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Abstract 

The two strongest factors predicting a human cancer’s clinical behaviour are the primary             
tumour’s anatomic organ of origin and its histopathology. However, roughly 3% of the time a               
cancer presents with metastatic disease and no primary can be determined even after a              
thorough radiological survey. A related dilemma arises when a radiologically defined mass is             
sampled by cytology yielding cancerous cells, but the cytologist cannot distinguish between a             
primary tumour and a  metastasis from elsewhere. 

Here we use whole genome sequencing (WGS) data from the ICGC/TCGA PanCancer Analysis of              
Whole Genomes (PCAWG) project to develop a machine learning classifier able to accurately             
distinguish among 23 major cancer types using information derived from somatic mutations            
alone. This demonstrates the feasibility of automated cancer type discrimination based on            
next-generation sequencing of clinical samples. In addition, this work opens the possibility of             
determining the origin of tumours detected by the emerging technology of deep sequencing of              
circulating  cell-free DNA in blood plasma. 

Introduction 

Human cancers are distinguished by their anatomic organ of origin and their histopathology.             
For example, lung squamous cell carcinoma originates in the lung and has a histology similar to                
the normal squamous epithelium that lines bronchi and bronchioles. Together these two            
criteria, which jointly reflect the tumour’s cell of origin, are the single major predictor of the                
natural history of the disease, including the age at which the tumour typically manifests, its risks                
factors, its growth rate, pattern of invasion and metastasis, response to therapy, and overall              
prognosis. A tumour’s type is generally determined by a histopathologist who examines            
microscopic stained sections of the tumour. An increasing number of tumour types are             
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subclassified with molecular markers that have been demonstrated to distinguish among           
subtypes with clinically distinct  features. 

We now know, based on recent large-scale exome and genome sequencing studies, that major              

tumour types have dramatically different patterns of somatic mutation. 1-4 For example, ovarian            

cancers are distinguished by a high rate of genomic rearrangements, 5 chronic myelogenous            

leukemias carry a nearly pathognomonic structural variation involving a t(9;22) translocation           

leading to a BCR-ABL fusion transcript, 6 melanomas have high rates of C>T and G>A transition               

mutations due to UV damage, 7 and pancreatic ductal adenocarcinomas have near-universal           

activating  mutations in the KRAS gene. 8 

This paper asks whether we can use machine learning techniques to accurately determine             
tumour organ of origin and histology using the patterns of somatic mutation identified by whole               
genome DNA sequencing. The primary motivation of this effort was to demonstrate the             
feasibility of a next-generation sequencing (NGS) based diagnostic tool for tumour type            
identification. Studies have shown that site-directed therapy based on the tumour’s cell of origin              

is more effective than broad-spectrum chemotherapy;9 however it is not always straightforward            

to determine where a metastatic tumour comes from. In the most extreme case, a pathologist               
may be presented with the challenge of determining the source of a poorly differentiated              
metastatic cancer when multiple imaging studies have failed to identify the primary (“cancer of              

unknown primary,” CUPS). 10 More frequently, the pathologist must distinguish between two or            

more biologically distinct but histologically similar tumour types, such as the class of “small              

round cell”  tumours. 11 

In current practice, pathologists use histological criteria and a series of immunohistochemical            

stains to determine such tumours’ histological type and site of origin, 12 but this process can be                

complex and time-consuming, and some tumours are so poorly differentiated that they no             
longer express the cell-type specific proteins needed for unambiguous immunohistochemical          
classification. A simple NGS-based sequencing and analysis protocol for tumour type           
determination that could be applied to a variety of fresh and fixed clinical specimens would be a                 
useful adjunct to existing histopathological techniques. It might also be helpful for            
characterising  cytological  specimens,  such as those obtained via  needle aspiration. 

In designing these experiments, we speculated that DNA-sequence based tumour type           
identification would be most accurate when triangulated from three major categories of            
mutational feature: (1) the topological distribution of somatic passenger mutations, which           
reflect the epigenetic state of the tissue of origin ; (2) the distribution of somatic mutation types,                 
which reflect environmental and genetic exposures of the cell of origin; and (3) the driver genes                
and pathways that are altered in the tumour. Our results indicate that each of these categories                
provides sufficient information to discriminate many, but not all, tumour types, and that             
combinations of all  three feature categories usually outperform the individual  ones. 

Results 
Our overall strategy was to develop a series of features representative of the three general               
categories described in the introduction. Using the Pan-cancer Analysis of Whole Genomes            
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(PCAWG) data set, which consists of >2,800 primary tumours across 38 forms of cancer              

subjected to paired whole genome sequencing, 4 we evaluated each individual feature type for its              

ability to accurately predict the cancer type. We then evaluated the accuracy of machine              
learning classifiers built on combinations of feature types. Finally, the best performing classifier             
was validated against an independent set of tumour genomes to determine overall predictive             
accuracy. For comparison, we determined the performance of DNA-based tumour type           
classification based on whole exome sequencing (WXS). Lastly, we examined patterns of            
misclassification errors to identify cases in which tumour types share biology or contain latent              
type heterogeneity. 

