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Understanding the pattern of epistasis – the non-independence of mutations – is critical for 

relating genotype and phenotype in biological systems. However, the complexity of potential 

epistatic interactions has limited approaches to this problem at any level. To develop 

practical strategies, we carried out a comprehensive experimental study of epistasis between 

all mutations that link two phenotypically distinct variants of the Entacmaea quadricolor 

fluorescent protein.  The data demonstrate significant high-order epistatic interactions 

between mutations, but also reveals extraordinary sparsity, enabling novel experimental 

strategies and sequence-based statistical methods for learning the relevant epistasis. The 

sequence space linking the parental fluorescent proteins is functionally connected through 

paths of single mutations; thus, high-order epistasis in proteins is consistent with evolution 

through stepwise variation and selection. This work initiates a path towards characterizing 

epistasis in proteins in general. 

 

Introduction 

The central properties of proteins – folding, biochemical function, and evolvability – arise from a 

global pattern of cooperative energetic interactions between amino acid residues. Knowledge of 

this pattern is essential for understanding protein mechanism and evolution. However, the 

problem is extraordinarily complex. Energetic cooperativity in proteins is one manifestation of 

the more general principle of epistasis, the non-independent contributions of the parts that make 

up a biological system
1
. Epistasis can occur at the pairwise level (two-way) or extend to a series 

of higher-order terms (three-way, four-way, etc.) that describes the full extent of possible 

interactions
2-5

 . As a consequence, the number of potential epistatic interactions grows 

exponentially with the number of positions in a protein, a combinatorial problem that becomes 

rapidly inaccessible to any scale of experimentation. Indeed, the theoretical complexity of this 

problem is such that it is not feasible or rational to propose an exhaustive mapping of epistasis for 

any protein. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213835doi: bioRxiv preprint 

https://doi.org/10.1101/213835
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

How, then, can we practically characterize the architecture of epistatic interactions 

between amino acids? We reasoned that a strategy may emerge from a focused experimental case 

study in which we make all possible combinations of mutations within a limited set of positions 

within a protein – a dataset from which we can directly determine the extent of epistasis and 

explore possible simplifying methods. As a model system, we chose the Entacmaea quadricolor 

fluorescent protein eqFP611
6
 , a protein in which spectral properties and brightness represent 

easily measured, quantitative phenotypes with a broad dynamic range. Recently, two variants of 

eqFP611 have been reported, one bright deep-red (mKate2, λex=590nm, λem=635nm
7
) and one 

bright blue (mTagBFP2, λex=405nm, λem=460nm
8
), that are separated by thirteen mutations (Fig 

1A); we will refer to these as the “parental” genotypes.  

By developing new technologies for high-throughput combinatorial mutagenesis and 

quantitative phenotyping, we explored the full space of 2
13

 = 8192 variants comprising the 

parental genotypes and all possible intermediates between them. These data reveal a broad range 

of high-order epistatic interactions between mutations, demonstrating non-trivial complexity in 

the relationship between genotype and phenotype. However, we find that epistasis is also highly 

sparse compared to theoretical limits, a property that opens up the use of powerful computational 

techniques for uncovering the epistatic architecture with limited experimental or sequence data. 

Despite the existence of high-order epistasis, we find that the blue and red variants of eqFP611 

are fully connected through paths of single mutations in which protein function is maintained 

throughout. Thus, high-order epistasis is nevertheless consistent with phenotypic variation 

through stepwise variation and selection, a condition that should facilitate evolution. 

 

Results 

A complete combinatorial mapping of phenotypes 

We developed an efficient iterative gene synthesis approach to simultaneously construct 

and barcode the full library of 8192 fluorescent protein (FP) variants that represents the parental 
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genotypes mKate2
7
  and mTagBFP2

8
  and all possible intermediates (Fig. 1B, Extended Data Fig. 

1, and Methods). This strategy makes it possible to readout the identity of every combination of 

mutations simply by high-throughput DNA sequencing of the barcode region. We expressed the 

library in Escherichia coli, carried out two-color fluorescence activated cell sorting (FACS) to 

select variants by brightness, and deep sequenced the input and selected libraries (Fig. 1B). The 

brightness of every FP allele 𝑎 is given by its frequency 𝑓𝑎 in the selected population relative to 

the input population: 𝐸𝑎 =
𝑓𝑎

𝑠𝑒𝑙

𝑓𝑎
𝑖𝑛𝑝𝑢𝑡 . The color channels are normalized by the measured spectral 

properties of the parental red and blue proteins and are combined to produce a single quantitative 

phenotype – brightness – that is used in this study (Fig. 1B-C).  Brightness integrates various 

underlying biophysical properties – extinction coefficient, quantum yield, or protein expression – 

and is therefore a rich phenotype for characterizing epistatic effects of mutations. 

Trivial global nonlinearities in the dataset are expected just due to the experimental 

process and must generally be removed in assessing true epistatic interactions between mutations. 

To do this, we used the procedure of linear-nonlinear optimization
9
 to apply a simple polynomial 

transform (𝑦 = 𝐸0.44), which minimizes global non-linearities (Extended Data Fig. 2 shows 

robustness of conclusions to this process). The result is a quantitative assignment of phenotypes 

for all 8192 variants in a form in which independence of mutational effects corresponds to 

additivity in 𝑦. The data show that the parental genotypes are brightly fluorescent but many of the 

intermediates are not (Fig. 1C) – a first indication that we can expect substantial epistasis between 

mutations linking the two.  

