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Abstract

Cell-free protein expression systems have become widely used in systems and
synthetic biology. In this study, we developed an ensemble of dynamic E. coli
cell-free protein synthesis (CFPS) models. Model parameters were estimated
from a training dataset for the cell-free production of a protein product, chlo-
ramphenicol acetyltransferase (CAT). The dataset consisted of measurements
of glucose, organic acids, energy species, amino acids, and CAT. The ensem-
ble accurately predicted these measurements, especially those of the central
carbon metabolism. We then used the trained model to evaluate the opti-
mality of protein production. CAT was produced with an energy efficiency
of 12%, suggesting that the process could be further optimized. Reaction
group knockouts showed that protein productivity and the metabolism as a
whole depend most on oxidative phosphorylation and glycolysis and gluco-
neogenesis. Amino acid biosynthesis is also important for productivity, while
the overflow metabolism and TCA cycle affect the overall system state. In
addition, the translation rate is shown to be more important to productivity
than the transcription rate. Finally, CAT production was robust to allosteric
control, as was most of the network, with the exception of the organic acids
in central carbon metabolism. This study is the first to use kinetic model-
ing to predict dynamic protein production in a cell-free E. coli system, and
should provide a foundation for genome scale, dynamic modeling of cell-free
E. coli protein synthesis.
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Introduction1

Cell-free protein expression has become a widely used research tool in2

systems and synthetic biology, and a promising technology for personalized3

point of use biotechnology [1]. Cell-free systems offer many advantages for4

the study, manipulation and modeling of metabolism compared to in vivo5

processes. Central amongst these, is direct access to metabolites and the6

biosynthetic machinery without the interference of a cell wall, or complica-7

tions associated with cell growth. This allows us to interrogate (and po-8

tentially manipulate) the chemical microenvironment while the biosynthetic9

machinery is operating, potentially at a fine time resolution. Cell-free pro-10

tein synthesis (CFPS) systems are arguably the most prominent examples11

of cell-free systems used today [2]. However, CFPS is not new; CFPS in12

crude E. coli extracts has been used since the 1960s to explore fundamental13

biological mechanisms. For example, Matthaei and Nirenberg used E. coli14

cell-free extract in ground-breaking experiments to decipher the sequencing15

of the genetic code [3, 4]. Spirin and coworkers later improved protein pro-16

duction in cell free extracts by continuously exchanging reactants and prod-17

ucts; however, while these extracts could run for tens of hours, they could18

only synthesize a single product and were energy limited [5]. More recently,19

energy and cofactor regeneration in CFPS has been significantly improved;20

for example ATP can be regenerated using substrate level phosphorylation21

[6] or even oxidative phosphorylation [2]. Today, cell-free systems are used22

in a variety of applications ranging from therapeutic protein production [7]23

to synthetic biology [8, 1]. Moreover, there are also several CFPS technol-24

ogy platforms, such as the PANOx-SP and Cytomin platforms developed by25

Swartz and coworkers [9, 2], and the TX/TL platform of Noireaux [10]. How-26

ever, if CFPS is to become a mainstream technology for applications such as27

point of care biomanufacturing, we must first understand the performance28

limits of these systems, and eventually optimize their yield and productivity.29

A critical tool towards this goal is the development of a CFPS mathematical30

model.31

Mathematical modeling has long contributed to our understanding of32

metabolism [11]. Decades before the genomics revolution, mechanistically33
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structured metabolic models arose from the desire to predict microbial phe-34

notypes resulting from changes in intracellular or extracellular states [12].35

The single cell E. coli models of Shuler and coworkers pioneered the con-36

struction of large-scale, dynamic metabolic models that incorporated multi-37

ple regulated catabolic and anabolic pathways constrained by experimentally38

determined kinetic parameters [13]. Shuler and coworkers generated many39

single cell kinetic models, including single cell models of eukaryotes [14, 15],40

minimal cell architectures [16], and DNA sequence based whole-cell models41

of E. coli [17]. More recent studies have extended the approach to integrate42

disparate models of cellular processes in M. genitalium [18], describe dozens43

of mutant strains in E. coli with a single kinetic model [19], and identify44

industrially useful target enzymes in E. coli to improve 1,4-butanediol pro-45

duction [20]. However, cell-free genome scale kinetic models of industrially46

important organisms such as E. coli have yet to be constructed.47

In this study, we developed an ensemble of kinetic cell-free protein syn-48

thesis (CFPS) models using dynamic metabolite measurements from an early49

glucose powered Cytomin E. coli cell-free extract. While cell-free technology50

has evolved considerably since these measurements were taken, developing51

a model using a previous generation CFPS platform offers several unique52

advantages. First and foremost, is the ability to directly compare the dif-53

ferent improvements established by purely experimental means, to those es-54

timated from a mathematical model. The CFPS model equations were for-55

mulated using the hybrid cell-free modeling framework of Wayman et al.56

[21], which integrates traditional kinetic modeling with a logical rule-based57

description of allosteric regulation. Model parameters were estimated from58

measurements of glucose, organic acids, energy species, amino acids, and the59

protein product, chloramphenicol acetyltransferase (CAT) over the course60

of a three hour protein synthesis reaction. A constrained Markov Chain61

Monte Carlo (MCMC) approach was used to minimize the squared differ-62

ence between model simulations and experimental measurements, where a63

plausible range for each kinetic parameter was established from BioNumbers64

[22]. The ensemble of parameter sets described the training data with a me-65

dian cost greater than two orders of magnitude smaller than a population66

of random parameter sets constructed using the same literature parameter67

constraints. We then used the ensemble of kinetic models to analyze the68

performance of the CFPS system, and to estimate the pathways most im-69

portant to protein production. We calculated that CAT was produced with70

an energy efficiency of 12%, suggesting that much of the energy resources for71
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protein synthesis were diverted to non-productive pathways. By knocking72

