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Abstract 

Despite the rapid progress of protein residue contact prediction, predicted residue contact maps 

frequently contain many errors. However, information of residue pairing in β strands could be 

extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β 

interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In 

this work, we introduce a novel ridge-detection-based β-β contact predictor, RDb2C, to identify 

residue pairing in β strands from any predicted residue contact map. The algorithm adopts ridge 

detection, a well-developed technique in computer image processing, to capture consecutive 

residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the 

ridge information and additional features for prediction. Starting from the predicted contact map 

of CCMpred, RDb2C remarkably outperforms all state-of-the-art methods on two conventional test 

sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~62% and ~76% 

at the residue level and strand level, respectively. Taking the prediction of the more advanced 

RaptorX-Contact as input, RDb2C achieves impressively higher performance, with F1-scores 

reaching ~76% and ~86% at the residue level and strand level, respectively. According to our tests 

on 61 mainly β proteins, improvement in the β-β contact prediction can further ameliorate the 

structural prediction. 

Availability: 
All source data and codes are available at http://166.111.152.91/Downloads.html or at the GitHub 

address of https://github.com/wzmao/RDb2C. 

 

Author summary 

Due to the topological complexity, mainly β proteins are challenging targets in protein structure 

prediction. Knowledge of the pairing between β strands, especially the residue pairing pattern, can 

greatly facilitate the tertiary structure prediction of mainly β proteins. In this work, we developed 

a novel algorithm to identify the residue pairing in β strands from a predicted residue contact map. 

This method adopts the ridge detection technique to capture the characteristic pattern of β-β 

interactions from the map and then utilizes a multi-stage random forest framework to predict β-β 

contacts at the residue level. According to our tests, our method could effectively improve the 

prediction of β-β contacts even from a highly noisy contact map. Moreover, the refined β-β 

contact information could effectively improve the structural modeling of mainly β proteins. 

 

Introduction 

Since Anfinsen's dogma [1] was firstly introduced, prediction of the tertiary structures of 

proteins has become the Holy Grail in structural bioinformatics. Although practical tertiary 

structure prediction generally requires intensive sampling in the conformational space, the 

computational consumption could be greatly alleviated with the knowledge of residue contacts in 

the native conformation. Consequently, protein residue contact prediction has attracted more and 

more attention, particularly with the significant improvement of prediction accuracy in recent 

years [2, 3]. Theoretically, native residue contacts that are essential for protein structure or 

function could be inferred from correlated mutations of residue pairs in evolution. With sequence 
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data accumulated at an unprecedented speed, extraction of such coevolution information from 

multiple sequence alignment (MSA) has become more and more practicable [4-7]. 

Many early residue contact prediction methods were derived from statistics and information 

theory, like OMES [8], MI [9], MIp [10] and SCA [11]. However, these methods ignore the 

transitive correlation between residues and thus generate many false positive results. The inverse 

covariance matrix and pseudo-likelihood maximization were introduced subsequently to eliminate 

transitivity in methods such as DCA [12], PSICOV [13], plmDCA [14], GREMLIN [15], 

CCMpred [16], FreeContact [17] and PconsC2 [18]. These methods effectively reduce false 

positive predictions by globally considering all inter-residue correlations. More recently, methods 

like MetaPSICOV [19], SAE-DNN [20], DeepConPred [21], NeBcon [22] and RaptorX-Contact 

[23] integrated sophisticated machine-learning techniques to further enhance the prediction 

accuracy. In the latest CASP12 competition, RaptorX-Contact achieved the best performance in 

the category of template-free modeling targets. 

In spite of the general improvement, none of existing methods can attain a robust and steady 

prediction among all protein targets, mainly because the reliability of coevolution information is 

guaranteed only when a sufficiently large number of homologous sequences are present in the 

MSA. Indeed, many protein families lack enough homologous sequences for reliable inference of 

residue contacts [21], and the predicted residue contact maps of these targets may be dominated by 

false positives, which hinders the subsequent protein structure prediction/modeling. However, 

even in the highly noisy residue contact maps for these small-family protein targets, characteristic 

patterns of specific structural motifs could be identified, because a collective pattern of multiple 

residue contacts is less likely to be perturbed by individual prediction errors and therefore could 

be more reliably identified than a single residue contact. Good exemplar structural motifs include 

parallel and anti-parallel β strands, where consecutive residue pairs from individual β strands 

establish repetitive contacts in the diagonal and off-diagonal directions on a residue contact map, 

respectively. Hence, it is possible to identify the residue pairing in interacting β strands from a 

predicted residue contact map. Identification of β-β pairing would greatly benefit the structural 

prediction of mainly β proteins, a group of challenging protein targets with complicated topologies. 

Arguably, structural models of mainly β proteins are reported to be less accurate than those of 

mainly α proteins, when constructed from residue contact information with comparable levels of 

accuracies [24]. 

A great variety of β–β pairing prediction methods have been developed since 1990s [25], 

including BetaPro [26], MLN/MLN-2S [27], CMM [28] and BCov [29]. Among these methods, 

the more recent ones, CMM and BCov, make predictions based on coevolution features extracted 

from the sequence data. Unfortunately, all these previous methods are constructed with the 

knowledge of native secondary structures and therefore perform unsatisfyingly when fed with 

predicted secondary structures, which limits their usefulness in practical protein structure 

prediction. As the first pure predictor modeled without any native structural information, 

bbcontacts [30] utilizes hidden Markov models to identify β-β pairing from the residue contact 

map predicted by CCMpred and exhibits a remarkable improvement in performance over all 

previous algorithms. 

Here, we proposed a new approach to predict β-β pairing using ridge detection, a conception 

that has been well-developed in image processing to capture the axis of an elongated object. Ridge 

detection was firstly proposed by Haralick [31] in 1983, and was then applied to medical image 
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analysis by Pizer and his co-workers [32, 33]. Lindeberg introduced γ-normalized derivatives and 

scale-space ridges [34] to better depict the detailed feature of a ridge. 