 

From phenotypes to epistasis 

From the full dataset of phenotypes, we computed the complete hierarchy – 1-way, 2-

way, 3-way, 4-way, etc. –  of epistatic interactions between the thirteen mutated positions. 
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Mathematically, epistasis is a transform (𝛀) from the space of phenotypes (�̅�) of individual 

variants to a space of context-dependent effects of the underlying mutations (�̅�, Fig. 2A)
2
: 

     �̅� = 𝛀�̅�      (1) 

For 𝑁 positions with a single substitution at each position, �̅� is a vector of 2𝑁 phenotypic 

measurements in binary order (here, 2
13

) and �̅� is a vector of 2𝑁corresponding epistatic 

interactions.  A first-order epistatic term (𝜔1) is the phenotypic effect of a single mutation, a 

second-order epistatic term (𝜔2) is the degree to which a single mutation effect is different in the 

background of second mutation, and a third-order epistasis (𝜔3) is the degree to which the second 

order epistasis is different in the background of a third mutation. Higher-order terms follow the 

same principle, such that an 𝑛𝑡ℎ order epistatic term is the degree to which an 𝑛 − 1 order term 

depends on the context of yet another mutation, comprising a hierarchy of possible couplings 

between mutations. A key point is that �̅� and �̅� contain exactly the same information, but simply 

differ in its organization; �̅� represents the phenotypes of individual variants while �̅� represents 

the non-additive interactions between the mutations.   

A few examples help to explain the concept of epistasis. If we take, for illustration, the 

variant L63M/S168G/A174L/N207K as an arbitrary reference state (𝑦ref = 0.89, blue 

fluorescence) the data show that introducing the mutation Y197R results in reduced brightness 

(𝑦 = 0.29) (Fig. 2A). The difference in these two values defines a first-order epistasis (𝜔1 =

𝑦𝑌197𝑅 − 𝑦ref = −0.6).  However, in the background of F143S, the effect of Y197R is entirely 

different; it shows increased brightness (𝜔1|𝐹143𝑆 = +0.53), with conversion to red fluorescence. 

This indicates a large second-order epistatic term (𝜔2 = 𝜔1|𝐹143𝑆 − 𝜔1 = 1.13, Fig. 2B), 

meaning that the effect of Y197R is context-dependent on F143S. This second-order term is itself 

dependent on other mutations. For example, in the background of V45A, the second-order 

epistasis between Y197R and F143S nearly vanishes (𝜔2|𝑉45𝐴 = −0.02), indicating a large third-

order epistasis (𝜔3 = 𝜔2|𝑉45𝐴 − 𝜔2 = −1.15, Fig. 2C). These findings show that Y197R, F143S, 
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and V45A work as a cooperative unit whose contribution to phenotype cannot be broken down 

into a simple, additive contribution of the underlying mutational effects. Instead, prediction of 

phenotypes involving these mutations requires knowledge of their individual effects and epistatic 

interactions at all orders. 

In the examples discussed above, the effects of mutations are computed relative to a 

single reference genotype – the background in which the mutations are made. But, why should we 

restrict the definition of epistasis in the local mutational neighborhood of an arbitrarily chosen 

reference sequence? A more general analysis would be to compute each epistatic term as an 

average over all possible genetic backgrounds. For example, the effect of Y197R (the first-order 

epistasis 𝜔1) can be computed not just with respect to a single reference (Fig. 2C), but as the 

average of its phenotypic effect in the background of every one of the other 2𝑁−1 genotypes. 

Similarly, one can define background averaged pairwise, 3-way, and higher-order epistatic terms 

in which each term is averaged over all remaining genotypes. This view of epistasis is a global 

one, indicating the contribution of amino acids and interactions to protein function averaged over 

the full sequence space of variants
2,3,10-12

. We describe the profound distinction of single-

reference and background averaged epistasis below. 

We computed the background-averaged epistasis for the dataset of brightness phenotypes 

(see Methods). Analysis of error propagation provides a rigorous basis for establishing the 

statistical significance of epistatic terms as a function of order (Extended Data Fig. 3 and 

Methods). At a significance threshold of 𝑃 < 0.01, we identify 280 background averaged 

epistatic terms, including many high-order interactions up to the 7
th
 order within the set of 13 

mutated positions (Fig. 2E). Structurally, the epistatic terms involve not just residues in the local 

environment of the chromophore, but also includes positions (e.g. 45) located at a considerable 

distance at the opposite edge of the β-barrel (Fig. 2D). Indeed, the V45A mutation has the 

remarkable property of displaying a small effect on its own (𝜔1 = −0.09), but having much 

larger epistatic effects, for example, in modulating the pairwise coupling between Y197R and 
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F143S (𝜔3 = −0.3). Overall, the data indicate a substantial number of high-order epistatic 

interactions between amino acid mutations that link the blue and red variants of the eqFP611 

protein.  

 

Sparsity and reconstruction of phenotypes 

The finding of significant epistatic terms up to the seventh order would seem to pose an 

insurmountable challenge to the goal of empirically relating genotype to phenotype in proteins. 