out metabolic enzymes in groups, we showed that metabolism and protein73

production in particular depended upon oxidative phosphorylation and gly-74

colysis /gluconeogenesis. Taken together, this study provides a foundation75

for sequence specific genome scale, dynamic modeling of cell-free E. coli pro-76

tein synthesis.77
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Results78

The cell-free E. coli metabolic network was constructed by removing79

growth associated reactions from the iAF1260 reconstruction of K-12 MG165580

E. coli [23], and by adding reactions describing chloramphenicol acetyltrans-81

ferase (CAT) biosynthesis (Fig. 1). In addition, reactions that were knocked82

out in the host strain used to prepare the extract were removed from the net-83

work (∆speA, ∆tnaA, ∆sdaA, ∆sdaB, ∆gshA, ∆tonA, ∆endA). Lastly, we84

added the transcription and translation template reactions of Allen and Pals-85

son for the specific proteins of interest [24]. The metabolic network, which86

contained XX metabolites and YY reactions, is available in the supplemental87

materials. The dynamic CFPS model equations were formulated using the88

hybrid cell-free modeling framework of Wayman et al. [21]. An ensemble89

of model parameter sets (N = 3,000) was estimated from measurements of90

glucose, CAT, organic acids (pyruvate, lactate, acetate, succinate, malate),91

energy species (A(x)P, G(x)P, C(x)P, U(x)P), and 18 of the 20 proteinogenic92

amino acids [25] using a constrained Markov Chain Monte Carlo (MCMC)93

approach.94

The MCMC algorithm minimized the squared difference (residual) be-95

tween the training data and model simulations starting from an initial pa-96

rameter set assembled from literature and inspection. Bounds on permis-97

sible parameter values were established using studies from the BioNumbers98

database [22]. For each newly generated parameter set, we re-solved the bal-99

ance equations and calculated the cost function; all sets with a lower cost100

(and some with higher cost) were accepted into the ensemble. Parameter101

sets were also required to meet strict ordinary differential equation solver102

tolerances, to ensure numerical stability. Approximately N = 3,000 sets were103

accepted into an initial ensemble; N = 100 sets were then selected based104

upon error for the final ensemble. The final ensemble had a mean Pearson105

correlation coefficient of 0.78; this suggested parameter sets were not over106

sampled in the region of a local minimum. The median maximum reaction107

rate (Vmax) across the ensemble was 11.6 mM/h, assuming a total cell-free108

enzyme concentration of 170 nM. This Vmax corresponded to a median cat-109

alytic rate of 19 s-1 across the ensemble; this was in agreement with the 13.7110

s-1 median catalytic rate found by Bar-Even and coworkers [26]. The median111

enzyme activity decay constant was 0.0045 h-1, corresponding to an enzyme112

activity half life of 6 days. The median saturation constant was 1.0 mM; this113

is within one order of magnitude of the 130 µM reported by Bar-Even and114

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2017. ; https://doi.org/10.1101/215012doi: bioRxiv preprint 

https://doi.org/10.1101/215012


coworkers. Lastly, both the median control gain parameter, and the control115

order parameter in the ensemble were order 1. While the maximum reac-116

tion rates of the ensemble were distributed evenly across the allowed range117

(Fig. S1A), the saturation constants were clustered around the upper and118

lower bounds (Fig. S1B).119

The ensemble of kinetic CFPS models captured the time evolution of120

protein biosynthesis, and the consumption and production of organic acid,121

amino acid and energy species. Central carbon metabolites (Fig. 2, top),122

energy species (Fig. 4), and amino acids (Fig. 3) were captured by the en-123

semble and the best-fit set. The constrained MCMC approach estimated124

parameter sets with a median error more than two orders of magnitude less125

than random parameter sets generated within the same parameter bounds126

established from literature (Fig. 5); thus, we have confidence in the predic-127

tive capability of the estimated parameters. For 29 of the 37 measurements128

in the training dataset, the mean Akaike information criterion (AIC) of the129

ensemble was lower than that of the random sets, signifying a better fit of the130

data (Table 3). For the other 8 measurements, the random AIC was lower131

than the ensemble by an amount less than the standard deviation of either132

the random AIC or ensemble AIC (with the exception of isoleucine, which133

was quite close: σRand
AIC = 4.8, µRand

AIC − µEns
AIC = −5.0). Taken together, these134

results suggested that the parameter ensemble modeled cell free metabolism135

and protein production, significantly better than if sampled randomly, not136

just overall but for the majority of individual measurements.137

The model captured the biphasic time course of CAT production. During138

the first hour glucose powered protein production, and CAT was produced139

at 8 µM/h; subsequently, pyruvate and lactate reserves were consumed to140

power metabolism, and CAT was produced less quickly at 5 µM/h. Allosteric141

control was important to central carbon metabolism, especially pyruvate, ac-142

etate, and succinate (Fig. 2, bottom). The difference between the allosteric143

control and no-control cases was mostly seen in the second phase of CAT pro-144

duction, following glucose exhaustion. Specifically, pyruvate, succinate, and145

malate consumption and acetate accumulation increased following glucose146

exhaustion without the allosteric control mechanisms. The rate of acetate147

accumulation increased by 172%, while the rates of malate, pyruvate, and148

lactate consumption increased by 146%, 82%, and 9%, respectively. Succi-149

nate went from accumulating slightly in the second phase, in the presence of150

allosteric control, to being fully consumed. However, CAT production was151

robust to the removal of allosteric control, as seen in both the fits against152
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data and the metabolic fluxes (see supplementary information). While ATP153

generation varied when allosteric control was removed, ATP expenditure to-154

ward CAT production did not. Most of the fluxes that differed between the155

two cases involved PEP and pyruvate, which directly participated in many of156

the reactions modulated by allosteric control. Taken together, the ensemble157

of kinetic models was consistent with time series measurements of the cell158

free production of a model protein. Although the ensemble described the159

experimental data, it was unclear which kinetic parameters and pathways160

most influenced CAT production. To explore this question, we performed161

reaction group knockout analysis.162

The importance of CFPS pathways was estimated using pathway group163

knockout analysis (Fig. 7). The metabolic network was divided into 19 re-164

action groups, spanning central carbon metabolism, energetics, and amino165

acid biosynthesis. The response in the productivity or overall system state166

was calculated for single or pairwise deletion of each of these reaction groups.167

