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1 Abstract
2 Insomnia is the second-most prevalent mental disorder, with no sufficient treatment available.
3 Despite a substantial role of genetic factors, only a handful of genes have been implicated and
4  insight into the associated neurobiological pathways remains limited. Here, we use an
5 unprecedented large genetic association sample (N=1,331,010) to allow detection of a
6 substantial number of genetic variants and gain insight into biological functions, cell types
7  and tissues involved in insomnia. We identify 202 genome-wide significant loci implicating
8 956 genes through positional, eQTL and chromatin interaction mapping. We show
9 involvement of the axonal part of neurons, of specific cortical and subcortical tissues, and of
10  two specific cell-types in insomnia: striatal medium spiny neurons and hypothalamic neurons.
11 These cell-types have been implicated previously in the regulation of reward processing,
12 sleep and arousal in animal studies, but have never been genetically linked to insomnia in
13 humans. We found weak genetic correlations with other sleep-related traits, but strong
14  genetic correlations with psychiatric and metabolic traits. Mendelian randomization identified
15  causal effects of insomnia on specific psychiatric and metabolic traits. Our findings reveal
16  key brain areas and cells implicated in the neurobiology of insomnia and its related disorders,
17  and provide novel targets for treatment.
18
19
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21 Insomnia is the second-most prevalent mental disorder’. One third of the general population
22 reports insomnia complaints. The diagnostic criteria for Insomnia Disorder? (i.e. difficulties
23 with initiating or maintaining sleep with accompanying daytime complaints at least three
24 times a week for at least three months, which cannot be attributed to inadequate
25  circumstances for sleep®) are met by 10%, up to one third in samples of older age®. Insomnia
26  contributes significantly to the risk and severity of cardiovascular, metabolic, mood, and
27  neurodegenerative disorders’. Despite evidence of a considerable genetic component
28  (heritability 38-59%°), only a small number of genetic loci moderating the risk of insomnia
29  have thus far been identified®’. Recent genome-wide association studies®’ (GWAS) for
30 insomnia complaints (N=113,006) demonstrated its polygenic architecture and implicated
31  three genome-wide significant (GWS) loci and seven genes. A prominent role was reported
32 for MEISL, which showed pleiotropic effects for insomnia complaints and restless legs
33 syndrome (RLS)’, yet the role of other genes was not unambiguously shown. We set out to
34  substantially increase the sample size to allow the detection of more genetic risk variants for
35 insomnia complaints, which may aid in understanding its neurobiological mechanisms. By
36 combining data collected in the UK Biobank v2° (UKB; N=386,533) and 23andMe, Inc., a
37  personal genetics company®*® (N=944,477), we obtained an unprecedented sample size of
38 1,331,010 individuals. Insomnia complaints were measured using questionnaire data, and the
39  specific questions were validated to be good proxies of insomnia disorder, using an
40 independent sample (The Netherlands Sleep Register, NSR)! in which we had access to
41  similar question data, as well as clinical interviews assessing insomnia disorder (see
42  Supplementary Methods 1.1-1.3). We find 202 risk loci for insomnia complaints, and
43  extensive functional in silico analyses reveal the involvement of specific tissue and cell types,
44  whereas secondary statistical analyses reveal causal effects of insomnia on metabolic and

45  psychiatric traits.
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46  Meta-analysisyields 202 risk loci

47  UKB assessed insomnia complaints (hereafter referred to as ‘insomnia’) using a touchscreen
48  device while 23andMe research participants completed online surveys. Assessment of
49  insomnia in both samples shows high accuracy (sensitivity=84-98%; specificity=80-96%) for
50 Insomnia Disorder (see Supplementary Methods 1.3). The prevalence of insomnia in the
51 UKBV2 sample was 28.3%, 30.5% in the 23andMe sample, and 29.3% in the combined
52  sample, in keeping with previous estimates for people with advanced age in the UK* and
53 elsewhere’™, Older people dominate the UKB sample (mean age=56.7, SD=8.0) and the
54  23andMe sample (two-thirds of the sample older than 45, one-third even older than 60 years
55  of age). Prevalence was higher in females (34.6%) than males (24.5%), yielding an odds ratio
56 (OR) of 1.6, close to the OR of 1.4 reported in a meta-analysis™”.

57  Quality control was conducted separately per sample, following standardized, stringent
58 protocols (see Methods). GWAS was run separately per sample (UKB; N=386,533,
59 23andMe, Inc.; N=944477) (Extended Data Fig. 1), and then meta-analyzed using
60 METAL"™ by weighing SNP effects by sample size (see M ethods). We first analyzed males
61 and females separately (Extended Data Fig. 2, 3), and observed a high genetic correlation
62  between the sexes (r4~0.92, SE=0.02, Extended Data Table 1), indicating strong overlap of
63  genetic effects. Owing to the large sample size, the rqof 0.92 was significantly different from
64 1 (one-sided Wald test, P=2.54x10®) suggesting a small role for sex-specific genetic risk
65 factors, consistent with our previous report’. However, since sex-specific effects were
66  relatively small, we here focus on identifying genetic effects important in both sexes and
67  continued with the combined sample (Supplementary Table 1, 2 and Supplementary
68  Discussion 2.1 provide sex-specific results).

69  We observe significant polygenic signal in the GWAS (lambda inflation factor=1.808) which

70  could not be ascribed to spurious association (LD Score intercept=1.075)*® (Extended Data
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71  Fig. 4a). Meta-analysis identified 11,990 genome-wide significant (GWS) SNPs (P<5x107),
72 represented by 248 independent lead SNPs (r?<0.1), located in 202 genomic risk loci (Fig.
73  1la, Supplementary Fig. 1 and Supplementary Table 3, 4). All lead SNPs showed
74  concordant signs of effect in both samples (Extended Data Fig. 4b). We confirm two
75  (chr2:66,785,180 and chr5:135,393,752) out of six previously reported loci for insomnia &’
76  (Supplementary Table 5). Polygenic score (PGS) prediction in three randomly selected
77  hold-out samples (N=3x3,000) estimated the current results to explain up to 2.6% of the
78  variance in insomnia (Fig. 1b, Extended Data Fig. 5 and Supplementary Table 6).

79  The SNP-based heritability (h’sw) was estimated at 7.0% (SE=0.002). Partitioning the
80 heritability by functional categories of SNPs (see M ethods) showed the strongest enrichment
81 of h’qp in conserved regions (enrichment=15.8, P=1.57x10"). In addition, h’qp was
82  enriched in common SNPs (MAF > 0.3) and depleted in more rare SNPs (MAF<0.01; Fig. 1c
83 and Supplementary Table 7).

