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Abstract 

Grapheme-colour synaesthesia is a subjective phenomenon related to perception and imagination, in 

which some people involuntarily but systematically associate specific, idiosyncratic colours to 

achromatic letters or digits. Its investigation is relevant to unravel the neural correlates of colour 

perception in isolation from low-level neural processing of spectral components, as well as the neural 

correlates of imagination by being able to reliably trigger imaginary colour experiences. However, 

functional MRI studies using univariate analyses failed to provide univocal evidence of the activation 

of the ‘colour network’ by synaesthesia. Applying Multivariate (multivoxel) Pattern Analysis (MVPA) 

on 20 synaesthetes and 20 control participants, we tested whether the neural processing of real 

colours (concentric rings) and synaesthetic colours (black graphemes) shared patterns of activations. 

Region of interest analyses in retinotopically and anatomically defined visual regions revealed neither 

evidence of shared circuits for real and synaesthetic colour processing, nor processing difference 

between synaesthetes and controls. We also found no correlation with individual differences, 

characterised by measuring the strength of synaesthetic associations. The whole brain, searchlight, 

analysis led to similar results. We conclude that identifying the neural correlates of the synaesthetic 

experience of colours may still be beyond the reach of present technology and data analysis 

techniques. 

 

Introduction 

Synaesthesia is a subjective experience shared by only a fraction of the population 1-5, offering, in 

principle, an opportunity to study the neural bases of subjective experience, drawing on individual 

differences just like in neuropsychology, but involving healthy people. Moreover, colour, the typical 

prototype of a qualia (what it feels like to perceive something) is the most often cited (or at least 

studied 6) content of the synaesthetic experience. However, the very subjective nature of the 

synaesthetic experience represents a major obstacle when trying to set an objective and operational 

definition, as required in an experimental protocol. Not only subjective descriptions may vary a lot 

between subjects 7, but also within subjects when asked to fill-up the same questionnaire again 8 or 

when describing their subjective experience of colour for different letters 9. Using psychophysical 

tests, the synaesthetic experience of colour appears more similar to imagined or remembered than 

perceived colours 10-13. The experience of synaesthetic colours can be indeed formally described as a 

form of mental imagery, since it occurs without any corresponding spectral stimulation. The 

obligatory experience of colour when exposed to letters or digits may therefore justify the label of 

‘intrusive visual imagery’ 14. Unfortunately, this simplification does not help much with defining the 

phenomenological content of synaesthesia, since self-reports of mental imagery differ at least as 

much as those of synaesthesia 15, with mixed evidence about whether the presence of synaesthesia 

may relate to individual differences in mental imagery 16. One may, however, study how much 

synaesthesia requires the neural resources involved in visual perception. This bottom-up approach, 

which does not address the phenomenological issue, can at least be operationalized. Moreover, 

grapheme-colour synaesthesia offers a unique opportunity regarding the neural correlates of 

imagination as it restrains both individual variability and the content specificity of visual imagery. Last 

but not least, synaesthetic colours are systematically triggered by letters and digits, unlike “regular” 

mental imagery that depends on both the good will and the (uneven) ability of subjects. 

Several brain imaging studies have compared activations in the visual cortex for real and synaesthetic 

colours, whose majority did not reveal any overlap. There were even questions whether activations 

triggered by synaesthetic stimuli, when observed, were in fact related to the synaesthetic experience 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/214809doi: bioRxiv preprint 

https://doi.org/10.1101/214809


3 
 

at all 12. This surprising ‘Null’ result may be due to methodological limitations since only massive 

univariate analysis of brain imaging data were used so far, which may reveal only processes well 

localized in the brain 9. Multivariate (multivoxel) Pattern Analysis (MVPA) does not suffer from such a 

restriction. MVPA provides a way to reveal how information is encoded by the brain 17-20. It has been 

applied successfully to the decoding of aspects of mental images 21,22. Using fMRI, here we simply 

asked whether classifiers trained on patterns of blood oxygenation dependent signals (BOLD 

responses) elicited by different coloured stimuli could predict which synaesthetic colours were 

experienced by synaesthetes when seeing achromatic letters and digits. We studied in particular the 

early stages of visual processing by identifying cortical areas V1 to V4 in each subject, using 

retinotopic mapping, thus avoiding the problems related to structural normalization 23,24. We also 

explored the whole visual cortex (including parts of the parietal cortex) using regions of interest 

based on a probabilistic atlas 25, and performed whole brain searchlight analyses 26. We compared all 

the measures obtained in synaesthetes with those obtained in a group of non-synaesthetes to take 

into account any non-specific effect related to the choice of stimuli. We also took into account the 

individual variability of the synaesthetic experience: without any possibility to characterize 

objectively the different phenomenological accounts, we measured the strength of the synaesthetic 

associations 27.  

 

Material and Methods 

Participants 

Sample size was a priori and arbitrary set to 20 synaesthetes and 20 non-synaesthetes. Sample size 

was small, yet on a par with the literature (the largest studies in the field had 42 synaesthetes vs. 19 

controls 28 and groups of 20 participants 29), because of the exploratory nature of the experiment (we 

know of no other attempt so far of applying MVPA to synaesthesia). Additional power was however 

expected because we could match each synaesthete with a control subject (paired comparisons). We 

should stress that our interpretations are not based on p-values, making the requirement of a priori 

power analyses irrelevant. The study was performed in accordance with the Declaration of Helsinki, it 

received approval by the Institutional Review Board of Grenoble (CPP 12-CHUG-17, approval date 

04/04/2012) and written, informed consent was obtained from all subjects. A medical doctor verified 

that all subjects were without past or current brain disease and had no detected cognitive deficit. All 

subjects had normal colour perception on the Lanthony D-15 desaturated colour test (Richmond 

products), and normal or corrected to normal eyesight (then using MRI-compatible glasses). 

Synaesthetes (16 women) were between 21 and 42 years old (M = 27.9, SD = 5.5). Recruitment was 

diverse and opportunistic, based on self-referral following publicity on internet: lab webpage, 

Facebook event, announcements on university networks in Grenoble and Paris. Potential 

participants, after a first phone interview, were asked by email to fill-up a questionnaire to describe 

their synaesthetic associations and for grapheme colour associations to send us a list of those. 

Synaesthetes were included if they had enough letter-colour and digit-colour associations for our 

experiments. When they came to the lab to perform the experiments, they ran a modified version of 

the “Synaesthesia Battery Test” 30 to choose precisely the colour of each letter and digit. This 

procedure was also used as a retest to confirm the validity of the first-person reports 27. Seven of the 

included synaesthetes had already participated in psychophysics experiments between 2007 and 

2010 27. 

Control participants were recruited after synaesthetes to match their demographic statistics (16 

women, age range between 23 and 38 years old, M = 28.5, SD = 4.3), following similar advertisement 
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strategies as well as soliciting colleagues at the Grenoble Institute of Neuroscience. Interviews were 

conducted to verify the absence of any type of synaesthesia. 