Lastly, the overall effect of the deletion of a pathway was estimated by sum-168

ming the single and pairwise effects (summation across the columns of the169

response array). Glycolysis/gluconeogenesis and oxidative phosphorylation170

had the greatest effect on both productivity and system state. This supports171

previous studies that have suggested oxidative phosphorylation is occurring172

in a cell-free system [2]; Jewett and coworkers observed a decrease in CAT173

yield, ranging from 1.5-fold to 4-fold, when inhibiting oxidative phosphory-174

lation reactions in the Cytomim cell-free platform, using both pyruvate and175

glutamate as substrates. CAT productivity was also affected by two sectors176

of amino acid biosynthesis: alanine/aspartate/asparagine, and glutamate/177

glutamine biosynthesis. This was consistent with aspartate, glutamate, and178

glutamine being key reactants in the biosynthesis of many other amino acids,179

all of which are required for CAT synthesis. Meanwhile, the TCA cycle and180

overflow metabolism (which included acetyl-coA/acetate reactions and the181

interconversion of pyruvate and lactate) also had a significant effect on the182

system state. These reactions directly impacted key system species: succi-183

nate and malate in the TCA cycle, and acetate, pyruvate, and lactate in184

the overflow metabolism. In addition, the relative influence of transcription185

and translation were interrogated via Sobol sampling [27]. Productivity was186

seen to have a sensitivity of 0.43 ± 0.06 with respect to the maximum re-187

action rate of transcription, and 0.66 ± 0.08 for the maximum reaction rate188

of translation. Thus, translation was the limiting step of cell free protein189

synthesis.190
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The energy efficiency of CAT production, as well as the sources of en-191

ergy generation and consumption, were tracked for the best-fit set. Energy192

efficiency was calculated as the ratio of transcription and translation rates193

(weighted by the associated ATP costs of each step) to the amount of ATP194

generated by all sources. During the first phase of protein production, with195

glucose as the substrate, CAT was produced with a productivity of 8 µM/h196

and an energy efficiency of 10%. Oxidative phosphorylation accounted for197

greater than 50% of the ATP generated during the rapid phase of protein198

production (Table 1). The organic acids that accumulated in the first phase199

(with the exception of acetate) were then utilized as substrates in the second200

phase, once glucose was depleted. We assumed the second phase of CAT pro-201

duction was powered largely by pyruvate; although malate was consumed in202

the second phase, it only accounted for 11% of substrate consumption. Fur-203

thermore, lactate is connected in the stoichiometry only to pyruvate. Thus,204

it is reasonable to consider the second phase as pyruvate-driven production.205

Interestingly, while this mode of protein production was slower (5 µM/h),206

it exhibited a higher energy efficiency (14%). Of the ATP generated, about207

half was observed to come from oxidative phosphorylation in each of the two208

phases of production (Table 1, R atp). Another 30% was generated by glycol-209

ysis during the first phase (R pgk,R pyk), which decreased to approximately210

20% following glucose exhaustion. However, glycolysis was also amongst the211

largest consumers of ATP during first phase of production (R glk atp, R pfk)212

(Table 2). The TCA cycle (R sucCD) contributed 3% of to the overall ATP213

generation in the first phase and 5% in the second. The hypothesis that214

pyruvate drives the second phase explains this; stores of accumulated pyru-215

vate can be converted to acetyl-CoA, as well as OAA (via PEP), and thus216

power the TCA cycle just as when glucose was available. Interestingly, ATP217

generation through acetate metabolism (R ackA) increased from 12% in the218

first phase to 28% in the second. Amino acid degradation also contributes a219

negligible amount to energy production. While the efficiency of production220

was higher for the pyruvate-driven phase, it was still relatively low, sug-221

gesting that there is room for platform optimization. Taken together, this222

strengthens the importance of glycolysis and oxidative phosphorylation, and223

presents a trade-off between productivity and energy efficiency in CFPS.224
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Discussion225

In this study, we developed an ensemble of kinetic cell-free protein syn-226

thesis (CFPS) models using dynamic metabolite measurements from an early227

glucose powered Cytomin E. coli cell-free extract. We used the hybrid cell-228

free modeling approach of Wayman and coworkers, which integrates tradi-229

tional kinetic modeling with a logic-based description of allosteric regula-230

tion, to describe the time evolution of the CFPS reaction. The ensemble231

captured dynamic metabolite measurements over 2-orders of magnitude bet-232

ter than random parameter sets generated in the same region of parameter233

space. The ensemble captured the biphasic time course of CAT production,234

relying on glucose during the first hour and pyruvate and lactate following235

glucose exhaustion. Allosteric control was essential to the description of the236

organic acid trajectories; without allosteric control, pyruvate, lactate, suc-237

cinate, and malate were predicted to be consumed more quickly following238

glucose exhaustion, to power CAT synthesis. Interestingly, CAT production239

was robust to the removal of allosteric control; because the amino acids and240

energy species that are reactants for CAT synthesis were also not affected241

by allosteric control. We then used the ensemble of kinetic models to an-242

alyze the performance of the CFPS system, and to estimate the pathways243

most important to protein production. We calculated that CAT was pro-244

duced with an energy efficiency of 12%, suggesting that much of the energy245

resources for protein synthesis were diverted to non-productive pathways.246

By knocking out metabolic enzymes in groups, we showed that metabolism247

and protein production in particular depended upon oxidative phosphory-248

lation and glycolysis /gluconeogenesis. Using the Sobol sampling technique249

we demonstrated the greater importance of translation rate than transcrip-250

tion. Taken together, this study provides a foundation for sequence specific251

genome scale, dynamic modeling of cell-free E. coli protein synthesis.252

The ensemble of models quantitatively described the dynamic time evo-253

lution of the cell-free protein production. Thus, the model could serve as254

a surrogate to rationally design cell-free production processes to optimize255

production rate and yield. In analyzing the effect of reaction groups on256

CAT production and the system state, the regions of metabolism associated257

with substrate utilization and energy generation were the most important.258

Oxidative phosphorylation was vital, since it provides most of the energetic259

needs of CFPS. While it is unknown how active oxidative phosphorylation260

is compared to that of in vivo systems, our modeling approach suggested it261
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was critical to CFPS performance. However, the biphasic operation of CFPS262