Tumour Type  Groupings 

The full PCAWG data set consists of tumours from 2834 donors comprising 34 main              
histopathological tumour types. However, the tumour type groups are unevenly represented,           
and several have inadequate numbers of specimens to adequately train and test a classifier. We               
chose a minimum cutoff of 35 donors per tumour type. In some cases, the same donor had                 
contributed both primary and metastatic tumour specimens to the PCAWG data set. In such              
cases, we used the primary tumour for training and evaluation. The resulting initial set              
consisted of 2606 tumours spanning  25 major  types. 

During preliminary development of the classifier, we noted that the tumour types chronic             
lymphocytic leukemia (Lymph-CLL) and B-cell non-Hodgkins lymphoma (Lymph-BNHL) were         
misclassified as each other more than 50% of the time. Both tumour types arise from malignant                
B-cells, and are interrelated by a phenomenon known as Richter’s transformation in which CLL              

transforms into diffuse large B-cell lymphoma in 5-10% of patients. 13 We also suspect that these               

two disease entities share a common trajectory of genomic alterations. Consequently, we pooled             
these two tumour types into a group labeled Lymphoid. Similarly, we found considerable             
misclassification among samples representing the myeloproliferative neoplasm (Myeloid-MPN)        
and acute myeloid leukemia (Myeloid-AML), again possibly reflecting the common progression           

of the former to the latter 14 and/or overlapping biology. We pooled these two PCAWG types into                

a single grouping labeled Myeloid. These merging steps reduced the number of major tumour              
types to 23,  still  comprising  2606 tumours (Table 1). 

Classification using Single Mutation Feature  Types 

We first evaluated a series of tumour type classifiers based on a single class of feature derived                 
from the tumour mutation profile. For each feature class we developed a random forest              
classifier using the forward feature selection method (Online Methods). Each classifier’s input is             
the mutational profile for an individual tumour specimen, and its output is the probability              
estimate that the specimen belongs to the type under consideration. We trained each classifier              
using a randomly selected set of 75% of samples drawn from the corresponding tumour type.               
To determine the most likely type for a particular tumour samples, we applied its mutational               
profile to each of the 23 type-specific classifiers, and selected the type whose classifier emitted               
the highest probability. To evaluate the overall accuracy of the system, we stratified sampling              
the data sets in four folds, trained on three quarters of the data set and tested against each of the                    
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other quarter specimens. We report accuracy (recall, precision and F1) using the average of all               
four  test  data  sets (Online methods). 

We selected a  total  of seven mutational  feature types spanning  three major categories (Table 2): 

Mutation Distribution. The somatic mutation rate in cancers varies tremendously from one            

region of the genome to the next. 2 In whole genome sequencing, a major covariate of this                

regional variation in whole genome sequences is the epigenetic state of the tumour’s likely cell               
of origin, with 74-86% of the variance in the mutation density being explained by histone marks                

and other chromatin features related to open versus closed chromatin. 15 This suggests that             

tumours with the same cell of origin will have a similar topological distribution of mutations               
across the genome. To capture this, we divided the genome into ~3000 1 Mbp bins and created                 
features corresponding to the number of somatic mutations per bin normalized to the total              
number of somatic mutations. Mutation rate profiles were created independently for somatic            
substitutions (SNV), indels, somatic copy number alterations (CNA), and other structural           
variations (SV). Note that the preponderance of variants used for this analysis are             
non-functional  passenger mutations. 

Mutation Type. The type of the mutation and its nucleotide neighbors, for example G{C>T}C, is               
a strong indicator of the exposure history of the cell of origin to extrinsic and endogenous                

factors that promote mutational processes. 16 This in turn can provide information on the             

tumour’s organ of origin. For example, skin cancers have mutation types strongly correlated             
with UV light-induced DNA damage. Reasoning that similar tumour types will have similar             
mutational exposure profiles, we generated a series of features that represented the normalized             
frequencies of each potential nucleotide change in the context of its 5’ and 3’ neighbors. Like the                 
mutation distribution, the variants that contribute to this feature category are mostly            
passengers. 

Driver Gene/Pathway. Some tumour types are distinguished by high frequencies of alterations            
in particular driver genes and pathways. For example, melanomas have a high frequency of              

BRAF gene mutations, 17 while pancreatic cancers are distinguished by KRAS mutations. 8 We            

captured this in two ways: (1) whether a known or suspected driver event, which includes               
mutations in coding sequences, long non-coding RNA, and micro-RNAs, are contained in the             
tumour, and (2) whether there was an impactful coding mutation in any gene belonging to a                
known or suspected driver pathway. We did not attempt to account for alterations in              
cis-regulatory regions. In all we created ~2000 driver pathway-related features describing           
potential gene and pathway alterations for each tumour. By definition, this feature includes only              
somatic mutational  events that  act  as drivers. 