No studies are likely to make such measurements in general, and the scale of experimentation 

grows unmanageably with protein size. However, the data also suggest the possibility of extreme 

sparsity in the number of significant epistatic terms, a finding that if confirmed, can open up 

practical approaches. For example, the 280 significant epistatic terms identified here represent 

only a small fraction of the 8192 possible terms.  How much information is encoded in just these 

terms? To study this, we used the inverse of the operation described in Eq. 1 to reconstruct the 

phenotypic measurements (�̂�) from any selected subset of background-averaged epistatic terms 

(�̅�sig): 

     �̂� = 𝛀−1�̅�sig,     (2) 

For �̅�sig comprising all 280 statistically significant epistatic terms, a comparison of reconstructed 

phenotypes (�̂�) with actual phenotypes (�̅�) shows a goodness of fit coefficient (𝑅2) of 0.98 (Fig. 

3A and Methods), demonstrating nearly perfect agreement. This finding means (1) that the 

experiments performed in this work in fact correctly identify the major epistatic terms and (2) that 

nearly lossless data compression can be achieved (compression ratio 
280

8192
= 0.0342) with the 

experimentally resolvable epistatic terms. The compression ratio serves as a quantitative measure 

of information content –  the fraction of epistatic terms that suffice to predict phenotype up to a 

specified accuracy.  
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To further examine the extent of sparsity, we calculated the goodness of fit between 

phenotypic data and prediction as a function of the number of included epistatic terms in �̅�sig, 

ordered by the size of their contribution to the explanatory power (Fig. 3B). The result 

demonstrates that information content in background-averaged epistasis is remarkably sparse; 

indeed, just the top 48 or 81 terms suffice to achieve an 𝑅2 = 0.94 or 0.96, respectively (Fig. 3C-

D), suggesting information compression ratios of 0.005 or better can be achieved while still 

retaining accurate phenotype predictions. In contrast, retaining only epistatic terms up to the 

second order yields weaker predictive power (𝑅2 = 0.87) despite a larger absolute number of 

terms (compare Figs.3C-D with 3E). Thus, phenotypes are optimally represented by a small 

number of epistatic terms, but these range from low to high order. 

In contrast, sparse encoding of phenotypes is not evident when epistasis is not 

background-averaged (Fig. 3F). Indeed, with a particular genotype is taken as a reference for 

mutational effects, there is no predictive power of phenotypes globally (Fig. 3F, 𝑅2 = 0.02), and 

reasonable values for 𝑅2 are only achieved by inclusion of all terms up the 11
th
 order (Extended 

Data Fig. 4).  This indicates essentially no information compression by this approach to epistasis; 

that is, epistasis is not sparse if it is not background averaged. It is interesting to note that the 

typical mutant cycle experiment in biochemistry represents an instance of single-reference 

epistasis in which mutations are seen as perturbations of a “wild-type” state. 

Taken together, these data show that many high-order epistatic interactions exist among 

the mutations introduced, but that with background-averaging, the distribution of information is 

highly sparse, such that a small number of terms suffice to specify all phenotypes to good 

accuracy. 
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Practical approaches for mapping epistasis 

Background-averaged epistasis provides an efficient, low-dimensional representation of 

protein phenotype, but this observation does not provide a practical solution to identifying the 

relevant terms. By definition, background-averaging (at any epistatic order) requires complete 

knowledge of phenotypes for all combinations of mutants. So, how then can we practically 

deduce the relevant epistatic terms? One approach comes from the field of signal processing: the 

theory of compressed sensing (CS) states that if a signal displays sparsity in some representation, 

it is possible to accurately reconstruct the signal from a limited, well-defined number of 

measurements through an optimization procedure that enforces the sparsity in that 

representation
13

. For proteins, this implies that we should be able to learn the relevant epistatic 

architecture with just a sparse sampling of mutant phenotypes.  

We made a simple implementation of the CS algorithm (by L1 norm minimization) and 

find excellent estimation of the top background averaged epistatic terms from a small fraction 

(~6-11%) of mutants (Fig. 4A-B).  Using Eq. 2, these estimated terms can then be used to predict 

all protein phenotypes with excellent accuracy (Fig. 4C-D). A scan over the number of mutants 

used for prediction shows that the top epistatic terms are asymptotically well-estimated from very 

modest samplings of mutational variants (Fig. 4E).  Note that this procedure does not simply 

amount to systematically sampling the low-order mutants; instead, the key is to sparsely sample 

over the space of all mutant combinations – a prescription for experiment design that is 

apparently best-suited for systems with sparse, high-order epistatic constraints.  It will be 

important to understand how the sampling of mutations – the size of the experiment – scales with 

the number of sequence positions undergoing variation – the size of the problem. Since the latter 

grows exponentially, it seems likely that the degree of sparsity will be an even greater constraint 

for larger problems. Thus, these results provide a foundation for a rational experimental approach 

for learning the epistatic architecture of proteins.  
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A distinct approach is suggested by analyzing the statistics of amino acid frequencies in a 

sampling of functional sequences. For example, constructing a multiple sequence alignment of FP 

variants with brightness above the value of the red parent (𝑦 > 0.78) and representing the two 

amino acids 𝑥 at each position 𝑖 with -1 and +1 respectively, we find that the average value over 

all 𝑛 sequences (〈𝑥𝑖
𝑛〉𝑛) and the joint expectation between pairs of positions 𝑖 and 𝑗 (〈𝑥𝑖

𝑛𝑥𝑗
𝑛〉𝑛) 

are closely related to the background averaged first-order and pairwise epistatic terms determined 

experimentally (Fig. 4F-G). This relationship holds even with sub-sampling of functional 

sequences included in the alignment (Extended Data Fig. 5). From these alignment-derived 

epistasis terms, it is possible to again quantitatively predict the phenotypes determined 

experimentally (Fig. 4H) to an extent that approaches what is possible with just limiting epistasis 

to the second order (Fig. 3E).   