highlights the ability of the system to respond to an absence of glucose. Dur-263

ing the first phase, there is an accumulation of central carbon metabolites264

with the majority of flux going toward acetate and some toward pyruvate,265

lactate, succinate and malate. While acetate continued to accumulate as a266

byproduct, the other organic acids were consumed as secondary substrates267

after glucose was no longer available. Glutamate also served as a substrate268

throughout both phases, powering amino acid synthesis. These results con-269

firm experimental findings that CAT production can be sustained by other270

substrates in the absence of glucose, providing alternative strategies to op-271

timize CFPS performance. While CAT synthesis can be powered by other272

substrates, the productivity is significantly lower (5 µM/h, as opposed to273

8 µM/h). This is in accordance with literature, where pyruvate provided a274

relatively slow but continuous supply of ATP [28]. However, the energy effi-275

ciency is slightly higher (14% as compared with 10%). Taken together, this276

shows CFPS can be designed towards a specified application, either requiring277

a slow stable energy source or faster production.278

This work represents the first dynamic model of E. coli cell-free protein279

synthesis. We apply a hybrid modeling framework to capture an experimen-280

tal dataset for production of a test protein, and identify system limitations281

and areas of improvement for production efficiency. This work could be ex-282

tended through further experimentation to gain a deeper understanding of283

model performance under a variety of conditions. Specifically, CAT pro-284

duction performed in the absence of amino acids could inform the system’s285

ability to manufacture them, while experimentation in the absence of glu-286

cose or oxygen could shed light on the importance of those substrates. In287

addition, the approach should be extended to other protein products. CAT288

is only a test protein used for model identification; the modeling framework,289

and to some extent the parameter values, should be protein agnostic. An im-290

portant extension of this study would be to apply its insights to other protein291

applications, where possible. Having captured the experimental data, we in-292

vestigated if CFPS performance could be further improved. We showed that293

the model predicts CAT production with an energy efficiency of 10% under294

glucose and 14% under pyruvate. The accumulation of glycolytic intermedi-295

ates and byproducts such as acetate and carbon dioxide were responsible for296

this sub-optimal performance. If fluxes could be balanced such that inter-297

mediates were fully utilized, CAT production would increase. Knocking out298

sections of network metabolism revealed that glycolysis/gluconeogenesis and299
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oxidative phosphorylation were the most important to CAT production and300

the system as a whole. Productivity was also heavily dependent on the syn-301

thesis reactions of alanine, aspartate, asparagine, glutamate, and glutamine,302

while TCA cycle and overflow reactions affected the system state. Taken303

together, these findings represent the first dynamic model of E. coli cell-304

free protein synthesis, an important step toward a functional genome scale305

description of cell free systems.306
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Materials and Methods307

Formulation and solution of the model equations.308

We used ordinary differential equations (ODEs) to model the time evo-309

lution of metabolite (xi), scaled enzyme activity (εi), transcription (m) and310

translation (P) in an E. coli cell free metabolic network:311

dxi
dt

=
R∑
j=1

σijrj (x, ε,k) i = 1, 2, . . . ,M (1)

dεi
dt

= −λiεi i = 1, 2, . . . , E (2)

dm

dt
= r̄Tu− r̄d (3)

dP
dt

= r̄X (4)

The quanity R denotes the number of metabolic reactions, M denotes the312

number of metabolites and E denotes the number of metabolic enzymes in313

the model. The quantity rj (x, ε,k) denotes the rate of reaction j. Typically,314

reaction j is a non-linear function of metabolite and enzyme abundance, as315

well as unknown kinetic parameters k (K× 1). The quantity σij denotes the316

stoichiometric coefficient for species i in reaction j. If σij > 0, metabolite i317

is produced by reaction j. Conversely, if σij < 0, metabolite i is consumed318

by reaction j, while σij = 0 indicates metabolite i is not connected with319

reaction j. Lastly, λi denotes the scaled enzyme activity decay constant. The320

system material balances were subject to the initial conditions x (to) = xo321

and ε (to) = 1 (initially we have 100% cell-free enzyme activity).322

Metabolic reaction rates were written as the product of a kinetic term323

(r̄j) and a control term (vj), rj (x,k) = r̄jvj. We used multiple saturation324

kinetics to model the reaction term r̄j:325

r̄j = V max
j εi

∏
s∈m−

j

xs
Kjs + xs

(5)

where V max
j denotes the maximum rate for reaction j, εi denotes the scaled326

enzyme activity which catalyzes reaction j, Kjs denotes the saturation con-327

stant for species s, in reaction j and m−j denotes the set of reactants for328

reaction j.329
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The control term 0 ≤ vj ≤ 1 depended upon the combination of factors330

which influenced rate process j. For each rate, we used a rule-based approach331

to select from competing control factors. If rate j was influenced by 1, . . . ,m332

factors, we modeled this relationship as vj = Ij (f1j (·) , . . . , fmj (·)) where333

0 ≤ fij (·) ≤ 1 denotes a transfer function quantifying the influence of factor334

i on rate j. The function Ij (·) is an integration rule which maps the output335

of regulatory transfer functions into a control variable. We used hill-like336

transfer functions and Ij ∈ {min,max} in this study [21]. We included337

17 allosteric regulation terms, taken from literature, in the CFPS model.338

PEP was modeled as an inhibitor for phosphofructokinase [29, 30], PEP339

carboxykinase [29], PEP synthetase [29, 31], isocitrate dehydrogenase [29,340

32], and isocitrate lyase/malate synthase [29, 32, 33], and as an activator for341

fructose-biphosphatase [29, 34, 35, 36]. AKG was modeled as an inhibitor342

for citrate synthase [29, 37, 38] and isocitrate lyase/malate synthase [29, 33].343