Figure 1, columns 1-7, describe the accuracy for a set of 161 classifiers built using single feature                 
categories. The accuracy of individual classifiers ranges widely across tumour and feature            
categories, with an F1 (harmonic mean of recall and precision) of 0.48 and a range from 0.00 to                  
0.99. Thirteen tumour types had at least one well-performing classifier that achieved an F1 of               
0.80: Lymphoid, CNS-GBM, CNS-PiloAstro, Prost-AdenoCA, ColoRect-AdenoCA, Skin-Melanoma,       
Panc-AdenoCA, Kidney-RCC, Liver-HCC, Lung-SCC, Kidney-ChRCC, CNS-Medullo and Myeloid.        
Three classifiers performed poorly, with no classifier achieving an accuracy of 0.6:            
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Bone-Osteosarc, Stomach-AdenoCA and Uterus-AdenoCA. The remaining eight tumour types         
had classifiers achieving  accuracies between 0.60 and 0.80. 

In general, the highest accuracies were observed for features related to mutation type and              
distribution. Only Panc-AdenoCA achieved an accuracy of at least 0.80 for classifiers based on              
features related to driver genes/pathways, suggesting that few of the other tumour types             
examined here have sufficiently distinctive alterations in driver  pathways. 

Classification using Combinations of Mutation Feature  Types 

To test whether we could improve classifier accuracy, we built tumour-specific classifiers that             
combined feature categories. Using the three best-performing feature types for each tumour, we             
built, trained and tested random forest classifiers for each combination of two and three types               
(Figure 1, column 8; Supplementary Figure 1). In all cases, classifiers built by combining feature               
types showed improved accuracy relative to those built on single feature types, as assessed by               
cross-validation. However, the extent of improvements vary from one cancer type to the other.              
For example, Bone-Osteosarc, which failed to achieve an accuracy greater than 0.56 with any              
individual feature, achieved an F1 of 0.70 for a combination of three feature types. However, for                
Lymphoma, Skin-Melanoma and Liver-HCC, which already achieved high levels of accuracy with            
single feature types,  combining  types barely improved the classification accuracy. 

For each tumour type, we selected the best classifier from among those based on single features                
types or feature combinations, resulting in a final set of 23 tumour-specific classifiers. This              
merged classifier  was used for all  subsequent  testing  and validation. 

Figure 2 shows the performance of the merged classifier when tested against held out tumours               
(mean of 4 test runs). Overall, the accuracy for the complete set of 23 tumour types was 0.86                  
(classification accuracy), but there was considerable variation for individual tumours types.           
Sensitivity/recall ranged from 0.35 (Stomach-AdenoCA) to 1.0 (Lymphoid). The precision,          
which reflects the proportion of true positives among the calls made by a classifier, and is                
sensitive to the number of positives in the data set, was somewhat lower, with rates ranging                
from 0.44 (Stomach-AdenoCA) to 0.97 (Liver-HCC  and Lymphoid). 

Fourteen tumour types achieved accuracies of at least 0.80, including all 13 of the types that met                 
this threshold for single-feature types, plus Head-SCC. Three tumour type classifiers,           
Ovary-AdenoCA, Uterus-AdenoCA, and Stomach-AdenoCA performed poorly and failed to         
achieved an accuracy of at least 0.60. The remaining six types had middling classifier accuracies               
ranging  from 0.69 to 0.78. 

By design, the combined tumour type classifier consists of one classifier for each tumour type,               
which when given the features of an unknown tumour emits a probability between 0 and 1 that                 
the unknown tumour belongs to the type. The test tumour is then assigned to the type whose                 
classifier gives the highest relative probability. This means that for each unknown tumour there              
is a natural ranking of the top pick, the second-best pick, and so forth. We asked how often the                   
correct type was within the top N picks. As shown in Figure 3 the correct choice was ranked at                   
the top 86% of the time, was within the top two choices 93% of the time, and among the top                    
three choices 95%  of the time. 
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Tumour-Specific Features 

We asked which features the merged classifiers selected from each tumour type to identify              
biologically-distinguishing characteristics (Supplementary Tables 1 and 2). The majority of          
classifiers selected mutation type and/or mutation distribution as the most influential features,            
emphasizing the importance of exposures and epigenetically-related cell-of-origin marks in          
distinguishing tumour types. For some tumour types, mutation distribution features dominated.           
Features from mutation distribution accounted for more than 90% of the features selected by              
the classifiers for liver, breast, esophageal adenocarcinoma, melanoma, ovarian serous          
adenocarcinoma, the lymphoid tumour category, and both types of lung cancer. The stomach             
adenocarcinoma and myeloid classifiers are both dominated by mutation type features, which            
account for nearly two-thirds of their selected features. The classifiers for other tumour types,              
including both types of pancreatic cancer, prostate adenocarcinoma, and thyroid          
adenocarcinoma,  used a  more balanced mixture of mutation type and mutation distribution. 