This result indicates a link between epistasis averaged over genetic backgrounds and 

statistical correlations averaged over sequences displaying function above a threshold, a condition 

analogous to the process of natural selection. This connection is the fundamental premise of 

coevolution-based methods that use amino acid correlations in multiple sequence alignments to 

estimate structural
14-16

 or functional
17-21

 couplings between residues in proteins. Though these 

methods have provided important insights
22-27

, our findings show that accurate phenotype 

prediction will require knowledge of higher-order epistatic terms as well. Such information is not 

formally included in current coevolution methods, but may be accessible if alignments are deep 

enough or the problem of epistasis in full proteins is sparse enough. 

 

Functional connectivity of the sequence space  

 How does the pattern of epistasis control the topology of the functional sequence space 

linking the blue and red variants of eqFP611?  Indeed, the existence of severe forms of epistasis 

(e.g. sign epistasis or reciprocal sign epistasis
28

, in which intermediates can fall below the 
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selection threshold) can limit and even abrogate the existence of  single-step (or “connected”) 

paths between functional genotypes
29

. Thus, the study of the structure and connectivity of the 

space of functional genotypes is important for understanding how epistasis controls evolvability. 

In our dataset, nearly 50% of the statistically significant pairwise epistatic interactions represent 

cases of sign or reciprocal-sign epistasis (Extended Data Fig. 6), indicating that functional 

connectivity of the space linking the parental variants of eqFP611 is not trivial. 

Figure 5A shows the network of all functionally connected 13-step paths – the “solution 

space” – between the blue and red parental variants (𝑦 > 0.78, the value of the red parent, and 

see Extended Data Fig. 7).  The genotypes are colored according to fluorescence and edges 

represent single mutations between them. The data show (1) that the sequence space linking the 

parental genotypes is in fact fully connected at the functional threshold defined by these 

genotypes, (2) that solution space is shaped like a dumbbell, with two densities of functionally 

bright sequences near to the parental genotypes connected by a narrow neck, and (3) that the 

color switches at the neck.  The shape of the network reflects the pattern of epistasis. For 

example, the narrowest part of the solution space occurs in the middle where the number of 

possible genotypes is the largest (Fig. 5B), indicating severe epistatic constraints on mutational 

paths at these steps with regard to retaining brightness along the path (Extended Data Fig. 7D).  

Though we focus on brightness as a phenotype in this work, it is also informative that the 

fluorescence color switches at the narrow neck. The blue and red spectral states arise from 

chemically distinct chromophores that are auto-catalytically generated upon folding from amino 

acids at positions 63-65
30,31

. Interestingly, the data show that L63M – the only chromophore 

mutation – is necessary but insufficient on its own to produce the red chromophore. Instead, red 

fluorescence requires several specifically-ordered mutational steps after L63M, another indication 

of epistasis in the path between the blue and red parental variants. 

Overall, the connectivity of the solution space between the blue and red variants shows 

that the existence of high-order epistatic terms can nevertheless be consistent with evolution 
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through stepwise variation and selection.  The effect of epistasis is in specifying the topology of 

the solution space and in restricting the number of available paths. For example, at the specified 

brightness threshold, only 1.15 × 105 out of 6.23 × 109 paths between the blue and red parental 

genotypes (or, ~ 0.002%) are functionally connected. Single-step connectivity is an advantageous 

feature for phenotypic evolution through a process of random variation and selection.  Thus, 

connectivity of the solution space represents a clear example of how constraints on protein 

sequences can arise from not just from the requirement to fold and function, but from the 

dynamics of the evolutionary process
25,32,33

. 

 

Conclusion 

  Defining the pattern of epistasis between amino acids is essential for understanding 

protein function and evolvability. Given the vast theoretical complexity of epistatic interactions 

between amino acids, it is essential to carry out model experimental studies as a basis for 

developing practical strategies. Here, we show significant high-order epistasis in the mutational 

landscape linking red and blue variants of the epFP611 fluorescent protein.  But, with 

background-averaging, epistasis is also profoundly sparse, inspiring the use of powerful analytic 

tools for defining the epistatic architecture through sparse data collection. Conventional strategies 

for studying proteins focus on low-order mutagenesis
34-38

, but the data presented here suggest that 

a different experimental approach is optimal for defining the relationship between genotype and 

phenotype – limited sampling of all combinations of mutations, and sparse reconstruction to 

deduce the relevant epistatic terms. 

Interestingly, second-order background-averaged epistatic terms are well approximated 

by the statistical correlations between amino acids in an alignment of functional protein 

sequences, providing support for yet another approach. Current alignment-based methods for 

deducing amino acid couplings in proteins either rely on analysis of conserved, collective 

correlations between positions
17,19

 or on inference of direct pairwise interactions through inverse 
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methods in statistical physics
14,16,39

. The data presented here provide a critical benchmark for 

these approaches, defining the minimal epistatic terms that must be estimated in order to 

successfully relate genotype to phenotype. The sparsity of these epistatic terms may provide a 

productive constraint for developing a proper theoretical framework for using statistical 

coevolution to quantitatively predict protein phenotypes. 