3PG was modeled as an inhibitor for isocitrate lyase/malate synthase [29, 33].344

FDP was modeled as an activator for pyruvate kinase [29, 39] and PEP345

carboxylase [29, 40]. Pyruvate was modeled as an inhibitor for pyruvate346

dehydrogenase [29, 41, 42] and as an activator for lactate dehydrogenase347

[43]. Acetyl CoA was modeled as an inhibitor for malate dehydrogenase [29].348

The symbol r̄T denotes the transcription rate, u denotes a promoter spe-349

cific activation model, and r̄d denotes the transcript degradation rate. The350

transcription rate was modeled as:351

r̄T = kTcat · RT

(
GP

KT
G + GP

) ∏
s∈m−

T

xs
KT
s + xs

(6)

where kTcat denotes the maximum transcription rate, RT denotes the RNA352

polymerase concentration, GP denotes the gene concentration, KT
G denotes353

the gene saturation constant, KT
s denotes the saturation constant for species354

s, and m−T denotes the set of reactants for transcription: ATP, GTP, CTP,355

UTP, and water. In this study, we considered only the T7 promoter; we have356

previously estimated u '0.95 for a T7 [REF-MIKE]. While transcription was357

modeled as saturating with respect to gene concentration, the gene was not358

considered a reactant in the stoichiometry as it was not consumed. Transcript359

degradation was modeled as first-order in transcript:360

r̄d = kd ·m (7)

where kd denotes the transcript degradation rate constant.361
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The symbol r̄X denotes the translation rate, which was modeled as:362

r̄X = kXcat · RX

(
m

KX
mRNA +m

) ∏
s∈m−

X

xs
KX
s + xs

(8)

where kXcat denotes the maximum translation rate, RX denotes the ribo-363

some concentration, m denotes the transcript concentration, KX
mRNA denotes364

the transcript saturation constant, KX
s denotes the saturation constant for365

species s, and m−X denotes the set of reactants for translation: GTP, wa-366

ter, and the 20 species representing tRNA charged with amino acids. While367

translation was modeled as saturating with respect to transcript concentra-368

tion, the transcript was not considered a reactant in the stoichiometry as it369

is not consumed.370

Estimation of kinetic model parameters.371

We estimated an ensemble of kinetic parameter sets using a constrained372

Markov Chain Monte Carlo (MCMC) random walk strategy. We have used373

this technique previously to estimate numerically stable low-error parameter374

sets for signal transduction models [44, 45]. Starting from a small number375

of parameter sets estimated by inspection and literature, we calculated the376

cost function, equal to the sum-squared-error between experimental data and377

model predictions:378

cost =
D∑
i=1

[
wi
Y2
i

Ti∑
j=1

(
yij − xi|t(j)

)2
]

(9)

where D denotes the number of datasets (D = 37), wi denotes the weight379

of the ith dataset, Ti denotes the number of timepoints in the ith dataset,380

t(j) denotes the jth timepoint, yij denotes the measurement value of the ith381

dataset at the jth timepoint, and xi|t(j) denotes the simulated value of the382

metabolite corresponding to the ith dataset, interpolated to the jth timepoint.383

Lastly, the cost function was scaled by the maximum experimental value in384

the ith dataset, Yi = maxj (yij). We then perturbed each model parameter385

between an upper and lower bound that varied by parameter type:386

knewi = min (max (ki · exp(a · ri), li) , ui) i = 1, 2, . . . ,P (10)

where P denotes the number of parameters (P = 815), which includes 204387

maximum reaction rates (V max), 204 enzyme activity decay constants, 548388
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saturation constants (Kjs), and 34 control parameters, knewi denotes the new389

value of the ith parameter, ki denotes the current value of the ith param-390

eter, a denotes a distribution variance, ri denotes a random sample from391

the normal distribution, li denotes the lower bound for that parameter type,392

and ui denotes the upper bound for that parameter type. Model parameters393

were constrained by literature collected using the BioNumbers database [22].394

Transcription, translation, and mRNA degradation were bounded within a395

factor of two of their reference values. A characteristic cell-free enzyme con-396

centration of 170 nM was calculated by diluting the one-tenth maximal con-397

centration of lacZ (5 µM, BNID 100735) by a cell-free dilution factor of 30.398

This enzyme level was then used to calculate rate maxima from turnover399

numbers for various enzymes from BioNumbers (Table 4). Rate maxima400

were bounded within one order of magnitude of the reference value where401

available; all other rate maxima were bounded within two orders of magni-402

tude of the geometric mean of the available values. Enzyme activity decay403

constants were bounded between 0 and 1 h-1, corresponding to half lives of404

42 minutes and infinity. Saturation constants were bounded between 0.0001405

and 10 mM. Control gain parameters were bounded between 0.05 and 10406

(dimensionless), while order parameters were bounded between 0.02 and 10407

(dimensionless).408

For each newly generated parameter set, we re-solved the balance equa-409

tions and calculated the cost function. All sets with a lower cost were ac-410

cepted into the ensemble. Sets with a higher cost were also accepted into the411

ensemble, if they satisfied the acceptance constraint:412

Runiform
0,1 < exp

(
−α · costnew − cost

cost

)
(11)

where Runiform
0,1 denotes a random number taken from a uniform distribution413

between 0 and 1, cost denotes the cost of the current parameter set, costnew414

denotes the cost of the new parameter set, and α denotes a tunable parameter415

to control the tolerance to high-error sets. A total of 3,875 sets were accepted416

into the initial ensemble, from which we selected N = 100 with minimal error417

for the final ensemble.418

Lastly, a random ensemble of 100 parameter sets was generated within the419

same parameter bounds as the trained ensemble. The randomized parameter420

sets were generated using a Monte Carlo approach: each parameter was421

taken from a uniform distribution constructed between its upper and lower422
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bounds. The model equations were then solved and the cost function, and423