Unlike bbcontacts, in this work, we treated the predicted residue contact map as a raw image 

and employed the ridge detection to characterize the pattern of consecutive residue contacts for 

interacting β strands. We designed a multi-stage random forest framework to integrate all 

ridge-related properties and a number of additional features to predict the β–β contacts. Starting 

from contact maps predicted by CCMpred [16], our algorithm RDb2C (Ridge-Detection-based β-β 

Contact predictor) shows significant improvements over bbcontacts at both residue and strand 

levels. Moreover, when connected with the more advanced residue contact predictor 

RaptorX-Contact [23], RDb2C reaches an impressively high level of prediction powers, and the 

improvement in β–β contact prediction further ameliorates the structure prediction of mainly β 

proteins. 

 

Results and Discussion 

Brief introduction of the model 

Theoretically, consecutive residue pairs from interacting β strands should present continuous 

contact points in the diagonal or off-diagonal directions on a native contact map. Even when 

disguised by prediction noises, the relative strong signals from these β–β contacts are likely to 

exhibit continuous elongated distributions on a predicted contact map. Here, we adopted the ridge 

detection, a computer algorithm to identify elongated objects on a 2D image, to capture the 

characteristic pattern of β-β interactions from predicted contact maps. The ridge information was 

extracted using the γ-normalized ridge detection method introduced by Lindeberg [34]. 

Given the original predicted contact map and extracted ridge information, we then developed 

a novel multi-stage random forest framework to further refine the prediction of β–β contacts. Fig 1 

shows the general architecture of the whole algorithm. RDb2C starts from a residue contact map 

predicted based on the amino acid sequence of the target protein, e.g. by CCMpred or by 

RaptorX-Contact. Besides ridge features, general properties of the input contact map and position 

of the target residue pair within the map are abstracted as map property features and position 

features, respectively. The predicted secondary structure probabilities (from DeepCNF [35]) are 

incorporated as additional features. All features are fed into a 3-stage random forest framework to 

predict residue pairing in interacting β strands.  
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Fig 1. The general flow chart of RDb2C. 

 

Specifically, we constructed 4 random forest models with different window sizes (3×3, 5×5, 

7×7 and 9×9) at the first stage. The prediction results of the first stage models were then combined 

in the second stage and further optimized in the third stage by taking the preceding-stage results as 

input features. The model optimization of each stage was performed using 5-fold cross-validation 

on a training set containing 493 proteins. Further testing and performance evaluation were 

conducted on two well-established datasets, BetaSheet916 [26] and BetaSheet1452 [29]. Notably, 

redundancy between the training and test datasets has been carefully removed. 

 

Performance evaluation of the model 

The performance of RDb2C models at all stages was evaluated in the cross-validation as well 

as the BetaSheet916 and BetaSheet1452 test sets. Table 1 summarizes the residue-level 

performance. Clearly, all models show robust and balanced performance between the two 

independent test sets, which indicates appropriate model training. It is noticeable that 

cross-validation exhibits lower F1-scores than the test sets. This difference may be attributed to 

the presence of more small-family proteins in the training set than in the test sets (Fig 2): 18.05% 

of the training set proteins have less than L sequences in the MSA (L is the protein length), 
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whereas the percentage reduces to only 7.21% and 1.31% in the BetaSheet916 and BetaSheet1452 

sets, respectively. 

 

Table 1. Residue-level F1-scores of all models in the 5-fold cross-validation, BetaSheet916 

and BetaSheet1452 sets. 

Evaluation 1st stage 2nd stage 3rd stage 

Cross-validation 

3×3 44.40% 

55.08% 55.87% 
5×5 45.44% 

7×7 44.80% 

9×9 44.30% 

BetaSheet916 

3×3 49.41% 

60.17% 61.19% 
5×5 50.58% 

7×7 49.86% 

9×9 48.80% 

BetaSheet1452 

3×3 49.92% 

61.09% 62.38% 
5×5 50.97% 

7×7 50.18% 

9×9 49.10% 

 

 
Fig 2. The cumulative distributions for training and test sets with the respect of N/L. N is the 

number of sequences in the MSA and L is the protein length. There are more proteins in the 

training set with limited numbers of homologous sequences (N/L < 1) than in the BetaSheet916 

and BetaSheet1452 sets. 
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The first-stage models attain the optimal performance at the window size of 5 in both 

cross-validation and test sets. We suspect that the larger windows include more useful information 

but also introduce more noises that eventually impairs the model performance, and that balance of 

useful information and noise may be achieved at the window size of 5. However, models 

constructed at various window sizes could provide complementary information. Accordingly, the 

second-stage models that combine information achieved at all window sizes exhibit significant 

improvement (~10 percentage points) in F1-scores over the first-stage ones. At the third stage, 

further optimization slightly improves the F1-score to 61.19% and 62.38% in the BetaSheet916 

and BetaSheet1452 sets, respectively.  

To justify the effectiveness of novel features we proposed in this work, we evaluated the 

feature importance for all first-stage models. The feature importance was evaluated by 

re-conducting the model optimization and cross-validation without the corresponding features. As 

shown in Table 2, all features are essential for the model, since removal of each type weakens the 

performance. Moreover, all first-stage models exhibit a uniform trend: the ridge features and the 

original CCMpred map jointly make the major contribution to the prediction power (see the loss 

of >20 percentage points after removal of both features). Although the ridge features are derived 

from the CCMpred map, removing ridge features alone significantly deteriorates the F1-score, 

especially for models of small window sizes, possibly because these features are capable of 

summarizing the local information and depicting the local shape character of a predicted contact 

map. Therefore, the ridge features introduced in this work effectively capture the residue contact 

pattern of β-β interactions. In addition, the secondary structure information predicted by DeepCNF 

is also constructive to our model, which is reasonable considering that proper assignment of β 

residues are the prerequisite for the prediction of β-β contacts. 

 

Table 2. The feature importance in the first-stage models. 