Materials 

Stimuli. For each synaesthete, we tried to identify four pairs of graphemes made of one letter and 

one digit that had similar colour associations. We tried to find pairs of red, green, blue and yellow (R, 

G, B, Y) graphemes, but we were only partially successful and in some cases we selected a pair from 

the most saturated colours available. Fig. 1 shows the actual letters and digits with colours used in 

the experiments. Only 13 subjects named the pairs red, green, blue and yellow; other colours were 

named orange, violet, fuchsia and brown, as well as light and dark blue or green. Syn08 and syn48 

had a pair made of two letters. Since each synaesthete was tested with a different set of stimuli, each 

control subject was tested with the stimuli of a specific synaesthete (with the exception of syn10 

who had no matched control, by mistake; two controls were tested instead with the stimuli of syn11. 

Paired comparisons were therefore based on 38 subjects). 

 

Figure 1. Letters and digits used for each synaesthete, with their corresponding synaesthetic RGB colours (the rendering of 

the colours using the projector in the scanner was different). 

 

In the MR scanner, we presented these letters and digits in black at the centre of the screen (upper 

case, Helvetica font, extent up to 2 degrees eccentricity) over a grey uniform background (CIE xyY 

[0.29 0.3 77.4], half of the maximal luminance of the screen). Stimuli were projected on a translucent 

screen at the back of the scanner by a video projector Epson EMP 8200. We used a 

spectrophotometer (PhotoResearch PR 650) for colour and luminance measurements used to 

compute calibrated images. We also presented dynamic concentric rings (square luminance profile, 

similar to the stimuli used by Brouwer and Heeger in 2009 31 except for the absence of anti-aliasing 

so as to use only the colours selected by each synaesthete), with the exact same (real) colours as 

those chosen by each synaesthete for each grapheme. The choice of colours matching the individual 

grapheme ‘R, G, B, Y’ colour associations was done by each synaesthete in the scanner over the same 

grey background, using a house-modified MRI compatible, comfortable, 10-button console 

controller. The same coloured rings were used for each matched control. The rings extent was also 

up to 2 degree eccentricity and the spatial frequency was 3 cycles/degree (six circles). The phase of 

the rings changed randomly at 6 Hz to almost nullify visual effects induced by the absence of anti-

aliasing. 

These stimuli were chosen with the purpose of training and testing classifiers (see below). Briefly, we 

wanted to use the BOLD responses to the coloured rings to train classifiers on colours, and the BOLD 

responses to letters to train classifiers on synaesthetic colours. This required choosing pairs of 

dissimilar stimuli, i.e. a letter and a digit, to try to avoid that the classifier trained on the letters 

themselves, but rather on their common associated colour. This also implied that decoding should 

not be feasible that way based on the responses of control subjects. The use of pairs of graphemes 

also allowed the training on letters and testing on digits (or the reverse), with success in principle 
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possible only for synaesthetes, based on their synaesthetic colour associations. The careful matching 

procedure of synaesthetic colours allowed the training of classifiers on real colours and testing on 

graphemes to identify which brain regions, if any, coded both real and synaesthetic colours. Again, 

any decoding success would in principle be possible only in synaesthetes. 

Classifiers would be trained and tested on four categories, ‘R, G, B, and Y’, referring either to the real 

or the synaesthetic prototypical colours that we tried to select. Since two exemplars of each category 

were presented, it was important that similarity be stronger within pairs than between categories. 

Fig. 2 represents the actual colours used in the scanner for each synaesthete within the CIE L*a*b* 

colour space, which is more perceptually uniform than the CIE xyY space. As was already obvious in 

Fig. 1, differences of luminance were important to distinguish stimuli. Fig. 2 illustrates that the colour 

and luminance distances were not similar across subjects between categories and within pairs, 

leading to unequal clusterisation. We could even expect some confusions by the classifiers for some 

subjects (e.g. “green/yellow” for syn11, “red/blue” for syn13 or “blue/yellow” for syn41). While the 

maximal theoretical performance achievable by classifiers was therefore below 100%, classifiers 

could however obtain more than the 25% chance performance in every subject. For all the analyses 

(described below), we tested if the performance of classifiers across subjects was correlated with the 

colour distance as measured in the L*a*b* space; we did not find any evidence of that, except for the 

classification of colours in the searchlight analysis, when testing the group of synaesthetes: we found 

one significant cluster (106 voxels, 2862 mm3), in the left fusiform gyrus, peaking at  MNI XYZ = [-27 -

73 -4], extending from about V4 to FG4, in line with the involvement of these regions in colour 

processing. 

 

Figure 2. Colour coordinates in the CIE L*a*b* space of the stimuli used for each synaesthete, corresponding to the 

idiosyncratic synaesthetic colours of letters (+) and digits (x). The colours of the crosses are arbitrary and correspond to the 

four categories the classifiers had to distinguish. The size of the crosses is proportional to luminance (marker size = 0.4*L, 

where max(L) = 100; axes limits are +/- 130, possible range being −128 to +127). 

 

Note that luminance variations constitute a major difference, due to the constraint of using 

synaesthetic colours, with other MVPA studies of the neural correlates of colour processing, which 

used isoluminant stimuli 31,32. We do not know how differences along the luminance axis should be 

perceptually scaled to differences along the green/red opponent colours a* axis and the blue/yellow 

opponent colours b* axis. This question is probably an ill-posed problem when studying brain 

correlates of colour perception, since at the cortical level visual circuits rely both (but with different 

degrees) on the parvo- and magno-cellular pathways 33.  

Protocol 

Each subject ran three fMRI sessions of about 1 hour. In addition, synaesthetes ran a 1 hour 

psychophysics experiment (before or interleaved with fMRI experiments, depending on schedule 
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availability) to measure the strength of their synaesthetic associations using variants of Stroop tasks. 

All the details of the psychophysics experiment as well as the results of 11 synaesthetes are 

published 27. Eight synaesthetes performed the experiments with stimuli presented centrally instead 

of in the periphery as in our psychophysics study 27, but otherwise the procedure and data analysis 

were exactly the same. The data of one synaesthete (syn40) could not be analysed because the 

chosen orange and yellow/green colours revealed too similar (see Fig. 2) and were not named 

consistently over the course of the experiment. 

fMRI experiments 

The MR experiments were performed at the IRMaGe MRI facility (Grenoble, France) with a 3T Philips 

Intera Achieva, using a 32 channels coil. The experiments can be decomposed successively in three 

“sessions” (about 1 hour each), “runs” (a few minutes), “blocks” (1 minute) and “events” (1 second). 