What controls the prevalence, distribution, and spatial architecture of epistasis in 

proteins? Why should it be sparse? One limit comes from physical considerations; for example, 

the forces that bind atoms mostly act locally in protein structures, a property that forces long-

range epistatic terms to be built up from the coupling of local interactions. However, the finding 

that the blue and red variants of eqFP611 are connected by single-step mutations suggests the 

possibility of other constraints as well. For example, if evolution is facilitated by the stepwise 

functional connectivity of genotypes, then it is clear that any pattern of internal epistasis that is 

inconsistent with connectivity will be less fit, regardless of its own phenotypic value. The 

practical analysis of epistasis is the starting point for testing such ideas, and this work provides a 

foundation towards that goal. 
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Methods 

Combinatorial library construction 

The combinatorial library of 2
13

 FP variants was constructed by an iterative synthesis 

protocol in which mutant combinations and an associated barcode are co-assembled in a 

derivative of the pRD007 plasmid
40

 (Extended Data Fig. 1). Briefly, 34 DNA segments were 

synthesized (500bp gBlocks, IDT Inc), each comprising a portion of the FP coding sequence, a 5’ 

barcode encoding the identity of mutations within this region, and three restriction sites in 

between (a Type II site flanked by two non-pallindromic Type IIs sites).  Barcodes are designed 

to have Hamming distance of at least two between each other, with each segment barcode 

comprising three bases plus a parity base (which represents the numeric sum of the three bases 

modulo four). The Type IIs sites permit scarless in-frame joining of segments by cutting outside 

of the recognition sequence and the Type II sites increases cloning efficiency by elimination of 

uncut or back-ligated species.  Each segment encodes one to three mutated positions, with the 

most 5’ segment of the FP gene including an IPTG-inducible promoter from pTrc99A
41

 and a 

random 12bp “uniqueness” barcode that uniquely labels each individual clone. The FP genes are 

constructed iteratively 3’ to 5’, where at each step, one segment is ligated into the host vector, 

transformed into Escherichia coli DH5α
42

, grown overnight, and the resulting plasmid library 

isolated to serve the host vector for the next round. In this process, combinations of mutants and 

associated segment barcodes are assembled together.  A key technique is the alternating use of 

two sets of type IIS and Type II restriction endonucleases (Extended Data Fig. 1).  After complete 

assembly, the library is transformed into E. coli MC1061 (
43

, AVB100, Avidity Inc), at low DNA 

concentration (5ng DNA total) to suppress multiple transformants (typical library size of 5·10
6
). 

Sequences were optimized to avoid AGA and AGG codons, which are rare in E. coli.  

 

Cell sorting 

MC1061 cells containing the FP library were grown at 37ºC to an optical density of 0.8 in 

LB plus 50 µg/ml kanamycin, induced with 200M IPTG for one hour, and kept at 16ºC 

overnight. Cells are then washed and resuspended in deionized sterile water, diluted to ~ 10
7
/ml, 

and sorted on a BD FACSAria (UT Southwestern Medical Center cytometry core) at 

excitation/emission wavelengths of 405/460nm and 532/610nm. The total sorted population was 

6.2 x 10
7
 cells, and gating thresholds were chosen to recover the top 1% of cells in each channel. 

Gating by threshold still yields a graded output because single cells encoding any particular allele 

exhibit fluorescence that follows a near log-normal count distribution (see e.g. 
36

). Screening of 
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colonies on plates yielded no evidence for multi-colored proteins, justifying stringent sorting 

thresholds along the observed phenotypic axes. Sorted cells were recovered in LB medium 

without antibiotics, grown overnight in LB plus 50 µg/ml kanamycin, and subject to plasmid 

isolation for deep sequencing. 

 

High-throughput sequencing, error correction, and phenotype determination 

Samples for sequencing were prepared by PCR from plasmid libraries before or after 

selection using primers that incorporate Illumina adaptor sequences, a bar code specifying origin 

(input or output color channel), and a random stretch of five nucleotides in the initial 5’ region for 

phasing and cluster definition. Products were pooled in a ratio of 10:1:2 representing input, red, 

and blue output channels, and paired-end PE-100 sequencing was performed on a single lane of 

an Illumina Genome Analyzer IIx (UT Southwestern genomics core). Raw FASTQ files from the 

Illumina base-caller were processed with custom scripts in UNIX and MATLAB, and subjected to 

stringent quality filtering involving three criteria: 100% correct reads within a mask around the 

bar codes, correct specific barcodes, and a Q-score of at least 30 for each nucleotide in the 

random “uniqueness” barcode. Primer sequences and scripts are available upon request. 