Window 

size 
1st stage -Ridge -CCMpred 

-Ridge 

-CCMpred 
-DeepCNF 

-Map 

Features 

-Position 

Features 

3×3 44.40% 36.33% 34.64% 14.33% 37.84% 42.75% 43.92% 

5×5 45.44% 39.18% 36.81% 17.30% 38.93% 44.27% 44.66% 

7×7 44.80% 40.04% 37.35% 19.42% 37.99% 44.24% 44.54% 

9×9 44.30% 40.02% 37.22% 21.01% 37.09% 43.31% 43.60% 

The table lists F1-scores of the re-conducted cross-validation without the corresponding features. 

Winner in each category is highlighted in bold. 

 

As expected, when using the native secondary structures assigned by DSSP [36] instead of 

the predicted ones as input, the DSSP-based models provide improvement of ~10 percentage 

points to the residue-level predictions (Table 3). Thus, more accurate secondary structure 

prediction algorithm could further improve the performance potentially. Table 4 summarizes the 

strand-level performance in the BetaSheet916 and BetaSheet1452 sets. Notably, the strand-level 

performance was only evaluated using the DSSP-based framework due to the requirement of exact 

secondary structure information in the assignment of β strands. Similar to residue-level results 

(see Table 1), the strand-level models are progressively refined with stages, with the final 

F1-scores reaching 75.40% and 76.55% in the BetaSheet916 and BetaSheet1452 sets, respectively. 
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Table 3. Residue-level performance of RDb2C constructed with DeepCNF-predicted and 

DSSP-assigned secondary structure information. 

Secondary 

structure 
Models 

BetaSheet916 BetaSheet1452 

Precision Recall F1-score Precision Recall F1-score 

Predicted 

1st stage 63.94% 41.84% 50.58% 57.61% 45.71% 50.97% 

2nd stage 65.03% 55.99% 60.17% 64.50% 58.02% 61.09% 

3rd stage 68.00% 55.62% 61.19% 67.91% 57.69% 62.38% 

DSSP 

1st stage 69.92% 49.94% 58.26% 62.71% 54.22% 58.16% 

2nd stage 75.79% 64.00% 69.40% 75.74% 66.07% 70.58% 

3rd stage 76.28% 65.94% 70.74% 76.56% 67.86% 71.95% 

Performances of the models with the window size of 5 are listed here as the representatives of the 

first-stage models. Winner in each category is highlighted in bold. 

 

Table 4. Strand-level F1-scores of all models in the 5-fold cross-validation, BetaSheet916 and 

BetaSheet1452 sets. 

Evaluation 1st stage 2nd stage 3rd stage 

Cross-validation 

3×3 67.31% 

77.60% 78.80% 
5×5 67.39% 

7×7 66.33% 

9×9 65.84% 

BetaSheet916 

3×3 65.78% 

74.49% 75.40% 
5×5 66.80% 

7×7 67.51% 

9×9 67.16% 

BetaSheet1452 

3×3 64.50% 

75.62% 76.55% 
5×5 65.92% 

7×7 65.93% 

9×9 65.72% 

 

Comparison with bbcontacts 

Here, we mainly compared RDb2C with bbcontacts, the best predictor so far among all 

previous methods. The performance of RDb2C and bbcontacts could be fairly compared since both 

methods take CCMpred contact maps as input. Fig 3 presents the Precision-Recall (PR) curves of 

RDb2C and bbcontacts at the residue and strand levels in the BetaSheet916 and BetaSheet1452 

sets, respectively. At the residue level, RDb2C outperforms bbcontacts on the whole range, 

especially in the region of high-Precision values. Specifically, with the sacrifice of Recall, RDb2C 

could approach the Precision level of 90-100%, which means that top-scored predictions of 

RDb2C are almost error-less and thus can be directly applied to practical structure prediction. In 

contrast, bbcontacts can only access the Precision level of 70-80%. As for the strand-level results, 

despite the crossing of PR curves, RDb2C outperforms bbcontacts in most ranges, particularly at 
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the high-Precision region that reflects the quality of top-scored predictions. 

 

 

Fig 3. The PR curves in the BetaSheet916 and BetaSheet1452 sets. The comparison is shown 

for RDb2C (green) and bbcontacts (blue), at the residue level (top row) and strand level (bottom 

row) as well as in the BetaSheet916 (left column) and BetaSheet1452 (right column) sets, 

respectively. Performances at the suggested cutoffs are marked as dots on the PR curves. 

 

Detailed comparison of the two methods at their respective suggested cutoffs is listed in 

Table 5. Both RDb2C and bbcontacts are quite robust between the BetaSheet916 and 

BetaSheet1452 sets. In comparison to the reported numbers in the original paper, performance of 

bbcontacts increases substantially (residue-level F1-score of ~56% vs. ~50% in the paper), 

possibly due to the enhanced prediction accuracy of CCMpred with the accumulation of sequence 

data in the past years. However, RDb2C still outperforms bbcontacts by ~6 percentage points at 

the residue level, in terms of F1-scores. At the strand level, RDb2C and bbcontacts have different 

preferences of Precision and Recall, but comprehensively RDb2C achieves a higher level of 

F1-scores (~76%) and outperforms bbcontacts by ~4 percentage points.  

 

Table 5. Performance comparison of RDb2C and bbcontacts at residue level and strand level. 

Evaluation Methods 
BetaSheet916 BetaSheet1452 

Precision Recall F1-score Precision Recall F1-score 

Residue level RDb2C 68.00% 55.62% 61.19% 67.91% 57.69% 62.38% 
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bbcontacts 58.12% 53.87% 55.91% 58.43% 55.16% 56.75% 

Strand level 
RDb2C 85.01% 67.74% 75.40% 85.69% 69.17% 76.55% 

bbcontacts 86.68% 60.99% 71.60% 88.26% 61.01% 72.14% 

Winner in each category is highlighted in bold. 

 

Subsequently, we systematically compared the F1-scores of RDb2C and bbcontacts for 

individual proteins in the BetaSheet916 and BetaSheet1452 sets (Fig 4). At the residue level, 

RDb2C outperforms bbcontacts on 69.32% targets of the BetaSheet916 set and 72.56% targets of 

the BetaSheet1452 set, respectively, in terms of F1-scores. The superiority of RDb2C over 

bbcontacts is statistically significant (p-value < 10-10) in both test sets. At the strand level, RDb2C 

exhibits better performance on 61.57% and 63.36% targets of the BetaSheet916 and 

BetaSheet1452 sets, respectively, and this advantage is also statistically significant with p-values < 

10-10. 