One session was dedicated to retinotopic mapping and functional localizer runs using pictures of 

objects, words and coloured stimuli (Mondrian), in order to define in each subject the Lateral 

Occipital Complex (LOC 34), the Visual Word Form Area (VWFA 35) and “colour centres” 9. These 

Regions of Interest (ROIs) functionally defined were however not used in the present study because 

the results of the other analyses showed that such a refinement was not necessary. Retinotopic 

mapping was performed strictly as described in a previous study 36, using the Brain Voyager analysis 

pipeline to define in each subject the ventral and dorsal as well as the left and right parts of areas V1, 

V2, V3 and V4 (ventral only). The parameters of the EPI functional images were TR/TE: 2000/30 ms, 

excitation pulse angle: 80°, acquisition matrix: 80x80, bandwidth: 54.3 Hz/pixel, isotropic nominal 

resolution: 3 mm, 30*2.75 mm thick slices with 0.25 mm interspace covering the whole visual cortex, 

with four additional dummy scans. To allow the precise alignment of functional scans across sessions, 

a high‐resolution structural image of the brain was also acquired using a T1‐weighted MP-RAGE 

sequence. The sequence parameters were TR/TE: 25/2.3 ms, excitation pulse angle: 9°, 180 sagittal 

slices of 256*240 (read x phase), bandwidth: 542.5 Hz/pixel isotropic nominal resolution: 1 mm, for a 

total measurement time of 4 min 31 s. 

Another session was dedicated to the “synaesthesia” protocol (a structural image was also acquired 

with the same parameters as in the first session, in the middle of the functional runs). Twelve 

functional runs were acquired. The parameters of the EPI functional images were identical to those 

used for the retinotopic mapping experiment but TR: 2500 ms for an acquisition volume of 45 slices 

covering the entire brain with a total measurement time of 3 min 47 s. In each functional run, stimuli 

of one type only were presented: letters, digits, concentric rings with the synaesthetic colours of 

letters, or concentric rings with the synaesthetic colours of digits. The session contained three 

successive sequences of four runs, each run with a different stimulus type (with a different random 

order of stimulus type in each sequence). Each run contained 3*60 s blocks of a rapid-event 

paradigm, separated by 10 s fixations. Stimuli of different “colours” were presented pseudo-

randomly in each block to optimize the estimation of the main effects. For example, in a letter block 

for syn01 and her matched control, the letters E, N, V and A  were presented six times each for 1 s, 

with 1 s +/- 333 ms fixation only between each letter. This protocol allowed an estimation of the 

BOLD response to each letter in each block (beta weights, using a General Linear Model, see below) 

based on six presentations. We obtained three estimations (betas) in each run for each “colour”, for 

a total of thirty-six estimates (9 * 4 “colours”) for each type of stimulus to be used by classifiers. The 

power of classification algorithms depends on both the number and quality (signal to noise ratio) of 

estimates (called exemplars). The present compromise between quantity and quality was based on 

Mumford et al. (2012) 37 and on preliminary experiments 38. Subjects had to fixate the centre of the 

screen (the fixation point, present between stimuli and at the centre of the coloured rings, or the 
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centre of the grapheme) and pay attention to the stimuli for the whole duration of each run. To help 

subjects maintain attention, they performed a one-back task (pressing a button each time the same 

stimulus was repeated twice in a row). 

In the remaining session, a high‐resolution, high-contrast structural image of the brain was acquired 

using a T1‐weighted MP-RAGE sequence. The sequence parameters were TR/TE/TI: 25/3.7/800 ms, 

excitation pulse angle: 15°, acquisition matrix: 180 sagittal slices of 256*240 (read x phase), 

bandwidth: 191 Hz/pixel, readout in anterio-posterior direction, number of averages: 1, sense factor 

anterio-posterior: 2.2, right-left: 2, isotropic nominal resolution: 1 mm, with a total measurement 

time of 9 min 41 s. This image was the structural reference image of each subject. We also acquired 

diffusion-weighted images, analysed in another study (Dojat, Pizzagalli & Hupé, under review: 

http://dx.doi.org/10.1101/196865) and a sequence of functional resting state (not analysed yet). 

We recorded oculomotor signals during the scans with an ASL EyeTracker 6000. At the beginning of 

each session, subjects had to fixate each point of a calibration matrix, and were therefore aware that 

the quality of their fixation was monitored. However, signal quality in some subjects was not good 

enough or not constant, or even too poor to be of any use for subjects who had to wear non-

magnetic glasses in the scanner, so we did not even attempt to analyse these data. We can only 

speculate that subjects had a better fixation than if they did not know that their gaze was recorded. 

Whole brain univariate analyses did not reveal any activation along the anterior calcarine and the 

parieto-occipital sulcus, where activations correspond to the signature of blinks 39, providing indirect 

evidence that the distributions of blinks were not correlated with our stimuli presented randomly. 

Data Analysis 

The standard pre-processing procedure of functional images was applied using SPM8: slice-timing 

correction, then motion correction with realignment, together with correction of spatial distortions 

of the static magnetic field 40. The within session structural image was realigned to the mean EPI 

image, as well as the high resolution high contrast structural image, but no further transformation of 

the EPI images was performed. No spatial smoothing was applied for MVPA, as maximally differential 

activation of voxels was shown to maximize the power of classifiers 38. This was confirmed on these 

data when testing spatial filters with FWHM = 3, 6 and 9 mm. Transformation matrices were 

computed between the structural image and the MNI template to allow the transformation and 

projection of atlas-based masks of specific anatomical structures (Anatomy Toolbox for SPM8 Version 

2.2b, 2016) into the subject’s space.  

Univariate analyses were performed on the groups of subjects to test for differences of magnitude of 

the BOLD responses to graphemes evoking synaesthetic colours. A 9 mm FWHM spatial smoothing 

was applied to the subjects’ EPI images before testing two contrasts: a T-contrast of all stimuli 

against the fixation point (we did not have graphemes that did not evoke any synaesthetic colour); an 

F-contrast of the four pairs of graphemes. Contrast maps were distorted within the study-specific 

template computed using DARTEL procedure as implemented in VBM8 (see Dojat, Pizzagalli & Hupé, 

under review, for details) and to the MNI space (resolution 1.5 by 1.5 by 1.5 mm). For second-level 

analyses, we compared the contrast maps of synaesthetes (N = 20) against controls (N = 20) using t-

tests (testing stronger signals either in synaesthetes or controls). We also performed paired t-tests of 

19 synaesthetes against their matched control to account for possible differences due to the specific 

choices of graphemes in each synaesthete. For all comparisons, no individual voxel reached p < 0.05, 

corrected for the family-wise error (FWE, based on the random field theory as implemented in 