In some cases the classifiers identified individual gene-related features and focal variants that             
distinguish one tumour type from others. In pilocytic astrocytoma, the strongest feature was a              
SV hotspot on chromosome 7 that reflects a BRAF fusion transcript present in two-thirds of               

cases of this tumour type. 18 The classifiers for pancreatic ductal adenocarcinoma and high-grade             

serous ovarian carcinoma picked out oncogenic mutations in KRAS and TP53 as discriminative             

features. Activating mutations of KRAS are present in ~95% of pancreatic cancers, 8 and a              

roughly similar proportion of inactivating TP53 mutations are present in ovarian cancer. 19 The             

lung squamous cell carcinoma classifier picked up recurrent point mutations in the NFE2L2             
(NRF2) transcription factor mutations. This gene has previously been identified as recurrently            

mutated in Lung-SCC and is a marker of poor prognosis. 20 In the poorly-performing uterine              

adenocarcinoma classifier, mutations in the PIK3R1, PTEN and PPP2R1A genes were selected.            

Although mutations in each of these genes is associated with uterine cancer, 21 they are also               

common in ovarian and breast cancer, which may help explain the uterine adenocarcinoma             
misclassification pattern described in the following  section. 

The thyroid adenocarcinoma classifier picked up multiple features relating to copy number            
amplifications on chromosome 8 spanning the c-Myc gene. We found this curious since such              
amplifications are not characteristic of this tumour type, but are common in many other tumour               
types. On further inspection we found this to be a negatively weighted feature; the absence of                
this amplification has positive predictive value for  the Thy-AdenoCa  classifier. 

Patterns  of Misclassification 

Misclassifications produced by the set of classifiers are not haphazard, but instead seem to              
reflect overlapping biological characteristics. For example, esophageal adenocarcinoma        
(Eso-AdenoCA), is misclassified as gastric adenocarcinoma (Stomach-AdenoCA) 35% of the          
time, and Stomach-AdenoCA cases are misclassified as Eso-AdenoCA 20% of the time.            
Examining the features selected for the esophageal and stomach cancer classifiers, we find that              
mutation substitution are the major predictive features for both tumour types, and both             
classifiers picked up a subset of C->A, C->G substitutions mutations as features. Those             
substitutions are commonly observed in both stomach and esophageal cancer and comprise            

Signature 17 in the COSMIC catalogue of mutational signatures. 14 In addition to stomach and              
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esophageal tumours, a small number of B-cell lymphomas exhibit Signature 17, which may             
explain why a fraction of Lymphoid tumours are misclassified as Eso-AdenoCA by our classifier.              
It is also possible that a subset of esophageal tumours are arising at the gastroesophageal               
junction (GEJ), which some consider to be a distinct subset of esophageal tumours with              

molecular characteristics similar  to gastric adenocarcinoma. 22. 

Another frequent pattern of misclassifications is confusion between squamous cell carcinoma of            
the lung (Lung-SCC) and squamous cell carcinoma of the head and neck (Head-SCC). While              
Head-SCC samples were classified accurately 80% of the time and had no systematic             
misclassification patterns, only 69% of Lung-SCC samples were correctly classified, and were            
instead called Head-SCC 23% of the time. This pattern of misclassification appears to be related               
to sharing of the tobacco smoking signature (Signature 4) in both tumour types. The asymmetry               
of the misclassification errors appears to be the result of the Head-SCC classifier’s selection of               
T{C>TG}T and T{C>TG}A mutations as a discriminating feature in Head-SCC. In our sample set,              
this pattern of mutation is enriched in squamous cell carcinomas of the head and neck, but not                 

in lung.  These mutations have  been associated with APOBEC-mediated mutation processes. 16 

The classifier for invasive ductal adenocarcinoma of the breast (Breast-AdenoCA) has high            
sensitivity (97% of breast cancers are classified correctly), but relatively low precision (70%).             
This classifier incorrectly identifies as breast cancer 33%, 17%, 11% and 8% of Ovary-AdenoCA,              
Uterus-AdenoCA, Lung-AdenoCA and Thy-AdenoCA cases respectively. We speculated that this          

lack of specificity is the result of breast cancer’s highly heterogeneous molecular subtypes, 23             

among which is a basal subtype that shares molecular characteristics with high grade serous              

ovarian adenocarcinoma. 24 Of the 280 Breast-AdenoCA samples in PCAWG, 182 had associated            

RNA-seq profiling data and had been subtyped by the PCAWG Pathology and clinical correlates              

working group using the PAM50 molecular classification system. 25 From this list, we retrained a              

breast cancer classifier using Breast-AdenoCA samples having no basal subtype. When applied            
to non-breast cancers, the misclassification rate was reduced to 1, 3, 0 and 0% of ovarian,                
uterine, lung and thyroid tumours respectively, supporting the hypothesis that the inclusion of             
the basal  subtype of breast  cancer contributed to its classifier’s reduced precision. 