 

 
Fig 4. Comparison of RDb2C and bbcontacts for individual proteins of the BetaSheet916 and 

BetaSheet1452 sets. Each individual protein is represented as a dot. The green dots and blue dots 

represent targets that are better predicted by RDb2C and by bbcontacts, respectively, in terms of 
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F1-scores. Tie cases are bisected to two methods. In both test sets and at both residue and strand 

levels, RDb2C outperforms bbcontacts significantly (p-value < 10-10). 

 

To compare with other previous methods that have reported results only for DSSP-based 

predictions, we evaluated the DSSP-based models for RDb2C and bbcontacts at the residue level. 

As shown in Table 6, RDb2C outperforms bbcontacts by 2-3 percentage points with the knowledge 

of native secondary structures, while both RDb2C and bbcontacts remarkably outperform previous 

methods by large margins.  

 

Table 6. Performance comparison of DSSP-based RDb2C, bbcontacts and other methods at 

the residue level. 

Methods 
BetaSheet916 BetaSheet1452 

Precision Recall F-measure Precision Recall F-measure 

RDb2C 76.28% 65.94% 70.74% 76.56% 67.86% 71.95% 

bbcontacts 72.39% 65.10% 68.55% 73.17% 65.39% 69.06% 

BCov6* 42.40% 43.90% 43.10% 42% 45% 43% 

BCov* 40.90% 42.40% 41.60% 
 

MLN-2S* 47.30% 42.70% 44.90% 
 

MLN* 46.10% 39.30% 42.40% 
 

BetaPro* 38.00% 44.10% 40.80% 
 

Data for BCov6/BCov and MLN-2S/MLN/BetaPro are taken from [29] and [27], respectively. Winner 

in each category is highlighted in bold. 

 

The advantage of RDb2C over bbcontacts in models constructed with predicted secondary 

structures may arise from two facets of differences: 1) different programs adopted for secondary 

structure prediction (DeepCNF in RDb2C vs. PSIPRED pipelined with HHsuite in bbcontacts); 2) 

difference in program design. To test the former point, we first compared the prediction power of 

DeepCNF and the PSIPRED pipeline used in bbcontacts (Table 7). In all categories, DeepCNF has 

comparable or slightly weaker prediction power than the PSIPRED pipeline. Furthermore, we 

tested the bbcontacts model constructed with DeepCNF prediction as input. The DeepCNF-based 

bbcontacts model achieves residue-level F1-scores of 55.17% and 56.19% in the BetaSheet916 

and BetaSheet1452 sets, respectively, nearly indistinguishable with the original PSIPRED-based 

model (55.91% and 56.75%, respectively). Therefore, the superiority of RDb2C over bbcontacts is 

mainly attributed to the unique design of our method, for instance, the application of ridge 

detection and the novel multi-stage framework. 

 

Table 7. Performance comparison of DeepCNF and PSIPRED in the BetaSheet916 and 

BetaSheet1452 sets. 

Test Set Method Secondary structure category Precision Recall F1-score 

BetaSheet916 
PSIPRED 

H 90.3% 85.9% 88.1% 

E 86.8% 78.9% 82.6% 

C 79.3% 86.8% 82.9% 

DeepCNF H 92.6% 78.8% 85.2% 
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E 86.4% 76.9% 81.4% 

C 75.1% 88.9% 81.4% 

BetaSheet1452 

PSIPRED 

H 90.4% 87.2% 88.8% 

E 87.3% 79.1% 83.0% 

C 79.2% 86.3% 82.6% 

DeepCNF 

H 92.6% 80.4% 86.0% 

E 87.4% 76.5% 81.6% 

C 74.5% 88.9% 81.0% 

 

In Fig 5, we include three protein cases as examples to show the improvement in the 

prediction of β-β contacts using RDb2C and bbcontacts. In these examples, the raw CCMpred 

maps are dominated by noises, which hinders visual identification of β-β interactions. Although 

both RDb2C and bbcontacts are capable of finding signals from the noises, the native β-β contacts 

could be more successfully identified by RDb2C, at both residue and strand levels. 
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Fig 5. Case studies for CCMpred-based predictions. We illustrate three CCMpred-based case 

studies. In the left-handed panel, the upper left triangle is the raw CCMpred map, while the lower 

right triangle is the prediction by RDb2C. In the right-handed panel, the upper left triangle is 

replaced by results of bbcontacts to facilitate direct comparison with RDb2C (i.e. the lower right 
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triangle). The native β-β contact regions are highlighted by red boxes. 

 

Pipelined with RaptorX-Contact 

RDb2C is developed to refine the prediction of β-β contacts from any predicted contact maps. 

To verify the general applicability, we tested the performance of our method on contact maps 

predicted by RaptorX-Contact, one of the most successful residue contact predictors in the latest 

CASP12 competition. The whole framework was optimized in the same training set, except that 

the raw maps were obtained from the RaptorX-Contact server. Due to the failure in processing a 

few protein targets by the server, available proteins in the training set reduces to 383 CATH 

domains (S1 Table). Considering the time consumption in server submission, this test was 

conducted only on the BetaSheet916 set. Similarly, the number of available proteins in the 

BetaSheet916 set was shrunk to 858. 

To evaluate the prediction powers of RaptorX-Contact and CCMpred in the β regions, we 

collected the prediction scores of all pairs of β residues as referred by DSSP assignment. These 

scores were then sorted and an adjustable cutoff value was used to identify the positive predictions. 

In this manner, Precision and Recall values at various cutoff values could be collected, which 

enables the plotting of PR curve as well as the calculation of optimal F1-score. Noticeably, the 

F1-scores derived in this way may be overestimated, because knowledge of native secondary 

structures is utilized and because the cutoff is self-optimized rather than estimated independently. 

