with a p-value less than 0.01 are kept. Two                 
distinct models are built using edges of the network that are positively and negatively correlated               
with the score, respectively. This method has the advantage of being extremely fast to compute,               
but some main limitations are that i) it condenses all the information contained in the               
connectivity network in a single measure and does not account for any interactions between              
edges and ii) it arbitrarily builds two separate models (one for positively correlated edges, one               
for negatively correlated edges; they are referred to as the positive and the negative models               
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(Finn et al., 2015)) and does not offer a way to integrate them. We only report results from the                   
positive  model  here.  

To address the limitations of the univariate model, we also included a multivariate model.              
Model (2) kept the same filtering approach as for the univariate model (discard edges for which                
the p-value of the correlation with the behavioral score is greater than 0.01); this choice allows                
for a better comparison of the multivariate and univariate models, and for faster computation.              
Elastic Net is a regularized regression method that linearly combines L1- (lasso) and L2- (ridge)               
penalties to shrink some of the regressor coefficients toward zero, thus retaining just a subset of                
features. The lasso model performs continuous shrinkage and automatic variable selection           
simultaneously, but in the presence of a group of highly correlated features, it tends to arbitrarily                
select one feature from the group. With high-dimensional data and few examples, the ridge              
model has been shown to outperform lasso; yet it cannot produce a sparse model since all the                 
predictors are retained. Combining the two approaches, elastic net is able to do variable              
selection and coefficient shrinkage while retaining groups of correlated variables. Here however,            
based on preliminary experiments and on the fact that it is unlikely that just a few edges                 
contribute to prediction, we fixed the L1 ratio (which weights the L1- and L2- regularizations) to                
0.01, which amounts to almost pure ridge regression. We used 3-fold nested cross-validation             
(with balanced “classes”, based on a partitioning of the training data into quartiles) to choose the                
alpha  parameter (among  50  possible  values) that weighs the  penalty term.  

Cross-validation  scheme 
In  the  HCP dataset, several  subjects are  genetically related  (in  our final  subject sample, 

there  were  408  unique  families). To  avoid  biasing  the  results due  to  this family structure  (e.g., 
perhaps having  a  sibling  in  the  training  set would  facilitate  prediction  for a  test subject), we 
implemented  a  leave-one-family-out cross-validation  scheme  for all  predictive  analyses.  

Statistical  assessment of predictions 
The  outcome  measure  for our predictions is simply the  correlation  between  true  scores 

and  predicted  scores (which, squared, can  be  interpreted  as the  fraction  of variance  explained 
by our predictive  model).  

In  a  cross-validation  scheme, the  folds are  not independent of each  other. This means 
that statistical  assessment of the  cross-validated  performance  using  parametric statistical  tests 
is problematic (Combrisson  & Jerbi, 2015; Noirhomme  et al., 2014). Proper statistical 
assessment should  thus be  done  using  permutation  testing  on  the  actual  data. To  establish  the 
empirical  distribution  of chance, we  ran  our predictive  analysis using  1000  random permutations 
of the  scores (shuffling  scores randomly between  subjects, keeping  everything  else  exactly the 
same, including  the  family structure). Permutation  testing  can  be  computationally prohibitive  in 
the  case  of complex models; we  found  it to  be  very CPU-time-consuming  with  the  two  simple 
models presented  here. Due  to  the  computational  demands, we  only performed  permutation 
testing  for (some  of the) analyses that passed  the  parametric significance  threshold, so  as to 
assign  these  results more  accurate  p-values. 
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Visualization  of edges and  nodes participating  in  predictions 
To  gain  an  initial  understanding  of the  neural  correlates of the  individual  scores which 

were  successfully predicted, we  visualized  the  nodes participating  in  our predictive  models. We 
first selected  edges that were  correlated  with  the  (de-confounded) scores, with  a  threshold 
p<0.01  as in  our feature  selection  step, in  at least one  of the  cross-validation  folds. We  then 
kept only the  edges that appeared  in  both  sessions (test-retest reliability) and  in  all  three 
preprocessing  strategies (conceptually equivalent to  inter-rater reliability). We  finally computed 
the  degree  of each  node, as the  percentage  of the  maximum number of edges that included  that 
node  (with  the  maximum being  the  number of parcels minus one). Therefore, a  high  value  for a 
node  means that a  high  number of connections to  that node  enter our predictive  models. Note 
that this visualization  does not separately consider positive  and  negative  relationships between 
edge  strength  and  the  behavioral  score. It is also  not obviously related  to  the  importance  of the 
node  itself for prediction, which  would  require  further work such  as selectively pruning  edges to 
assess the  loss of prediction; this was outside  the  scope  of the  present study.  

 
 
 

 
Figure  1. Overview of our  approach. In  total, we  separately analyzed  24  different sets of 
results: 2  data  sessions x 2  alignment/brain  parcellation  schemes x 3  preprocessing  pipelines x 
2  predictive  models. a . The  data  from each  selected  HCP subject (Nsubjects=867) and  each  run 
(REST1_LR, REST1_RL, REST2_LR, REST2_RL) was downloaded  after minimal 
preprocessing, both  in  MNI space, and  in  MSM-All  space. The  _LR and  _RL  runs within  each 
session  were  averaged, producing  2  datasets that we  call  REST1  and  REST2  henceforth.  Data 
for REST1  and  REST2, and  for both  spaces (MNI, MSM-All) were  analyzed  separately. We 
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applied  three  alternate  denoising  pipelines to  remove  typical  confounds found  in  resting-state 
fMRI data  (see  c ). We  then  parcellated  the  data  (see  d) and  built a  functional  connectivity matrix 
separately for each  alternative. This yielded  6  FC matrices per run  and  per subject. In  red: 
alternatives taken  and  presented  in  this paper. b. For each  of the  6  alternatives, an  average  FC 
matrix was computed  for REST1  (from REST1_LR and  REST1_RL) and  for REST2  (from 
REST2_LR and  REST2_RL). For a  given  session, we  built a  (Nsubjects x Nedges) matrix, stacking 
the  upper triangular part of all  subjects’  FC matrices (the  lower triangular part is discarded, 
because  FC matrices are  diagonally symmetric). Each  column  thus corresponds to  a  single 
entry in  the  upper triangle  of the  FC matrix (a  pairwise  correlation  between  two  brain  parcels, or 
edge) across all  867  subjects.  There  are  a  total  of Nparcels(Nparcels-1)/2  edges (thus: 35778  edges 
for the  MNI parcellation, 64620  edges for the  MSM-All  parcellation). This was the  data  from 
which  we  then  predicted  individual  differences in  each  of the  personality factors. We  used  two 
different linear models (see  text), and  a  leave-one-family-out cross validation  scheme. The  final 
result is a  predicted  score  for each  subject, which  is correlated  against the  measured  score  for 
statistical  assessment of the  prediction. c . Detail  of the  three  denoising  alternatives. These  are 
reasonable, published  denoising  strategies for resting-state  fMRI. The  steps are  color-coded  to 
indicate  the  category of operation  they correspond  to  (legend  at the  bottom). See  text for details. 
d. The  parcellations used  for the  MNI-space  and  MSM-All  space, respectively. Major 
resting-state  networks are  color-coded  for visualization, following  labels in  (Finn  et al., 2015).  