Classifier Accuracy Across an  Independent Collection  of Cancer  Whole 
Genomes 

A distinguishing characteristic of the PCAWG data set is its use of a uniform computational               
pipeline for sequence alignment, quality filtering, and variant calling. In real world settings,             
however, the data set used to train the classifier may be called using a different set of algorithms                  
than the test data. To assess the accuracy of DNA-based tumour identification when applied to a                
more heterogeneous data set, we applied the classifier trained on PCAWG samples to an              
independent validation set of 1,600 cancer whole genomes assembled from a series of published              
non-PCAWG projects. The validation set spans 14 distinct tumour types assembled from 21             
publications or databases (Table 3). We were unable to collect sufficient numbers of             
independent tumour genomes representing nine of the 23 types in the merged classifier,             
including colorectal cancer, thyroid adenocarcinoma and lung squamous cell carcinoma. In           
addition, only SNV calls (somatic point mutations) and small indels were available for these              
genomes; hence features relating to copy number and structural variations were marked as             
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unavailable. SNV coordinates were lifted from GRCh38 to GRCh37 when necessary. With the             
exception of a set of brain tumour samples in the validation set, which is explained below, a                 
comparison of the mutation burden among each tumour type cohort revealed no significant             
differences between the PCAWG and validation data sets (Supplementary Figure 2) that would             
suggest  strong  batch effects due to sequencing  coverage or  analytic methods. 

As shown in Figure 4, the classifier accuracy for the tumour types included in the validation data                 
set ranged from 51-87% (overall F1 score 0.80). Following the trend observed for the PCAWG               
data set, the Breast-AdenoCA, Skin-Melanoma, CNS-Medullo, and Prost-Adeno tumour types          
were classified with at least 80% accuracy. A set of CNS gliomas was accurately classified 51%                
of the time, and the remaining tumour types were classified correctly in 60-79% of cases. The                
majority of errors mirrored the pattern of misclassifications previously observed within the            
PCAWG samples. 

We were initially puzzled that the set of 34 CNS glioma samples from the validation data set                 
overwhelmingly matched to the pediatric piloastrocytoma model rather than to the CNS-GBM            
model. However, on further investigation, we discovered that the CNS glioma samples represent             

a mixture of low- and high-grade pediatric gliomas, including piloastrocytomas. 26-28 The SNV            

mutation burden of these pediatric gliomas is also similar to CNS-PiloAstro and significantly             
lower than adult  CNS-GBM  (Supplementary Figure 2). 

Application to  Whole  Exome  Sequencing 

Lastly, we asked how well the DNA based classifier would perform on reduced representation              
sequencing, such as whole exome sequencing (WXS). To evaluate this, we generated a series of               
synthetic whole exomes from the PCAWG testing set by retaining only those somatic mutations              
falling within annotated UTR and CDS regions. From the synthetic whole exomes we were able               
to derive classification features related to altered genes, pathways and mutation types, but             
lacked features relating to copy number alterations, structural variations, and passenger           
mutation distribution. These features were then applied to the classifiers built from WGS data.              
As expected, the classifier performance was degraded for all tumour types. Lymphoid,            
Liver-HCC and Breast-AdenoCA, each of which had accuracies of >0.95 in the WGS data set, had                
accuracies of 0.55, 0.87, and 0.48 in the WXS data set respectively. Overall, accuracy of the                
ensemble of classifiers was 61%  (Supplementary Figure 3). 

Code  Availability 

The R code developed for training and testing the classifier, along with documentation and              
trained models for the 23 tumour types are available from GitHub at [URL TO COME]. The code                 
is distributed under the Apache Version 2.0 Open Source license          
(https://www.apache.org/licenses/LICENSE-2.0).  

Discussion 
In this paper, we used the largest collection of uniformly processed cancer whole genomes              
assembled to date to develop a supervised machine learning system capable of accurately             
distinguishing 23 major tumour types based solely on features that can be derived from DNA               
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sequencing. The accuracy of the system overall was 86%, with 14 of the 23 tumour types                
achieving recalls of 80% or higher. When the tumour type predictions were ranked according to               
likelihood,  the correct  prediction was found among  the top  three rankings 95%  of the time. 

While the accuracy of the classifier was primarily assessed using an internal held-out data set               
strategy, the application of an entirely independent WGS tumour validation set representing 14             
of the tumour types achieved a satisfactory overall accuracy of 0.80 (F1-metric). The limitation              
of the validation experiment set is that the mutation calling was performed using a non-uniform               
set of alignment and variant-calling protocols, and only SNV-based features were available for             
our use. We expect to see better predictive power from an independent set of whole genomes on                 
which full  PCAWG-level  variant  calling  has been performed. 

The topographic distribution of somatic passenger mutations across the genome was by far the              
single most predictive class of features for the ensemble of classifiers, followed by mutation type               
and driver gene/pathway. On this basis, we expect to see degraded performance on exome              
sequencing, in which only 3-5% of the genome is sampled and the presence of purifying               
selection across many protein-coding sites makes unbiased determination of the topographic           
distribution of passenger mutations challenging to determine. Indeed, when we attempted to            
build a classifier based only on features that can be derived from WXS, our overall accuracy was                 
reduced from 0.86 to 0.61 (F1 metric). 