the Akaike information criterion (AIC) were calculated for each of the 37424

separate experimental datasets.425

Reaction group knockouts.426

The metabolic network was divided into 19 reaction groups: glycoly-427

sis/gluconeogenesis, pentose phosphate, Entner-Doudoroff, TCA cycle, ox-428

idative phosphorylation, cofactor reactions, anaplerotic/glyoxylate reactions,429

overflow metabolism, folate synthesis, purine/pyrimidine reactions, alanine/430

aspartate/asparagine synthesis, glutamate/glutamine synthesis, arginine/proline431

synthesis, glycine/serine synthesis, cysteine/methionine synthesis, threonine/432

lysine synthesis, histidine synthesis, tyrosine/tryptophan/phenylalanine syn-433

thesis, and valine/leucine/isoleucine synthesis. Each reaction group and pair434

of reaction groups were removed and the model was re-solved; the CAT pro-435

ductivity was then calculated and subtracted from that of the base case (no436

knockouts):437

Pii = |∆CAT−∆CAT∆Ri
| (12)

Pij = |∆CAT−∆CAT∆Ri∆Rj
| (13)

P total
i = Pii +

∑
j

Pij (14)

where Pii denotes the first-order productivity knockout effect for reaction438

group i, Pij denotes the pairwise productivity knockout effect for reaction439

groups i and j, P total
i denotes the total-order productivity knockout effect for440

reaction group i, ∆CAT denotes the base case CAT productivity, ∆CAT∆Ri
de-441

notes the CAT productivity when reaction group i is knocked out, ∆CAT∆Ri∆Rj
442

denotes the CAT productivity when reaction groups i and j are knocked out,443

and |x| denotes the absolute value of x. The system state, defined as the444

model predictions for all species for which experimental data exists, was also445

recorded for each knockout and compared to the base case:446

Sii = ||xdata − xdata∆Ri
||2 (15)

Sij = ||xdata − xdata∆Ri∆Rj
||2 (16)

Stotali = Sii +
∑
j

Sij (17)
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where Sii denotes the first-order system state knockout effect for reaction447

group i, Sij denotes the pairwise system state knockout effect for reaction448

groups i and j, Stotali denotes the total-order system state knockout effect449

for reaction group i, xdata denotes the base-case system state, xdata∆Ri
denotes450

the system state when reaction group i is knocked out, xdata∆Ri∆Rj
denotes451

the system state when reaction groups i and j are knocked out, and ||x||2452

denotes the l2 norm of x. In order to not dominate the colorbar, the total-453

order knockout effects were normalized to the same ranges as the main arrays454

(first-order and pairwise effects).455

Sensitivity of CAT productivity to transcription and translation.456

The catalytic rates of transcription and translation were sampled within457

one order of magnitude on each side from the best-fit values. The parameter458

bounds were set as the base-10 logarithms of the upper and lower bound459

for each rate; then, 10 was taken to the power of each parameter sample to460

obtain the catalytic rates:461

kT,samplecat ∈
[
log10

(
kT,bfcat /10

)
, log10

(
kT,bfcat ∗ 10

)]
(18)

kX,samplecat ∈
[
log10

(
kX,bfcat /10

)
, log10

(
kX,bfcat ∗ 10

)]
(19)

∆CAT = f
(

10k
T,sample
cat , 10k

X,sample
cat

)
(20)

where kT,samplecat denotes the sample of the transcription catalytic rate, kX,samplecat462

denotes the sample of the translation catalytic rate, kT,bfcat denotes the best-463

fit value of the transcription catalytic rate, and kX,bfcat denotes the best-fit464

value of the translation catalytic rate. The sampling was performed using465

the Sensitivity Analysis Library in Python (Numpy) with 3000 samples [46].466

Calculation of energy efficiency.467

Energy efficiency was calculated as the ratio of transcription and trans-468

lation (weighted by the appropriate energy species coefficients) to ATP gen-469
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eration:470

Efficiency =
∆τmRNA · αT + ∆τCAT · αX∑

j∈{RATP }

∫
τ

σATPj r̄j

(21)

αT = 2 · (ATPT + CTPT + GTPT + UTPT) (22)

αX = 2 · ATPX + GTPX (23)