Results 

Characterization  of behavioral  measures 

Internal  consistency, distribution, and  inter-correlations of personality 
traits 

In  our final  subject sample  (N=867), there  was good  internal  consistency for each 
personality trait, as measured  with  Cronbach’s α. We  found: Openness, α = 0.755; 
Conscientiousness α = 0.805; Extraversion, α = 0.778; Agreeableness, α = 0.742; and 
Neuroticism, α = 0.841. These  compare  well  with  the  values reported  by (Robert R. McCrae  & 
Costa, 2004). 

Scores on  all  factors were  nearly normally distributed  by visual  inspection, although  the 
null  hypothesis of a  normal  distribution  was rejected  for all  but Agreeableness (using  D’Agostino 
and  Pearson’s (D’Agostino  & Pearson, 1973) normality test as implemented  in  SciPy) (Figure 
2b).  

Although  in  theory the  Big  Five  personality traits should  be  orthogonal, their estimation 
from the  particular item scoring  of versions of the  NEO in  practice  deviates considerably from 
orthogonality.  This intercorrelation  amongst the  five  factors has been  reported  for the  NEO-PI-R 
(Block, 1995; Saucier, 2002), the  NEO-FFI (Block, 1995; Egan, Deary, & Austin, 2000), and 
alternate  instruments (DeYoung, 2006) (but, see  (Robert R. McCrae  et al., 2008)). Indeed, in 
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our subject sample, we  found  that the  five  personality factors were  correlated  with  one  another 
(Figure  2a ). For example, Neuroticism was anticorrelated  with  Conscientiousness (r  = -0.413,  p 
<10 -35), Extraversion  (r  = -0.350,  p  < 10 -25), and  Agreeableness  (r  = -0.307,  p  <10 -19), while  these 
latter   three  factors were  positively correlated  with  one  another (all  r>0.24).  Following others,  we  thus 
derived two  superordinate  factors that incorporate  this  correlation  structure: we  performed  a  factor 
analysis of the  60  item  scores  in  our  subject  sample,  with  varimax  rotation  (5  factorial  iterations,  11 
rotational iterations).  We labeled  the  two  derived  dimensions  α  and  β,  following  (Digman,  1997) . 
Essentially the  same  two  factors were  obtained from a  factor analysis  of the  Big  Five  scores  rather 
than  from the  raw  60  items  (data  not  shown).   Figure 2c  shows  how  the  Big  Five  project  on  this 
two-dimensional solution.  We carried  out  further  analyses  on  all  7  factors: the  Big  Five, and  the  two 
superordinate factors. 

 

 
 
Figure 2 . Structure  of Personality  factors  in our subject sample  (N=867).  a. The  five  personality 
factors were  not  orthogonal in  our  sample.  Neuroticism was  anticorrelated  with  Conscientiousness, 
Extraversion and  Agreeableness, and  the  latter  three  were  positively correlated  with  each  other. 
Openness correlated  more  weakly  with  other  factors. There  were  highly significant  correlations  with 
other  behavioral and  demographic variables,  which  we  accounted  for in  our  subsequent  analyses  by 
regressing them  out  of the  personality  scores  (see  next  section).  b. Distributions  of the  five 
personality  scores  in  our  sample.  Each  of the  five  personality scores  was  approximately normally 
distributed by  visual  inspection.  c. Factor analysis  with  varimax  rotation  on  the  60  item  scores, 
projecting the  data  on  two  superordinate dimensions,  α  and  β. 

Confounding  variables 
There  are  known  effects of gender (Ruigrok et al., 2014; Trabzuni  et al., 2013), age 

(Dosenbach  et al., 2010; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015), in-scanner motion 
(J. D. Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Satterthwaite, Elliott, et al., 2013; 
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Tyszka, Kennedy, Paul, & Adolphs, 2014), brain  size  (Hänggi, Fövenyi, Liem, Meyer, & Jäncke, 
2014) and  IQ (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Finn  et al., 2015; Noble  et al., 
2017) on  the  functional  connectivity patterns measured  in  the  resting-state  with  fMRI. It is thus 
necessary to  control  for these  variables: indeed, if a  personality factor is correlated  with  gender, 
one  would  be  able  to  predict some  of the  variance  in  that personality factor solely from 
functional  connections that are  related  to  gender. The  easiest way to  control  for these 
confounds is to  remove  any relationship  between  the  confounding  variables and  the  score  of 
interest in  our sample  of subjects, which  can  be  done  using  multiple  regression. 

We  characterized  the  relationship  between  each  of the  personality factors and  each  of 
the  confounding  variables listed  above  in  our subject sample  (Figure  2a ). All  personality factors 
but Extraversion  were  correlated  with  gender: women  scored  higher on  Conscientiousness, 
Agreeableness and  Neuroticism, while  men  scored  higher on  Openness. In  previous literature, 
women  have  been  reliably found  to  score  higher on  Neuroticism and  Agreeableness, which  we 
replicated  here, while  other gender differences are  generally inconsistent at the  level  of the 
factors (Paul  T. Costa, Terracciano, & McCrae, 2001; Feingold, 1994; Weisberg, Deyoung, & 
Hirsh, 2011). Agreeableness and  Openness were  significantly correlated  with  age  in  our 
sample, despite  our limited  age  range  (22-36  y.o.): younger subjects scored  higher on 
Openness, while  older subjects scored  higher on  Agreeableness. The  finding  for Openness 
does not match  previous reports (Allemand, Zimprich, & Hendriks, 2008; Soto, John, Gosling, & 
Potter, 2011), but this may be  confounded  by other factors such  as gender, as our analyses 
here  do  not use  partial  correlations. Motion, quantified  as the  sum of frame-to-frame 
displacement over the  course  of a  run  (and  averaged  separately for REST1  and  REST2) was 
correlated  with  Openness: subjects scoring  lower on  Openness moved  more  during  the 
resting-state. Note  that motion  in  REST1  was highly correlated  (r=0.724, p<10 -138) with  motion  in 
REST2, indicating  that motion  itself may be  a  stable  trait, and  correlated  with  other traits. Brain 
size, obtained  from Freesurfer during  the  minimal  preprocessing  pipelines, was found  to  be 
significantly correlated  with  all  personality factors but Extraversion. IQ was positively correlated 
with  Openness, and  negatively correlated  with  Conscientiousness, Extraversion, and 
Neuroticism, consistent with  other reports (Bartels et al., 2012; Chamorro-Premuzic & Furnham, 
2004). While  the  interpretation  of these  complex relationships would  require  further work outside 
the  scope  of this study, we  felt that it was critical  to  remove  shared  variance  between  each 
personality score  and  the  primary confounding  variables before  proceeding  further. This 
ensures that our model  is trained  specifically to  predict personality, rather than  confounds that 
covary with  personality. 

