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Abstract   11 

Altered states of consciousness, such as psychotic or pharmacologically-induced 12 

hallucinations, provide a unique opportunity to examine the mechanisms underlying 13 

conscious perception. However, the phenomenological properties of these states are 14 

difficult to isolate experimentally from other, more general physiological and cognitive 15 

effects of psychoactive substances or psychopathological conditions. Thus, simulating 16 

phenomenological aspects of altered states in the absence of these other more general 17 

effects provides an important experimental tool for consciousness science and psychiatry. 18 

Here we describe such a tool, the Hallucination Machine. It comprises a novel combination 19 

of two powerful technologies: deep convolutional neural networks (DCNNs) and panoramic 20 

videos of natural scenes, viewed immersively through a head-mounted display (panoramic 21 

VR).  By doing this, we are able to simulate visual hallucinatory experiences in a biologically 22 

plausible and ecologically valid way.  Two experiments illustrate potential applications of the 23 

Hallucination Machine. First, we show that the system induces visual phenomenology 24 

qualitatively similar to classical psychedelics. In a second experiment, we find that simulated 25 

hallucinations do not evoke the temporal distortion commonly associated with altered 26 

states.  Overall, the Hallucination Machine offers a valuable new technique for simulating 27 

altered phenomenology without directly altering the underlying neurophysiology. 28 

 29 

Keywords:  Visual hallucinations, virtual reality, visual phenomenology, deep convolutional 30 

neural networks, machine learning.  31 
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1.0 Introduction 32 

There is a long history of studying altered states of consciousness (ASC) in order to 33 

better understand phenomenological properties of conscious perception 1,2. Altered states 34 

are defined as a qualitative alteration in the overall pattern of mental functioning, such that 35 

the experiencer feels their consciousness is radically different from "normal" 1–3, and are 36 

typically considered distinct from common global alterations of consciousness such as 37 

dreaming. ASC are not defined by any particular content of consciousness, but cover a wide 38 

range of qualitative properties including temporal distortion, disruptions of the self, ego-39 

dissolution, visual distortions and hallucinations, among others 4–7. Causes of ASC include 40 

psychedelic drugs (e.g., LSD, psilocybin) as well as pathological or psychiatric conditions such 41 

as epilepsy or psychosis 8–10. In recent years, there has been a resurgence in research 42 

investigating altered states induced by psychedelic drugs. These studies attempt to 43 

understand the neural underpinnings that cause altered conscious experience 11–13 as well 44 

as investigating the potential psychotherapeutic applications of these drugs 4,12,14. However, 45 

psychedelic compounds have many systemic physiological effects, not all of which are likely 46 

relevant to the generation of altered perceptual phenomenology. It is difficult, using 47 

pharmacological manipulations alone, to distinguish the primary causes of altered 48 

phenomenology from the secondary effects of other more general aspects of 49 

neurophysiology and basic sensory processing. Understanding the specific nature of altered 50 

phenomenology in the psychedelic state therefore stands as an important experimental 51 

challenge.   52 

Here, we address this challenge by combining virtual reality and machine learning to 53 

isolate and simulate one specific aspect of psychedelic phenomenology: visual hallucinations. 54 

In machine learning, deep neural networks (DNNs) developed for machine vision have now 55 

improved to a level comparable to that achieved by humans 15,16. For example, deep 56 

convolutional neural networks (DCNNs) have been particularly successful in the difficult task 57 

of object recognition in photographs of natural scenes 17,18.  58 

Studies comparing the internal representational structure of trained DCNNs with 59 

primate and human brains performing similar object recognition tasks, have revealed 60 

surprising similarities in the representational spaces between these two distinct systems 19–61 
21. For example, the neural responses induced by a visual stimulus in the human inferior 62 

temporal (IT) cortex, widely implicated in object recognition, have been shown to be similar 63 

to the activity pattern of higher (deeper) layers of the DCNN 22,23. Features selectively 64 

detected by lower layers of the same DCNN bear striking similarities to the low-level 65 

features processed by the early visual cortices such as V1 and V4. These findings 66 

demonstrate that even though DCNNs were not explicitly designed to model the visual 67 

system, after training for challenging object recognition tasks they show marked similarities 68 

to the functional and hierarchical structure of human visual cortices.  69 

Trained DCNNs are highly complex, with many parameters and nodes, such that their 70 

analysis requires innovative visualisation methods. Recently, a novel visualisation algorithm 71 
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called Deep Dream was developed for this purpose 24,25. Deep Dream works by clamping the 72 

activity of nodes at a user-defined layer in the DCNN and then inverting the information 73 

flow, so that an input image is changed until the network settles into a stable state (some 74 

additional constraints are needed, e.g. ensuring that neighbouring pixels remain strongly 75 

correlated).  Intuitively, this means changing the image rather than changing the network in 76 

order to match the features of the image with what is represented in the target layer  – so 77 

that the resulting image is shaped by what the network ‘expects’ to see, at the level of detail 78 

determined by the clamped layer.  More precisely, the algorithm modifies natural images to 79 

reflect the categorical features learnt by the network 24,25, with the nature of the 80 

modification depending on which layer of the network is clamped (see Figure 1). What is 81 

striking about this process is that the resulting images often have a marked ‘hallucinatory’ 82 

quality, bearing intuitive similarities to a wide range of psychedelic visual hallucinations 83 

reported in the literature (e.g. McKenna, 2004; Shanon, 2002; Siegel & Jarvik, 1975)(see 84 