Results suggest that RaptorX-Contact provides significantly more accurate residue contact 

prediction than CCMpred. As for β-β contacts, CCMpred only achieves an F1-score of 20.28%, 

while RaptorX-Contact attains 60.23%. However, even starting from the poor contact maps of 

CCMpred, RDb2C could improve the prediction of β-β contacts to a level comparable to 

RaptorX-Contact (~61%, see Table 3). 

The evaluation of our models optimized on the RaptorX-Contact maps is summarized in 

Table 8. Unlike previous results (see Table 1), the model performance shows negligible 

improvement in sequential stages, which indicates that prediction could terminate in early stages 

when the input residue contact maps are of high quality. Nevertheless, RDb2C finally reaches 

impressively high F1-scores of 76.17% and 85.65% at the residue and strand levels, respectively. 

Notably, performance of these levels could ensure both prediction accuracy (Precision) and 

coverage of native β-β contacts (Recall) at sufficiently high values (>70%), which thus would 

greatly benefit the tertiary structure prediction of mainly β proteins. 

 

Table 8. Performance of RDb2C at residue level and strand level on the 5-fold cross-validation 

and shrunk BetaSheet916 set. 

Level Stage 
Cross-validation BetaSheet916(858) 

F1-score Precision Recall F1-score 

Residue Level 

1st stage 71.70% 81.02% 71.01% 75.69% 

2nd stage 72.18% 79.48% 73.47% 76.36% 

3rd stage 71.89% 78.84% 73.67% 76.17% 

Strand Level 
1st stage 82.28% 93.96% 77.94% 85.20% 

2nd stage 86.80% 95.40% 78.61% 86.20% 
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3rd stage 88.10% 95.59% 77.57% 85.65% 

Performances of the models with the window size of 5 are listed here as the representatives of the 

first-stage models. Winner in each category is highlighted in bold. 

 

In comparison to CCMpred-based results (see Table 5), F1-scores are improved by ~15 

percentage points, which is mainly attributed to the greatly enhanced quality of residue contact 

map predicted by RaptorX-Contact. As suggested by the evaluation of feature importance (Table 

9), ridge features and raw RaptorX-Contact scores in combination still provide major contribution 

to the prediction power. However, with the remarkable improvement in the quality of the input 

map, contribution of the individual ridge features becomes less important, when compared with 

CCMpred-based predictions (see Table 2).  

 

Table 9. The feature importance in the first-stage models starting with RaptorX-Contact 

predictions. 

Window 

size 
1st stage -Ridge -RaptorX 

-Ridge 

-RaptorX 
-DeepCNF 

-Map 

Features 

-Position 

Features 

3×3 71.51% 71.02% 66.48% 13.04% 70.14% 71.34% 71.30% 

5×5 71.70% 71.58% 66.77% 15.75% 70.50% 71.37% 71.37% 

7×7 71.50% 71.47% 66.93% 17.95% 70.59% 71.31% 71.21% 

9×9 71.43% 71.44% 66.70% 19.80% 70.39% 71.03% 71.08% 

The table lists F1-scores of the re-conducted cross-validation without the corresponding features. 

 

On the other hand, RDb2C is capable of further improving the high-quality contact prediction 

of RaptorX-Contact. In specific, the F1-score of β-β contacts increases from an estimated number 

of ~60% to 76.17%. The great improvement by RDb2C is also illustrated in the PR curves (Fig 6). 

Considering that knowledge of native secondary structures is required in the generation of 

RaptorX-Contact curve, we also included the PR curve of the DSSP-based RDb2C model for a fair 

comparison. The DSSP-based RDb2C model could further improve F1-score to 85.30%. Fig 7 

shows the comparison of RDb2C over RaptorX-Contact on two protein cases, where the raw 

RaptorX-Contact maps are noisy but native β-β contacts could be successfully recognized after 

refinement using RDb2C. 
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Fig 6. The PR curves in the shrunk BetaSheet916 set. RDb2C (green for DSSP-based model 

and red for DeepCNF-based model) exhibits significant improvement over the raw 

RaptorX-Contact prediction (blue). The dots on the PR curve illustrate model performance at the 

suggested RDb2C cutoffs and the optimized RaptorX-Contact cutoffs. 

 

 

Fig 7. Case studies for RaptorX-Contact-based predictions. We illustrate two 

RaptorX-Contact-based case studies: 1QMYA (left) and 1ROCA (right). In each plot, the upper 

left triangle is the raw RaptorX-Contact map, while the lower right triangle is the prediction by 

RDb2C. The native β-β contact regions are highlighted by red boxes. 

 

Evaluation for the contribution in tertiary structure prediction 

In order to justify the effectiveness of our method in the practical structure prediction, we 

chose 61 mainly β proteins (with ≥50% of β residues) from the shrunk BetaSheet916 set (S2 Table) 

and constructed the tertiary structure models of them with predicted contacts taken as constraints, 

following the standard CONFOLD protocol [37]. As the numbers of predicted and native β-β 
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contact pairs are always less than 0.5L (S2 Table; L is the protein length), which is not sufficient 

for structural modeling, we retained all β-β contacts predicted by the RDb2C model in pipeline 

with RaptorX-Contact at the suggested cutoff as the highly reliable contact pairs, and then 

enriched the list of contact pairs to 1L by collecting the high-ranked and non-redundant 

RaptorX-Contact predictions. These top 1L residue contacts were used as distance restraints to 

fold the protein. Specifically, a strict restraint of 3.5-6Å was applied to constrain the Cβ atoms of 

residue pairs from the more reliable RDb2C prediction, whereas a loose restraint of 3.5-10Å was 

adopted for the non-redundant residue pairs enriched from RaptorX-Contact results because of 

their lower confidence level. As a control, the top 1L residue contacts were directly chosen from 

the RaptorX-Contact prediction and a uniform standard restraint of 3.5-8Å was engaged to 

constrain the Cβ atoms of these residue pairs.  

For each tested protein, the model with the best TM-score [38] within the top 5 models 

reported by CONFOLD was chosen for evaluation. According to our results, models constructed 

with the top 1L RaptorX-Contact predictions reach an average TM-score of 0.442. In contrast, 

when supplemented with the refined top 1L contacts by RDb2C, the average TM-score markedly 

increases to 0.506. Specifically, among the 61 mainly β proteins, prediction using RDb2C 

refinement outperforms that using RaptorX-Contact raw scores in 83.61% and 85.25% of cases 

when evaluated by TM-score and RMSD, respectively (Fig 8 and S2 Table). The superiority of 

RDb2C over RaptorX-Contact is statistically significant (p-value < 10-8) for both RMSD and 

TM-score. 