Another possible  confound, specific to  the  HCP dataset, is a  difference  in  the  image 
reconstruction  algorithm between  subjects collected  prior to  and  after April  2013. The 
reconstruction  version  leaves a  notable  signature  on  the  data  that can  make  a  large  difference 
in  the  final  analyses produced  (Elam, 2015). We  found  a  significant correlation with  the 
Openness factor in  our sample. Therefore, we  also  included  the  reconstruction  factor as a 
confound  variable. 

Importantly, the  multiple  linear regression  used  for removing  the  variance  shared  with 
confounds was performed  on  training  data  only (in  each  cross-validation  fold  during  the 
prediction  analysis), and  then  the  fitted  weights were  applied  to  both  the  training  and  test data. 
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This is critical  to  avoid  any leakage  of information, however negligible, from the  test data  into  the 
training  data. 

Authors of the  HCP-MegaTrawl  have  used  transformed  variables (Age 2) and  interaction 
terms (Gender x Age, Gender x Age 2) as further confounds (S. Smith  et al., 2016). After 
accounting  for the  confounds described  above, we  did  not find  sizeable  correlations with  these 
additional  terms (all  correlations <0.009), and  thus we  did  not use  these  additional  terms in  our 
confound  regression. 

Preprocessing  affects test-retest reliability of FC  matrices 
As we are interested in relatively stable traits (which are unlikely to change much              

between sessions REST1 and REST2), one clear goal for the denoising steps applied to the               
minimally preprocessed data is to yield functional connectivity matrices that are as “similar” as              
possible across the two sessions. We computed several metrics (see Methods) to assess this              
similarity for each  of our three  denoising  strategies (A, B, and  C; cf Figure  1c ). 

In general, differences in test-retest reliability across metrics were small when comparing            
the three denoising strategies. Considering the entire FC matrix, the Identification Success Rate             
(ISR) (Finn et al., 2015; Noble et al., 2017) was high for all strategies, and highest for pipeline B                   
(Figure 3a). The multivariate pairwise distances between subjects were also best reproduced            
across sessions by pipeline B (Figure 3b). In terms of behavioral utility, i.e. reproducing the               
pattern of correlations of the different edges with a behavioral score, pipeline A outperformed              
the others (Figure 3c). All three strategies appear to be reasonable choices, and we would thus                
expect a similar predictive accuracy under each of them, if there is information about a given                
score  in  the  functional  connectivity matrix.  

We note here already that Neuroticism stands out as having lower test-retest reliability in              
terms of its relationship to edge values across subjects (Figure 3c ). This may be a hint that the                  
FC matrices do  not carry information  about Neuroticism. 
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Figure 3. Test-retest comparisons between spaces and denoising strategies . a .          
Identification success rate, and other statistics related to connectome fingerprinting (Finn et al.,             
2015; Noble et al., 2017). All pipelines had a success rate superior to 87% for identifying the                 
functional connectivity matrix of a subject in REST2 (out of N=867 choices) based on their               
functional connectivity matrix in REST1. Pipeline B slightly outperformed the others. b.            
Test-retest of the pairwise similarities (based on Pearson correlation) between all subjects            
(Geerligs, Rubinov, et al., 2015). Overall, for the same session, the three pipelines give similar               
pairwise similarities between subjects. About 25% of the variance in pairwise distances is             
reproduced in REST2, with pipeline B emerging as the winner. c . Test-retest reliability of              
behavioral utility, quantified as the pattern of correlations between each edge and a behavioral              
score of interest (Geerligs, Rubinov, et al., 2015). Shown are IQ, Openness, and Neuroticism              
(all de-confounded, see main text). Pipeline A gives slightly better test-retest reliability for all              
behavioral scores. MSM-All outperforms MNI alignment. Neuroticism shows poorer test-retest          
than  IQ and  Openness.  

Prediction  of IQ (PMAT24_A_CR) 
It has been  reported  that a  measure  of IQ, the  raw score  on  a  24-item version  of the 

Raven’s Progressive  Matrices (PMAT24_A_CR), could  be  predicted  from FC matrices in 
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previous releases of the  HCP dataset (Finn  et al., 2015; Noble  et al., 2017). Here  we  generally 
replicate  this result for the  de-confounded  IQ score  (removing  variance  shared  with  gender, age, 
brain  size, motion, and  reconstruction  version), using  a  leave-one-family-out cross-validation 
approach.  We  found  positive  correlations across all  24  of our result datasets: 2  sessions x 3 
denoising  pipelines (A, B & C) x 2  parcellation  schemes (in  volumetric space  and  in  MSM-All 
space) x 2  models (univariate  (positive) and  multivariate  learning  models)  (Figure  4a ). The 
mean  effect size  across all  12  alternative  analyses was r=.147  for REST1, and  r=.123  for 
REST2  (see  Table  1 ).  We  note  however that, using  MNI space  and  denoising  strategy A as in 
(Finn  et al., 2015), the  prediction  is barely significant in  REST1  (at parametric p<0.05), and  not 
significant in  REST2. One  difference  is that the  previous study did  not use  de-confounding, 
hence  some  variance  from confounds may have  been  used  in  the  predictions; also  the  sample 
size  was much  smaller in  (Finn  et al., 2015) (N=118; but N=606  in  (Noble  et al., 2017)), and 
family structure  was not accounted  for in  the  cross-validation. Performance  is better, and 
reliable  across sessions and  pipelines, in  MSM-All  space  (Table  1 ).  