SPM8). We used cluster-based statistics with the cluster-forming threshold set to p = 0.001 41 and 

pFWE < 0.05. We performed the same analyses also for coloured stimuli. 
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For MVPA, for each subject and each run we ran a General Linear Model (GLM). The six parameters 

of motion correction were included as factors of non-interest in the design matrix. Thirteen main 

predictors, four events (grapheme or colour) * three blocks plus one for the fixation point, were 

obtained by convolving the canonical HRF with Dirac functions corresponding to the time of 

presentation of each stimulus. The corresponding beta weights estimated by the GLM for each colour 

and visual feature, divided by the square root of residuals, were used as examples by a Support 

Vector Classification (SVC) algorithm (Scikit-learn version 0.15.2, implemented in Python version 

2.7.9.0 42). We used a linear kernel (default value of the C parameter = 1) and a one-versus-one 

classification heuristic to classify each example in one of the four categories. For all classifications, 

training and test runs were always fully independent: betas obtained from blocks from the same run 

were never split between training and test runs. Six runs (eighteen blocks) were used for colour and 

synaesthesia decoding. The procedure was leave-one-run-out. Six classifiers were therefore trained 

to classify (5 runs * 3 blocks * 4 colours = 60) colour exemplars in four categories, and tested on (1 

run * 3 blocks * 4 colours = 12) independent exemplars. Performance was therefore computed over 

seventy-two classifications (6 classifiers * 12 tested exemplars), with chance level = 25% and 95% 

Confidence Interval of chance for each subject = [16 36]% (binomial probability, Agresti-Coull 

estimation). For grapheme runs, training was performed on pairs made of one letter and one digit. If 

the decoder learnt only the letters, for example (by being able to filter out the responses to digits), 

then performance on decoding letters and digits could reach up to 50%, without knowing anything 

about synaesthetic colours. One could expect, however, that performance of synaesthetes would be 

higher than for controls because of the additional information provided by synaesthetic colours. A 

more stringent test of synaesthetic coding was the training of one classifier on letters (3 runs * 12 

exemplars) and testing on digits (and the reverse). Learning was achieved using thirty-six exemplars 

(letters or digits) to be classified in four categories, test was on thirty-six exemplars (digits or letters), 

for a total performance over seventy-two classifications by combining training on letters and training 

on digits. To evaluate if brain regions coded both real and synaesthetic colours, training was 

performed by one classifier on six colour runs (seventy-two exemplars), test on six grapheme runs 

(seventy-two exemplars). We also performed the reverse classification. 

We computed MVPA in regions of interest (ROIs) defined in each native (non-transformed) subject 

space. We used visual areas defined by individual retinotopic mapping as well as atlas-based ROIs 

(Fig. 3). We expected synaesthetic colours to involve the ventral visual pathway, anterior to V4, so 

we tested the four subdivisions of the fusiform gyrus (FG, Fig. 3a). Some studies have also suggested 

the role of parietal areas, even though no consensus emerged about exactly which part if any may be 

involved 12, so we defined ROIs in parietal regions (Fig. 3b). 

 

  

Figure 3. a. Atlas-based regions of interest (ROI) of the fusiform region. From left to right, FG1, FG2, FG3 and FG4. Colour 

gradients denote the probability of being in the specified ROI, from 0% (dark blue) to 100% (dark red). We considered the 

largest ROI as the mask of the corresponding region. b. Parietal ROIs. From left to right, AIPS_IP1, AIPS_IP2, AIPS_IP3, 

IPL_PGa and IPL_PGp. See text for full names and references of these areas. 
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For each subject, anatomical ROIs were defined as the intersection of the subject’s grey matter mask 

and the mask of the anatomical ROIs (Anatomy Toolbox for SPM8 25) projected into the subject’s 

space. Both retinotopic and atlas-based ROIs had different number of voxels within and across 

subjects. The performance of classifiers may depend on the number of voxels (called “features” for 

the algorithm), making difficult the comparison of absolute performance in different ROIs. Between-

subject differences may also bias group comparisons. 

To address this issue, we first tested ROIs of different sizes by regrouping retinotopic areas and 

subdivisions of the fusiform areas and of the parietal areas. The pattern of results were similar 

whatever our grouping choice of ROIs. We present the results for ROIs of intermediate size (we 

indicate the min and max number of voxels across subjects in each ROI), regrouping the right and left 

parts of retinotopic areas (V1 = [206 441], V2 = [125 420], V3 = [156 340], V4 = [94 268]), the two 

posterior 43 (left = [98 150], right = [61 125]) and anterior 44 (left = [174 331], right = [127 271]) parts 

of the fusiform areas, the 3 subdivisions of the Intaparietal Sulcus 45,46 (left = [197 311], right = 

[191 275]) and the anterior and posterior parts of the Inferior Parietal Lobule 47,48 (left = [131 335], 

right = [124 279]). 

We also defined ROIs using the same number of voxels in each subject and ROI. To do that, for all 

classifications, we selected 100 voxels with the highest F-scores to colours in each area (we tested 

different selection sizes and found that 100 was about the optimal number of voxels to reach 

maximum performance). In order to have enough voxels to choose from in every subject, we 

selected voxels in only six large areas: the left and right retinotopic areas V1 to V4 (minimum number 

of voxels across subjects were respectively 352 and 327), the left and right fusiform areas FG1 to FG4 

(298 and 188) and the left and right parietal areas (347 and 315). Such a selection provides the best 

chances for colour classifiers (since we select voxels maximally modulated by colours), but 

classification is then not independent of selection when measuring colour decoding after selection of 

F-scores to colours (but classification is independent for grapheme decoding). In order to provide a 

fair measure of colour decoding performance to compare grapheme decoding with, voxels were 

selected using F-values computed based only on runs used for training, meaning that each of the six 

training sets was based on a different set of voxels. For other classifications, the same set of voxels 

was used based on F-values computed across all colour runs. 

In each ROI, we computed 95% CIs of the performance of each group, as well at the 95% CIs of the 

between group differences (both independent and paired comparisons; results were very similar, we 

show the CIs for paired comparisons). We also performed paired comparisons by computing the 95% 

CI of the odds ratio when comparing 19 synaesthetes against their matched controls, using a mixed-

effect generalized linear model, with a binomial family and a logit link function, as implemented in 

the library lme4 49 in R, version 3.3.3. 

Searchlight analysis was also performed over the whole brain 26 using a 15 mm radius and the SVC 

algorithm. Performance maps were transformed to the common DARTEL space for voxel-wise group 

comparisons (resolution 3 by 3 by 3 mm). We performed in SPM8 all the analyses equivalent to 

univariate analyses (both two-sample and paired-sample t-tests between synaesthetes and controls) 

as well as one-sample t-tests to compare the average performance of each group against chance (= 

0.25). For all comparisons, no individual voxel reached pFWE < 0.05. We used cluster-based statistics 

with the cluster-forming threshold set to p = 0.001 and pFWE < 0.05. These analyses are in principle 

less powerful than ROI analyses because they constrain to distort each subject’s anatomical space 

within one common space, so the average performance at any given voxel may in reality correspond 

to different anatomico-functional voxels in different subjects. Moreover, they re-introduce the 

methodological issues related to spatial smoothness (50). 
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Data Availability. The datasets generated and analysed during the current study are freely available 

on request (https://shanoir.irisa.fr/Shanoir/login.seam), contact M. Dojat. 