where ∆τmRNA denotes the net accumulation of mRNA in phase τ (first, sec-471

ond, or overall), ∆τCAT denotes the net accumulation of protein in phase472

τ , αT denotes the energy cost of transcription, αX denotes the energy cost473

of translation, RATP denotes the set of ATP-producing reactions, and σATPj474

denotes the ATP coefficient for reaction j. ATPT, CTPT, GTPT, UTPT475

denote the stoichiometric coefficients of each energy species for transcrip-476

tion, and ATPX, GTPX denote the stoichiometric coefficients of ATP and477

GTP for translation. During transcription and tRNA charging, triphosphate478

molecules are consumed with monophosphates as byproducts; this is the rea-479

son for the factors of 2 on ATPT, CTPT, GTPT, UTPT, and ATPX.480

Availability of model code.481

The cell free model equations, and the parameter estimation procedure,482

were implemented in the Julia programming language. The model equa-483

tions were solved using the CVODE solver of the SUNDIALS suite [47], with484

an absolute tolerance and relative tolerance of 1e−9; any sets exhibiting485

CVODEerrors were discarded. Thus, the numerical stability of all parame-486

ters in the ensemble was ensured. The model code and parameter ensemble487

is freely available under an MIT software license and can be downloaded from488

http://www.varnerlab.org.489
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Figure 1: Schematic of the core portion of the cell-free E. coli metabolic network. Metabo-
lites of glycolysis, pentose phosphate pathway, Entner-Doudoroff pathway, and TCA cycle
are shown. Metabolites of oxidative phosphorylation, amino acid biosynthesis and degra-
dation, transcription/translation, chorismate metabolism, and energy metabolism are not
shown.
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Figure 2: Central carbon metabolism in the presence (top) and absence (bottom) of al-
losteric control, including glucose (substrate), CAT (product), and intermediates, as well
as total concentration of energy species. Best-fit parameter set (orange line) versus ex-
perimental data (points). 95% confidence interval (blue or gray shaded region) over the
ensemble of 100 sets.
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Figure 3: Amino acids in the presence of allosteric control. Best-fit parameter set (orange
line) versus experimental data (points). 95% confidence interval (blue shaded region) over
the ensemble of 100 sets.
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Figure 4: Energy species and energy totals by base in the presence of allosteric control.
Best-fit parameter set (orange line) versus experimental data (points). 95% confidence
interval (blue shaded region) over the ensemble of 100 sets.
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Figure 5: Log of cost function (residual between training data and model simulations)
across 37 datasets for data-trained ensemble (blue) and randomly generated ensemble (red,
gray background). Median (bars), interquartile range (boxes), range excluding outliers
(thin lines), and outliers (circles) for each dataset. Median across all datasets (large bar
overlaid).
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Figure 6: Key reaction fluxes of the network, in the first (gray boxes, top row) and
second (gray boxes, bottom row) phases of metabolism. A. Fluxes of ATP generation and
consumption, and GTP consumption toward protein synthesis. B. Fluxes of glycolysis and
lactate and acetate metabolism. Fluxes are normalized to the first-phase glucose uptake
rate. For PEP and pyruvate, accumulation (normalized to glucose uptake) is also shown.
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Figure 7: Effect of group knockouts on system. A. Change in CAT productivity when
one (diagonal) or two (off-diagonal) reaction groups are turned off. B. Change in system
state (only species for which data exist) when one (diagonal) or two (off-diagonal) reaction
groups are turned off. Total-order effect for each group calculated as the sum of first-order
effect and all pairwise effects. Larger and darker circles represent greater effects.
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Table 1: Breakdown of ATP generation. Flux through ATP-generating pathways in the
first and second phases as percentages of total ATP generation in that phase.

Name Index Reaction Phase 1 Phase 2

R pgk 12
13DPG + ADP →

3PG + ATP
14% 21%

R pyk 18
ADP + PEP →

ATP + PYR
16% <1%

R sucCD 45
ADP + Pi + SUCCOA →

ATP + COA + SUCC
3% 5%

R atp 55
ADP + Pi + 4 He →

ATP + 4 H + H2O
54% 46%

R ackA 68
ACTP + ADP →

AC + ATP
12% 28%

R asn deg 102
ASN + AMP + PPi →

NH3 + ASP + ATP
<1% <1%

R thr deg3 109
THR + Pi + ADP →

NH3 + FOR + ATP + PROP
<1% <1%
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Table 2: Breakdown of ATP consumption. Flux through ATP-consuming pathways in the
first and second phases as percentages of total ATP consumption in that phase.

Name Index Reaction Phase 1 Phase 2

R glk atp 1
ATP + GLC →

ADP + G6P + H
22% <1%

R pfk 4
ATP + F6P →

ADP + FBP
24% <1%

R pps 22
ATP + H2O + PYR →

AMP + PEP + Pi
1% 1%

R acs 70
AC + ATP + COA →

ACCOA + AMP + PPi
8% 19%

R glnA 86
GLU + ATP + NH3 →

GLN + ADP + Pi
1% 2%

R atp amp 152
ATP + H2O →

AMP + PPi
6% 13%

R udp utp 160
UDP + ATP →

UTP + ADP
3% 6%

R cdp ctp 161
CDP + ATP →

CTP + ADP
4% 8%

R gdp gtp 162
GDP + ATP →

GTP + ADP
3% 4%

R atp ump 163
ATP + UMP →

ADP + UDP
1% 3%

R atp cmp 164
ATP + CMP →

ADP + CDP
2% 3%

R adk atp 166
AMP + ATP →

2 ADP
18% 35%

tRNA
charging

185-204
AA + tRNA + ATP + H2O →

AA·tRNA + AMP + PPi
2% 2%

Other 4% 4%
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Table 3: Mean and standard deviation of Akaike information criterion (AIC), by measure-
ment, for the ensemble and random ensemble.

Measurement µEns
AIC σEns

AIC µRand
AIC σRand

AIC µRand
AIC − µEns

AIC

GLC 65.4 2.1 103.9 0.6 38.5
CAT -23.0 10.5 -5.2 <0.1 17.8
PYR 64.8 10.3 84.7 0.7 19.9
LAC 70.7 4.5 88.9 <0.1 18.2
AC 79.4 6.0 96 2.1 16.6
SUCC 59.6 3.4 55.5 4.1 -4.1
MAL 60.8 4.1 71.6 6.3 10.8
ATP 51.1 3.3 69.1 <0.1 18.0
ADP 39.8 3.7 53.2 4.7 13.4
AMP 32.9 1.5 75.1 5.7 42.2
GTP 53.4 1.6 68.2 <0.1 14.8
GDP 45.7 2.9 43.6 9.5 -2.1
GMP 46.5 4.2 46.1 12.5 -0.4
CTP 44.9 2.6 58.5 <0.1 13.7
CDP 38.8 1.6 50.7 8.2 11.8
CMP 32.1 4.0 51.9 9.1 19.8
UTP 55.6 5.2 53 <0.1 -2.7
UDP 28.2 4.6 51.9 11.5 23.6
UMP 35.3 3.3 72.3 7.3 36.9
ALA 66.4 4.4 100.5 1.1 34.1
ASN 53.7 1.5 67.6 3.8 13.8
ASP 65.9 2.5 79.5 <0.1 13.6
CYS 60.5 3.1 74 <0.1 13.5
GLN 54.3 5.6 84.7 <0.1 30.4
GLY 47.2 12.7 75.5 11.7 28.3
HIS 46.3 6.2 43.2 3.2 -3.2
ILE 53.3 3.8 48.4 4.8 -5.0
LEU 41.5 6.5 52.5 4.6 10.9
LYS 68.4 2.0 73.9 0.2 5.5
MET 55.9 1.0 57.4 4 1.5
PHE 43.4 5.9 57.7 8.3 14.3
PRO 54.4 2.8 47.9 6.7 -6.5
SER 65.9 4.1 81.4 <0.1 15.6
THR 28.2 5.5 63.2 14.9 35.0
TRP 31.2 5.7 79.9 1.4 48.6
TYR 39.3 2.0 36.7 5.4 -2.6
VAL 51.3 3.1 55.5 4.6 4.1
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Table 4: Reference values for reaction rate maxima (Vmax) from BioNumbers. Vmax values
calculated from turnover numbers (kcat) from BioNumbers, and a characteristic enzyme
concentration of 170 nM. Characteristic rate maximum for all other reactions calculated
as geometric mean of calculated rate maxima.