 

 

Fig 8. Comparison of the best of the top 5 models generated using the RaptorX-Contact 

prediction and the RDb2C refinement for individual targets of the 61 mainly β proteins. The 

green dots and blue dots represent targets that are better predicted by RDb2C and by 

RaptorX-Contact respectively. Detailed results are listed in S2 Table. For both RMSD and 

TM-score, RDb2C outperforms RaptorX-Contact significantly (p-value < 10-8). 

 

Fig 9 shows the comparison of one protein case, where the RDb2C results successfully 

correct the topology mismatch in the RaptorX-Contact model. Because our predictions focus on 

the more detailed hydrogen bonding interactions, instead of direct use as the distance restraints for 
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residue Cβ atoms, it is possible to further improve the structure prediction by utilizing our 

prediction more delicately, for instance, to restrain the respective hydrogen bonding donors and 

acceptors of two paired β residues. 

 

 

Fig 9. Case study for structure prediction. We illustrate the predicted structures of 1OUSB 

based on the refined predictions by RDb2C (left) and the raw RaptorX-Contact predictions (right), 

respectively. Comparing to the native structure (blue), the predicted structure based on RDb2C 

(orange) has a higher TM-score (0.6172 vs. 0.3612) and smaller RMSD (4.13Å vs. 10.84Å) than 

the predicted structure based on the raw RaptorX-Contact prediction (red).  

 

Runtime and memory consumption 

We evaluated the running time of RDb2C on a Dell 5810 workstation (Intel Xeon E5-1620 v3 

3.50�GHz CPU, 4 cores, 8 threads and 32 GB RAM) with 8 threads, based on the BetaSheet916 

set. Time consumption increases with the size of target protein in a quadratic manner (Fig 10). A 

typical 400-residue protein needs 20 seconds to complete the prediction. The general memory 

usage is about 6.3GB. Generally speaking, the runtime and memory usage of RDb2C are 

acceptable for practical protein structure prediction. 
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Fig 10. The relationship between runtime and the number of residues. The time consumed 

increases steadily with the rise of the number of residues (the I/O time is not included). 

 

In conclusion, we developed a ridge-detection-based algorithm with a multi-stage random 

forest framework to refine the prediction of β-β contacts from a predicted residue contact map. 

The ridge information could effectively capture the pattern of consecutive residue contacts in 

interacting β strands. Our method could be pipelined with any residue contact predictors. Tests on 

CCMpred and RaptorX-Contact suggest that RDb2C could improve the prediction of β-β contacts 

for residue contact predictors of various levels of accuracy. Furthermore, improvement in β-β 

contact prediction could facilitate the structural prediction of mainly β proteins. The runtime and 

memory of our method are acceptable for practical use.  

 

Materials and Methods 

Dataset 

We used two well-established datasets for testing: BetaSheet916 [26] and BetaSheet1452 [29]. 

These two datasets have been widely accepted, thus allowing performance comparison to previous 

methods. Both datasets were filtered for redundancy. The β residues were defined using DSSP [36], 

and both β-bridge and extended β-strand residues (B and E in DSSP) were considered as β 

residues. 

We built our training set from the CATH database of protein domain, version 4.1 [39]. Since 

our work focused on contacts in β strands, only β and α/β domains were considered. In order to 

eliminate the redundancy between the training set and test sets, we removed all domains from the 
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training set that belongs to the same CATH fold groups as proteins in the two test sets. The 

fragmented and overly short (< 30 residues) domains were also discarded. Finally, only domains in 

the CATH S35 set [40] (a subset of CATH with pairwise sequence identity <35%) were kept to 

reduce the redundancy inside the training set. Thus, there were 493 domains in our training set 

(Table 10 and S1 Table). 

 

Table 10. General information of the training and test sets. 
Numbers Training set BetaSheet916 BetaSheet1452 
Proteins 493 916 1452 
Residues 73580 187516 361668 
β residues 22283 48996 88352 
β-β contact residue pairs 13278 31638 56552 
β strands 4633 10745 19186 
β strand pairs 2678 8172 14241 

 

In the training set, true β contacts were calculated following the DSSP definition with 

isolated β-bridge pairs ignored. The DSSP assignment was simplified into 3 categories: H, E and 

C. The secondary structure probabilities were predicted by DeepCNF [35]. The MSAs were built 

by HHblits [41] against the UniProt20 database [42], from which residue contact maps were then 

predicted by CCMpred. ProDy [43] was adopted as a package in Python for dealing with PDB 

files and analyzing protein structures. 

 

Ridge Features 

We employed the ridge as a proxy to capture consecutively distributed regions of relatively 

strong signals. The ridge is an extended concept of a local maximum. In an N dimensional space, a 

local maximum point should be maximal in all N dimensions, while a ridge describes a continuous 

curve each point of which is the local maximum in the N-1 dimensional subspace orthogonal to 

the curve. Fig 11A demonstrates a ridge on a 2D image, where the vertical axis stands for the 

signal strength. Ridge is a good measure to characterize the central axis of an elongated object, i.e. 

consecutive residue contacts in interacting β strands on a residue contact map. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2017. ; https://doi.org/10.1101/214643doi: bioRxiv preprint 

https://doi.org/10.1101/214643


21 

 

 

Fig 11. Ridge features from the original map. (A) The orange line indicates the ridge on the 2D 

function surface. All ridge points on the ridge line are the maxima in the directions perpendicular 

to the line (red arrows). The local maximum point (dark blue) is also a ridge point based on the 

definition. (B) For each given point on the contact map, we select local region (i.e. the grid points) 

to approximate a quadratic function. (C) On the quadratic function surface, we could identify the 

linear ridge and project it to the XY plane. (D) Direction of the ridge � and distance from the 

original given point to the ridge d could be obtained from the projection. (E) We could also 

identify the principal curvature direction on the ridge and approximate the cross section curve with 

a Gaussian ridge. The height h and width w are defined as the height and the standard deviation of 

the Gaussian function. Details are given in the S1 Text. 