For the  prediction  using  pipeline  A, we  estimated  the  distribution  of chance  for the 
prediction  score  under both  the  univariate  and  the  multivariate  models, in  volumetric and  in 
MSM-All  space, using  1000  random permutations of the  subjects’  IQ scores (Figure  4b). It can 
be  seen  that parametric statistics underestimate  the  confidence  interval  for the  null  hypothesis, 
hence  overestimate  significance. Interestingly, the  null  distributions differ between  the  univariate 
and  the  multivariate  models: while  the  distribution  under the  multivariate  model  is roughly 
symmetrical  around  0, the  distribution  under the  univariate  model  is asymmetrical  with  a  long  tail 
on  the  left.The  empirical, one-tailed  p-value  for REST1  MNI space  data  denoised  with  strategy 
A and  using  the  univariate  positive  model  is p=0.063, while  the  parametric one-tailed  p-value  is 
p=0.005. Hence  using  non-parametric statistics, de-confounded  IQ is not predicted  above 
chance  in  MNI space  with  strategy A and  the  univariate  positive  model. This analysis clearly 
evidences the  “optimism” of parametric significance  thresholds for cross-validated  prediction 
analyses, and  further shows that the  specific model  used  for prediction  can  affect statistical 
thresholds. The  empirical  p-value  for REST1  MSM-All  data  denoised  with  strategy A and  using 
the  multivariate  model  is p=0.001  (none  of the  1000  random permutations resulted  in  a  higher 
prediction  score).  
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Figure  4. Prediction results  for  de-confounded IQ (PMAT24_A_CR ). a . All  predictions are 
assessed  using  the  correlation  between  the  predicted  score  and  the  measured  score  (the  actual 
score  of the  subject). The  prediction  score  in  REST2  is plotted  against the  prediction  score  in 
REST1, to  assess test-retest reliability of the  results. Parametric confidence  intervals (95%, 99% 
and  99.9%) for the  null  hypothesis are  shown  as shades of gray. Results in  MSM-All  space 
outperform results in  MNI space, and  are  reliable  across REST1  and  REST2. The  multivariate 
model  slightly outperforms the  univariate  (positive) model. Our results generally show good 
test-retest reliability across sessions. See  also  Table  1 . Parametric significance  thresholds are 
shown  solely for visualization  purposes, and  cannot be  used  for statistical  assessment. b. We 
ran  the  prediction  (REST1, MNI space, strategy A) 1000  times, randomly shuffling  the  IQ scores 
while  keeping  everything  else  the  same, for the  univariate  model  (top) and  the  multivariate 
model  (bottom). The  distribution  of prediction  scores under the  null  hypothesis is shown  (black 
histogram). Note  that the  empirical  99% confidence  interval  is wider than  the  parametric CI used 
in  a , and  features a  heavy tail  on  the  left side  for the  univariate  model. This demonstrates clearly 
that parametric statistics are  not appropriate  in  the  context of cross-validation. Such  permutation 
testing  may be  computationally prohibitive  for more  complex models, yet since  the  chance 
distribution  is model-dependent, it must be  performed  for statistical  assessment.  
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Table  1. Predictions  results  (Pearson  correlation  coefficient between  predicted  and  observed 
individual  scores) for all  behavioral  scores and  analytical  alternatives, for both  sessions (two 
columns for each  score). Averages use  a  Fisher-z transform. The  average  statistics are 
provided  for descriptive  purposes only. For reference, parametric confidence  intervals given 
N=867  are  abs(r)<0.0755  (95%), abs(r)<0.0945  (99%) and  abs(r)<0.1176  (99.9%); however, 
these  underestimate  the  true  confidence  intervals that would  be  obtained  from permutation  tests 
(see  Figure  4b). 

Prediction  of the  Big  Five  and  superordinate  personality factors 
Having  established  that our approach  reproduces and  improves on  an  existing  finding 

(Finn  et al., 2015; Noble  et al., 2017), we  next turned  to  predicting  each  of the de-confounded 
Big  Five  personality factors using  the  same  approach  (de-confounding  removed  variance 
shared  with  gender, age, brain  size, motion, reconstruction  version, and  importantly, IQ). The 
results are  shown  in  Figure  5a . 

Several  observations can  be  made  from these  results.  Most broadly, predictability was 
quite  poor.  There  is a  hint that the  MSM-All  parcellation  did  better overall  (red  symbols are 
more  positive  than  blue  symbols), and  REST2  produced  overall  better predictability than  REST1 
(results fall  mostly to  the  left of the  diagonal  line  of reproducibility). The  latter finding  is 
interesting, since  the  NEO-FFI test was also  administered  closer in  time  to  REST2  than  to 
REST1  on  average.  For Conscientiousness, Agreeableness, and  Neuroticism, as well  as the 
superordinate  factor derived  primarily from these  (α; top  row in  Figure  5a,b), predictability was 
not significant overall  (all  r<0.07, see  Table  1 ).  As well, the  performance  of our different 
analysis alternatives varied  considerably, and  in  some  cases actually produced  negative 
correlations (that is, predicted  slightly in  the  wrong  direction), a  clear sign  of unreliability. 
Whether these  findings reflect true  unpredictability, or merely show high  sensitivity to  the  details 
of the  processing, will  remain  to  be  seen. Openness and  Extraversion, as well  as their 
corresponding  superordinate  factor (β) showed  considerably better predictability (mean 
correlations of r=0.11, r=0.08  and  r=0.12, respectively; see  Table  1 ).  The  best values were 
once  again  obtained  for REST2  and  for the  MSM-All  parcellation  with  the  multivariate  model 
(y-axis value  for the  open  red  symbols), and  approached  r=0.2  in  the  best cases. The  empirical 
p-value  for the  prediction  of superordinate  factor β  in  REST2, MSM-All  data  with  denoising  A 
was p=0.003  (for comparison, given  a  prediction  score  r=0.197, the  parametric p-value  is 2.46  x 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/215129doi: bioRxiv preprint 

https://paperpile.com/c/MrfAi9/TJXr+tiH1T
https://doi.org/10.1101/215129


10 -9; this again  demonstrates the  importance  of using  permutation  testing  for statistical 
assessment).  

Although  we  conducted  12  different analyses for each  session  with  the  intent to  present 
all  of them in  an  unbiased  manner, it is nonetheless notable  that certain  combinations produced 
the  best predictions across different personality scores. Furthermore, these  are  some  of the 
same  combinations that yielded  the  best predictability for IQ (Figure  4 , above).  Specifically, the 
MSM-All  brain  parcellation, and  the  multivariate  model  (elastic net) produced  the  best 
predictions.  We  would  thus summarize  these  results as showing  three  main  points.  