The uniqueness barcode provides a mechanism to correct for mis-sorting events and 

unobserved spurious mutations that can introduce errors in assigning phenotypes. For each allele-

specific barcode a we compute input and output counts for each uniqueness barcode k as 𝑁𝑎,𝑘
in  and 

𝑁𝑎,𝑘
out, and a linear allelic enrichment 𝐸𝑎 = ∑ 𝑁𝑎,𝑘

out
𝑘 /𝑁𝑎,𝑘

in . Modeling experimental errors as a 

Poisson-process, we compute noise on the output counts of a uniqueness barcode as 〈noise〉𝑖 ∝

 √𝑁𝑎,𝑘
out𝛽

∝  √𝐸𝑎𝑁𝑎,𝑘
in

𝛽

, calculate the Z scores for the individual uniqueness bars as 

   𝒵 =  
𝑁𝑎,𝑘

𝑜𝑢𝑡−𝐸𝑎𝑁𝑎,𝑘
𝑖𝑛

√𝐸𝑎𝑁𝑎,𝑘
𝑖𝑛

𝛽
 ,     (3) 

and set the upper and lower boundaries for inclusion in the data per uniqueness barcode as 

ℒupper = 𝑐1𝒵 and ℒlower = 𝑐2𝒵.  Choices of parameters (β = 1/0.35, c1 = 35, and c2 = 15) were 

based on robustness across color channels and for alleles over the full range of enrichments 𝐸𝑎. 

Three rounds of outlier rejection led to removal of 2% of counts, after which final enrichments 

were calculated, and normalized by the known brightness of the red and the blue parental 

genotypes 
7,8

. MATLAB scripts are available upon request. 

Analysis of epistasis requires elimination of trivial global nonlinearities in the data that 

arise from the experimental or analytic process. The general principle is that trivial nonlinearities 

will systematically influence every variant, while nonlinearities due to intramolecular epistasis 

are highly specific properties of a few variants.  A logical approach is to find the simplest 

empirical transform  �̅� = 𝑓(�̅�) that minimizes the global non-linearity, especially in the most well 

determined (i.e. low-order) terms 
9
.  We minimize ‖𝑓(�̅�) − [(𝛀)−1𝐒𝛀]𝑓(�̅�)‖2

 2, where Ω is the 

epistasis operator and S is a matrix which selects only epistatic terms up to order two. This led to 

𝑓(�̅�) = �̅�𝛼 with α = 0.4364. Upon transformation, the data corresponding to genotypes with zero 

brightness are regularized by adding pseudocounts based on fitting noise present in non-

functional genotypes. Extended Data Fig. 2 shows that the conclusions in this work are robust to 

these steps. 

 

Analysis of epistasis 

 For a single amino acid substitution at each of 𝑁 positions, the full space of possible 

genotypes corresponds to 2𝑁 individual variants. With phenotypes for all variants (y̅) in a form 

that independence corresponds to additivity, the analysis of epistasis corresponds to a linear 

mapping ω̅ = 𝛀y̅,  where 𝛀 is a weighted Walsh-Hadamard transform, a class of generalized 
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Fourier transforms.  With background averaging, 𝛀 = 𝐕𝐇, where 𝐕 and 𝐇 can be recursively 

defined: 

𝐕𝑛+1 = (
1

2
𝐕𝑛 0

0 −𝐕𝑛

)    and    𝐇𝑛+1 = (
𝐇𝑛 𝐇𝑛

𝐇𝑛 −𝐇𝑛
), 

 

with 𝐕0 = 𝐇0 = 1, and 𝑛 = {0 … 𝑁 − 1}.  For standard, single-reference epistasis, 𝛀 = 𝐕𝐗𝑇𝐇, 

where 

𝐗𝑛+1 = (
𝐗𝑛 0
𝐗𝑛 𝐗𝑛

), 

 

with 𝐗0 = 1. Conceptually, standard epistasis represents a local (Taylor) approximation of the 

fitness landscape expanded around one reference genotype, while background-averaged epistasis 

approximates the landscape in terms of its global features over the space of all possible 

genotypes. See ref 
2
 for definitions and explanation. 

 

Functional trajectories and genotypic connectivity 

To obtain the number of functional single-step trajectories, we compute an adjacency 

matrix between functional genotypes by binarization of the full genotype adjacency matrix above 

a select threshold brightness (for Fig. 5, 𝑦 = 0.78, the value for the red parental variant). From 

the binarized adjacency matrix, the (𝑖, 𝑗)-th element of the  m
th
 power of the matrix gives the 

number of functional m-step trajectories that exist between genotypes 𝑖 and 𝑗. Summing over the 

powers of this matrix to any order M gives all viable trajectories consisting of M or fewer steps in 

the sequence space. Conversion of the resulting summed matrix to block-diagonal form produces 

a “genotypic connectogram” – a graph that directly reveals the connectivity and topology of 

viable genotypes (Extended Data Fig. 7C). 

 

Sparse optimization and phenotype reconstruction 

L1-norm minimization to find the optimal sparse distribution of epistatic terms was performed in 