Previous work in the area of DNA-based tumour type identification has used targeted gene              

panel and whole exome sequencing strategies. 29,30 The targeted gene-based approach described           

in Tothill et al 29 can discriminate a handful of tumour types that have distinctive driver gene                 

profiles, and can identify known therapeutic response biomarkers, but does not have broader             
applicability to the problem of tumour typing. In contrast, the whole exome sequencing             

approach reported in Chen et al 30 used a machine learning approach similar to ours to               

discriminate among 17 tumour types based on somatically altered gene, mutation type,            
chromosome and altered pathway. This approach achieved a F1 of 0.62 overall, and an F1 of                
0.70 for five primary sites (colon, liver, skin, pancreas and lung), which is similar to what we                 
observe in the simulated WXS data set. We demonstrate here that the addition of whole genome                
sequencing data and a richer set of somatic mutation types, such as structural alterations,              
substantially improves discriminative ability across a wider spectrum of tumour types. Indeed,            
an advantage of this study is that the comprehensive data set allows us to systematically               
evaluate the accuracy of classifiers built on top of features derived from different sequencing              
strategies. 

There was considerable variability in the classification accuracy among tumour types. In some             
cases the poorly performing type-specific classifiers appear to have been confused by biological             
similarities across types. In at least the case of breast cancer tumour subtype heterogeneity              
within the training set also appears to have degraded the precision of the classifier. The issue of                 
subtype heterogeneity is likely to be a more general problem. One of several examples is thyroid                
adenocarcinoma, in which the papillary and follicular forms are known to have distinct patterns              

of molecular alteration, 33 but due to the limited size of the data set available we were forced to                  

pool these histological subtypes. We expect to see improvements in the classifier after training it               
with subtype-specific training  sets. 
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In addition to training using larger subtype-specific tumour cohorts, there are other potential             
ways to improve classifier performance. Most notably, in the current implementation we did not              
make any use of germline information. However, many germline cancer risk alleles increase the              
risk of developing specific tumour types, for example BRCA1 mutations for breast and ovarian              
cancer, and APC mutations for colon cancer. Adding information on cancer-associated genetic            
loci would likely improve classifier accuracy among the subset of patients carrying such             
germline risk  alleles. 

Cancer of unknown primary site (CUPS) is a heterogeneous set of cancers diagnosed when a               
patient presents with metastatic disease, but despite extensive imaging, pathological and           

molecular studies the primary cannot be determined. 10 CUPS accounts for 3-5% of cancers,             

making it the seventh to eighth most frequent type of cancer and the fourth most common cause                 

of cancer death. 31 Even at autopsy, the primary cannot be identified roughly 70% of the time, 31                

suggesting regression of the primary in many CUPS cases. CUPS is a clinical dilemma, because               
therapeutic options are largely driven by tissue of origin, and site-directed therapy is more              

effective than broad-spectrum chemotherapy. 33 Recent studies of molecular typing of biopsies           

of CUPS patients using mRNA or miRNA expression profiling, have demonstrated the ability to              

identify a putative primary greater than 90% of the time, 33-35 while a prospective clinical trial of                

CUPS patients treated according to the tissue of origin specified by a RT-PCR based RNA               
expression profiling technique showed a modest improvement in overall outcomes relative to            

standard empiric treatment. 36 

A more common occurrence is the diagnostic challenge faced by surgical pathologists facing a              
differential diagnosis. For example, a lung nodule in a female patient biopsied by fine needle               
aspiration may reveal a poorly differentiated adenocarcinoma that could be a primary lung             
tumour or alternatively metastatic breast cancer. A “small round cell tumour” in a pediatric              
patient might be lymphoma, Ewing’s sarcoma, Wilm’s tumour, a neuroendocrine tumour, or            
melanoma. While conventional immunohistochemistry using a series of monoclonocal         
antibodies is generally successful at distinguishing these histologically-similar tumour types, the           
process can be time-consuming and labour-intensive, and the decision tree varies according to             

the differential diagnosis. 37 Further, immunohistochemistry can be confounded by the loss of            

antigens in poorly differentiated tumours. 38 

Given the increasing likelihood that in the near future most cancers will be subject to routine                
genomic profiling to identify actionable mutations, it is attractive to consider the possibility of              
simultaneously deriving the cancer type using an automated computational protocol. This           
would serve as an adjunct to histopathological diagnosis, and could also be used as a quality                
control check to flag the occasional misdiagnosis or to find genetically unusual tumours. More              
forward-looking is the prospect of accurately determining the site of origin of circulating             

cell-free tumour DNA detected in the plasma using so-called “liquid biopsies.” 39 As genome             

sequencing technologies continue to increase in sensitivity and decrease in cost, there are             