First, there  is variability across sessions and  analysis alternatives, demonstrating  the 
sensitivity that prediction  of individual  differences in  personality has with  respect to  exactly how 
the  data  are  processed. This puts a  high  priority on  trying  several  processing  pipelines, as we 
did  here, and  a  priority on  very complete  documentation  of what was done  so  that other 
investigators can  replicate  findings.  Eventually, the  results from the  best analysis pipeline  would 
need  to  be  replicated  independently, ideally in  a  pre-registered  study.  Note  that we  did  not 
Bonferroni  correct for all  the  different analyses, nor for the  multiple  personality traits that we 
investigated. 

Second, in  general  Conscientiousness, Agreeableness, and  Neuroticism cannot be 
predicted; whereas Openness and  Extraversion  can  be  weakly predicted.  Whether or not the 
predictability of Openness and  Extraversion  is a  reproducible  finding  will  require  further 
replications, and  more  comprehensive  statistical  evaluation  using  permutation  tests. 

Third, while  the  findings strongly encourage  additional  processing  alternatives, some  of 
which  may produce  results yet superior to  those  here, we  can  provisionally recommend  the 
multimodal  brain  parcellation  (Glasser et al., 2016) together with  multivariate  models such as 
elastic net regression. We  comment further on  these  recommendations in  the  Discussion. 

 
Figure  5. Prediction results  for  the  Big Five  and superordinate  personality  factors . a . 
Prediction  results for each  of the  Big  Five. Representation  is the  same  as in  Figure  4a . The  only 
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factor that shows consistency across spaces, denoising  strategies, models and  sessions is 
Openness (NEOFAC_O), although  Extraversion  (NEOFAC_E) also  shows uniformly positive 
correlations. b. Prediction  results for superordinate  factors α and  β. The  prediction  for β  is also 
very consistent across the  various alternatives, especially in  MSM-All  space. See  also  Table  1 . 
Parametric significance  thresholds are  shown  solely for visualization  purposes, as they likely 
underestimate  the  true  confidence  interval  (cf. Figure  4b). 
 

Visualization  of nodes reliably participating  in  the  prediction  of 
superordinate  factor β 

Having  established  predictability above  chance  for the  β  scores (keeping  in  mind  the 
possible  optimism of parametric statistical  thresholds in  the  context of a  cross-validation 
scheme, see  Figure  4b), we  next investigated  which  network nodes most contributed  to  the 
successful  predictions. Since  only superordinate  personality factor β  could  be  predicted  with 
confidence  (Figure  5b), we  focused  on  the  neuroanatomy of this prediction, and  compared  it 
with  the  neuroanatomy of the  successful  prediction  of IQ (Figure  4a ). Since  any correlation  with 
IQ was removed  from β  scores in  our subject sample  using  multiple  linear regression  (see 
Methods), the  prediction  of β  necessarily relies on  different functional  connectivity substrates. 
Indeed  we  found  that there  was no  overlap  between  edges reliably selected  (across sessions 
and  denoising  strategies) to  predict IQ and  β. However, we  found  that there  was substantial 
overlap  in  the  nodes (brain  parcels) that have  the  largest numbers of predictive  edges. The 
anatomical  distribution  of these  nodes is shown  in  Figure  6  and  reveals a  very distributed  set of 
regions over most of the  brain. To  further test for the  importance  of each  node  and  edge  for 
prediction, further analyses using  recursive  feature  elimination  would  be  needed, which  were 
outside  the  scope  of this study. 

 

 
Figure  6. Visualization of the  nodes  that participate  in the  prediction of IQ and 
superordinate  factor  β . Here  we  show, for each  node  of the  MSM-All  parcellation, the  total 
number of edges that are  selected  by the  initial  feature  selection  step  (Pearson  correlation  with 
de-confounded  score  at p<0.01), across sessions and  denoising  strategies.  The  color scale 
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indicates the  number of edges that include  that particular node  (as a  proportion  of the 
maximum, which  for our 360-parcellation  scheme  is 359).  Note  that this does not 
straightforwardly translate  into  the  predictive  contribution  of the  node. 

Discussion 

Summary of results 
Connectome-based  predictive  modeling  (Dubois & Adolphs, 2016; Xilin  Shen  et al., 

2017) has been  an  active  field  of research  in  the  past years: it consists in  using  functional 
connectivity as measured  from resting-state  fMRI data  to  predict individual  differences in 
demographics, behavior, psychological  profile, or psychiatric diagnosis. Here, we  applied  this 
approach  and  attempted  to  predict the  Big  Five  personality factors (R. R. McCrae  & Costa, 
1987) from resting-state  data  in  a  large  public dataset, the  Human  Connectome  Project (N=867 
after exclusion  criteria). We  can  summarize  our findings as follows. 

1.  We  found  that personality traits were  not only intercorrelated  with  one  another, but 
were  also  correlated  with  IQ, age, sex and  other measures.  We  therefore  regressed  these 
possible  confounds out, producing  a  residualized  set of personality trait measures (that were, 
however, still  intercorrelated  amongst themselves). 

2.  Comparing  our different processing  pipelines and  data  from different fMRI sessions 
showed  generally good  stability of functional  connectivity across time, a  prerequisite  for 
attempting  to  predict a  personality trait that is also  stable  across time. 

3.  We  replicated  and  extended  a  previously published  finding, the  prediction  of a 
measure  of IQ (Finn  et al., 2015; Noble  et al., 2017) from functional  connectivity patterns, 
providing  reassurance  that our approach  is able  to  predict individual  differences when  possible. 

4.  We  then  carried  out a  total  of 24  different analyses for each  of the  five  personality 
factors, as well  as for the  superordinate  factors α and  β  that were  derived  from factor analysis of 
item-wise  NEO-FFI responses in  our subject sample. The  24  different analyses resulted  from 
using  2  different data  sets (2  sessions, establishing  test-retest reliability), 3  different 
preprocessing  pipelines (exploring  sensitivity to  how the  fMRI data  are  processed), 2  different 
alignment and  hard  parcellation  schemes (providing  initial  results whether surface-based  or 
volumetric parcels work better), and  2  different predictive  models (univariate  and  multivariate). 
Across all  of these  24  alternatives, we  generally found  that the  MSM-All  multimodal  parcellation 
scheme  of Glasser et al. (2016) worked  best, and  that the  multivariate  model  (elastic net) 
worked  best.  This provides preliminary confirmation  that these  approaches yield  greater 
information  from fMRI data  to  predict individual  differences, recommending  them for future 
studies in  personality neuroscience  as well. 