84  We used FUMA to functionally annotate all 22,068 SNPs in the risk loci that were in LD
85  (r®>0.6) with one of the independent significant SNPs (see M ethods). The majority of these
86  SNPs (76.8%) were in open chromatin regions® as indicated by a minimum chromatin state

719 “about

87 of 1-7 (Fig. 1d and Supplementary Table 8). In line with findings for other traits
88  half of these SNPs were in intergenic (35.5%) or non-coding RNA (13.0%) regions (Fig. 1e),
89 and of these, 0.72% were highly likely to have a regulatory function as indicated by a
90 RegulomeDB Score < 2 (see Methods). However, of these 51.5% were located inside a
91 protein coding gene and 0.81% were exonic. Of the 177 exonic SNPs, 71 were exonic non-
92  synonymous (EXNS, Supplementary Table 9). WDROO0 included four EXNS (rs7190775,
93  rs4984906, rs3752493, and rs3803697) all in high LD with the same independent significant
94  SNP (rs3184470). There were two EXNS SNPs with extremely high Combined Annotation

95  Dependent Depletion (CADD) scores® suggesting a strong deleterious effect on protein
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96  function: rs13107325 in SLC39A8 (locus 56, P=8.31x107'®) with the derived allele T
97 (MAF=0.03) associated with an increased risk of insomnia, and rs35713889 in LAMB2 (locus
98 42, P=1.77x10"), where the derived allele T of rs35713889 (MAF=0.11) was also associated
99 with an increased risk of insomnia complaints. Supplementary Table 10 and
100  Supplementary Discussion 2.2 provide a detailed overview of the functional impact of all
101  variants in the genomic risk loci.
102
103  Genesimplicated in insomnia
104  To obtain insight into (functional) consequences of individual GWS SNPs we used FUMA"
105  to apply three strategies to map associated variants to genes (see Methods). Positional gene-
106  mapping aligned SNPs to 412 genes by location. Expression Quantitative Trait Loci (eQTL)
107  gene-mapping matched cis-eQTL SNPs to 594 genes whose expression levels they influence.
108  Chromatin interaction mapping annotated SNPs to 159 genes based on three-dimensional
109 DNA-DNA interactions between genomic regions of the GWS SNPs and nearby or distant
110 genes (Supplementary Fig. 2, Supplementary Table 11 and Supplementary Discussion
111 2.3). 91 genes were mapped by all three strategies (Supplementary Table 12) and 336 genes
112 were physically located outside of the risk loci but were implicated by eQTL associations
113 (306 genes), chromatin interactions (16 genes) or both (14 genes). Several genes were
114  implicated by GWS SNPs originating from two distinct risk loci on the same chromosome
115 (Fig. 2a and 2b): MEISL, located on chromosome 2 in the strongest associated locus (locus
116  20), was positionally mapped by 51 SNPs and mapped by chromatin interactions in 10 tissue
117  types including cross-loci interactions from locus 21, and is a known gene involved in
118  insomnia’. LRGUK, located on chromosome 7 in locus 106, was positionally mapped by 22
119  SNPs and chromatin interactions in 3 tissue types including cross-loci interactions from locus

120  105. LRGUK was also implicated by eQTLs associations of 125 SNPs in 14 general tissue


https://doi.org/10.1101/214973
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/214973; this version posted January 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

121  types. LRGUK was previously implicated in type 2 diabetes?! and autism spectrum disorder
122 - disorders with prominent insomnia - but not yet directly implicated in sleep-related
123 phenotypes, and is the most likely candidate to explain the observed association in loci 105
124 and 106.

125  Apart from linking individual associated genetic variants to genes, we conducted a genome-
126  wide gene-based association analysis (GWGAS) using MAGMAZ. GWGAS provides
127  aggregate association P-values based on all variants located in a gene, and complements the
128  three FUMA mapping strategies (see Methods). GWGAS identified 517 associated genes
129 (Fig. 2c and Supplementary Table 13). The top gene BTBD9 (P=8.51x10%) on
130 chromosome 6 in locus 81 was also mapped by positional and eQTL mapping (tissue type:
131 left ventricle of the heart), and is part of a pathway regulating circadian rhythms. BTBD9 has

42 and Tourette Syndrome®.

132 been associated with RLS, periodic limb movement disorder
133 Involvement in sleep regulation was shown in Drosophila?’, and mouse mutants show
134  fragmented sleep?® and increased levels of dynamin 1%, a protein that mediates the increased
135  sleep onset latency following pre-sleep arousal®.

136  Of the 517 MAGMA-based associated genes, 222 were outside of the GWAS risk loci, and
137 309 were also mapped by FUMA. In total, 956 unique genes were mapped by at least one of
138  the three FUMA gene mapping strategies or by MAGMA (Extended Data Fig. 6). Of these,
139  MEISL, MED27, IPO7 and ACBDA4 confirmed previous results®’ (Supplementary Table 14).
140  Sixty-two genes were implicated by all four mapping strategies indicating that apart from a
141  GWS gene-based P-value, there were (i) GWS SNPs located inside these genes, (ii)) GWS
142  SNPs associated with differential expression of these genes and (iii) GWS SNPs that were
143  involved in genomic regions interacting with these genes. We note that genes that were

144  indicated by positional mapping and GWS gene-based P-values, but not via eQTL or

145  chromatin interaction mapping (N=54 genes), may be of equal importance, yet are more
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146  likely to exert their influence on insomnia via structural changes in the gene products (i.e. at
147  the protein level) and not via quantitative changes in the availability of the gene products.

148

149  Implicated pathways, tissues and cell-types

150 To test whether GWS genes converged in functional gene-sets and pathways, we conducted
151  gene-set analyses using MAGMA (see M ethods). We tested associations of 7,473 gene-sets:
152 7,246 sets derived from the MsigDB®, gene expression values from 54 tissues from the
153  GTEx database®, and cell-specific gene expression in 173 types of brain cells (Fig. 2d,
154  Supplementary Table 15). Competitive testing was used and a Bonferroni corrected
155  threshold of P<6.7x10® (0.05/7,473) to correct for multiple testing. Of the MsigDB gene-
156  sets, three Gene Ontology (GO) gene-sets survived multiple testing: GO:locomotory behavior
157  (P=8.95x107), GO:behavior (P=5.23x10"®), and GO:axon part (P=4.25x10"%). Twelve genes
158 (LRRK2, CRH, DLG4, DNM1, DRD1, DRD2, DRD4, GRIN1, NTSR1, SNCA, CNTN2, and
159  CALBL1) were included in all of these gene-sets and two of these (SNCA, DNM1) had a GWS
160 gene-based P-value (Supplementary Table 16). SNCA encodes alpha-synuclein and has
161  been implicated in REM sleep behavior disorder® and Parkinson’s disease®. Altered
162  expression in mice changes sleep and wake EEG spectra®™ along the same dimensions that
163  have been implicated in insomnia disorder®®. DNM1 encodes the synaptic neuronal protein
164  dynamin 1, which is increased in BTBD9 mutant mice? and mediates the sleep-disruptive
165  effect of pre-sleep arousal (see above; BTBD9 is the top associated gene). Conditional gene-
166  set analyses suggested that the association with the gene-set behavior is almost completely
167  explained by the association of locomotory behavior, and that the effect of axon part is
168  independent of this (Supplementary Discussion 2.4). GO:locomotory behavior includes 175
169  genes involved in stimulus-evoked movement®. This set included 16 GWS genes: BTBD9,