realistic prospects for blood tests to detect early cancers in high risk individuals. 40 The ability to                

suggest the site and histological type of tumours detected in this way would be invaluable for                
informing  the subsequent  diagnostic workup. 
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In summary, this is the first study to demonstrate the potential of whole genome sequencing to                
distinguish major cancer types on the basis of somatic mutation patterns alone. Future studies              
will focus on improving the classifier performance by training with larger numbers of samples,              
subdividing tumour types into major molecular subtypes, adding new feature types, and            
adapting the technique to work with clinical specimens such as those from formalin-fixed,             
paraffin-embedded biopsies and cytologies. 
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Figures 
Figure 1. Comparison of tumour type classifiers using single and multiple feature types. Each              
cell represents the accuracy (F1 score) of an individual classifier for the task for distinguishing a                
particular tumor type from all other tumor types in the testing set. Columns 1-7 represent the                
accuracy for single feature types. The rightmost column indicates the accuracy of the best model               
constructed using multiple feature types. Rows are sorted using hierarchical clustering to group             
together tumour types that  have a  similar distribution of single-feature classifier  accuracies.  

Figure 2. Confusion matrix displaying the accuracy of the merged classifier using a held out               
portion of the PCAWG data set for evaluation. Each row corresponds to the true tumor type;                
Columns correspond to the predictions emitted by each of the classifiers. Cells are labeled with               
the proportion of tumors of a particular type that were called by each type-specific classifier               
(accuracy). The sensitivity and precision of each classifier is shown in the color bars at the top                 
and left sides of the matrix. All values represent the mean of 10 runs with randomly selected                 
testing  data  sets. 

Figure 3. Frequency with which the correct tumour type was contained within the top X               
predictions. Using a held-out portion of the PCAWG data set, we calculated how frequently the               
corrected tumour  type was present  among  the top  ranked X  predictions. 

Figure 4. Confusion matrix displaying the accuracy of the merged classifier on an independent              
validation set. Each row corresponds to the true tumor type; Columns correspond to the              
predictions emitted by each of the classifiers. Cells are labeled with the proportion of tumors of                
a particular type that were called by each type-specific classifier. The sensitivity and precision of               
each classifier is shown in the color bars at the top and left side of the matrix. Note that the                    
validation data set did not contain any representatives of the nine tumour types to the right of                 
CNS-PiloAstro. 
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Tables 
 
Table 1: Distribution of  tumour  types in the PCAWG  training and  test  data  sets 
      

Abbreviation Organ system Tumor  Type 
Tum
ors 

Merged 
Abbreviation 

Sample
s 

Liver-HCC LIVER 
Liver hepatocellular 
carcinoma 326 Liver-HCC 326 

Prost-AdenoCA PROSTATE  GLAND 
Prostate 
adenocarcinoma 286 Prost-AdenoCA 286 

Panc-AdenoCA PANCREAS 
Pancreatic 
adenocarcinoma 241 Panc-AdenoCA 241 

Breast-AdenoCA BREAST 
Breast 
adenocarcinoma 198 Breast-AdenoCA 198 

CNS-Medullo 
BRAIN,  & CRANIAL 
NERVES,  & SPINAL CORD, Medulloblastoma 146 CNS-Medullo 146 

Kidney-RCC KIDNEY 

Renal  cell 
carcinoma 
(proximal  tubules) 144 Kidney-RCC 144 

Ovary-AdenoCA OVARY 
Ovarian 
adenocarcinoma 113 Ovary-AdenoCA 113 

Skin-Melanoma SKIN Skin  melanoma 107 Skin-Melanoma 107 

Lymph-BNHL LYMPH NODES 
Mature B-cell 
lymphoma 105 

Lymphoid 

200 Lymph-CLL 
BLOOD,  BONE  MARROW, 
& HEMATOPOIETIC SYS 

Chronic 
lymphocytic 
leukemia 95 

Eso-AdenoCA ESOPHAGUS 
Esophageal 
adenocarcinoma 98 Eso-AdenoCA 98 

CNS-PiloAstro 
BRAIN,  & CRANIAL 
NERVES,  & SPINAL CORD, 

Pilocytic 
astrocytoma 89 CNS-PiloAstro 89 

Panc-Endocrine PANCREAS 

Pancreatic 
neuroendocrine 
tumor 85 Panc-Endocrine 85 

Stomach-AdenoCA STOMACH 
Gastric 
adenocarcinoma 75 

Stomach-AdenoC
A 75 

ColoRect-AdenoCA 
LARGE  INTESTINE, 
(EXCL.  APPENDIX) 

Colorectal 
adenocarcinoma 60 

ColoRect-AdenoC
A 60 

Head-SCC 
GUM,  FLOOR  OF MOUTH, 
& OTHER MOUTH 

Head/neck 
squamous cell 
carcinoma 57 Head-SCC 57 

Uterus-AdenoCA UTERUS,  NOS 
Uterine 
adenocarcinoma 51 Uterus-AdenoCA 51 

Lung-SCC LUNG &  BRONCHUS 
Lung  squamous cell 
carcinoma 48 Lung-SCC 48 

Thy-AdenoCA THYROID GLAND Thyroid 48 Thy-AdenoCA 48 
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adenocarcinoma 