5.   Among  the  personality measures, only Extraversion  and  Openness could  be  weakly 
predicted  (best correlations approaching  0.2  with  mean  correlations of .11  and  .08, 
respectively).   The  superordinate  β  factor (personal  growth/plasticity) was the  most reliably 
predicted  of all, with  an  effect size  similar to  the  prediction  of IQ (mean  r=.12). It was notable 
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that predictions were  often  highly unstable, showing  large  variation  depending  on  small  changes 
in  preprocessing, or across session  datasets.  

At best, our predictions reached  a  score  (correlation  between  predicted  and  measured 
scores) r~=0.2. In  interpreting  the  statistical  significance  of any single  finding, we  note  that one 
would  have  to  correct for all  the  multiple  analysis pipelines that we  tested; future  replications or 
extensions of this work would  benefit from a  pre-registered  single  approach  to  reduce  the 
degrees of freedom in  the  analysis. 

We  also  want to  draw attention  to  how small  an  effect an  r=0.2  actually is. It may be 
significant, in  a  large  enough  population  of subjects like  the  one  considered  here  (and  ignoring 
the  multiple  comparison  issue  just noted). Yet, in  terms of explained  variance, it only 
corresponds to  4%. This means that our very best model  only explains about 4% of the  variance 
in  the  best predicted  scores (IQ and   superordinate  factor β).  We  are  thus still  far from 
understanding  the  neurobiological  substrates of IQ and  personality (Yarkoni., 2015). Indeed, 
based  on  this finding, it seems unlikely that findings from predictive  approaches using 
whole-brain  resting-state  fMRI will  inform hypotheses about specific neural  systems that provide 
a  causal  mechanistic explanation  of personality.  This conclusion  was also  borne  out by an 
exploration  of the  neuroanatomical  parcels containing  the  greatest proportion  of predictive 
edges (Figure  6), which  did  not show much  anatomical  specificity. 

Taken  together, our approach  of performing  what amounted  to  24  different analyses for 
each  personality factor provided  important general  guidelines for personality neuroscience 
studies using  resting-state  fMRI data: i) operations that are  sometimes taken  as granted, such 
as resting-state  fMRI denoising  (Abraham et al., 2016), make  a  difference  on  the  outcome  of 
connectome-based  predictions and  their test-retest reliability; ii) new inter-subject alignment 
procedures, such  as multimodal  surface  matching  (Robinson  et al., 2014), improve  performance 
and  test-retest reliability; iii) a  simple  multivariate  linear model  may be  a  good  alternative  to  the 
separate  univariate  models proposed  by (Finn  et al., 2015), yielding  improved  performance.  

Our approach  also  draws attention  to  the  tremendous analytical  flexibility that is available 
in  principle  (Carp, 2012), and  to  the  all-too-common  practice  of keeping  such  explorations 
“behind  the  scenes” and  only reporting  the  “best” strategy, leading  to  an  inflation  of positive 
findings reported  in  the  literature  (Neuroskeptic, 2012; Simonsohn, Nelson, & Simmons, 2014). 
At a  certain  level, if all  analyses conducted  make  sense  (i.e., would  pass a  careful  expert 
reviewer’s scrutiny), they should  all  give  a  similar answer to  the  final  question  (inter-rater 
reliability (Dubois & Adolphs, 2016)). 

Effect of subject alignment 
The  recently proposed  multimodal  surface  matching  framework uses a  combination  of 

anatomical  and  functional  features to  best align  subject cortices. It improves functional 
inter-subject alignment over the  classical  approach  of warping  brains volumetrically (Dubois & 
Adolphs, 2016). For the  scores that can  be  predicted  from functional  connectivity, alignment in 
the  MSM-All  space  outperformed  alignment in  the  MNI space. However, more  work needs to  be 
done  to  further establish  the  superiority of the  MSM-All  approach. Indeed, the  parcellations used 
in  this study differed  between  the  MNI and  MSM-All  space: the  parcellation  in  MSM-All  space 
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had  more  nodes (360, vs. 268) and  no  subcortical  structures were  included. Also, it is unclear 
how the  use  of resting-state  data  during  the  alignment process in  the  MSM-All  framework 
interacts with  resting-state  based  predictions, since  the  same  data  used  for predictions has 
already been  used  to  align  subjects.  

Effect of preprocessing 
We  applied  three  separate, reasonable  denoising  strategies, inspired  from published 

work (Ciric et al., 2017; Finn  et al., 2015; Satterthwaite, Elliott, et al., 2013; Siegel  et al., 2016) 
and  our current understanding  of resting-state  fMRI confounds (Caballero-Gaudes & Reynolds, 
2016; Murphy et al., 2013). The  differences between  the  three  denoising  strategies in  terms of 
the  resulting  test-retest reliability, based  on  several  metrics, were  not very large  - yet, there  were 
differences. Pipeline  A appeared  to  yield  the  best reliability in  terms of behavioral  utility, while 
Pipeline  B was best at conserving  differences across subjects. Pipeline  C performed  worst on 
these  metrics in  our hands, despite  its use  of the  automated  artifact removal  tool  ICA-FIX 
(Salimi-Khorshidi  et al., 2014); it is possible  that performing  CompCor and  censoring  are  in  fact 
detrimental  after ICA-FIX (see  also  (Muschelli  et al., 2014)). Finally, in  terms of the  final 
predictive  score, all  three  strategies demonstrated  acceptable  test-retest reliability for scores 
that were  successfully predicted. There  are  of course  many more  metrics one  should  use  to 
properly assess the  differences between  denoising  strategies, and  a  full  exploration  of the  topic 
was outside  the  scope  of the  present study.  

Effect of predictive  algorithm 
Our exploration  of a  multivariate  model  was motivated  by the  seemingly arbitrary 

decision  to  weigh  all  edges equally in  the  univariate  model  proposed  by (Finn  et al., 2015). 
However, we  also  recognize  the  need  for simple  models, given  the  paucity of data  compared  to 
the  number of features (curse  of dimensionality). We  thus explored  a  regularized  regression 
model  that would  combine  information  from negative  and  positive  edges optimally, after 
performing  the  same  feature-filtering  step  as in  the  univariate  model. The  multivariate  model 
performed  best on  the  scores that were  predicted  most reliably, yet it also  seemed  to  have  lower 
test-retest reliability. More  work remains to  be  done  on  this front to  find  the  best simple  model 
that optimally combines information  from all  edges and  can  be  trained  in  a  situation  with  limited 
data.  