 

Results 

Whole brain univariate analyses (normalized anatomical space) 

Univariate analyses revealed no difference between controls and synaesthetes at our statistical 

threshold for T-contrasts of graphemes when performing two-sample t-tests. However, the paired-

sample t-tests revealed stronger BOLD signal in a small cluster in synaesthetes, close to the left 

precentral gyrus, which we treated therefore as a candidate region for the coding of synaesthetic 

colours (supplementary Table S1). For F-contrasts, we did not observe any stronger modulation in 

synaesthetes (neither for two-sample nor paired-sample t-tests). Surprisingly, we observed stronger 

modulation in controls in two clusters (paired comparisons), in the right occipito-parietal cortex 

(supplementary Fig. S1) and in the left insula. The two-sample t-tests revealed only the occipito-

parietal cluster. We did not have any explanation for these differences, which might be false-

positives 41. We note that the analysis by Rouw and Scholte in 2010 28 revealed a cluster (which they 

called IPS, cluster extent = 3280 mm3) at equivalent peak coordinates on the left side ([-30 -72 28]), 

obtained with the contrast synaesthetes>controls for (synaesthetic graphemes)>(non-synaesthetic 

graphemes). In our case, the weaker modulation by graphemes in synaesthetes would rather argue 

against the hypothesis of a functional role of this region in synaesthesia. We included these two 

regions in our post-hoc MVPA analyses for further exploration. 

We also tested T- and F-contrasts for the responses to real colours (rings). We observed stronger 

BOLD signal (T-contrast) in synaesthetes only, in three clusters for paired comparisons (in the left 

posterior and anterior insula – see supplementary Fig. S2 - and in the left parahippocampal region) 

and two other clusters for two-sample t-tests (in the right middle temporal gyrus and in the right 

superior, medial, frontal gyrus - see supplementary Fig. S3). The lack of consistency between paired 

and two-sample t-tests could again suggest false-positives, but we nonetheless included these five 

clusters in our post-hoc MVPA analyses, in case those stronger activations be related to the implicit 

activation of graphemes by the colours associated to them (“bi-directional” synaesthesia 51). F-

contrasts to colours revealed only one cluster of stronger modulation in controls in the frontal 

region, but in the middle of white matter and thus clearly a false positive. We compared the 

performances of synaesthetes and controls for our classifiers (see next section) in those eight 

clusters defined post-hoc, with two-sample and paired-sample t-tests. Only three comparisons came 

out “significant” at p < 0.05, but without correction for multiple comparisons (Table S1). 

Supplementary Figs. S1 to S3 detail these results. 

 

Multivariate pattern analysis in regions of interest (defined at the individual level) 

Fig. 4 shows the performance of all classifiers in all our ROIs, without any voxel selection (ROIs have 

therefore different number of voxels across regions and subjects). 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/214809doi: bioRxiv preprint 

https://doi.org/10.1101/214809


11 
 

 

Figure 4. Performance of classifiers in retinotopic areas, the fusiform gyrus and parietal areas. Each ROI regrouped several 

areas, for example the left and right parts of V1 for ‘retV1’ in order to provide a large number of voxels in each subject and 

ROI (at least > 60, and > 100 voxels in most ROIs; see Methods: Data Analysis). ‘retV1’ to ‘retV4’ were defined based on 

retinotopic mapping in each subject; other ROIs were defined as the intersection of the subject’s grey matter mask and the 

mask of atlas-based anatomical ROIs (Anatomy Toolbox for SPM8) projected into the subject’s space (see Fig. 3). FG12L = 

left (FG1 + FG2), IP13L = left (AIPS_IP1 + AIPS_IP2+ AIPS_IP3), PGapL = left (IPL_PGa + IPL_PGp), etc. Each classifier was 

trained and tested on beta weights computed on voxels in the native subject space with no spatial smoothing. Each panel 

displays the individual and average performances of five classifiers: ‘Col’ = training and test on betas for real colours (rings); 

‘Syn’ = training and test for synaesthetic colours (graphemes, letters or digits); ‘C2S’ = training on real colours (rings) test on 

synaesthetic colours (graphemes); ‘S2C’ = training on synaesthetic colours test on real colours; ‘g1g2’ training on letters test 

on digits or training on digits test on letters. The y-axis represents both the performance of classifiers (between 0 and 1, 

chance level = 0.25, thick green line; 95%CI of chance for each subject = [0.16 0.36], thin green lines) for individual subjects 

(blue = controls, red = synaesthetes) and their group average (with 95% Confidence Intervals) and the difference of 

performance (grey crosses) between synaesthetes and their matched controls (0 = no difference between groups, blue line; 

whiskers denote 95% CI). 

 

As expected, the decoding of real colours (‘Col’ classification) was above chance (0.25, thick green 

line) in retinotopic areas as well as in the fusiform gyrus for both controls (blue points) and 

synaesthetes (red points), with no obvious between group differences (whiskers across the zero blue 
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line denote the 95% CI for paired comparisons of performance of 19 synaesthetes against their 

matched control, the difference of performance being denoted by the grey crosses). The whole 95% 

CI was slightly above 0 in retinotopic V3, ‘retV3’, and it was slightly below 0 in the subdivisions 1 and 

2 of the right fusiform gyrus, ‘FG12R’ (differences are more visible when estimating the CI by a 

mixed-effect generalized linear models: supplementary Fig. S4). Without any independent evidence, 

these small differences could be due to random sampling. Indeed, all the 99.58% CIs included 0 

(Bonferroni correction over 12 tests). 

Then, we tested if graphemes could be decoded on the basis of synaesthetic colours (‘Syn’ 

classification). Since above-chance performance could be achieved based on either a letter or a digit 

(for example E or 7, both associated to red by syn01:  see Fig. 1), we looked for an additional 

performance due to synaesthetic colours. This was the case in retinotopic V2 (95% CI of the 

difference of performance, two-sample t-test: [1.5 12.5]%; paired t-test: [0.5 13.4]%; 95% CI of the 

odds ratio = [1.15 1.56]) and to a lesser extent in retinotopic V3 (but note that performance was 

lower for synaesthetes in the subdivisions 1 to 3 of the left Intra-Parietal Sulcus, IP13L; such a 

difference is most likely due to random sampling since none of the group performances in IP13L was 

above chance). Only the difference in V2 survived Bonferroni correction over 12 tests, for the mixed-

effect analysis (p = 0.0002). In order to further explore, using independent evidence, the implication 

of V2 in the coding of synaesthetic colours, we took individual differences into account. We reasoned 

that synaesthetes with stronger synaesthetic associations might have stronger modulations of the 

BOLD signal and thus larger decoding values. Fig. 5 shows the performance of each subject as a 

function of the strength of synaesthetic associations, measured in Stroop-like psychophysics 

experiments (see Ruiz & Hupé, 2005 27 for the exact definition of the index of ‘Photism Strength’) for 

synaesthetes only (red crosses). Controls (blue circles) were attributed the value of their matched 

synaesthete.  

