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Abstract 25 

Predictive coding theories argue recent experience establishes expectations in the 26 

brain that when violated generate prediction errors. Prediction errors provides a 27 

possible explanation for repetition suppression where repeated stimulus 28 

presentations yield reduced neural responses. On a predictive coding account, 29 

repetition suppression arises because the repeated stimuli are expected whereas 30 

non-repeated stimuli are unexpected, eliciting larger neural responses. Here we 31 

employed electroencephalography in human to test the predictive coding account of 32 

repetition suppression. In different blocks, streams of gratings were presented whose 33 

orientations were expected either to repeat or change. Uniquely, we applied 34 

multivariate forward modelling to determine how orientation selectivity was affected 35 

by repetition and prediction. Prediction errors were associated with significantly 36 

enhanced orientation selectivity, whereas there was no such influence on selectivity 37 

during repetition suppression. Our findings also suggest that when a prediction error 38 

is registered in the visual system, representations of expected stimulus features are 39 

transiently reactivated. 40 

   41 
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Introduction 42 

At any moment in time, the brain receives more sensory information than can 43 

be responded to, creating the need for selection and efficient processing of the 44 

incoming signals. One mechanism by which the brain reduces its information 45 

processing load is to encode successive presentations of the same stimulus in a 46 

more efficient form, a process known as neural adaptation. Such adaptation has 47 

been observed across different sensory modalities and species, and provides a 48 

mechanism to enhance the coding efficiency of individual neurons and neuronal 49 

populations (Maravall et al., 2007; Barlow, 2012; Benucci et al., 2013; Adibi et al., 50 

2013b). A specific form of neuronal adaptation is known as repetition suppression, in 51 

which the neural responses evoked by a given stimulus decline with repeated 52 

exposure to that stimulus (Gross et al., 1967; Movshon and Lennie, 1979; Diederen 53 

et al., 2016; Keller et al., 2017; Rasmussen et al., 2017). Here we asked whether a 54 

predictive coding theory can account for the changes in neural representations 55 

observed with repetition suppression.  56 

The phenomenon of repetition suppression has been widely exploited to 57 

investigate neural representations of sensory information. Repeated exposures allow 58 

for more efficient representation of subsequent stimuli, as manifested in improved 59 

behavioural performance despite a significant reduction in neural activity (Schacter 60 

and Buckner, 1998; Henson and Rugg, 2003). Repetition suppression paradigms 61 

have been used extensively in human neuroimaging because they are commonly 62 

believed to be analogous to the single-cell adaptation effects observed in animal 63 

studies (see Barron et al., 2016 for review). The exact relationship between the 64 

effects seen in human neuroimaging studies and animal neurophysiology has, 65 
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however, yet to be fully established.  66 

The view that repetition suppression measured in human neuroimaging 67 

reflects neuronal adaptation has recently been challenged by hierarchical predictive 68 

coding theories (Summerfield et al., 2008; Auksztulewicz and Friston, 2016). These 69 

theories argue that the brain interprets incoming sensory events based on what 70 

would be expected from the recent history of exposure to such stimuli (Rao and 71 

Ballard, 1999; Friston, 2005). Predictions are generated within each cortical area, 72 

and are bi-directionally propagated from higher to lower areas, including to primary 73 

sensory regions, allowing for more efficient representation of expected stimuli. When 74 

there is a precise expectation, incoming information can be efficiently represented by 75 

recruiting a small pool of relevant neurons (Friston, 2005). Some of the most 76 

compelling evidence for predictive coding comes from human neuroimaging 77 

experiments in which the presentation of an unexpected stimulus generates a larger 78 

response than the presentation of an expected stimulus. In studies employing 79 

electroencephalography (EEG) and magnetoencephalography (MEG), this effect is 80 

known as the mismatch negativity (Näätänen et al., 2007; Garrido et al., 2009; 81 

Wacongne et al., 2011).  82 

To test the hypothesis that prediction error can account for repetition 83 

suppression effects, Summerfield and colleagues (2008) introduced an experimental 84 

paradigm in which the identity of a face stimulus was either repeated in 80% of trials 85 

(making the repetition expected) or was changed in 80% of trials (making the 86 

repetition unexpected). There was a greater reduction of the BOLD response in 87 

fusiform face area when a face repetition was expected, compared to when it was 88 

unexpected. This attenuation of repetition suppression by prediction has also been 89 
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replicated using fMRI (Larsson and Smith, 2012) and M/EEG, using high-level stimuli 90 

such as faces (Summerfield et al., 2011), and simple stimuli such as tones 91 

(Todorovic et al., 2011; Todorovic and de Lange, 2012).  92 

A potential reconciliation of the relationship between prediction error and 93 

repetition suppression comes from work showing that while expectations decrease 94 

the overall amount of neural activity, they may also yield sharper representations of 95 

sensory stimuli (Kok et al., 2012). Typical neuroimaging analyses only examine 96 

overall levels of activity (Tootell et al., 1995; Buckner et al., 1998; Tootell et al., 1998; 97 