Figure 1).   85 

We set out to simulate the visual hallucinatory aspects of the psychedelic state using 86 

Deep Dream to produce biologically realistic visual hallucinations. To enhance the immersive 87 

experiential qualities of these hallucinations, we utilised virtual reality (VR). While previous 88 

studies have used computer-generated imagery (CGI) in VR that demonstrate some 89 

qualitative similarity to visual hallucinations 28,29, we aimed to generate highly naturalistic 90 

and dynamic simulated hallucinations. To do so, we presented 360-degree (panoramic) 91 

videos of pre-recorded natural scenes within a head-mounted display (HMD), which had 92 

been modified using the Deep Dream algorithm. The presentation of panoramic video using 93 

a HMD equipped with head-tracking (panoramic VR) allows the individual’s actions 94 

(specifically, head movements) to change the viewpoint in the video in a naturalistic manner. 95 

This congruency between visual and bodily motion allows participants to experience 96 

naturalistic simulated hallucinations in a fully immersive way, which would be impossible to 97 

achieve using a standard computer display or conventional CGI VR. We call this combination 98 

of techniques the Hallucination Machine.  99 

To investigate the extent to which the Hallucination Machine is able to simulate 100 

natural visual hallucinations, we conducted two proof-of-concept experiments. The first 101 

experiment investigated the ecological validity of experiences produced by the Hallucination 102 

Machine. We compared the simulated experiences produced by the Hallucination Machine 103 

to unaltered control videos (see Figure 1) and to those of pharmacological psychedelic 104 

states by having participants rate their subjective experience using an ASC questionnaire 105 

developed to assess psychedelic experiences 30,31. In a second experiment, we investigated if 106 

the experience of the Hallucination Machine would also lead to a commonly reported 107 

aspect of altered states of consciousness - temporal distortion 5,6 108 

  109 
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 110 

Figure 1. An example of the original scene (top left) and Deep-Dreamed scenes (top right, 111 

bottom left and right). The top right image was generated by selecting a higher DCNN layer 112 

that responds selectively to higher-level categorical features (layers = ‘inception_4d/pool’, 113 

octaves = 3, octave scale = 1.8, iterations = 32, jitter = 32, zoom = 1, step size = 1.5, blending 114 

ratio for optical flow = 0.9, blending ratio for background = 0.1, for more detail see 48). We 115 

used these higher-level parameters to generate the Deep Dream video used throughout the 116 

reported experiments. The bottom left image was generated by fixing the activity of a lower 117 

DCNN layer that responds selectively to geometric image features (layer=’conv2/3x3’, other 118 

parameters as above). The bottom right image was generated by selecting a middle DCNN 119 

layer responding selectively to parts of objects (layer=’inception_3b/output’, other 120 

parameters as above).  121 

 122 

2.0  Results 123 

We constructed the Hallucination Machine by applying a modified version of the 124 

Deep Dream algorithm 25 to each frame of a pre-recorded panoramic video (Figure 1, see 125 

also Supplemental Video S1) presented using a HMD. Participants could freely explore the 126 
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virtual environment by moving their head, experiencing highly immersive dynamic 127 

hallucination-like visual scenes.  128 

2.1 Experiment 1: Subjective experience during simulated hallucination 129 

In Experiment 1, we compared subjective experiences evoked by the Hallucination 130 

Machine with those elicited by both control videos (within subjects) and by 131 

pharmacologically induced psychedelic states 31 (across studies). Twelve participants took 132 

part in Experiment 1. The results are shown in Figure 2. Visual inspection of the spider chart 133 

reveals that, across all dimensions of subjective experience probed by the questionnaire, 134 

the experiences elicited by the Hallucination Machine are qualitatively distinct from the 135 

control videos (Fig 2a), but qualitatively similar to psilocybin experiences (Fig 2b).  136 

To quantify these observations, we first conducted Bayesian within-subject t-tests 137 

comparing responses to the ASC questionnaire following Hallucination Machine, and 138 

following control videos, on the null hypothesis of ‘no difference’.  The analysis revealed 139 

evidence supporting the alternative hypothesis, suggesting that for the following 140 

dimensions there was a significant difference in subjective ratings between video type: 141 

‘intensity’, ‘patterns’, ‘imagery’, ‘ego’, ‘arousal’, ‘strange’, ‘vivid’, ‘space’, ‘muddle’, ‘spirit’ 142 