 

For any given point on the 2D map, we firstly estimated the local 1st order and 2nd order 

derivatives to build the local gradient ∇f and the Hessian matrix H via an ordinary least squares on 

the extended surrounding region with the size of 5×5. Then we calculated the two principal 

curvatures (λp, λq) by performing eigendecomposition to the Hessian matrix: 
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We required at least one principal curvature is negative (i.e. concave) and the directional 

derivative along the corresponding direction is zero to guarantee the property of ridge points:  

 
0

0

pλ <

∇ ⋅ =pf v
. (2) 

By locating such points on the contact map, we could identify the axis of the elongated region 

with relatively strong signals. 

However, straightforward ridge detection described as above is not practical on discrete maps 

for several reasons. Firstly, the ridge could not always locate exactly on a discrete point. Secondly, 

straightforward method will include all ridges without considering the ridge height or strength. For 

the first issue, we could roughly locate the ridge position by approximating the neighboring region 
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with a quadratic function according to the estimated gradient and Hessian matrix (Fig 11B). Under 

the approximation, the ridge is a straight line (Fig 11C), from which we could identify the 

direction (�) and the distance from the original given point (d) in the XY plane (Fig 11D). To 

solve the second issue, we introduced the γ-normalized scale method developed by Lindeberg [34]. 

In specific, we utilized the square principal curvature difference (NL), a measure introduced in 

Lindeberg’s work, to quantify the ridge strength:  

 ( )22 2
p qNL λ λ= − . (3) 

Here, we describe the procedure briefly. We smoothed the map with a Gaussian filter at a 

series of scale σ. However, NL is not guaranteed to reach maxima at the scale of the ridge width. 

Lindeberg introduced γ-normalized NL to solve this problem. By multiplying σλ with a 

carefully-selected γ, the γ-normalized NL could reach maxima at desired ridge width: 

 ( )26 2 2
p qNLγ σ λ λ= −

. (4) 

The γ-normalized scale method could provide an unbiased estimate of the ridge width (w). 

We further estimate the ridge height (h) via a similar process (Fig 11E). More details of the 

γ-normalized scale method and the corresponding calculation protocol in processing contact maps 

could be found in the S1 Text. 

 

Model Features 

For a given point on the predicted residue contact map, we calculated the ridge features 

(including ridge direction �, distance to the ridge d, ridge height h and ridge width w (see Fig 

11B-E)). These features and scores of the input map jointly constitute 5 N×N matrices (Fig 12). 

We also incorporated the predicted secondary structure probabilities (for H, E and C) from 

DeepCNF. Furthermore, to describe positions of the target residue pair, we included the difference 

in indices of the two residues as well as distances of each residue to both ends of the protein in the 

amino acid sequence as position features. To characterize the quality of the original contact map, 

we employed the number of homologous sequences in the MSA per residue as well as the standard 

deviation of prediction scores as map features. 
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Fig 12. Summary of features adopted in our model. For each target protein with N residues, we have 

the original CCMpred map with the size of N×N. We calculate the ridge features for each point on the 

map to get 4 N×N matrices (2 N×N matrices after feature selection). In total, we have N×N×5 (N×N×3 

after feature selection) 2D features. The secondary structure prediction from DeepCNF provides an 

N×3 1D feature matrix. In addition, we have 2 map features (the sequence/residue ratio and CCMpred 

standard deviation) and 5 position features (1 residue index difference and 4 distances to protein ends). 

The data in this figure were generated from the protein 1AHQA.  

 

Model Training and Feature Selection 

We applied a 3-stage random forest framework to predict the β-β residue contacts using all 

features described previously. All random forest models in all stages were set up with 500 decision 

trees and were optimized by 5-fold cross-validation using the scikit-learn package [44]. The 

cross-validation was applied in a protein-wise manner, by which the training set proteins were 

randomly partitioned into 5 mutually exclusive subsets with roughly the same size. Combinations 

of four subsets were then iteratively used to train the model and to predict the unselected subset. 

Since all proteins in the training set were predicted independently, the suggested cutoffs were 

optimized in the cross-validation. Finally, the whole training set was utilized to train a separate 

model as the final model for evaluation in the test sets. 

At the first stage, in addition to features of the target residue pair, we adopted an adjustable 

window to consider the effect of neighboring residues. Specifically, 2D features (ridge features 

and the original contact map) of all residue pairs falling within the square window centered at the 

focus point were included. Secondary structure features of all residues falling within the 1D 

windows centered at the two target residues were also extracted. Map property features and 
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position features were extracted for the target residue pair only, because they were invariant for 

the target and neighboring residue pairs. We employed various values of the window size (ws), 

including 1, 3, 5, 7 and 9, to train multiple random forest models at the first stage. Because of the 

scarcity of β-β residue contacts, the negative (Neg) samples greatly outnumbered the positive (Pos) 

ones with a Pos/Neg ratio of about 1:600. To simplify the model training, we under-sampled 

negative samples at different Pos/Neg ratios from 1:1 to 1:40. The under-sampling was 

implemented in a protein-wise manner. That is, for each protein, the number of negative samples 

was specifically set based on the number of positive samples. Based on the cross-validation results 

(Table 11), improvement in model performance becomes saturated at Pos/Neg ratios of 1:40. 

Therefore, each random forest model was trained at 1:40 Pos/Neg ratios. At the same time, we 

noticed that the model with the window size of 1 significantly underperforms models of the other 

window sizes. Therefore, we selected window sizes of 3, 5, 7 and 9 for further model 

optimization. 

 

Table 11. The cross-validation F1-scores for different window sizes and Pos/Neg ratios. 