170 MEISL, DAB1, SNCA, GNAO1 ATP2B2, NEGR1, SLC4A10, GIP, DNM1, GPRC5B, GRMS5,
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171 NRG1, PARK2, TAL1, and OXR1). GO:axon part reflects a very general cellular component
172 representing 219 genes, of which 14 were GWS (KIF3B, SNCA, GRIAL1, CDH8, ROBO2,
173 DNM1, RANGAP1, GABBR1, P2RX3, NRG1, POLG, DAGL, NFASC, and CALB2).

174  Tissue specific gene-set analyses showed strong enrichment of genetic signal in genes
175  expressed in the brain. Correcting for overall expression, four specific brain tissues reached
176  the threshold for significance: overall cerebral cortex (P=3.68x10"°), Brodmann area 9 (BA9)
177  of frontal cortex (P=5.04x10"), BA24 of the anterior cingulate cortex (P=3.25x10°), and
178  cerebellar hemisphere (P=5.93x10°)'. Several other brain tissues also showed strong
179  enrichment just below threshold, including three striatal basal ganglia (BG) structures
180  (nucleus accumbens, caudate nucleus, putamen). To test whether genes expressed in all three
181  BG structures together would show significant enrichment of low P-values, we used the first
182  principal component (BGpc) of these BG structures and found significant enrichment
183  (P=8.33x10"®). When conditioning the three top cortical structures on the BGpc, they were no
184  longer significantly associated after multiple testing correction (minimum P=0.03), which
185  was expected given that the BGpc correlated strongly with gene-expression in cortical (and
186  other) areas (r>0.96). Similar results were obtained vice versa, i.e. using the first principal
187  component of all cortical areas and conditioning the three BG structures on this resulted in no
188  evidence of enrichment of low P-values for BG structures (minimum P=0.53). These results
189  show that (i) genes expressed in brain are important in insomnia, (ii) genes expressed in
190 cortical areas are more strongly associated than genes expressed in BG, (iii) there is a strong
191 correlation between gene expression patterns across brain tissues, which suggests

192  involvement of general cellular signatures more than specific brain tissue structures.

' We caution that only a limited set of brain tissues were included and thus we cannot rule out
associations with many important areas such as pons, midbrain or thalamus based on this
analysis.
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193  Brain cell type-specific gene-set analyses was first carried out on 24 broad cell-type
194  categories. Cell type-specific gene expression was quantified using single cell RNA-
195  sequencing of disassociated cells from somatosensory cortex, hippocampus, hypothalamus,
196  striatum and midbrain from mouse (see M ethods), which closely resembles gene-expression
197  in humans®. Results indicated that genes expressed specifically in the medium spiny neurons
198  (MSN, P=4.83x10"") were associated with insomnia, and no other broad cell-types specific
199  gene-set survived our strict threshold of P<6.7x10°. MSNs represent 95% of neurons within
200  the human striatum, which is one of the four major nuclei of the subcortical BG. Specifically,
201  the striatum consists of the ventral (nucleus accumbens and olfactory tubercle) and dorsal
202  (caudate nucleus and putamen) subdivisions. The association with MSNs thus likely explains
203  the observed association of the BG striatal structures (nucleus accumbens, caudate nucleus,
204  putamen).

205  Using broad cell classes risks not detecting associations that are specific to distinctive yet rare
206  cell types; to account for this we then tested 149 specific brain cell-type categories, and found
207  significant associations with 7 specific cell types: medio-lateral neuroblasts type 3, 4 and 5
208 (P=2.36x10°, P=1.88x10°, and P=1.87x10°), D2 type medium spiny neurons (P=2.12x10"
209 ®), claustrum pyramidal neurons (P=3.09x10), hypothalamic Vglut2 Morn4 Prrc2a neurons
210 (P=4.36x10"°), and hypothalamic Vglut2 Hcn16430411 K18 Rik neurons (P=4.98x10°),
211 known to have the densest number of melatonin receptors. These results suggest a role of
212 distinct mature and developing cell types in the midbrain and hypothalamus. The
213 hypothalamus contains multiple nuclei that are key to the control of sleep and arousal,
214  including the suprachiasmatic nucleus (SCN) that accommodates the biological clock of the
215  brain *,

216

217
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218  Low genetic overlap with sleep traits

219  Other sleep-related traits may easily be confounded with specific symptoms of insomnia, like
220  early morning awakening, difficulties maintaining sleep, and daytime sleepiness. The most
221  recent genome-wide studies for other sleep-related traits included 59,128 to 128,266

222 individuals, and assessed genetic effects on morningness®****

(i.e. being a morning person),
223 sleep duration ®*, and daytime sleepiness/dozing **. Using increased sample sizes for each of
224 these sleep-related traits (max N=434,835), we here investigated to what extent insomnia and
225  other sleep-related traits are genetically distinct or overlapping. We performed GWAS
226  analyses for the following six sleep-related traits: morningness, sleep duration, ease of getting
227 up in the morning, naps during the day, daytime dozing, and snoring (Supplementary
228 Methods 1.1-1.2, Extended Data Fig. 7, 9). Of the 202 risk loci for insomnia, 39 were also
229  GWS in at least one of the other sleep-related traits (Fig. 3, Supplementary Table 17). The
230  strongest overlap in loci was found with sleep duration, with 14 out of 49 sleep duration loci
231 overlapping with insomnia. Insomnia showed the highest genetic correlation with sleep
232 duration (-0.47, SE=0.02; Supplementary Table 18) compared to other sleep-related traits,
233 which was not surprising given that insomnia also shared the most risk loci with sleep
234 duration (See further discussion sleep phenotypes in Supplementary Discussion 2.5).