Kidney-ChRCC KIDNEY 

Renal  cell 
carcinoma  (distal 
tubules) 45 Kidney-ChRCC 45 

Bone-Osteosarc BONES  & JOINTS Sarcoma,  bone 44 Bone-Osteosarc 44 

CNS-GBM 
BRAIN,  & CRANIAL 
NERVES,  & SPINAL CORD, Diffuse glioma 41 CNS-GBM 41 

Lung-AdenoCA LUNG &  BRONCHUS 
Lung 
adenocarcinoma 38 Lung-AdenoCA 38 

Myeloid-AML 
BLOOD,  BONE  MARROW, 
& HEMATOPOIETIC SYS 

Acute myeloid 
leukemia 11 

Myeloid 

66 Myeloid-MPN 
BLOOD,  BONE  MARROW, 
& HEMATOPOIETIC SYS 

Myeloproliferative 
neoplasm 55 

   2606  2606 

 
 
Table 2: WGS  feature types used  in classifiers  
    

Feature Category Feature Name Feature 
Count Description 

Mutation  Distribution SNV-BIN 2939 
Number of SNVs per 1 Mbp  bin,  and per 
chromosome,,  normalized against  total 
number of SNVs per sample 

 CNA-BIN 2826 Number of CNAs per 1 Mbp  bin 

 
SV-BIN 2929 

Number of SVs per 1 Mbp  bin,  and per 
chromosome,,  normalized against  total 
number of SV per sample 

 
INDEL-BIN 2939 

Number of SNVs per 1 Mbp  bin,  and per 
chromosome,,  normalized against   total 
number of INDEL per sample 

Mutation  Type MUT-WGS 150 
Type of single nucleotide substitution,, 
double,  and triple nucleotide substitution 
(plus its adjacent  nucleotide neighbors) 

Driver Gene/Pathway GEN 554 Presence of a  impactful  mutation  in  a 
suspected driver gene 

 MOD 1865 Presence of an  impactul  mutation  in  a  gene 
belonging  to a  suspected driver pathway 

 
 
Table 3. Distribution and  source of  tumour  types contained  within the validation data 
set 
     

Source Year Cancer  Type 
Genom
e 
Version 

#Samples 

doi:10.1038/nature08629 2009 Lung-SCC GRCh38 1 
doi:10.1038/nature08658 2009 Skin-Melanoma GRCh38 1 
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doi:10.1038/nature09744 2011 Prost-AdenoCA GRCh38 8 
doi:10.1016/j.cell.2012.06.023 2012 Myeloid GRCh38 13 
doi:10.1016/j.cell.2012.08.029 2012 Lung-AdenoCA GRCh37 24 
doi:10.1038/nature10738 2012 Myeloid GRCh38 11 
doi:10.1038/nature11213 2012 CNS-Medullo GRCh38 11 
doi:10.1038/ng.2468 2012 Lymphoid GRCh37 1 
doi:10.1056/NEJMoa1106968 2012 Myeloid GRCh38 9 

doi:10.1038/nature12477 2013 Myeloid,  Breast-AdenoCA, 
CNS-Medullo GRCh37 130 

doi:10.1038/ng.2611 2013 CNS-GBM GRCh38 34 
doi:10.1038/ng.2699 2013 Kidney-RCC GRCh38 14 
doi:10.1073/pnas.1314608110 2013 Lymphoid GRCh38 4 
doi:10.1101/gr.154492.113 2013 Liver-HCC GRCh37 78 
doi:10.1038/ng.2938 2014 CNS-GBM GRCh38 33 
doi:10.1056/NEJMoa1403088 2014 Lymphoid GRCh38 32 
doi:10.1186/1476-4598-13-14
1 2014 ColoRect-AdenoCA GRCh38 1 

doi:10.1038/nature17676 2016 Breast-AdenoCA GRCh37 455 
doi:10.1038/ng.3547 2016 Liver-HCC GRCh37 1 

ICGC  (https://dcc.icgc.org/) 

Release 
25, 

8Jun20
17 

Bone-Osteosarc,  Lymphoid, 
ColoRect-AdenoCA, 
Eso-AdenoCA,  Liver-HCC, 
Skin-Melanoma,  Ovary-AdenoCA, 
Panc-AdenoCA,  Panc-Endocrine, 
Prost-AdenoCA,  Kidney-RCC 

GRCh37 658 

COSMIC 
v82, 

3Aug20
17 

CNS-Medullo,  Myeloid,  Lymphoid, 
Kidney-RCC  Liver-HCC, 
Eso-AdenoCA,  Panc-AdenoCA, 
Prost-AdenoCA 

GRCh38 81 
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Accuracy: 0.8
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