Statistical  significance 
It is inappropriate  to  assess statistical  significance  using  parametric statistics in  the  case 

of a  cross-validation  analysis (Figure  4b). However, for complex analyses, it is often  the 
preferred  option, due  to  the  prohibitive  computational  resources needed  to  run  permutation 
tests. Here  we  showed  the  empirical  distribution  of chance  prediction  scores for both  the 
univariate- and  multivariate-model  predictions of IQ (PMAT24_A_CR) using  denoising  pipeline 
A in  MNI space  (Figure  4b). As expected, the  permutation  distribution  is wider than  the 
parametric estimate; it also  differs significantly between  the  univariate  and  the  multivariate 
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models. This finding  stresses that one  needs to  calculate  permutation  statistics for the  specific 
analysis that one  runs. The  calculation  of permutation  statistics should  be  feasible  given  the 
rapid  increase  and  ready availability of computing  clusters with  multiple  processors. Here  we 
also  ran  permutation  testing  for the  prediction  of  superordinate  factor β, using  denoising 
pipeline  A in  MSM-All  space  and  the  multivariate  model, to  assess the  statistical  significance  of 
that particular result.  

Will  our findings reproduce? 
Unfortunately, we  were  not able  to  test the  reproducibility of our current findings in  a 

completely separate  subject cohort, as at the  time  of the  analyses we  were  not aware  of another 
resting-state  fMRI dataset of sufficient quality and  sample  size. Of course, assessing  personality 
a  posteriori  for existing  large  resting-state  fMRI public repositories may be  an  option  worth 
considering  (Mar et al., 2013).  It is common  practice  in  machine  learning  competitions to  set 
aside  a  portion  of your data  and  not look at it at all  until  a  final  analysis has been  decided, and 
only then  to  run  that single  final  analysis on  the  held-out data  to  establish  out-of-sample 
replication. We  decided  not to  split our dataset in  that way due  to  its already limited  sample  size, 
and  instead  used  a  careful  cross-validation  framework and  refrained  from adaptively changing 
parameters upon  examining  the  final  results. Even  in  light of these  precautions, we  would  stop 
short of claiming  that we  have  uncovered  the  neural  basis for IQ and  β. The  current paper 
should  now serve  as the  basis of a  pre-registered  replication, when  another suitable  dataset 
becomes available.  

On  the  relationship  between  brain  and  personality 
The  best neural  predictor of personality may be  distinct, wholly or in  part, from the  actual 

neural  mechanisms by which  personality expresses itself on  any given  occasion . Personality 
may stem from a  disjunctive  and  heterogeneous set of biological  constraints that in  turn 
influence  brain  function  in  complex ways (Yarkoni., 2015); neural  predictors may simply be 
conceived  of as “markers” of personality: any correlated  measures that a  machine  learning 
algorithm could  use  as information, on  the  basis of which  it could  be  trained  in  a  supervised 
fashion  to  discriminate  among  personality traits.  It may well  someday be  possible  to  predict 
personality differences from fMRI data  with  much  greater accuracy than  what we  found  here, in 
the  same  supervised  framework where  the  personality traits have  been  defined  and 
distinguished  based  on  behavioral  criteria  in  the  first place. We  think it likely that, in  general, 
such  an  approach  will  still  fall  short of uncovering  the  neural  mechanisms behind  personality, in 
the  sense  of explaining  the  proximal  causal  processes whereby personality is expressed  in 
behavior on  specific occasions.  
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Subjective  and  objective  measures of personality 
As noted  already in  the  introduction, it is worth  keeping  in  mind  the  history of the  Big 

Five: they derive  from factor analyses of words, of the  vocabularies that we  use  to  describe 
people. As such, they fundamentally reflect our folk psychology, and  our social  inferences 
(“theory of mind”) about other people. This factor structure  was then  used  to  design  a  self-report 
instrument, in  which  participants are  asked  about themselves (the  NEO or variations thereof). 
Unlike  some  other self-report indices (such  as the  MMPI), the  NEO-FFI does not assess 
test-taking  approach  (e.g. consistency across items or tendency toward  a  particular response 
set), and  thus, offers no  insight regarding  validity of any individual’s responses. This is a  notable 
limitation, as there  is substantial  evidence  that NEO-FFI scores may be  intentionally 
manipulated  by the  subject’s response  set (Furnham, 1997; Topping  & O’Gorman, 1997).  Even 
in  the  absence  of intentional  ‘faking’, NEO outcomes are  likely to  be  influenced  by an 
individual’s insight, impression  management, and  reference  group  effects. However, these 
limitations may be  addressed  by applying  the  same  analysis to  multiple  personality measures 
with  varying  degrees of face-validity and  objectivity, as well  as measures that include  indices of 
response  bias. This might include  ratings provided  by a  familiar informant, implicit-association 
tests (e.g. (Schnabel, Asendorpf, & Greenwald, 2008)), and  spontaneous behavior (e.g. (Mehl, 
Gosling, & Pennebaker, 2006)).  Future  development of measures of personality that provide 
better convergent validity and  specificity will  be  an  important component of personality 
neuroscience. 

 

Limitations and  Future  Directions 
There  are  several  limitations of the  present study that could  be  improved  upon  or 

extended  in  future  work.  In  addition  to  the  obvious issue  of simply needing  more, and/or better 
quality, data, there  is the  important issue  of obtaining  a  better estimate  of variability within  a 
single  subject.  This is especially pertinent for personality traits, which  are  supposed  to  be 
relatively stable  within  an  individual.  Thus, collecting  multiple  fMRI datasets, perhaps over 
weeks or even  years, could  help  to  find  those  features in  the  data  with  the  best cross-temporal 
stability. Indeed  several  such  dense  datasets across multiple  sessions in  a  few subjects have 
already been  collected, and  may already help  guide  the  intelligent selection  of features with  the 
greatest temporal  stability (Gordon  et al., 2017; Noble  et al., 2017; Poldrack et al., 2015). 
Against expectations, initial  analyses seem to  indicate  that the  most reliable  edges in  FC from 
such  studies are  not necessarily the  most predictive  edges (for IQ; (Noble  et al., 2017)), yet 
more  work needs to  be  done  to  further test this hypothesis.  It is also  possible  that shorter 
timescale  fluctuations in  resting-state  fMRI provide  additional  information  (if these  are  stable 
over longer times), and  it might thus be  fruitful  to  explore  dynamic FC, as some  work has done 
(Calhoun, Miller, Pearlson, & Adalı, 2014; Jia, Hu, & Deshpande, 2014; Vidaurre, Smith, & 
Woolrich, 2017).  
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No  less important would  be  improvements on  the  behavioral  end, as we  alluded  to  in  the 
previous section.  Developing  additional  tests of personality to  provide  convergent validity to  the 
personality dimension  constructs would  help  provide  a  more  accurate  estimate  of these  latent 
variables. Just as with  the  fMRI data, collecting  personality scores across time  should  help  to 
prioritize  those  items that have  the  greatest temporal  stability and  reduce  measurement error.  It 
is interesting  to  note  in  this regard  that we  tended  to  find  better predictability of personality for 
that session  of rs-fMRI data  that was collected  around  the  same  point in  time  as the  NEO-FFI 
scores (REST2). 