(for statistics see Table 1). Bonferroni corrected, within-subject t-tests were consistent with 143 

the Bayesian results, with the exception of the ‘ego’, ‘muddle’, and ‘spirit’ dimensions as 144 

shown by the p-values in Table 1.  145 

Independent Bayesian t-tests comparing responses to the ASC questionnaire 146 

following the Hallucination Machine, or following administration of psilocybin (data from a 147 

previous study31),  also revealed evidence supporting the alternative hypothesis for the 148 

following dimension ‘intensity’, with weaker evidence for ‘pattern’ and ‘strange’, suggesting 149 

that there are some qualitative differences between Hallucination Machine and psilocybin 150 

experiences (see Table 1 for statistics). Crucially, for the remaining questions, Bayesian 151 

analyses were not sensitive to whether the null or alternative hypothesis was supported, 152 

but were trending in the direction of the null, i.e. no difference between subjective 153 

experiences between the Hallucination Machine and psilocybin: ‘vivid’ 154 

‘time’, ‘space’, ‘muddle’, ‘peace’, and ‘past’. Standard paired t-test Bonferroni corrected for 155 

multiple comparisons between ASC responses following the Hallucination Machine and 156 

psilocybin did not reach significance for any of the question.   157 

Together these analyses suggest that for many dimensions of subjective experience 158 

– as reflected in the ASC questionnaire - the Hallucination Machine induced significant 159 

changes as compared to viewing unaltered control videos, and that these changes were 160 

broadly similar to those caused by the administration of psilocybin.  161 

 162 

 163 
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 164 

 165 

Figure 2. ASC questionnaire responses obtained in Experiment 1. a. Comparison of 166 

Hallucination Machine and control video responses. Stronger evidence in favour of a 167 

difference using Bayesian t-tests between Hallucination Machine and the control videos 168 

were found for ten of the questions (†: BF10 > 3). Standard t-test showed the significant 169 

differences for eight of the questions (* p <0.05). b. Comparison of Hallucination Machine 170 

and responses following administration of psilocybin, taken from 31.  Bayes Factor paired 171 

sample t-tests revealed that responses to the question ‘intensity’ (†: BF10 > 3) after the 172 

Hallucination Machine had stronger evidence in favour of a difference from the ratings given 173 

for psilocybin experiences. c. Abbreviations and questions used in ASC questionnaire. 174 

Table 1. Bayesian and standard statistical comparisons of ASCQ ratings from Experiment 1 175 

between Hallucination Machine and control video exposure, and between Hallucination 176 

Machine and psilocybin administration, data taken from 31. Dagger symbols and bold text 177 

indicates Bayes Factor values which show evidence in favour of a difference between ASCQ 178 

responses (†: BF10 > 3). Asterisks after p-value indicates the significant differences in 179 

standard t-test (* p <0.05).  See Figure 2c for Abbreviations and questions used in ASCQ. 180 

 181 
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 182 

 183 

2.2 Experiment 2: Temporal distortion during simulated hallucination 184 

Experiment 1 showed that subjective experiences induced by the Hallucination 185 

Machine displayed many similarities to characteristics of the psychedelic state. Based on 186 

this finding we next used the Hallucination Machine to investigate another commonly 187 

reported aspect of ASC – temporal distortions5,6, by asking twenty-two participants to 188 

complete a temporal production task during presentation of Hallucination Machine, or 189 

during control videos.  190 

One participant was excluded from the analysis due to producing intervals in the 191 

experimental session that were temporally inverted compared to the target durations. A 192 

two-way Bayesian repeated measures ANOVA consisting of factors target interval [1s, 2s, 4s] 193 

and video type (control/Hallucination Machine) showed the strongest evidence for an effect 194 

of target interval only (BF10 = 1.178 × 1046, 1s (M=1.75 s SE=0.09s), 2s (M=2.41 s SE=0.11 s) 195 

and 4 s (M=4.38 s SE=0.16 s)). A model including only video type showed evidence in favour 196 

of the null hypothesis (BF10 = 0.194), indicating that video type did not affect interval 197 

production (Figure 3). An additional two-factorial repeated measures ANOVA revealed a 198 

significant main effect of target interval (F(20,2) = 267.362, p < 0.01, η2=0.930) without the 199 

interaction ( F(20, 2) = 0.935, p< 0.401, η2=0.045). However, the main effect of video type 200 

did not reach significance (F(20,1) = 0.476, p = 0.498, η2=0.023).  201 

Questions 

Hallucination Machine vs control videos Hallucination Machine vs psilocybin  

BF10 

(Bayesian 
t-test) 

t(11) 
p-value  

(Bonferroni 
corrected) 

Effect Size 
(Cohen's d) 

BF10 

(Bayesian 
t-test) 

t(25) 
p-value  

(Bonferroni 
corrected) 