 

 

Figure 5. Performance of the classifier trained and tested with synaesthetic colours (pairs of graphemes) in each subject in 

area V2 defined retinotopically (same data as ‘Syn’ in the second panel of the first column of Fig. 4) as a function of the 

strength of synaesthetic associations (‘Photism Strength’). This strength was measured for synaesthetes (red crosses); 

controls (blue circles) were attributed the value of their matched synaesthete. 

 

There was no correlation between both measures, neither for synaesthetes nor controls. We also 

observed that the difference of score between each synaesthete and her (or his) matched control did 

not increase with photism strength. Therefore, this analysis did not provide any independent 

argument in favour of the decoding of synaesthetic colours in V2. We computed similar correlation 

analyses in every ROI and never found any correlation. We also computed both positive and negative 
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correlations over the whole brain for the five classifiers, independently for synaesthetes and 

controls. We never found any significant cluster (cluster forming threshold = 0.001). 

We also tested if synaesthetic colours could be decoded based on real colours (‘C2S’ classification in 

Fig. 4). This was the case in no ROI and neither in controls, as expected, nor in synaesthetes (the 95% 

CI of all groups crossed the 0.25 chance baseline). There was no evidence of better classification in 

synaesthetes, in particular in V2, as would have been suggested if the higher performance for the 

‘Syn’ classification was really due to the coding of synaesthetic colours. We obtained similar results 

when we tried to decode real colours based on graphemes (and synaesthetic colours in synaesthetes: 

‘S2C’ classification). 

Finally, we tested a more stringent classification that should have been possible only on the basis of 

synaesthetic colours: classifiers were trained on one set of graphemes (digits or letters) and tested 

on the other set of graphemes (‘g1g2’ classification). Again, performance was never above chance 

and we found no difference between groups, in particular in V2. We even observed lower scores for 

synaesthetes in V1 (where it even survived Bonferroni correction for the mixed-effect analysis: 

p=0.0002) and V3, where we had yet observed higher performance for ‘Syn’ decoding. This lack of 

consistency across different tests addressing the same question confirmed that these small 

variations, even when statistically “significant”, were most likely due to random sampling. 

We performed again all these analyses using six larger ROIs (regrouping either the left or the right 

parts of V1 to V4, FG1 to FG2 and the areas of the inferior parietal lobule and the intraparietal sulcus) 

in which we selected the 100 voxels with the largest scores to F-tests to real colours (Fig. 6). 

Performance was never better in synaesthetes. 

 

 

Figure 6. Performance based on the same number of voxels (= 100) in each large ROI (retinotopic areas, fusiform gyrus and 

parietal regions) and subject. For the classification of real colours (‘Col’), the selection of the best F-values to colours was 

different for each of the six leave-one-out classifications, based each time only on the five runs used for training the 

classifier, to insure independence of training and test. For the other selections, all colour runs were used to select the 

voxels with the highest F-scores. The high performance for the ‘Syn’ classification in retinotopic areas indicates that many 

voxels respond both to change of colour or luminance and the shape of graphemes, probably thanks to the small receptive 

fields of lower visual areas. Same conventions as in Fig. 4. The CIs of the odds ratio computed by mixed-effect generalized 

linear models are shown in supplementary Fig. S5. 
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Whole brain searchlight multivariate pattern analysis 

We complemented our ROI analysis with searchlight analyses over the whole brain (normalized to 

the MNI space), comparing groups for the five classifications. We found no differences between 

controls and synaesthetes at our statistical threshold for classifiers trained and tested on colours 

(rings, ‘Col’ classifiers). This shows that the clusters with stronger BOLD signal in controls (T-contrast) 

observed in univariate analyses were not involved in colour coding (see also Table S1). For classifiers 

trained and tested on synaesthetic colours (graphemes, ‘Syn’ classifiers), we observed higher 

performance in synaesthetes in the parietal cortex (Table S1: on the right side with paired t-tests and 

on the left side with two-sample t-tests; bilateral difference could be observed for both contrasts 

when using a higher cluster-forming threshold). However, testing synaesthetes against chance 

revealed no cluster at our threshold around these coordinates of the parietal cortex (performance 

was above chance in both groups in the occipital cortex, as expected). 

We found no difference between controls and synaesthetes at our statistical threshold for the critical 

test of shared coding of real and synaesthetic colours, when classifiers were trained on coloured 

rings and tested on graphemes (‘C2S’ classifiers). Testing synaesthetes against chance also revealed 

no cluster. The reverse classification (learning on graphemes, ‘S2C’), however, revealed two clusters 

with higher performance in synaesthetes for independent t-tests, in the right occipito-temporal 

cortex and in the left putamen. Only the first cluster was confirmed by paired-comparisons. When 

testing performance against chance two clusters emerged for synaesthetes (none for controls), one 

again in the same part of the right occipito-temporal cortex, and the other in the left parietal cortex, 

abutting the parietal cluster obtained previously for the higher performance in synaesthetes for the 

‘Syn’ classification (we shall come back to this concordance in the following post-hoc analysis).  

Finally, for classifiers trained on either letters or digits (and tested respectively on either digits or 

letters), a critical test of the coding of synaesthetic colours, higher performance was observed, but in 

controls, in the left inferior frontal gyrus, for both paired and independent t-tests. However, no 

cluster emerged anywhere in the brain in controls (nor in synaesthetes) when testing performance 

against chance, so this cluster should be considered as a false positive. 