MATLAB using the YALL1 solver, version 1.4 
44

. The performance for mutant prediction is scored 

by the Goodness of Prediction (GoP) parameter 
1

1+SSE/SST
, where SSE is the sum of squared 

errors between reconstruction phenotypes and the measured values, and SST is the total sum of 

squares. MATLAB scripts are available upon request. 
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Figure 1: Combinatorial mutagenesis and data collection. A, mTagBF2 (left) and mKate2 (right) 

are blue and red variants, respectively. of the Entacmaea quadricolor fluorescent protein 

eqFP611 
6
 that differ by 13 amino acid substitutions (10 shown). This defines a total sequence 

space linking the two of 2
13

=8192 variants. B, A schematic of the experimental protocol in which 

every variant is assigned a quantitative phenotype (�̅�) – brightness, a combination of fluorescence 

in both red and blue channels (see Methods for details). The phenotype is computed such that the 

independent action of mutations corresponds to additivity. C, The distribution of phenotypes for 

all 8,192 variants; the dashed line corresponds to the detection threshold for fluorescence. 
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Figure 2: High-order epistasis in the sequence variations linking mTagBFP2 and mKate2.  For 

illustration, panels A-C show the single reference form of epistasis taking an arbitrary genotype 

as the background (ref = L63M/S168G/A174L/N207K); circles indicate fluorescence color. All 

other panels indicate background-averaged epistasis. A, First-order epistasis is simply the effect 

of a single mutation. For example, in the reference background, Y197R shows 𝜔1 = 0.29 −
0.89 = −0.67, indicating loss-of-function. B, Second-order epistasis is the dependence of a first 

order term on a second mutation. Here, Y197R has a completely different effect in the 

background of F143S, and thus these two mutations display a large second-order term (𝜔2 =
1.13). C, Third-order epistasis is the dependence of a second-order term on a third mutation. 

Here, the pairwise epistasis of Y197R and F143S is quenched in the background of V45A, 

indicating a large third-order term (𝜔3 = −1.15). D, Positions involved in large epistatic 

interactions are shown, indicating sites both proximal and distal to the chromophore. E, The 

distribution of the 280 statistically significant background-averaged epistatic terms (threshold, 

𝑝 < 0.01), showing a broad range of high-order interactions between amino acids, including 

terms up to the seventh order. 
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Figure 3:  Sparsity in background-averaged (but not single-reference) epistasis. A, reconstruction 

of all phenotypes from the 280 significant background averaged epistatic terms displays excellent 

agreement with measured data (goodness-of-fit 𝑅2 = 0.98, see methods). B, A plot of goodness-

of-fit against number of included epistatic terms arranged by degree of contribution, indicating 

extraordinary sparsity in information content. Colors show the order of epistasis. C-D, Consistent 

with sparsity, reconstruction of phenotypes with the top 81 (C) or top 48 (D) terms shows good 

agreement with measured data. E, Reconstruction with only second-order terms shows poorer 

agreement with data despite larger number of included terms, indicating the relevance of higher-

order epistasis. F, Single-reference epistasis shows no predictive power in reconstructing 

phenotypes, indicating lack of sparsity in this form of epistasis.  The plot shows the average of 

reconstruction for ten randomly chosen reference sequences. 
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Figure 4: Practical strategies for learning the epistatic structure. A-B, Estimation of the top 

epistatic terms (including a broad range of high-order terms) from random samplings of 

phenotypes for 6-11% of variants, using the method of compressive sensing (CS). C-D, 

Reconstruction of all phenotypes from the estimated epistatic terms in panels A-B.  The data 

show excellent approximation of relevant high-order epistasis and prediction of phenotypes from 

sparse sampling of data. E, Goodness of phenotype prediction for all 8,192 variants as a function 

of CS-based estimation of epistasis (top 81 or 280 terms) from many trials of sampling the 

indicated number of variants. F, A representation of a multiple sequence alignment (MSA) 𝑥𝑖
𝑛 

comprising 𝑛 sequences by the 𝑖 = (1 … 13) mutated positions; amino acids are represented by 

+1 and -1 to indicate residues in mTagBP2 or mKate2, respectively. From the MSA, we can 

compute the average value of each position (𝑓𝑖 = 〈𝑥𝑖
𝑛〉𝑛), and the joint expectation of pairs of 

positions (𝑓𝑖𝑗 = 〈𝑥𝑖
𝑛𝑥𝑗

𝑛〉𝑛), as indicated. G-H, Estimation of measured first and second order 

epistatic terms (G) and consequently, the ability to reconstruct all phenotypes (H) using only the 

first and second order alignment statistics. 
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Figure 5: Single-step connectivity of the sequence space linking mTagBFP2 and mKate2.  A, A 

graph of all genotypes comprising a set of sequences connected by single-step variation, as a 

function of mutational step from mTagBFP2 to mKate2.  The brightness threshold for selection of 

genotypes is at the level of the mKate2. Thus, the sequence space linking the two parental 

genotypes is fully connected through single mutations without loss of parental function, and the 

shape of the solution space involves a thin neck near the middle. B, The fraction of connected 

genotypes at each step of mutation reinforces the notion that the space is most constrained at the 

thin neck, a consequence of severe epistatic constraints at the intermediate steps. 
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Extended Data Figure 1: Combinatorial library synthesis. The library of FP variants is generated 

by sequential restriction and ligation steps incorporating pre-synthesized DNA segments (gBlock, 

IDT Inc.) from 3’ to 5’ that each contain a subset of the mutated positions and a partial barcode 

that indicates each combination of mutations. The number of segments is determined by a trade-

off between minimizing the number of assembly steps and minimizing cost; here 34 construction 

segments were used – segments 1-4 with three mutations each (A-B) and a final fifth segment 

with one mutation and the promoter (C).  Segments 1-4 have a design that alternates between the 

schemes shown in panels A and B, explained below.  The barcodes are designed to have minimal 

Hamming distance of two between each other, and are embedded in a flanking sequence that is 

designed to avoid palindromes, long repeats, or restriction sites used in construction.  The gene 

assembly process is as follows: The first construction segment is cut with Type IIS restriction 

enzyme BsrDI (restr A), and ligated to target vector pFPH, a derivative of pRD007 
40