Effect Size 
(Cohen's d) 

intensity 28.09 † 4.185 0.034 *  1.208 3.404 † -2.55 0.306 -1.004 

patterns 389022 † 13.7 0.017 * 3.955 2.545 2.364 0.442 0.916 

imagery 18187 † 9.803 0.017 * 2.83 - - - - 

mood 0.866 1.685 2.04 0.486 - - - - 

ego 3.162 † 2.669 0.374 0.77 0.69 1.335 3.298 0.517 

arousal 37.58 † 4.391 0.017 * 1.268 - - - - 

strange 1721 † 7.44 0.017 * 2.148 2.993 2.467 0.357 0.955 

vivid 122.1 † 5.254 0.017 * 1.1517 0.437 0.723 8.109 0.28 

time 0.39 0.849 7.038 0.245 0.461 -0.82 7.157 -0.317 

space 1057 † 7.005 0.017 * 2.022 0.442 0.747 7.854 0.289 

muddle 6.613 † 3.183 0.153 0.919 0.385 0.428 11.424 0.166 

merge 0.494 -1.146 4.692 -0.331 0.378 0.364 12.223 0.141 

control 1.697 2.218 16.116 0.64 1.617 2.056 0.85 0.796 

spirit 3.375 † 2.715 0.34 0.784 1.83 2.144 0.714 0.83 

peace 1.547 2.149 0.935 0.62 0.429 0.688 8.466 0.267 

float 0.44 1.008 5.695 0.291 0.945 -1.63 1.955 -0.633 

past 0.488 -1.133 4.794 -0.327 0.363 -0.17 14.705 -0.067 
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 202 

 203 

Figure 3. Results of temporal production task during presentation of Hallucination Machine 204 

or control videos. Produced time intervals are shown for both video types and target 205 

durations (1 second for low, 2 seconds for middle and 4 seconds for the high pitch tone). 206 

Bayes Factor analysis revealed strong evidence for no difference in subjective responses 207 

across video type (‡: BF10 < 1/3). 208 

 209 

Post-hoc standard and Bayesian t-tests were applied to the participant’s subjective 210 

ratings for the six questions about their experiences during each video (see Figure 4).  These 211 

revealed some differences in the Hallucination Machine compared to control video. 212 

Participants’ ratings of ‘presence’, “How much did you feel as if you were ‘really there’, BF10 213 

= 26.960, t(20) = 3.705, p=0.007, Cohen’s d=0.808; and ‘attention’, “How focused were you 214 

on the time production task”, BF10 = 4.830, t(20) = 2.822, p = 0.077, Cohen’s d=0.616 were 215 

reduced during the Hallucination Machine. Responses regarding Duration (BF10 = 0.278) and 216 

Speed (BF10 = 0.281) both revealed evidence for no difference between Hallucination 217 

Machine and control video. Other comparisons failed to reach an evidentiary threshold in 218 

both Bayesian and normal t-tests. 219 

 220 
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 221 

Figure 4. Questionnaire responses obtained in Experiment 2. Participant’s estimates’ of the 222 

total duration of Hallucination Machine and control videos in seconds (left panel).  223 

Participants’ subjective ratings between Hallucination Machine and control videos (centre). 224 

Questions used in Experiment 2 (Right). All questions were presented inside the head 225 

mounted display and participants responded to each question using a mouse to indicate 226 

their responses via a visual analog scale. Bayes Factor analysis revealed evidence in favour 227 

of a difference across video type for Q1: duration and Q2: speed (†: BF10 > 3), whereas 228 

evidence for no difference was found for Q3: presence and Q4: attention (‡: BF10 < 1/3). 229 

3.0 Discussion 230 

 231 

We have described the implementation of the Hallucination Machine, which 232 

provides a novel method for investigating (visual) hallucinogenic phenomenology. It 233 

combines two technologies: Panoramic video of natural scenes presented using VR, allowing 234 

the video to be experienced in a fully immersive environment, and an application of deep 235 

convolutional neural networks (DCNNs), Deep Dream, which when suitably adapted can 236 

transform panoramic video to mimic hallucinatory phenomenology in a biologically plausible 237 

manner. The Hallucination Machine enables systematic and parameterizable manipulation 238 

of distinct aspects of altered states of consciousness (ASCs), specifically visual hallucinations, 239 

without involving the widespread systemic effects caused by pharmacological manipulations.  240 

In two experiments we evaluated the effectiveness of this system. Experiment 1 241 

compared subjective experiences evoked by the Hallucination Machine with those elicited 242 

by both (unaltered) control videos (within subjects) and by pharmacologically induced 243 

psychedelic states (across studies). Comparisons between control and Hallucination 244 

Machine with natural scenes revealed significant differences in perceptual and imagination 245 

dimensions (‘patterns’, ‘imagery’, ‘strange’, ‘vivid’, and ‘space’) as well as the overall 246 
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intensity and emotional arousal of the experience. Notably, these specific dimensions were 247 

also reported as being increased after pharmacological administration of psilocybin 31. 248 

Experiment 1 therefore showed that hallucination-like panoramic video presented within an 249 

immersive VR environment gave rise to subjective experiences that displayed marked 250 

similarities across multiple dimensions to actual psychedelic states 31. Although we were not 251 

able to directly compare the Hallucination Machine experiences to pharmacologically 252 

induced psychedelic experiences in the same subjects, the pattern of findings in Experiment 253 

1 support the conclusion that the Hallucination Machine successfully simulates many 254 

aspects of ASC induced by psychedelic drugs.  255 

Experiment 2 tested whether participants’ perceptual and subjective ratings of the 256 

passage of time were influenced during simulated hallucinations, this was motivated by 257 

subjective reports of temporal distortion during ASC 5,6. In contrast to these earlier findings, 258 

neither objective measures (using a temporal production task) nor subjective ratings 259 