235  Gene-mapping of SNP associations of sleep-related traits resulted in 973 unique genes
236 (Extended Data Fig. 9, Supplementary Table 19-23). Gene-based analysis showed that of
237  the 517 GWS genes for insomnia, 120 were GWS in at least one of the other sleep-related
238  traits, and one gene (RBFOX1) was GWS in all except napping and dozing (Supplementary
239 Table 24). The largest proportion of overlap in GWS genes for insomnia was again with
240  sleep duration, with 37 of the 135 (27%) GWS genes for sleep duration also GWS for

241  insomnia. There was overlap in tissue enrichment in cortical structures and basal ganglia

242  between insomnia and both morningness and sleep duration. On the single cell level, the

10
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243 medium spiny neurons were also implicated for morningness and sleep duration, but not for
244  the other sleep-related traits (Supplementary Table 25). Taken together, these results
245 suggest that at a genetic level, insomnia shows partial overlap with sleep duration, but
246 minimal overlap with other sleep-related traits. Consistent short sleep across nights occurs
247  only in a minor part of insomnia patients, even in a clinical sample**.

248

249  Strong overlap between insomnia and psychiatric and metabolic traits

250  We confirm previously reported genetic correlations between insomnia and neuropsychiatric
251  and metabolic traits®’ (Supplementary Table 26), and also identify several GWS SNPs for
252 insomnia that have previously been associated with these traits (Supplementary Table 27).
253 The strongest correlations were with depressive symptoms (r,=0.64, SE=0.04 P=1.21x10""),

254  followed by anxiety disorder (rg=0.56, SE=0.11 P=1.40x10"), subjective well-being

255  (rg=—0.51, SE=0.03 P=4.93x10"%), major depression (r4=0.50, SE=0.07 P=8.08x10™") and

256  neuroticism (rg=0.48, SE=0.02 P=8.72x10"%). Genetic correlations with metabolic traits
257  ranged between 0.09-0.20. The genetic correlations between insomnia and psychiatric traits
258  were also stronger than the correlations between insomnia and the other sleep-related traits.
259  Since a similar high reliability has been reported for both sleep and psychiatric phenotypes,
260 the findings suggest that genetically insomnia more closely resembles neuropsychiatric traits
261  than it resembles other sleep-related traits (Fig. 4). To infer directional associations between
262 insomnia and these correlated traits, we performed bidirectional Multi-SNP Mendelian
263  Randomization (MR) analysis®® (see Methods). Results support a direct risk effect of
264  insomnia on metabolic syndrome phenotypes including BMI (by=0.36, SE=0.05,
265  P=1.25x10-") type 2 diabetes (b,=0.62, SE=0.11, P=2.29x10®), and coronary artery disease
266 (by=0.61, SE=0.09, P=2.88x10""%). In addition, insomnia was bidirectionally associated with

267  educational attainment, with a stronger effect from insomnia on educational attainment
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268  (by=—0.32, SE=0.02, P=1.68x10"") (i.e. a higher risk for insomnia leads to lower

269  educational attainment) than vice versa (b,=—0.10, SE=0.01, P=2.27x10%), the same pattern

270  was observed for intelligence. We also found risk effects of insomnia on several psychiatric
271  traits, including schizophrenia (by=0.68, SE=0.10, P=5.12x10"), ADHD (b.=0.77,
272 SE=0.06, P=2.50x10*), neuroticism (b,=0.46, SE=0.03, P=3.92x10">) and anxiety disorder
273 (by=0.47, SE=0.10, P=4.11x10"®), with no evidence of large reverse effects, except for a
274 small risk effect of neuroticism on insomnia (by=0.09, SE=0.02, P=1.24x10°) and
275  depressive symptoms (b,,=0.09, SE=0.02, P=1.24x10°)%. Overall, there was only a small
276  proportion of SNPs showing pleiotropy between insomnia and other traits (Supplementary
277  Table 28 and Supplementary Discussion 2.6).

278

279  Discussion

280 In the largest GWAS study to date of 1,331,010 participants we identified 202 genomic risk
281 loci for insomnia. Using extensive functional annotation of associated genetic variants, we
282  demonstrated that the genetic component of insomnia points towards a role of genes involved
283 in locomotory behavior, and genes expressed in specific cell types from the claustrum,
284  hypothalamus and striatum, and specifically in MSNs (Fig. 5). MSNs are GABAergic
285 inhibitory cells and represent 95% of neurons in the human striatum, one of the four major

286  nuclei of the BG (for reviews, see **°

). MSNs receive massive excitatory glutamatergic
287  input from the cerebral cortex and the thalamus, and are targets of dopamine neurons in
288  substantia nigra and the ventral tegmental area. In addition, they receive inhibitory inputs

289  from striatal GABAergic interneurons. MSNs themselves are GABAergic output neurons

290 with exceptionally long projections to globus pallidus (GP), substantia nigra and ventral

2 We do note that for major depression the reverse MR could not be carried out due to an insufficient number
of SNPs with a low P-value
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291  pallidum, and control the activity of thalamocortical neurons. Previous studies during the
292 natural sleep-wake cycle, in vitro, and from anesthetized in vivo preparations have shown that
293  MSNs show fast, synchronized cyclic firing, i.e. the so-called Up and Down states, during
294  slow-wave sleep and irregular pattern of action potentials during wakefulness. In fact, MSNs
295  were the first neurons in which the Up and Down states characteristic of slow wave sleep
296  were described”. Cell body-specific striatal lesions of the rostral striatum induce a profound
297  sleep fragmentation, which is most characteristic of insomnia. A role for BG in sleep
298 regulation is also suggested by the high prevalence of insomnia in neurodegenerative
299  disorders, such as Parkinson’s Disease and Huntington’s disease in which the BG are
300 affected. Vetrivelan et al.* proposes a cortex-striatum-GPexerma-cortex network involved in
301 the control of sleep—wake behavior and cortical activation, in which midbrain dopamine
302  disinhibits the GPexernat @nd promotes sleep through activation of D2 receptors in this
303 network. Furthermore, brain imaging studies have suggested the caudate nucleus of the
304 striatum as a key node in the neuronal network imbalance of insomnia®®, and also reported
305 abnormal function in the cortical areas we found to be most enriched (BA9*, BA24%). Our
306  results support the involvement of the striato-cortical network in insomnia, by showing
307 enrichment of risk genes for insomnia in cortical areas as well as the striatum, and
308 specifically in MSNs. We recently showed that, along with several other cell types, MSNs
309 also mediate the risk for mood disorders>* and schizophrenia®. MSNs are strongly implicated
310 in reward processing and future work could address whether the genetic overlap between
311  insomnia and mood disorders is mediated by gene function in MSNs.