We further explored the performance of classifiers in the two clusters identified by the ‘Syn’ classifier 

and the five clusters identified by the ‘S2C’ classifier, corresponding in fact to two parietal regions 

(left and right), one right occipito-temporal region and one cluster in the left putamen. In each 

cluster, we computed the average across voxels of the searchlight scores to compare the 

performances of our five classifiers for synaesthetes and controls in these seven clusters defined 

post-hoc, with two-sample and paired-sample t-tests. We also compared the performance of each 

group against chance. Statistically “significant” differences were obtained only for the contrasts used 

to define the clusters (Table S1). Only one additional comparison was “significant” (p = 0.012, not 

corrected for multiple comparisons) in the left parietal cluster at XYZ = [-33 -28 50], which had been 

obtained when testing synaesthetes against chance for the ‘S2C’ classification (training classifiers on 

graphemes and testing them on colours: Fig. 7): synaesthetes also performed better than controls at 

decoding graphemes (‘Syn’ classification), 95%CI = [1 9]% (paired comparisons), and better than 

chance (95% CI = [26 31]%), but the performance was not correlated with the strength of 

synaesthetic associations (p = 0.51). 
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Figure 7. Left: Parietal cluster identified based on whole brain searchlight analysis for ‘S2C’ decoding, Synaesthetes>chance 

(27-voxel cluster at XYZ = [-33 -28 50], one-sample t-test). Middle: performance of classifiers in this cluster (same 

conventions as in Fig. 4). The performance of synaesthetes was logically above chance for the ‘S2C’ classification, since the 

cluster was defined based on this contrast. For the independent classifier ‘Syn’, the performance of synaesthetes was also 

above chance and above that of controls. Right: Absence of correlation between the strength of synaesthetic associations 

and ‘Syn’ decoding (r = -0.16, p = 0.51; for ‘S2C’ decoding, not shown: r = -0.17, p = 0.49). 

 

Discussion 

Across all our analyses, we did not find any convincing evidence of above-chance decoding 

performance of synaesthetic colours in the visual cortex when training classifiers either on the 3T 

BOLD responses to pairs of letters or to real colours matching individual synaesthetic colours, neither 

in retinotopic areas defined at the individual level nor in the fusiform gyrus and parietal regions of 

interest defined based on a probabilistic atlas. Moreover, exploration outside the visual cortex, 

across the whole (normalized) brain (searchlight analysis), though it suggested the involvement of 

regions outside of ROIs initially selected, did not bring any convincing evidence. The mass univariate 

tests we used for whole brain analysis face the ill-posed problem of correction of multiple 

comparisons of partly correlated tests, problem not fully solved by the Random Field Theory 41, as 

well as the production of poorly informative p-value maps 24. Moreover, since we performed in total 

at least nine whole brain searchlight analyses and four whole brain univariate comparisons (T- and F-

contrasts for responses to graphemes and colours, see Table S1), we could have set a family-wise 

error level at 0.05/13. We preferred to keep a non-corrected level for easier comparisons with other 

studies. The whole brain analyses were used only for exploration, and for every “significant” cluster 

we searched for additional evidence (differential response for other comparisons, or correlation with 

individual differences). Since we did not find any additional evidence, we conclude that these clusters 

were likely false positives. We however mention them (see Table S1) in case additional evidence be 

found in other studies. 

For now however, our results further suggest that 3T fMRI studies may not be able yet to identify the 

neural correlates of the synaesthetic experience of colour 12, probably because those are fine-grained 

distributed at a resolution lower than our 3-mm3 voxel resolution, or because the nature of its coding 

does not translate (well) into BOLD responses. Surprisingly, though, if considering synaesthetic 

colours simply as a form of mental imagery, we were expecting above-chance decoding performance 

as observed for other tasks involving mental imagery. Those other tasks, however, typically involved 

different categories of objects, like food, tools, faces and buildings 22 or objects, scenes, body parts 

and faces 52, which evoked stronger BOLD signal in specific areas (like the Fusiform Face Area). Other 

studies involved retinotopic properties 21 where, again, differences of BOLD signal can be easily 

observed. Here we were trying to decode mental images within only a single category, colour. This 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/214809doi: bioRxiv preprint 

https://doi.org/10.1101/214809


16 
 

confirms that synaesthetic experiences do not evoke strong BOLD responses, at least when using 

standard 3T MR scanner, as already suggested by the inconsistency of the published results based on 

univariate models. Below we consider alternative explanations (e.g., methodological flaws) to the 

absence in our data of neural traces of the processing of synaesthetic colours. 

(1) Our study used a protocol very similar to that used by Bannert and Bartels (2013) 53, who tried to 

decode the typical colour from eight objects, presented as greyscale photos, with classifiers trained 

on concentric colour circles designed after Brouwer and Heeger (2009) 31, like in our study. The 

prototypical colour of the objects was red, green, blue or yellow (like a banana and a tennis ball). 

Across 18 subjects, decoding accuracy was “significantly” above chance in V1, but reached only 32% 

on average, which is hardly above the 95% CI ([24 30]%) of the performance observed for our similar 

classifier (‘C2S’) in the areas V1 to V4 of synaesthetes. Their experimental procedures, slightly 

different from ours, may have better optimized the signal to noise ratio and allowed this higher 

performance (see below). Alternatively, since the colour-diagnostic objects were presented before 

the coloured concentric rings, subjects may have imagined, when viewing the rings, the very objects 

that were presented before. Subjects had to do a motion discrimination task to divert their attention 

(similarly to our one-back task), but such a task (like ours) was not very demanding (though note that 

Bannert and Bartels argue that their results are due to automatically occurring processes during 

object vision rather than active imagery). Of course, a similar argument holds even more in our 

experiment: synaesthetes were very likely to recognize the colour matching exactly their 

synaesthetic colour of letters and digits, and they might well have imagined the letter or digit when 

looking at the coloured stimuli. In both cases, decoding would be based on the complex shape of 

stimuli rather than their colour. In the case of Bannert and Bartels, objects were similar to those used 

in other successful visual-to-imagery decoding and involved several categories of objects as well as 

different retinotopic properties (the objects had different orientations but were rotating; however 

the banana or the coke can, for example, had about 12 deg extent, apparently much more than the 

Nivea tin or the blue traffic sign), while in our case objects all belonged to the grapheme category, 

and all spanned the same visual extent. It is therefore possible that in the study by Bannert and 

Bartels the slightly above chance decoding performance was due to residual category and retinotopic 

properties, not to colour. With such an interpretation, decoding of imaginary colours would have 

failed in both their and our study. 

(2) Another possible explanation to our chance performance could be linked to our choice of a fast 

event related paradigm, each stimulus being presented each time for only 1 s, with an ISI = 1 s +/- 

333 ms. Bannert and Bartels presented images for 2 s with a 1 s ISI, each repeated four times in a row 

(miniblocks). One may wonder whether our presentation time was sufficient to trigger synaesthetic 

associations. However, psychophysical tasks show that the naming of the synaesthetic colours of 

graphemes takes on average much less than 1 s 27. Because of our one-back attentional task, though, 

we cannot be sure that the synaesthetic associations were always conscious. However, synaesthetes 

did not report any specific difficulty with their synaesthetic experience when viewing, inside the 

scanner, the proposed paradigm. We designed such a protocol because we did not want 

synaesthetes to pay too much attention to their synaesthetic colours, then possibly triggering 

complex attentional and emotional processes. Those components are part of the synaesthetic 

experience, but they do not tell us anything about the phenomenological experience of colours, our 

main goal being to try to isolate the possible neural commonalities of the real and synaesthetic 

experience. The quasi-absence of observed differences of overall activation and modulation between 

synaesthetes and controls for graphemes indicates that we were successful in synaesthetes having a 

similar experience to controls for graphemes, in terms of attentional and emotional content. With 
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different conditions, favouring synaesthetic colours to be experienced intensely, we would expect 

the overall pattern of brain activity to be different. 