. After 

transformation and isolation of plasmid DNA, the resulting population of plasmids and the second 

segment are cut together with Type IIS enzyme BsaI (restr B), purified and ligated, inserting the 

second segment 5’ to the first and juxtaposing the segement barcodes. A “kill cut” is made with 

PstI (restr C) to reduce propagation of uncut or back-ligated species, and the ligation reaction is 

transformed and DNA isolated. This procedure is repeated for the remaining segments, 

alternating the use of the restriction enzymes as per panels A and B (restr D is NdeI). The final 

step incorporates the random “uniqueness” barcode. 
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Extended Data Figure 2: Epistasis analysis without removal of global non-linearities. A, 

Histogram of epistatic terms as a function of order at a significance threshold of 𝑝 < .01 (after 

Bonferroni-Šidák correction for multiple testing), computed exactly as in Fig. 2G, but without the 

linear-nonlinear transform to minimize global non-linearity in the data. B, the Goodness-of-fit 

between measured and reconstructed phenotypes as a function of number of included epistatic 

terms, ordered by degree of contribution (analogous to Fig. 3B). The analysis shows that the basic 

conclusions of this work are, in this case, not strongly dependent on the nature of the phenotype 

transform. 
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Extended Data Figure 3: Error propagation and determination of significant epistatic terms. A, 

Histograms of calculated epistatic terms for orders 1-10, fitted to Gaussian distributions (in red). 

The data show that as expected by the propagation of error rule, the variance in the distribution 

grows with epistatic order. B, the logarithm of the fitted Gaussian widths of the histograms as a 

function of epistatic order. The slope indicates an increase in observed noise of a factor 1.91 per 

order, close to the theoretical expectation of 2 (𝑟2 = 0.99). The y-axis intercept is at 6.1 x 10-4, 

suggesting an average per datapoint error of 6.1 × 10−4 ∗ √213 = 0.055. C, Number of epistatic 

terms as a function of order at a significance threshold of 𝑝 = 0.01, after Bonferroni- Šidák 

correction (as in Fig. 2G). Here, “error bars” indicate the robustness of this distribution to the 

choice of p-value. The low-range is 𝑝 = 0.001, and the high-range is 𝑝 = 0.05. 
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Extended Data Figure 4: Phenotype prediction, a comparison of background-averaged and 

single-reference epistasis. The goodness of prediction (GoP, see methods) for epistatic terms 

computed using background averaging (red) or with taking a single genotype as a reference (blue, 

shown is the mean and standard deviation for 100 randomly chosen genotypes). A goodness of 

prediction of 0.5 is expected for a random (fully uninformed) prediction. The data show that 

prediction using single-reference epistasis only out-performs a uniformed prediction when terms 

up to the 11
th
 order are included (note that the GoP necessarily converges to unity when all orders 

of epistasis are included. Thus, epistasis is not sparse when using single-reference definitions. 
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Extended Data Figure 5: Phenotype prediction from alignment statistics, as a function of 

sequence sampling. The graph shows the goodness-of-fit R
2
 between measured and reconstructed 

data (as in Fig. 4H) for epistatic terms estimated from alignments of functional sequences 

sampled from the full alignment of functional sequences (defined as those with 𝑦 > 0.78). The 

data show rapid convergence of phenotype prediction with even sub-sampling of functional 

sequences. The inset shows the quality of phenotype reconstruction for one instance of sampling 

500 sequences from the full set of functional genotypes (compare with Fig. 4H). 
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Extended Data Figure 6: Distribution of epistasis type amongst the pairwise background 

averaged epistatic terms. The type of epistatic motif (categories) between mutations at a pair of 

positions determines whether these mutations can be incorporated by an evolutionary process 

proceeding by single mutation steps 
28,45

.  Of the four categories, sign epistasis and reciprocal sign 

epistasis are the extreme forms that limit the accessible trajectories; their prevalence is a direct 

measure of ruggedness of the fitness landscape 
46,47

. Shown here are the frequencies of each 

epistatic motif amongst all significant pairwise terms, indicating substantial extreme epistasis. 
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Extended Data Figure 7: Functional connectivity of the sequence space. (A), A schematic 

illustrating the concept of genotypic connectivity as a function of different phenotypic thresholds 

(marked in red, 1-4). The solution space is connected up to threshold 3. (B) The number of single-

step trajectories as a function of threshold brightness for the data; thresholds corresponding to the 

cartoon in panel A are indicated. Note that the solution space becomes disconnected (zero viable 

paths) at threshold 3. (C) Genotypic “connectograms”, a graphical representation of the single 

step functional connectivity of the sequence space as a function of threshold (red numbers 

corresponding to panel B) (see Methods for computational process). The graphs show that 

threshold 3 represents the critical point after which the solution space breaks and is not fully 

connected. (D), The structure of the solution space at the threshold for functional connectivity. As 

in Figure 5, the space is dumbbell shaped, but with the neck linking the space now defined by an 

ordered series of single mutants. These genotypes (steps 7-9) harbor a reciprocal sign epistatic 

motif, which defines the strict order in which these mutations must come in order to be 

functionally connected. Note that at this threshold (y=0.85), the starting and ending genotypes 

shown here are not the parental ones. 
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