312 Our results also showed enrichment of insomnia genes in pyramidal neurons of the claustrum.
313  This subcortical brain region is structurally closely associated with the amygdala and has
314  been implicated in salience coding of incoming stimuli and binding of multisensory

315 information into conscious percepts®’. These functions are highly relevant to insomnia,
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316  because the disorder is characterized by increased processing of incoming stimuli®® and by
317 ongoing consciousness even during sleep, a phenomenon known as sleep state
318  misperception®. We also found enrichment of insomnia genes in mediolateral neuroblasts
319 from the embryonic midbrain and in two hypothalamic cell types. The role of the
320 mediolateral neuroblasts is less clear; although they were obtained from the embryonic
321 midbrain, it is at present unknown what type of mature neurons they differentiate into. We
322 note that the midbrain is similar on a bulk transcriptomic level to the pons™, and lacking cells
323  from that region we cannot conclusively say that midbrain cell-types are enriched.

324  The current findings provide novel insight into the causal mechanism of insomnia,
325 implicating specific cell types, brain areas and biological functions. These findings are
326  starting points for the development of new therapeutic targets for insomnia and may also

327  provide valuable insights for other, genetically related disorders.
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328 Methods:

329 Meta-analysis

330 A meta-analysis on the GWAS results of insomnia and morningness in UKB and 23andMe
331 cohorts was performed using fixed-effects meta-analysis METAL™, using SNP P-values
332 weighted by sample size. To investigate sex-specific genetic effects, we ran the meta-analysis
333 between UKB and 23andMe datasets for males and females separately.

334

335  Genomicrisk loci definition

336 We used FUMA?! (http://fuma.ctglab.nl/), an online platform for functional mapping and

337 annotation of genetic variants, to define genomic risk loci and obtain functional information
338 of relevant SNPs in these loci. FUMA provides comprehensive annotation information by
339  combining several external data sources. We first identified independent significant SNPs that
340  have a genome-wide significant P-value (<5x10®) and are independent from each other at
341  r’<0.6. These SNPs were further represented by lead SNPs, which are a subset of the
342 independent significant SNPs that are in approximate linkage equilibrium with each other at
343 r’<0.1. We then defined associated genomic risk loci by merging any physically overlapping
344  lead SNPs (linkage disequilibrium [LD] blocks <250kb apart). Borders of the genomic risk
345 loci were defined by identifying all SNPs in LD (r’@0.6) with one of the independent
346  significant SNPs in the locus, and the region containing all these candidate SNPs was
347  considered to be a single independent genomic risk locus. LD information was calculated
348 using the UK Biobank genotype data as a reference. Risk loci were defined based on
349  evidence from independent significant SNPs that were available in both 23andMe and UKB.

350 We note that SNPs that were GWS but only available in the 23andMe dataset were not
351 included when defining genomic risk loci and were not included in any follow-up annotations

352  or analyses, because there was no external replication in the UKB sample. If such SNPs were
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353 located in a risk locus, they are displayed in Locuszoom plots (grey, as there is no LD
354  information in UKB). When risk loci contained GWS SNPs based solely on 23andMe, we did
355 not count that risk locus, as there were no other SNPs available in both samples that
356  supported these GWS SNPs.

357

358 Gene-based analysis

359  SNP-based P-values from the meta-analysis were used as input for the gene-based genome-
360  wide association analysis (GWGAS). 18,182 to 18,185 protein-coding genes (each containing
361 at least one SNP in the GWAS, the total number of tested genes can thus be slightly different
362  across phenotypes) from the NCBI 37.3 gene definitions were used as basis for GWGAS in
363 MAGMA . Bonferroni correction was applied to correct for multiple testing (P<2.73x10°).
364

365 Gene-set analysis

366  Results from the GWGAS analyses were used to test for association in three types of 7,473

367  predefined gene-sets:

368 1. 7,246 curated gene-sets representing known biological and metabolic pathways
369 derived from 9 data resources, catalogued by and obtained from the MsigDB version
370 6.0°® (http://software.broadinstitute.org/gsea/msigdb/collections.jsp)

371 2. Gene expression values from 54 (53 + 1 calculated 1% PC of three tissue subtypes)
372 tissues obtained from GTEX*’, log2 transformed with pseudocount 1 after
373 winsorization at 50 and averaged per tissue

374 3. Cell-type specific expression in 173 types of brain cells (24 broad categories of cell
375 types, ‘level 1’ and 129 specific categories of cell types ‘level 2’), which were
376 calculated following the method described in *. Briefly, brain cell-type expression
377 data was drawn from single-cell RNA sequencing data from mouse brains. For each
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378 gene, the value for each cell-type was calculated by dividing the mean Unique
379 Molecular Identifier (UMI) counts for the given cell type by the summed mean UMI
380 counts across all cell types. Single-cell gene-sets were derived by grouping genes into
381 40 equal bins based on specificity of expression. Mouse cell gene-expression was
382 shown to closely approximate gene-expression in post-mortem human tissue®.

383  These gene-sets were tested using MAGMA. We computed competitive P-values, which
384  represent the test of association for a specific gene-set compared with genes not in the gene-
385  set to correct for baseline level of genetic association in the data®’. The Bonferroni-corrected
386  significance threshold was 0.05/7,473 gene-sets=6.7x10°. Conditional analyses were
387 performed as a follow-up using MAGMA to test whether each significant association
388  observed was independent of all others. The association between each gene-set in each of the
389 three categories was tested conditional on the most strongly associated set, and then, if any
390 substantial (P<0.05/number of gene-sets) associations remained, by conditioning on the first
391  and second most strongly associated set, and so on until no associations remained. Gene-sets
392 that retained their association after correcting for other sets were considered to represent
393 independent signals. We note that this is not a test of association per se, but rather a strategy
394  to identify, among gene-sets with known significant associations and overlap in genes, which
395  set (s) are responsible for driving the observed association.

396

397  SNP-based heritability and genetic correlation

398 LD Score regression™ was used to estimate genomic inflation and SNP-based heritability of
399 the phenotypes, and to estimate the cross-cohort genetic correlations. Pre-calculated LD
400 scores from the 1000 Genomes European reference population were obtained from

401  https://data.broadinstitute.org/alkesgroup/LDSCORE/.

402
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403  Genetic correlations

404  Genetic correlations between sleep-related traits, and between sleep-related traits and
405  previously published GWAS studies of sufficient sample size were calculated using LD Score
406  regression on HapMap3 SNPs only. Genetic correlations were corrected for multiple testing
407 based on the total number of correlations (between 6 sleep-related phenotypes and 27
408 previous GWAS studies) by applying a Bonferroni corrected threshold of
409  (P<0.05/33=1.51x107%).