(retrospective judgements of duration and speed, Q1 and Q2 in Figure 4) showed significant 260 

differences between the simulated hallucination and control conditions. This suggests that 261 

experiencing hallucination-like phenomenology is not sufficient to induce temporal 262 

distortions, raising the possibility that temporal distortions reported in pharmacologically 263 

induced ASC may depend on more general systemic effects of psychedelic compounds.  264 

A crucial feature of the Hallucination Machine is that the Deep Dream algorithm 265 

used to modify the input video is highly parameterizable. Even using a single DCNN trained 266 

for a specific categorical image classification task, it is possible with Deep Dream to control 267 

the level of abstraction, strength, and category type of the resulting hallucinatory patterns. 268 

In the current study, we chose a relatively higher layer and arbitrary category types (i.e. a 269 

category which appeared most similar to the input image was automatically chosen) in 270 

order to maximize the chances of creating dramatic, vivid, and complex simulated 271 

hallucinations. Future extensions could ‘close the loop’ by allowing participants (perhaps 272 

those with experience of psychedelic or psychopathological hallucinations) to adjust the 273 

Hallucination Machine parameters in order to more closely match their previous 274 

experiences. This approach would substantially extend phenomenological analysis based on 275 

verbal report, and may potentially allow individual ASCs to be related in a highly specific 276 

manner to altered neuronal computations in perceptual hierarchies.  277 

Another key feature of the Hallucination Machine is the use of highly immersive 278 

panoramic video of natural scenes presented in virtual reality (VR). Conventional CGI-based 279 

VR applications have been developed for analysis or simulation of atypical conscious states 280 

including psychosis, sensory hypersensitivity, and visual hallucinations 28,29,32–34. However, 281 

these previous applications all use of CGI imagery, which while sometimes impressively 282 

realistic, is always noticeably distinct from real-world visual input and is therefore 283 

suboptimal for investigations of altered visual phenomenology.  Our setup, by contrast, 284 

utilises panoramic recording of real world environments thereby providing a more 285 

immersive naturalistic visual experience enabling a much closer approximation to altered 286 
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states of visual phenomenology. In the present study, these advantages outweigh the 287 

drawbacks of current VR systems that utilise real world environments, notably the inability 288 

to freely move around or interact with the environment (except via head-movements).  289 

Besides having potential for non-pharmacological simulation of hallucinogenic 290 

phenomenology, the Hallucination Machine may shed new light on the neural mechanisms 291 

underlying physiologically-induced hallucinogenic states. This potential rests on the close 292 

functional mappings between the architecture of DCNNs like those used here and the 293 

functional architecture of the primate visual system 35, as well as the equivalences between 294 

the ‘top-down’ functional flow (back propagation in Deep Dream) of the Deep Dream 295 

algorithm and the role of top-down signalling in Bayesian or ‘predictive processing’ theories 296 

of perception36. 297 

A defining feature of the Deep Dream algorithm is the use of backpropagation to 298 

alter the input image in order to minimize categorization errors. This process bears intuitive 299 

similarities to the influence of perceptual predictions within predictive processing accounts 300 

of perception. In predictive processing theories of visual perception, perceptual content is 301 

determined by the reciprocal exchange of (top-down) perceptual predictions and (bottom-302 

up) perceptual predictions errors. The minimisation of perceptual prediction error, across 303 

multiple hierarchical layers, approximates a process of Bayesian inference such that 304 

perceptual content corresponds to the brain’s “best guess” of the causes of its sensory input. 305 

In this framework, hallucinations can be viewed as resulting from imbalances between top-306 

down perceptual predictions (prior expectations or ‘beliefs’) and bottom-up sensory signals. 307 

Specifically, excessively strong relative weighting of perceptual priors (perhaps through a 308 

pathological reduction of sensory input, see (Abbott, Connor, Artes, & Abadi, 2007; Yacoub 309 

& Ferrucci, 2011)) may overwhelm sensory (prediction error) signals leading to hallucinatory 310 

perceptions 37–42. 311 

Close functional and more informal structural correspondences between DCNNs and 312 

the primate visual system have been previously noted 20,35. Broadly, the responses of 313 

‘shallow’ layers of a DCNN correspond to the activity of early stages of visual processing, 314 

while the responses of ‘deep’ layers of DCNN correspond to the activity of later stages of 315 

visual processing. These findings support the idea that feedforward processing through a 316 

DCNN recapitulates at least part of the processing relevant to the formation of visual 317 

percepts in human brains. Critically, although the DCNN architecture (at least as used in this 318 

study) is purely feedforward, the application of the Deep Dream algorithm approximates, at 319 

least informally, some aspects of the top-down signalling that is central to predictive 320 

processing accounts of perception. Specifically, instead of updating network weights via 321 

backpropagation to reduce classification error (as in DCNN training), Deep Dream alters the 322 

input image (again via backpropagation) while clamping the activity of a pre-selected DCNN 323 

layer. The network itself is not altered in this process. Therefore, the result of the Deep 324 