Another limitation  is signal-to-noise. It may be  worth  exploring  fMRI data  obtained  while 
watching  a  movie  that drives relevant brain  function, rather than  during  rest, in  order to 
maximize  the  signal  variance  in  the  fMRI signal. Similarly, it could  be  beneficial  to  include 
participants with  a  greater range  of personality scores, perhaps even  including  those  with  a 
personality disorder.  A greater range  of signal  both  on  the  fMRI end  and  on  the  behavioral  end 
would  help  provide  greater power to  detect associations. 

The  models we  used, like  most in  the  literature, were  linear.  Nonlinear models may be 
more  appropriate, yet the  difficulty in  using  such  models is that they would  require  a  much  larger 
number of training  samples relative  to  the  number of features in  the  dataset.  This could  be 
accomplished  both  by accruing  ever larger databases of rs-fMRI data, and  by further reducing 
the  dimensionality of the  data, for instance  through  PCA or coarser parcellations.  Alternatively, 
one  could  form a  hypothesis about the  shape  of the  function  that might best predict personality 
scores and  explicitly include  this in  a  model. 

 A final  important but complex issue  concerns the  correlation  between  most behavioral 
measures.  In  our analyses, we  regressed  out IQ, age, and  sex, amongst other variables.  But 
there  are  many more  that are  likely to  be  correlated  with  personality at some  level.  If one 
regressed  out all  possible  measures, one  would  likely end  up  removing  what one  is interested 
in, since  eventually the  residual  of personality would  shrink to  a  very small  range.  An  alternative 
approach  is to  use  the  raw personality scores (without any removal  of confounds at all), and 
then  selectively regress out IQ, memory task performance, mood, etc., and  make  comparisons 
between  the  results obtained. This could  yield  insights into  which  other variables are  driving  the 
predictability of a  personality trait.  It could  also  suggest specific new variables to  investigate  in 
their own  right. 

Recommendations for Personality Neuroscience 
There  are  well  known  challenges to  the  reliability and  reproducibility of findings in  personality 
neuroscience, which  we  have  already mentioned.  The  field  shares these  with  any other attempt 
to  link neuroscience  data  with  individual  differences (Dubois & Adolphs, 2016). We  conclude 
with  some  specific recommendations for the  field  going  forward, focusing  on  the  use  of 
resting-state  fMRI data. 

i) Given  the  effect sizes that we  report here  (which  are  by no  means a  robust estimate, 
yet do  provide  a  basis on  which  to  build), we  think it would  be  fair to  recommend  a  minimum 
sample  size  of 500  or so  subjects (Schönbrodt & Perugini, 2013) for connectome-based 
predictions. If other metrics are  used, a  careful  estimate  of effect size  that adjusts for bias in  the 
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literature  should  be  undertaken  for the  specific brain  measure  of interest (cf. (Anderson, Kelley, 
& Maxwell, 2017)).  

ii) A predictive  framework is essential  (Dubois & Adolphs, 2016; Yarkoni  & Westfall, 
2017), as it ensures out-of-sample  reliability. Personality neuroscience  studies should  use 
proper cross-validation  (in  the  case  of the  HCP, taking  family structure  into  account), with 
permutation  statistics where  feasible. Even  better, studies should  include  a  replication  sample 
which  is held  out and  not examined  at all  until  the  final  model  has been  decided  from the 
discovery sample  (advanced  methods may help  implement this in  a  more  practical  manner 
(Dwork et al., 2015)). 

iii) Data  sharing. If new data  are  collected  by individual  labs, it would  be  very important to 
make  these  available, in  order to  eventually accrue  the  largest possible  sample  size  in  a 
database. It has been  suggested  that contact information  about the  participants would  also  be 
valuable, so  that additional  measures (or retest reliability) could  be  collected  (Mar et al., 2013). 
Some  of these  data  could  be  collected  over the  internet. 

iv) Complete  transparency and  documentation  of all  analyses, including  sharing  of all 
analysis scripts, so  that the  methods of published  studies can  be  reproduced. Several  papers 
give  more  detailed  recommendations for using  and  reporting  fMRI data, see  (Dubois & Adolphs, 
2016; Nichols et al., 2016; Poldrack et al., 2008). Our paper makes specific recommendation 
about detailed  parcellation, processing  and  modeling  pipelines; however, this is a  continuously 
evolving  field  and  these  recommendations will  likely change  with  future  work. For personality in 
particular, detailed  assessment for all  participants, and  justified  exclusionary and  inclusionary 
criteria  should  be  provided. As suggested  above, authors should  consider pre-registering  their 
study, on  the  Open  Science  Framework or a  similar platform.  

v) Ensure  reliable  and  uniform behavioral  estimates of personality.  This is perhaps one 
of the  largest unsolved  challenges.  Compared  with  the  huge  ongoing  effort and  continuous 
development of the  processing  and  analysis of fMRI data, the  measures for personality are 
mostly stagnant and  face  many problems of validity. For the  time  being, a  simple 
recommendation  would  be  to  use  a  consistent instrument and  stick with  the  Big-Five, so  as not 
to  mix apples and  oranges by using  very different instruments.  That said, it will  be  important to 
explore  other personality measures and  structures. As we  noted  above, there  is in  principle  a 
large  range  of more  subjective, or more  objective, measures of personality.  It would  be  a  boon 
to  the  field  if these  were  more  systematically collected  and  explored.  

(vi) Last but not least, we  should  consider methods in  addition  to  fMRI and  species in 
addition  to  humans.  To  the  extent that a  human  personality dimension  appears to  have  a  valid 
correlate  in  an  animal  model, it might be  possible  to  collect large  datasets, and  to  complement 
fMRI with  optical  imaging  or other modalities.  Studies in  animals may also  yield  the  most 
powerful  tools to  examine  specific neural  circuits, a  level  of causal  mechanism that, as we 
argued  above, may largely elude  analyses using  resting-state  fMRI. 

Author  contributions  
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Table  S1. List  of HCP subjects included in the present study. 
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