.

Enzyme Reaction kcat (min-1) Vmax (mM/h) BNID#

Serine dehydrase R ser deg 10400 104 101119

Isocitrate dehydrogenase R icd 11900 119 101152

Lactate dehydrogenase R ldh 5800 58 101036

Aspartate transaminase
R aspC
R tyr
R phe

25800 258 101108

Enolase R eno 13200 132 101028

Pyruvate kinase R pyk 25000 250
101029
101030

Malic enzyme
R maeA
R maeB

35400 354 101167

Phosphofructokinase R pfk 554400 5544 104955

Malate dehydrogenase R mdh 33000 330 101163

Citrate Synthase R gltA 42000 420 101149

6PG dehydrogenase
R zwf
R pgl
R gnd

3200 32 101048

Succinate dehydrogenase R sdh 121 1.21 101162

Succinyl-coA synthetase R sucCD 4700 47 101158

3PGA dehydrogenase R gpm 1100 11 101135

PEP carboxylase R ppc 35400 354 101139

3PGA kinase R pgk 4300 43 101016

Characteristic Vmax 110
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Table 5: Reference values for transcription, translation, and mRNA degradation from
literature. Transcription rate calculated from elongation rate, mRNA length, and pro-
moter activity level. Translation rate calculated from elongation rate, protein length,
and polysome amplification constant. mRNA degradation rate calculated from mRNA
degradation time.

Description Parameter Value Units Reference

T7 RNA polymerase concentration RT 1.0 µM

Ribosome concentration RX 2 µM [10]

Transcription saturation coefficient KT 100 nM estimated

Translation saturation coefficient KX 45 µM estimated

Transcription elongation rate v̇T 25 nt/s [10]

CAT mRNA length lG 660 nt [48]

Promoter activity level u 0.9 estimated

Transcription rate kTcat =

(
v̇T
lG

)
u 123 h-1 calculated

Translation elongation rate v̇X 1.5 aa/s [10]

CAT protein length lP 219 aa [48]

Polysome amplification constant KP 10 estimated

Translation rate kXcat =

(
v̇X
lP

)
KP 247 h-1 calculated

mRNA degradation time t1/2 8 min BNID 106253

mRNA degradation rate kdeg =
ln(2)

t1/2
5.2 h-1 calculated

ATP transcription coefficient ATPT 176 calculated

CTP transcription coefficient CTPT 144 calculated

GTP transcription coefficient GTPT 151 calculated

UTP transcription coefficient UTPT 189 calculated

ATP tRNA charging coefficient ATPX 219 calculated

GTP translation coefficient GTPX 438 calculated
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Table 6: Nomenclature

Symbol Compound name

GLC alpha-D-Glucose

G6P Glucose 6-phosphate

F6P Fructose 6-phosphate

FBP Fructose 1,6-diphosphate

T3P Dihydroxyacetone phosphate

13DPG 1,3-bis-Phosphoglycerate

3PG 3-Phosphoglycerate

2PG 2-Phosphoglycerate

PEP Phosphoenolpyruvate

PYR Pyruvate

LAC D-Lactate

6PG
6-Phospho-D-glucono-1,5-lactone;

6-Phospho-D-gluconate

RU5P D-Ribulose 5-phosphate

XU5P D-Xylulose 5-phosphate

R5P Ribose 5-phosphate

S7P sedo-Heptulose 7-phosphate

G3P Glyceraldehyde 3-phosphate

E4P Erythrose 4-phosphate

2DDG6P 2-Dehydro-3-deoxy-D-gluconate 6-phosphate

COA Coenzyme A

ACCOA Acetyl coenzyme A

AC Acetate

CIT Citrate

ICIT Isocitrate

AKG alpha-Ketoglutarate

Continued on next page
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Symbol Compound name

SUCCOA Succinyl coenzyme A

SUCC Succinate

FUM Fumarate

MAL Malate

OAA Oxaloacetate

FOR Formate

PROP Propanoate

ALA Alanine

ARG Arginine

ASP Aspartate

ASN Asparagine

CYS Cysteine

GLU Glutamate

GLN Glutamine

GLY Glycine

HIS Histidine

ILE Isoleucine

LEU Leucine

LYS L-Lysine

MET Methionine

PHE Phenylalanine

PRO Proline

SER Serine

THR Threonine

TRP Tryptophan

TYR Tyrosine

Continued on next page
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Symbol Compound name

VAL Valine

AA Amino acid

AA·tRNA Aminoacyl tRNA

ATP Adenosine triphosphate

ADP Adenosine diphosphate

AMP Adenosine monophosphate

CTP Cytidine triphosphate

CDP Cytidine diphosphate

CMP Cytidine monophosphate

GTP Guanosine triphosphate

GDP Guanosine diphosphate

GMP Guanosine monophosphate

UTP Uridine triphosphate

UDP Uridine diphosphate

UMP Uridine monophosphate

CAT Chloramphenicol acetyltransferase
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Figure S1: Histograms of model parameters, across the ensemble of 100 sets. A. Histogram
of rate maxima. B. Histogram of saturation constants.
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