Kourtzi and Kanwisher, 2001), which could be produced by several different types of 98 

change in neural representation. For instance, both sharpening, where response to 99 

only unpredicted features is suppressed, and gain reduction, where a multiplicative 100 

suppression occurs for all features, could be associated with decreased population 101 

activity, even though the amount of information carried by the representations will be 102 

markedly different. Recently introduced multivariate pattern analytic approaches to 103 

human neuroimaging, such as forward encoding modelling, allow quantification of 104 

stimulus-selective information contained within patterns of neural activity in human 105 

observers (Brouwer and Heeger, 2009; Garcia et al., 2013; Myers et al., 2015; Salti 106 

et al., 2015; King et al., 2016; Wolff et al., 2017). 107 

 Here we used multivariate methods to determine whether repetition 108 

suppression and prediction error similarly affect the way the brain represents visual 109 

orientation information. To anticipate our findings, we found that repetition 110 

suppression had no effect on visual orientation selectivity, but that prediction error 111 

was associated with a significantly increased orientation-selective response through 112 

a gain modulation soon after the stimulus was presented. This representation was 113 
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then transiently re-activated ~200 ms afterwards.  114 

Results 115 

 We used a modified version of the paradigm introduced by Summerfield and 116 

colleagues (2008), replacing the face stimuli used in that study with oriented Gabors. 117 

These low-level stimuli allowed us to quantify the degree of orientation selectivity in 118 

EEG activity to determine how representations of orientation are affected by 119 

prediction error and repetition suppression. Each of fifteen observers participated in 120 

two EEG sessions where on each trial, two Gabors were presented sequentially (100 121 

ms presentation, 600 ms stimulus onset asynchrony), and these stimulus pairs either 122 

repeated or alternated in their orientation (Figure 1A, Movie 1). The predictability of 123 

the repeated and alternating pairs was varied in a block-wise manner to manipulate 124 

expectation. In a repeating block, the orientations of the two Gabors in a pair 125 

repeated in 80% of trials, and alternated for the remaining 20%. These contingencies 126 

were reversed in the alternating block (Figure 1B). The orientations of successive 127 

stimuli across a block were randomized to limit any accumulated effects of 128 

adaptation and prediction. As repetition suppression and prediction error form 129 

orthogonal dimensions of the task, the design allowed us to isolate their respective 130 

contributions to neural responses. Participants completed an unrelated task of 131 

discriminating (red vs blue) rare (10%) coloured Gabors.  132 
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 133 

Figure 1. Example stimulus displays and task design. (A) Schematic of the stimuli 134 
and timing used in the experiment. Participants viewed a rapid stream of pairs of 135 
Gabors and monitored for an infrequently occurring coloured target (10% of trials). 136 
The stimulus orientations varied pseudorandomly across trials between 0° and 160° 137 
(in 20° steps), allowing orientation-selective information contained within patterns of 138 
EEG activity to be estimated. (B) The orientation of the pairs of Gabors could either 139 
repeat or alternate. In one type of block, 80% of trials were orientation repeats and 140 
the remaining 20% alternated (Repeating blocks); in the other type of block these 141 
contingencies were reversed (Alternating blocks). 142 
 143 

 144 

Movie 1. Example of the stimulus sequence in a typical repetition block.  145 
 146 
Repetition suppression and prediction error affect the overall level of neural 147 

activity 148 

 The Gabors elicited a large response over occipital-parietal areas (Figure 2A). 149 
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Consistent with previous work (Tootell et al., 1998; Summerfield et al., 2011; 150 

Todorovic et al., 2011; Rentzeperis et al., 2012; Todorovic and de Lange, 2012; Cui 151 

et al., 2016; Keller et al., 2017), there was a significant repetition suppression effect 152 