410

411  Stratified heritability

412  To test whether specific categories of SNP annotations were enriched for heritability, we
413  partitioned SNP heritability for binary annotations using stratified LD score regression®.
414  Heritability enrichment was calculated as the proportion of heritability explained by a SNP
415  category divided by the proportion of SNPs that are in that category. Partitioned heritability
416  was computed by 28 functional annotation categories, by minor allele frequency (MAF) in
417  six percentile bins and by 22 chromosomes. Annotations for binary categories of functional
418  genomic characteristics (e.g. coding or regulatory regions) were obtained from the LD score

419  website (https://github.com/bulik/Idsc). The Bonferroni-corrected significance threshold for

420 56 annotations was set at: P<0.05/56=8.93x10-4.

421
422 Functional annotation of SNPs
423 Functional annotation of SNPs implicated in the meta-analysis was performed using

424  FUMAY. We selected all candidate SNPs in genomic risk loci having an r?@0.6 with one of

425  the independent significant SNPs (see above), a P-value (P<1x1075), a MAF>0.0001 for

426  annotations, and availability in both UKB and 23andMe datasets. Functional consequences
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427  for these SNPs were obtained by matching SNPs’ chromosome, base-pair position, and
428 reference and alternate alleles to databases containing known functional annotations,
429 including ANNOVAR® categories, Combined Annotation Dependent Depletion (CADD)
430  scores, RegulomeDB® (RDB) scores, and chromatin states®®. ANNOVAR categories identify
431  the SNP’s genic position (e.g. intron, exon, intergenic) and associated function. CADD scores
432 predict how deleterious the effect of a SNP is likely to be for a protein structure/function,
433 with higher scores referring to higher deleteriousness. A CADD score above 12.37 is
434  considered to be potentially pathogenic®®. The RegulomeDB score is a categorical score
435  based on information from expression quantitative trait loci (eQTLs) and chromatin marks,
436 ranging from la to 7 with lower scores indicating an increased likelihood of having a
437  regulatory function. Scores are as follows: 1a=eQTL + Transciption Factor (TF) binding +
438  matched TF motif + matched DNase Footprint + DNase peak; 1b=eQTL + TF binding + any
439  motif + DNase Footprint + DNase peak; 1c=eQTL + TF binding + matched TF motif +
440 DNase peak; 1d=eQTL + TF binding + any motif + DNase peak; 1e=eQTL + TF binding +
441  matched TF motif; 1f=eQTL + TF binding / DNase peak; 2a=TF binding + matched TF motif
442  + matched DNase Footprint + DNase peak; 2b=TF binding + any motif + DNase Footprint +
443  DNase peak; 2c=TF binding + matched TF motif + DNase peak; 3a=TF binding + any motif
444  + DNase peak; 3b=TF binding + matched TF motif; 4=TF binding + DNase peak; 5=TF
445  binding or DNase peak; 6=other;7=Not available. The chromatin state represents the
446  accessibility of genomic regions (every 200bp) with 15 categorical states predicted by a
447  hidden Markov model based on 5 chromatin marks for 127 epigenomes in the Roadmap
448  Epigenomics Project®. A lower state indicates higher accessibility, with states 1-7 referring
449  to open chromatin states. We annotated the minimum chromatin state across tissues to SNPs.
450 The 15-core chromatin states as suggested by Roadmap are as follows: 1=Active

451  Transcription Start Site (TSS); 2=Flanking Active TSS; 3=Transcription at gene 5’ and 3’;
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452  4=Strong transcription; 5= Weak Transcription; 6=Genic enhancers; 7=Enhancers; 8=Zinc
453  finger genes & repeats; 9=Heterochromatic; 10=Bivalent/Poised TSS; 11=Flanking
454  Bivalent/Poised TSS/Enh; 12=Bivalent Enhancer; 13=Repressed PolyComb; 14=Weak
455  Repressed PolyComb; 15=Quiescent/Low.

456

457  Gene-mapping

458  Genome-wide significant loci obtained by GWAS were mapped to genes in FUMA!’ using
459  three strategies:

460 1. Positional mapping maps SNPs to genes based on physical distance (within a 10kb
461 window) from known protein coding genes in the human reference assembly
462  (GRCh37/hg19).

463 2. eQTL mapping maps SNPs to genes with which they show a significant eQTL association
464  (i.e. allelic variation at the SNP is associated with the expression level of that gene). eQTL
465  mapping uses information from 45 tissue types in 3 data repositories (GTEx*, Blood eQTL
466  browser®®, BIOS QTL browser®), and is based on cis-eQTLs which can map SNPs to genes
467 up to 1Mb apart. We used a false discovery rate (FDR) of 0.05 to define significant eQTL
468  associations.

469 3. Chromatin interaction mapping was performed to map SNPs to genes when there is a
470  three-dimensional DNA-DNA interaction between the SNP region and another gene region.
471  Chromatin interaction mapping can involve long-range interactions as it does not have a
472  distance boundary. FUMA currently contains Hi-C data of 14 tissue types from the study of
473 Schmitt et al ®. Since chromatin interactions are often defined in a certain resolution, such as
474  40kb, an interacting region can span multiple genes. If a SNP is located in a region that
475  interacts with a region containing multiple genes, it will be mapped to each of those genes.

476  To further prioritize candidate genes, we selected only interaction-mapped genes in which
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477  one region involved in the interaction overlaps with a predicted enhancer region in any of the
478 111 tissue/cell types from the Roadmap Epigenomics Project®, and the other region is
479  located in a gene promoter region (250bp up and 500bp downstream of the transcription start
480 site and also predicted by Roadmap to be a promoter region). This method reduces the
481  number of genes mapped but increases the likelihood that those identified will indeed have a
482  plausible biological function. We used a P-FDR < 1x107 to define significant interactions,
483  based on previous recommendations®, modified to account for the differences in cell lines
484  used here.

485

486 GWAS catalog lookup

487 We used FUMA to identify SNPs with previously reported (P<5x10”) phenotypic
488  associations in published GWAS listed in the NHGRI-EBI catalog®, which matched with
489  SNPs in LD with one of the independent significant SNPs identified in the meta-analysis.

490

491  Polygenicrisk scoring

492  To calculate the explained variance in insomnia by our GWAS results, we calculated
493  polygenic scores (PGS) based on the SNP effect sizes in the meta-analysis. The PGS were
494  calculated using two methods: LDpred®™ and PRSice®, a script for calculating P-value
495  thresholded PGS in PLINK. PGS were calculated using a leave-one-out method, where
496  summary statistics were recalculated each time with one sample of N=3,000 from UKB
497  excluded from the analysis. This sample was then used as a target sample for estimating the
498  explained variance in insomnia by the PGS.