Dream process can be intuitively understood as the imposition of a strong perceptual prior 325 
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on incoming sensory data, establishing a functional (though not computational) parallel with 326 

the predictive processing account of perceptual hallucinations given above. 327 

 328 

Figure 5. Possible hierarchical contributions to simple and complex visual hallucinations. a. 329 

Veridical Perception: Balanced bottom-up and top-down contributions from all levels of the 330 

hierarchy. b. Simple Hallucinations: perceptual content is overly influenced by visual 331 

predictions at lower network levels, with a reduced influence from lower-level input (grey 332 

arrow), emphasising features like edges and lines. c. Complex Hallucinations: perceptual 333 

content is overly influenced by visual predictions at higher network levels, with a reduced 334 

influence from lower-level input (grey arrow), emphasising complex object-based features. 335 

What determines the nature of this heterogeneity and shapes its expression in 336 

specific instances of hallucination?  The content of the visual hallucinations in humans range 337 

from coloured shapes or patterns (simple visual hallucinations) 7,43, to more well-defined 338 

recognizable forms such as faces, objects, and scenes (complex visual hallucinations)44,45. As 339 

already mentioned, the output images of Deep Dream are dramatically altered depending 340 

on which layer of the network is clamped during the image-alteration process. Fixing higher 341 

layers tends to produce output similar to more complex hallucinations (Figure 5c, Higher 342 

Layer, see also Supplemental Video S1), while fixing lower layers tends create output images 343 

better resembling simpler geometric hallucinations (Figure 5b, Lower layer, see also 344 

Supplemental Video S2 and S3). These observations, together with the functional and 345 

structural correspondences between DCNNs and the primate visual hierarchy, is consistent 346 

with the idea that the content of visual hallucinations in humans may be shaped by the 347 

specificity with which a particular drug (or pathology) influences activity at different levels 348 

of processing within the visual hierarchy. Some example scenarios are schematically 349 

illustrated in Figure 5. In comparison to normal (veridical) perception (Figure 5a), simple 350 

kaleidoscopic phenomenology  - which is somewhat characteristic of psychedelic states 7,43  - 351 

could be explained by increased influence of lower layers of the visual system during the 352 

interpretation of visual input, in the absence of contributions from higher categorical layers 353 

(Figure 5b). Conversely, complex visual hallucinations could be explained by the over 354 
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emphasis of predictions from higher layers of the visual system, with a reduced influence 355 

from lower-level input (Figure 5c).  356 

4.0 Conclusion 357 

We have described a method for simulating altered visual phenomenology similar to 358 

visual hallucinations reported in the psychedelic state. Our Hallucination Machine combines 359 

panoramic video and audio presented within a head-mounted display, with a modified 360 

version of ‘Deep Dream’ algorithm, which is used to visualize the activity and selectivity of 361 

layers within DCNNs trained for complex visual classification tasks. In two experiments we 362 

found that the subjective experiences induced by the Hallucination Machine differed 363 

significantly from control (non-‘hallucinogenic’) videos, while bearing phenomenological 364 

similarities to the psychedelic state (following administration of psilocybin). The immersive 365 

nature of our paradigm, the close correspondence in representational levels between layers 366 

of DCNNs and the primate visual hierarchy along with the informal similarities between 367 

DCNNs and biological visual systems, together suggest that the Hallucination Machine is 368 

capable of simulating biologically plausible and ecologically valid visual hallucinations. In 369 

addition, the method carries promise for isolating the network basis of specific altered 370 

visual phenomenological states, such as the differences between simple and complex visual 371 

hallucinations.  Overall, the Hallucination Machine provides a powerful new tool to 372 

complement the resurgence of research into altered states of consciousness.  373 
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5.0 Methods 374 

5.1 Hallucination Machine 375 

In brief, the Hallucination Machine was created by applying the Deep Dream 376 

algorithm to each frame of a pre-recorded panoramic video presented using a HMD (Figure 377 

1). Participants could freely explore the virtual environment by moving their head, 378 

experiencing highly immersive dynamic hallucination-like visual scenes.  379 

5.1.1 Panoramic video and presentation 380 

The video footage was recorded on the University of Sussex campus using a 381 

panoramic video camera (Point Grey, Ladybug 3). The frame rate of the video was 16 fps at 382 

a resolution of 4096 x 2048. All video footage was presented using a head mounted display 383 

(Oculus Rift, Development Kit 2) using in-house software developed using Unity3D. 384 

5.1.2 DCNN specification and application of Deep Dream 385 

The DCNN – a deeply layered feedforward neural network – used in this study had 386 

been pre-trained on a thousand categories of natural photographs used in the Large Scale 387 