(3) Another critical aspect of our fast-event paradigm is related to the slow dynamics of the 

hemodynamic signal and the signal to noise we could obtain. Here, the critical benchmark was the 

possibility to decode real colours, since the protocol was identical for synaesthetic and real colours. 

We were successful in decoding colours above chance in the visual cortex, but not to the extent that 

we hoped: only 35% on average, chance being 25%. Using 12 s miniblocks, Bannert and Bartels 

obtained an average performance for colours between 35% and 40% in V1 to V4. Differences other 

than the timing of the stimuli may explain this only slightly higher performance: their total 

presentation time of coloured stimuli was about 42 min (20 min in our study; for example, Brouwer 

and Heeger in 2009 31 obtained even higher performances with experienced participants tested for 

much longer durations); their stimuli were much larger (7.19 deg vs. 2 deg radius); their stimuli were 

isoluminant (we do not know whether luminance information in our case helped or hindered 

decoding). Because they were constrained by the idiosyncratic synaesthetic associations, our stimuli 

were also not well distributed within the colour space (see Fig. 2). Colour differences between 

categories (R, G, B and Y) and similarity between colours for pairs (letter-digit) were different 

between subjects and not always optimal to reach maximal performance by classifiers. Probably, 

some pairs of supposedly similar colours confused classifiers, as well as short distances between 

some categories. Retrospectively, we should in fact even consider ourselves lucky to have achieved 

such a performance for colour decoding. Choosing only three colours would have allowed us to avoid 

confusions and get more exemplars for each colour (with fewer categories to decode, though, 

confounding factors are more likely). More repetitions would be welcome, however we wanted to 

record signals for real and synaesthetic colours within the same scanning session to avoid any spatial 

smoothing of the voxels (which is often necessary when aligning images obtained in different 

sessions). Preliminary experiments had showed us indeed that combining the signals from different 

sessions did not improve performance 38. Our total session time was about 1 hour, which is about the 

limit one may ask naïve subjects to lie in a scanner without moving while maintaining fixation and 

attention over boring stimuli. 

(4) Given our moderate performance for colour classification, our absence of above-chance 

performance for the decoding of synaesthetic colours might be due to a lack of power, since 

performance across real and imaginary images is typically lower than for real images 22,53. Indeed, if 

real differences exist between synaesthetes and controls in the measured BOLD signal, these 

differences are too small to be detected reliably with sample sizes similar to ours, with no indication 

about the minimum required sample size. Such a reasoning holds for the average performance, but 

some subjects did reach performance for colour decoding well above 50%. Yet, the distribution of 

individual scores were all very similar for controls and synaesthetes (see Figs. 4,6). There was some 

correlation between the performances of colour (‘Col’) and synaesthetic (‘Syn’) classifiers in 

retinotopic areas (especially V1), but it was similar in synaesthetes and controls (the differences 

between synaesthetes and controls for the ‘Syn’ classifier were in fact even weaker when including 

the ‘Col’ performance as a covariate). 

For the statistical analysis, we adopted the “new statistical approach” proposed by Cumming 54 and 

focussed on confidence intervals of effect sizes instead of the less informative thresholded p-value 

maps 24. In order to facilitate the comparison of our study with previous studies, we indicated when 

the comparisons could be considered as “significant” (a 95% CI not crossing the chance level 

corresponds to p < 0.05) when correcting the risk level for multiple comparisons. Note however that 

correction for multiple comparisons corresponds to an ill-posed problem, because there is no unique 
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and objective way to define the family of tests 24. Such a problem is pretty obvious in our case, where 

the number of considered ROIs depends on our choice of regrouping or not ROIs, and by how much. 

We applied a Bonferroni correction over twelve ROIs, but we could have considered the family across 

the five types of classifiers (so at least 60 tests). However, by focusing on the extent of the CIs, the 

conclusions do not change much for different levels of CI (the extent of a 99.58% CIs is just a bit 

larger than for a 95% CI): for all the cases that may suggest differences between groups, the true 

differences compatible with our observations may be either close to absent (difference close to or 

including 0, or odds ratio close to or including 1) or at most up to about 15% (or odds ratio = 1.5), a 

value that one may consider meaningful. As in most studies currently published in cognitive 

neuroscience dealing with small effects, the width of our confidence intervals is too wide to reach 

any definitive conclusion on the sole basis of one test (lack of power). Our choice of CI presentation, 

however, brings useful information allowing cumulative science 55 and shows that if any real 

difference exists, it is probably not very large because corresponding to less than a 15% difference of 

performance. 

Our conclusion is that identifying the neural correlates of the synaesthetic experience of colours may 

still be beyond the reach of present technology, including hardware (3T MR scanner) and advanced 

data analysis techniques such as MVPA, and that we still do not find any evidence of common neural 

coding of real and synaesthetic colours 9. However, across all our analyses, we did find several 

“significant” differences for several comparisons, which we listed in the Results section and detailed 

in supplementary Table S1. Other studies also did report so-called “significant” effects, even though 

the methods to determine the significance levels were questionable in most studies 12. We applied 

the latest recommendations for group-level cluster-wise inferences (9-mmm FWHM spatial 

smoothing, cluster-defining threshold = 0.001, cluster-based pFWE <0.05, groups of 20 participants), 

yet these criteria do not protect well against false positives 41. In our study, for each “significant” 

effect, we had a set of independent measures to further explore any difference that may be real: the 

performance of other classifiers as well as individual differences (the strength of the synaesthetic 

associations measured in Stoop-like psychophysics tests). We never found any coherence across 

different measures. Moreover, the locations of the “significant” effects appeared quite randomly 

across the brain. As long as no other study replicates any of these “differences”, we should conclude 

that there are false positives indeed. Our study thus further shows that common statistical practices 

based on Null Hypothesis Significance Tests (NHST) are not adequate for scientific inference 12,56,57. By 

stressing that we did not find any evidence of common neural coding of real and synaesthetic 

colours, based on our data as well as past studies, we do not conclude that such a neural coding does 

not exist. We bring to light what is required to have any chance to reveal the neural bases of the 

synaesthetic experience using MRI, like more data by subject, higher signal to noise ratio and spatial 

resolution (e.g., 7 Tesla scanner 58) and much larger cohorts. In order to start contributing to this last 

aim, via the constitution of dedicated data repositories and meta-analyses, our data are freely 

available on request (https://shanoir.irisa.fr/Shanoir/login.seam, contact M. Dojat). Please refer to 

the present paper in case of the reuse of these datasets. 
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