499

500 Mendedlian Randomization
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501 To investigate causal associations between insomnia and genetically correlated traits, we
502 analyzed direction of effects using Generalized Summary-data based Mendelian

503  Randomization (GSMR*; http://cnsgenomics.com/software/gsmr/). This method uses effect

504  sizes from GWAS summary statistics (standardized betas or log-transformed odds ratios) to
505 infer causality of effects between two traits based on genome-wide significant SNPs. Built-in
506 HEIDI outlier detection was applied to remove SNPs with pleiotropic effects on both traits,
507 as these may bias the results. We tested for causal associations between insomnia and traits
508 that were significantly genetically correlated with insomnia (by). In addition, we tested for
509 bi-directional associations by using other traits as the determinant and insomnia as the
510  outcome (by). We selected independent (r°<0.1) lead SNPs with a GWS P-value (<5x10°®) as
511 instrumental variables in the analyses. For traits with less than 10 lead SNPs (i.e. the
512  minimum number of SNPs on which GSMR can perform a reliable analysis) we selected
513  independent SNPs (r’<0.1), with a P-value <1x10®. If the outcome trait is binary, the
514  estimated b, and b, are approximately equal to the natural log of the odds ratio (OR). An OR
515 of 2 can be interpreted as a doubled risk compared to the population prevalence of a binary
516 trait for every SD increase in the exposure trait. For quantitative traits, the b, and b, can be
517 interpreted as a one standard deviation increase explained in the outcome trait for every SD
518 increase in the exposure trait.

519
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724  Fig. la-e. SNP-based results from the GWAS meta-analysis on insomnia (N=1,331,010). (a)
725  Manhattan plot of the GWAS of insomnia, showing the —log10-transformed P-value for each SNP (b)
726  Heritability enrichment for functional SNP categories and minor allele frequency bins (MAF).
727  Enrichment was calculated by dividing the proportion of heritability for each category by the
728  proportion of SNPs in that category, significant enrichments after Bonferroni correction (28 functional

729  categories + 6 MAF bins + 22 chromosomes) are indicated by an asterisk (P<0.05/56=8.93x10%) (c)

730  Polygenic score (PGS) prediction in three hold-out samples (N=3,000), showing the increase in
731  explained variance in insomnia (Nagelkerke’s pseudo R?) and 95% confidence interval for each P-
732 value threshold. All P-value thresholds were statistically significant. (d) Distribution of CADD scores
733 and RegulomeDB category of all annotated SNPs in LD (r*>=0.6) with one of the GWS SNPs
734  (n=22,068) and (e) functional consequences of these SNPs.

735

29


https://doi.org/10.1101/214973
http://creativecommons.org/licenses/by-nc-nd/4.0/

=
=)
e}
0 <
(o=
2o
L Qa
L
< @
R 5
T © x
e ag
=3 <
s v
oz _,m@m.@@ 3 - & 99 VAdIS
e o 3 ~
g ~ = (41Q) vonau fiuids wnipapy
) o) = 5
R ..H < > uoinap ydies defopy ybly yi olweeyiodAiH
i w = M\ UoINBU MIHG I L LFOEFS LUSH ZINBA onwueeyiodiy
..Ol ..W.. ~ - Q % ueInau Bzalld yulop ZiniBa awereyiodAiy
.H 2 @ m m ~ o wnsNe|o uoinaujepiweld
m %- m M an . W. £ odA) siseigoinau [eielejoipapy
= —_—
S 0 o x @ [} ("2q) uoinau Auids wnipajy
Q [&]
< = @ ©  2dA) S1SEIqOINAL [RIAIRIOP3Y
—
mu“ m hig < S adA) siseiqoinau [elajejoIpaly
=2 = -
.= w
= o
w o _ 3 )
oo N — = 1sejqoinenoiBisuiedoq
=
©a [&] —_ uoinau aibssuILEdop SlUOAIGUIT
[0} —_ 2 a 7]
e m o = - AVv uoinawBlu|
= .W. % b= W = (§S) uoinau [epiueiAg
© = b= @ siseiqoinan
=8 S @ 2
o o (1¥D) uonau [epiueiid
~Ng m = 2 w. uoinau aibisuojoleg
-O— - =
m o m _N_ m % uoinau aiBieygys oluckiqug
> .nl.v. o lclu\ ._m... @ uQINaU SNBjonu UreJqpIW JuoAIqus
m m m .Elv & n_mU uoinau Auids wnipapy
> c > & 3
Q = @
R © % -
= = b c 3 £
Lar] © < © - L .m sndwesoddiH
m >0 Il k=] M ~ O g, snajonu ajepnes
X< &2 % o @ ™ g ejepbiiuy
m.nn“v o s m . 98 > susqUINKDL SnajonN
c8< s @ e 24 © o wniegeie)
(SR =10 M £ r_M._ % aseydsiway Jejegeey
582 & g . &
W a > o™ (2yg) xeno0 alenBuid Jousiuy
K% _nrsw Q (6¥E) XeH02 [Bju0Lg
S0 (0d) e1BUES [BSEG
559 § -
™
~ 7]
=2} m o (0D) Ausnse|d ondeuss jo uohe|nbay
M._ W m “ (09) awpusg
g 9 m 2] (09) buipuig yNY vvv-Aiod
m_ .m = a3 uw (09) xeidwod 101dedes alewWeIN|D YdNY
43 o g o 2 (0D) uoHEUBIBYP UCINAU WAISAS SNOAISU [BAUBD)
e s [
S35 M (0D) ueissiwsuen ondeurs jo uoneNpoy
u |nnu o (09) Auanoe Jo eimonns ondeufs jo uonenbay
=
oy b (09) Joimeysg
m % 3 . (09) wed uoxy
3 = (0D) Joineyaq 10100207
O+=
e T T T T T T 1
L= <+ o~ o
ss & e 2 ©
=
o o6
=2 o-
=> 01B0| - d)
53 © 3 (4)160) o
S =
20
S0
RN
2z
[o}
>3 Yo}
= 0
X i= o
xe ™~
R}
a o

737


https://doi.org/10.1101/214973
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/214973; this version posted January 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

738  Fig. 2a-d. Gene-based and gene-set analyses of insomnia. Zoomed-in circos plots showing genes
739  implicated by two genomic risk loci on chromosome 2 (a) and chromosome 7 (b), genomic risk loci
740  indicated as blue areas, eQTL associations in green, chromatin interactions in orange. Genes mapped
741 by by both eQTL and chromatin interactions are red. The outer layer shows a Manhattan plot
742  containing the negative logl10-transformed P-value of each SNP in the GWAS meta-analysis of
743 insomnia. Full circos plots of all autosomal chromosomes are provided in Supplementary Fig. 2. (c)
744  Genome-wide gene-based analysis (GWAS) of 18,185 genes that were tested for association with
745  insomnia in MAGMA. The y-axis shows the negative loge-transformed P-value of the gene-based
746  test, the x-axis shows the starting position on the chromosome. The red line indicates the Bonferroni