Visual Recognition Challenge 2010 (ILSVRC2010) 17,46. During this training procedure, 388 

features in all layers are learned via backpropagation (with various modifications) to 389 

associate a set of training images to distinct categories. Consequently, the trained network 390 

implements a mapping from the pixels of the input image to the categories, represented as 391 

activation of specific units of the top layer of the network. Given this network, to create the 392 

panoramic video we applied the Deep Dream algorithm frame-by-frame to the raw video 393 

footage.  394 

The Deep Dream algorithm also uses error backpropagation, but instead of updating 395 

the weights between nodes in the DCNN, it fixes the weights between nodes across the 396 

entire network and then iteratively updates the input image itself to minimize 397 

categorization errors via gradient descent. Over multiple iterations this process alters the 398 

input image, whatever it might be (e.g., a human face), so that it encompasses features that 399 

the layer of the DCNN has been trained to select (e.g., a dog). When applied while fixing a 400 

relatively low level of the network, the result is an image emphasizing local geometric 401 

features of the input. When applied while fixing relatively high levels of the network, the 402 

result is an image that imposes object-like features on the input, resembling a complex 403 

hallucination. Examples of the output of Deep Dream used in Experiments 1 and 2 are 404 

shown in Figure 1.  405 

Although the original Deep Dream program was intended to process a single static 406 

image (Mordvintsev, Tyka, et al., 2015), others have developed implementations of this 407 

algorithm that process image sequences in order to make videos by blending the 408 

hallucinatory content of the previous frame with the current frame (Roelof, 2015; Samim, 409 

2015). The principle here is to take a user defined proportion from 0-1 (blending ratio) of 410 

the previous frame’s hallucinatory patterns (0 = no information, 1 = all information) and 411 
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integrate it into the current frame.  In this way, each frame inherits some of the 412 

hallucinatory content of the previous frame, as opposed to Deep Dream starting from 413 

scratch for each frame. This frame-to-frame inheritance enables the hallucinatory patterns 414 

to remain relatively constant as the video unfolds.  We extended one such implementation 415 
47 to optimise the hallucinogenic properties of the video. In our extension, the optical flow 416 

of each frame is calculated by comparing the difference in the movement of all pixels 417 

between the current and previous frame. The hallucinatory patterns from areas where the 418 

optical flow was detected is merged to the current (not-yet-hallucinatory) frame based on 419 

the weighting provided by the blending ratio. The Deep Dream algorithm is then applied to 420 

this merged frame. We also optimised the blending ratio between each pair of frames, 421 

setting different blending ratios in areas of the image with high (foreground, moving areas, 422 

blending ratio of 0.9) or low (background static areas, blending ratio of 0.1) optical flow. This 423 

was done to avoid saturation of areas of the image with low optical flows by the higher 424 

blending ratios used for areas with high optical flow. The details of our implementation of 425 

Deep Dream are provided in the supplemental material. Our software for creating the Deep 426 

Dream video can be found on GitHub 48. The Deep Dream video used throughout the 427 

reported experiments was generated by selecting a higher DCNN layer, which responds 428 

selectively to higher-level categorical features (layers = ‘inception_4d/pool’, octaves = 3, 429 

octave scale = 1.8, iterations = 32, jitter = 32, zoom = 1, step size = 1.5, blending ratio for 430 

optical flow = 0.9, blending ratio for background = 0.1). 431 

 432 

5.2 Experiment 1: Subjective experience during simulated hallucination 433 

5.2.1 Participants 434 

Twelve participants completed Experiment 1 (mean age = 21.1, SD =2.23; 7 female). 435 

Participants provided informed consent before taking part and received £10 or course 436 

credits as compensation for their time. All methods were carried out in accordance with 437 

approved guidelines provided by the University of Sussex, Research Ethics Committee. 438 

5.2.2 Experimental Design  439 

Both experiments were performed in a dedicated VR lab. Participants were fitted 440 

with a head-mounted display before starting the experiment and exposed, in a counter-441 

balanced manner, to either the Hallucination Machine or the original unaltered (control) 442 

video footage. Each video presentation lasted 3 minutes and was repeated twice, with a 443 

180-degree direction flip of the initial orientation between the two presentations 444 

(presenting the part of the scene that would have been directly behind their viewpoint in 445 

the first presentation) to help ensure that participants experienced the majority of the 446 

panoramically-recorded scene. Participants were encouraged to freely investigate the scene 447 

in a naturalistic manner. While sitting on a stool they could explore the video footage with 448 

3-degrees of freedom rotational movement. While the video footage is spherical, there is a 449 

bind spot of approximately 33-degrees located at the bottom of the sphere due to the field 450 
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of view of the camera. After each video, participants were asked to rate their experiences 451 

for each question via an ASC questionnaire which used a visual analog scale for each 452 

question (see Figure 2c for questions used).  We used a modified version of an ASC 453 

questionnaire, which was previously developed to assess the subjective effects of 454 

intravenous psilocybin in fifteen healthy human participants 31. All data referring to 455 

Psilocybin was taken from this study31. 456 

5.2.3 Analysis 457 

Bayesian paired t-tests were used to compare ASC questionnaire subjective ratings 458 

between the control condition and the Hallucination Machine, while Bayesian independent 459 

t-tests were used to compare Hallucination Machine with subjective ratings following 460 

psilocybin administration (data taken from the original study 31). We quantified how close to 461 

the null (no difference between results), or to the alternative hypothesis (difference in 462 

results), each result was using JASP 49 with a default Cauchy prior of .707 half-width at half-463 

maximum 50. A BF10 > 3.0 is interpreted as evidence for accepting the alternative hypothesis 464 