Pos/Neg 1×1 3×3 5×5 7×7 9×9 

1:1 32.55% 37.41% 37.61% 35.93% 34.96% 

1:5 35.31% 41.39% 41.03% 39.42% 38.51% 

1:10 36.31% 42.65% 42.00% 40.76% 39.39% 

1:20 36.90% 43.41% 43.22% 41.92% 40.60% 

1:30 37.20% 44.15% 43.61% 42.67% 41.23% 

1:40 37.33% 44.16% 44.02% 42.90% 41.71% 

Winner in each category is highlighted in bold. The row of the selected Pos/Neg ratio is shown in 

shadow. 

 

We performed the feature selection by removing features group by group and re-conducting 

the 5-fold cross-validation. We found that the ridge width w and the distance from the ridge d are 

not essential for the model. After removing these two sets of features, only the ridge height h and 

the direction of the ridge � were kept as ridge features. Thus, we obtained the optimized feature 

combination as indicated in Table 2. We further optimized the shape of the window. Because β-β 

pattern depends on the signals on diagonal and off-diagonal directions, we used the cross-shaped 

masks with different diagonal width (dw) besides the square window mask for 2D features (Fig 

13). For all window sizes, the best masks were the ones with the diagonal width of 3 (Table 12). 

Eventually, we chose the models with the diagonal width of 3 as the final ones. 
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Fig 13. An illustration of the window mask. The selected features are labeled in dark colors. The 

final window masks that were selected are marked in red. 

 

Table 12. The cross-validation F1-scores for different window sizes and diagonal widths. 

Window size 
Diagonal width 

1 3 5 7 9 

3×3 41.20% 44.40% 
   

5×5 41.94% 45.44% 45.27% 
  

7×7 41.12% 44.80% 44.58% 44.64% 
 

9×9 40.32% 44.30% 43.95% 43.55% 43.36% 

Winner for each window size is highlighted in bold. The column of the selected diagonal width is 

shown in shadow. 

 

Predictions from the first-stage models were then fed to models at the second stage. In 

specific, we retained the output scores of the first-stage models as additional 2D features. Unlike 

the strong constraints applied by bbcontacts that artificially restricts each residue to form no more 

than two β-β contacts, we included the ranks of each point among the output scores of each 

column and row and allowed the random forest model to automatically learn the geometry 

constraints. Hence, output map from each first-stage model provided N×N×3 features (1 N×N raw 

output and 2 N×N rankings). Subsequently, we performed the feature selection again as the first 

stage. The first-stage raw scores, the first-stage rankings, ridge features (ridge height h and ridge 

direction �) and predicted secondary structure information by DeepCNF were finally retained 
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after feature selection (Fig 14). The window size and the diagonal width were both optimized at 3 

(3×3 square). Then, we combined features from the 4 first-stage models of various window sizes 

to construct a comprehensive second-stage random forest model. At the third stage, we carried out 

a similar protocol as the second stage and obtained a final third-stage random forest model.  

 

 

Fig 14. An illustration of the multi-stage framework. In our 3-stage framework, we firstly 

construct models with different window sizes. We then integrate four models to get the 

second-stage results. The final result is obtained from the third-stage model. The data in this figure 

were generated from the protein 1AHQA. 

 

The overall framework was constructed for two different types of secondary structure 

information, prediction from DeepCNF and assignment from DSSP, respectively. For DSSP-based 

models, the secondary structure probability is set to 1 for the native category and 0 for the others.  

 

Evaluation 

Performance was evaluated at both residue and strand levels, using measures including 

Precision, Recall as well as F1-score. Precision and Recall quantify proportions of true positives 

within all predicted and all native β-β contacts, respectively, while F1-score is the harmonic mean 
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of Precision and Recall: 

 

Precision=

Recall

2 Precision Recall
F1-score

Precision+Recall

TP

TP FP
TP

TP FN

+

=
+
× ×=

, (5) 

where TP, FP and FN denote true positives, false positives and false negatives, respectively. 

Although our method was developed with predicted secondary structure information for 

practical protein structure prediction, we performed evaluation for models fed with predicted and 

DSSP-assigned secondary structures respectively to simplify comparison with previous methods. 

Since bbcontacts is the best method so far and exhibits significantly superior performance to all 

previous ones, we mainly compared our method with bbcontacts. Results of bbcontacts were 

obtained following the protocol of the original paper, with secondary structures predicted by 

PSIPRED [45]. The residue-level evaluation is straightforward, while the strand-level evaluation, 

however, could only be conducted with the knowledge of clearly defined secondary structures. 

Thus, we only provide the strand-level results for DSSP-based models. As for the definition of 

strand pairing, we regard a pair of β strands as interacting if at least one pair of residues on the two 

strands is predicted as contacting.  

 

Structure modeling using predicted contacts 

All 61 mainly β proteins (with ≥50% of β residues) were chosen from the shrunk 

BetaSheet916 set (S2 Table), and tertiary structure models of them were constructed with 

predicted contacts taken as constraints, using the downloadable programs of Crystallography & 

NMR System (CNS) [46] suite and CONFOLD package [37]. We retained all β-β contacts 

predicted by the RDb2C model in pipeline with RaptorX-Contact at the suggested cutoff as the 

highly reliable contact pairs, and then enriched the list of contact pairs to 1L by collecting the 

high-ranked and non-redundant RaptorX-Contact predictions from the region outside the predicted 

β-β region of RDb2C (All contacts falling within the square window covering the RDb2C 

prediction points or lines are considered as redundant). These top 1L residue contacts were used as 

distance restraints to fold the protein following the standard CONFOLD protocol, with the 

DeepCNF results supplemented as predicted secondary structures [37]. A strict restraint of 3.5-6Å 

was applied to constrain the Cβ atoms for the more reliable contact pairs of RDb2C prediction, 

whereas a loose restraint of 3.5-10Å were adopted for the non-redundant contact pairs enriched 

from RaptorX-Contact because these complement pairs are of lower confidence levels. In the 

control experiment, the top 1L residue contacts were directly chosen from the RaptorX-Contact 

results and a uniform standard restraint of 3.5-8Å was engaged to constrain all contact pairs. For 

each tested protein, 20 models were generated by CONFOLD, and the 5 models that fit the 

restraints best were retained. The model with the highest TM-score among the top 5 models was 

then taken as the representative one for evaluation. 
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