747  corrected threshold for genome-wide significance (P=0.05/18,185=2.75x107). The top 15 most

748  significant genes are highlighted. (d) Gene-set analysis of top 20 for each of the MsigDB pathways,
749  tissue expression of GTEX tissue types, and cell types from single-cell RNA sequencing. Gene-set
750  analyses were performed using MAGMA. The red line shows the Bonferroni significance threshold
751  (P<0.05/7,473=6.7x10°), correcting for the total number of tested gene-sets. Red bars indicated
752 significant gene-sets.
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Fig. 3a-f. Genome-wide analyses of six deep-related traits. Manhattan plots of the genome-wide
association analyses of (a) Morningness (N=434,835). (b) Sleep duration (N=384,317) (c) Ease of
getting up (N=385,949) (d) Napping (N=386,577) (e) Daytime dozing (N=385,333) and (f) Snoring
(N=359,916). The y-axis shows the negative logo-transformed SNP P-value, the x-axis the base pair
position of the SNPs on each chromosome. The red line indicates the Bonferroni corrected

significance threshold (P<5x1078).
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759  Fig. 4. Genetic overlap of insomnia with other deep-related traitsand psychiatric and metabolic
760 traits. Heatmap of genetic correlations between insomnia, sleep-related phenotypes and
761  neuropsychiatric and metabolic traits studies that were calculated using LD Score regression. Red
762  color indicates a positive rq while green indicates negative rq. Correlations that were significant after
763  Bonferroni correction (P<0.05/33=1.51107%) are indicated with an asterisk (see also Supplementary
764  Table 18, 26).
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765  Fig. 5. Overview of brain tissuesand cell types associated with insomnia based on GWAS results
766  from 1,331,010 individuals. For each associated gene-set, the top 5 genes driving the association are
767  reported. Results for GTEX brain tissue type gene-sets are shown on the left side of the figure, while
768  results from the level 2 single-cell gene expression are shown on the right.
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Extended Data Table 1. LD Scoreregression estimates of the sex-specific GWAS of
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insomnia. Results are shown for UK Biobank, 23andMe and the sex-specific meta-analyzed
sample. H2=estimated SNP-heritability, intercept=LD Score regression intercept, rg=genetic

correlation in the same study sample.
Sample Sex N h2(SE) Mean chi2 Lambda Intercept rg male rg female
(SE)
UK male 177.817 0.083 1,157 1,143 1.001 1 0.857
Biobank (0.007) (0.008) (0.051)
female  208.716 0.092 1,233 1,210 1.011 0.857 1
(0.005) (0.008) (0.051)
23andMe male 443.207 0.080 1,385 1,317 1.016 1 0.925
(0.004) (0.008) (0.022)
female  501.270 0.090 1,580 1,460 1.046 0.925 1
(0.003) (0.009) (0.022)
Meta male 621.024 0.067 1,460 1,382 1.024 1 0.919
(0.003) (0.009) (0.018)
female  709.986 0.078 1,700 1,547 1.042 0.919 1
(0.003) (0.009) (0.018)
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778 Extended Data Fig 1a-b. Manhattan and Q-Q plots of the genome-wide analysis of
779  insomnia. Results are shown for the genome-wide analysis in (a) UK Biobank and (b)
780  23andMe.
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782  Extended Data Fig. 3a-c. Sex-specific Manhattan plot and Q-Q plot of theinsomnia
783 meta-analysisin males and females (UK Biobank + 23andMe). (a) Miami plot showing
784  sex-specific SNP association P-values for females on the upper side and males on the lower
785  side. (b) Q-Q plot in females, and (c) in males.
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786  Extended Data Fig. 4a-b. Q-Q plot and lead SNPs of the GWAS meta-analysis for

787  insomnia. (a) QQ-plot of the insomnia meta-analysis showing the expected negative log10-
788  transformed P-value distribution on the x-axis, and observed negative log10-transformed P-
789  value on the y-axis, (b) effect size plot of the 248 lead SNP of the insomnia meta-analysis
790  (log-transformed odds ratio and 95% confidence interval) in UK Biobank and 23andMe.
791
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805 Extended Data Fig. 5. Risk of insomnia per polygenic risk score decilein three

806 independent holdout samples (N=3x3000). Odds ratios and 95% confidence interval for
807  deciles in polygenic risk score were calculated based on a logistic regression model, using the
808  lowest polygenic risk score decile as the reference.
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811 Extended Data Fig. 6. Venn diagram showing the number of genesthat were mapped by
812  four gene-mapping strategies. Each square shows the number of overlapping genes between
813  three gene-mapping methods in FUMA (positional mapping, eQTL mapping and chromatin
814  interaction mapping) and significant genes in gene-based tests in MAGMA. The number of
815  genes in bold highlights the number of genes that were implicated by all four methods.
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817 Extended Data Fig. 7. Manhattan plot and Q-Q plot of the genome-wide analysis of

818 morningnessin UK Biobank and 23andM e. Results are shown for (a) UK Biobank and (b)
819 23andMe.

820


https://doi.org/10.1101/214973
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/214973; this version posted January 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

a Morningness b Sleep duration
L F. .
2 " ¥ s
L d
2‘“ g 2 1 -
=] & M
o o
I I
=
2 2
6] o]
0 2 4 6 0 2 4 3
Expected —logio(p) Expected —logs(p)
C Getting up d Napping
L
w
o
2 g C)
T e T
o =
2 2
s 2 @
0 7]
£ =
o o
w
o
T T T T
0 2 4 6 0 2 4 6
Expected —logie(p) Expected —logqslp)
e Dozing f Snoring
o -
‘Iﬂ_ -
g e =
[=] =
& =@ 2 4
=) =
1 < I
g =
@ [+
> =
T @
2 g -
o o s}
=1 o -
I T I I
0 2 4 6 0 2 4 6
Expected —log(p) Expected —logiolp)

821 Extended Data Fig. 8 Q-Q plots of the genome-wide analysis of six sleep related traits.
822 (@) morningness (including UKB and 23andMe), (b) sleep duration, (c) ease of getting up, (d)
823  daytime napping, (e) daytime dozing, (f) snoring. Manhattan plots of the genome-wide

824  analyses are shown in Fig. 3.
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