(i.e. there is a difference), whereas BF10 < 1/3 is interpreted as evidence for accepting the 465 

null hypothesis (i.e. there is no difference)51. Standard paired t-test Bonferroni corrected for 466 

multiple comparisons were also conducted.   467 

5.3 Experiment 2: Temporal distortion during simulated hallucination 468 

5.3.1 Participants 469 

A new group of Twenty-two participants that did not participate in Experiment 1 470 

completed Experiment 2 (M age =23.9, SD =6.71, 13 female). Participants provided informed 471 

consent before taking part and received £10 or course credits as compensation for their 472 

time. All methods were carried out in accordance with approved guidelines provided by the 473 

University of Sussex, Research Ethics Committee. 474 

5.3.2 Experimental Design 475 

The experiment began with a practice session of a standard temporal production 476 

task. In each of 20 trials, participants heard one of three tones, each of a different pitch 477 

(low: 220Hz, middle: 440Hz, and high: 1760Hz, each lasting 250 milliseconds). On each trial 478 

the pitch was randomly selected. Participants were asked to produce specific time intervals 479 

for each tone (1 second for low, 2 seconds for middle and 4 seconds for the high pitch 480 

tone)52,53. Participants were instructed to respond immediately after the tone had ceased by 481 

holding the left mouse button down for the target time interval for each specific tone 482 

(Figure 6). After producing the interval, they were shown both their produced interval, and 483 

the target interval, as two dots on a one-dimensional scale, as well as a numeric 484 

representation (e.g. produced interval “2.4 seconds”, target interval “2.0 seconds”). The 485 

average numbers of tones per practice session was 6.12 (SD = 1.96) Low, 6.54 (SD = 1.61) 486 

Middle, and 6.33 (SD = 2.18) High. Participants had to repeat the practice session if the 487 

Pearson’s correlation between the target and produced intervals was less than 0.5.  488 
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Once the practice was finished, participants began the experimental session. This 489 

consisted of 12 blocks.  In each block a panoramic video was shown; either the control video 490 

(6 blocks) or the Hallucination Machine (6 blocks), and similar to Experiment 1, participants 491 

were instructed to explore the scene freely in a naturalistic manner. The order of the videos 492 

was counter-balanced across participants. Each block lasted 3 minutes, leading to a total 493 

exposure of 18 minutes for each video type. While participants explored the immersive 494 

video, low, middle or high pitch tones were presented in a random order (the average 495 

numbers of tones per block were 6.17 (SD = 2.02) Low, 6.16 (SD = 2.00) Middle, 6.21 (SD = 496 

1.94) High for Hallucination Machine, and 6.62 (SD = 2.44) Low, 6.63 (SD = 2.42) Middle, and 497 

6.61 (SD = 2.55) High for the control video). Immediately after hearing the tone, participants 498 

had to produce the interval relating to the tone (one second, two seconds, or four seconds) 499 

(Figure 6). Following the participant’s response there was a random inter-trial interval of 500 

between 2 and 4 seconds (uniformly distributed). After each block, participants answered 501 

six questions about their experiences during the video (Figure 4). The questions were 502 

presented inside the head mounted display and participants responded to the questions 503 

using a mouse to indicate a value on a visual analog scale.  504 

 505 

Figure 6. Experiment 2 temporal production task structure. While viewing either panoramic 506 

Hallucination Machine or control videos, participants were asked to produce one of three 507 

specific time intervals. Each time interval had been associated with a differing pitch tone 508 

during a practice session (1 second for low, 2 seconds for middle and 4 seconds for the high 509 

pitch tone). Participants responded immediately after the tone had ceased by holding the 510 

left mouse button down for the target time interval for each specific tone. After the button 511 

was released there was an inter-trial interval of between 2-4 seconds. 512 

5.3.3 Analysis 513 

A Bayesian two-factorial repeated measures ANOVA consisting of the factors interval 514 

production [1s, 2s, 4s] and video type (control/Hallucination Machine) was used to 515 

investigate the effect of video type on interval production. A standard two-factorial 516 

repeated measures ANOVA using the same factors as above was also conducted. 517 

A two-factorial repeated measures ANOVA consisting of the factors interval 518 

production [1s, 2s, 4s] and video type (control/Hallucination Machine) was used to 519 

investigate the effect of video type on interval production. Similar to Experiment 1, for cases 520 

in which standard statistics did not reveal a significant difference, we quantified how close 521 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2017. ; https://doi.org/10.1101/213751doi: bioRxiv preprint 

https://doi.org/10.1101/213751
http://creativecommons.org/licenses/by-nc/4.0/


 
 

19 
 

to the null (no difference between results) or alternative hypothesis (difference in results) 522 

each result was by an additional two-way Bayesian ANOVA using the same factors as above. 523 

In a similar fashion, for cases in which standard t-tests did not reveal significant differences 524 

in subjective ratings between video type we used additional Bayesian t-tests. 525 

 526 

Data Availability: Video materials used in the study are available in the supplemental 527 

material. The datasets generated in Experiment 1 and 2 are available from the 528 

corresponding author upon request. 529 
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