(Repeat < Alternating), such that the response to repeated stimuli was significantly 153 

reduced compared with the response to alternating stimuli (Figure 2A). The repetition 154 

suppression effect was evident over a large cluster of occipital-parietal electrodes at 155 

two time intervals: an early effect from 79 to 230 ms, and a later effect at 250 to 540 156 

ms after the onset of the second stimulus (cluster p < .025; Figure 2B and caption). A 157 

large cluster of frontal electrodes mirrored the repetition suppression effect with a 158 

similar time course: the ERP over these frontal sites had the same pattern, but was 159 

reversed in sign, suggesting it originated from the same dipole as the occipital 160 

response. 161 

  162 
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 163 

Figure 2. Univariate EEG results for the effect of repetition suppression and 164 
prediction error on the second stimulus in a pair (T2). Grand average ERP time 165 
courses for repetition suppression (A) and prediction error (C) averaged over 166 
occipital-parietal electrodes (O1, O2, Oz, POz, PO7, PO3, PO8, PO4). The shaded 167 
region indicates significant differences between the conditions (two-tailed cluster-168 
permutation, alpha p < .05, cluster alpha p < .05, N permutations = 20,000). The 169 
main effects of repetition suppression (B) and prediction error (D) over three time 170 
periods and across all electrodes. The main effect of repetition suppression is 171 
displayed as Repeating minus Alternating trials. The main effect of prediction error is 172 
displayed as Expected minus Unexpected. Circles indicate clusters of electrodes 173 
with significantly reduced activity, and crosses indicate clusters of electrodes with 174 
significantly increased activity (alpha p < .05, cluster p < .025, N permutations = 175 
1500).  176 
 177 
 Also consistent with previous results (Garrido et al., 2009; Summerfield et al., 178 

2011; Todorovic et al., 2011; Todorovic and de Lange, 2012), there was a significant 179 

prediction error effect (Expected < Unexpected), with a larger neural response over a 180 

cluster of frontal electrodes 75-150 ms after stimulus presentation (Figure 2C). As 181 

with the repetition suppression result described above, there was a prediction error 182 

effect of opposite polarity over occipital-parietal electrodes. This effect was 183 

significant at an early time point post-stimulus (79-130 ms), but not at later time 184 

points (320-390 ms; Figure 2D). Finally, there was no interaction between repetition 185 

suppression and prediction error (no significant positive or negative clusters, all p > 186 
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.05). Taken together, these results reveal both repetition suppression and prediction 187 

error effects in the neural data, which were indexed separately as shown in Figure 2.  188 

Prediction errors increase the amount of orientation-selective information 189 

contained within patterns of EEG activity 190 

We next examined the key question of whether repetition suppression and 191 

prediction error differentially affect the neural representation of orientation 192 

information. To do this, we used a forward encoding approach to reconstruct 193 

orientation-selective information contained within the multivariate pattern of EEG 194 

activity distributed across the scalp (see Methods for details). Briefly, this technique 195 

transforms sensor-level responses into tuned ‘feature’ channels (Kay et al., 2008; 196 

Brouwer and Heeger, 2009; Garcia et al., 2013; Myers et al., 2015), in this case, 197 

orientation-selective features. For each trial, the presented orientation was 198 

convolved with a canonical, orientation-selective tuning function and regressed 199 

against the pattern of EEG activity across all sensors at each time point. This 200 

created a spatial filter of the multivariate EEG activity that differentiated orientations 201 

(Figure 3D). These weights were then inverted to reconstruct the model, and 202 

multiplied against an independent set of test trials to produce responses in the 203 

modelled orientation channels. These sets of responses were then used to evaluate 204 

the degree of orientation selectivity in those trials. The procedure was repeated for 205 

all time points in the trial, and a cross-validated approach was used until all trials had 206 

been used for both training and testing.  207 

As shown in Figure 3, the forward encoding revealed a strong, orientation-208 

selective response derived from the multivariate pattern of EEG activity. This 209 

orientation-tuned response was evident from ~50 to 470 ms after stimulus onset, and 210 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2017. ; https://doi.org/10.1101/213710doi: bioRxiv preprint 

https://doi.org/10.1101/213710
http://creativecommons.org/licenses/by/4.0/


Repetition suppression and prediction error  

 11 

peaked between ~120-250 ms (Figure 3C). Examination of the regression weights 211 

revealed that this response was largely driven by activity centred over occipital-212 

parietal areas (Figure 3D).  213 

 214 

  215 
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 216 

Figure 3. Results of the forward encoding modelling for orientation-selectivity. (A) 217 
Time-resolved orientation tuning curve across all participants and conditions in 218 
response to the second Gabor. The forward encoding approach resulted in a tuning 219 
curve for each of the nine presented orientations.  These tuning curves were then 220 
centred at each presented orientation (here labelled as 0°) to combine across all 221 
orientations. The orientation-selective response is contained within the overall 222 
pattern of EEG; activity begins soon after stimulus onset and peaks at around 250 223 
ms before declining. (B) Population tuning curve of the stimulus reconstruction 224 
across participants, averaged between 50-100 ms and 150-250 ms after stimulus 225 
presentation. Each line is a fitted Gaussian response with a variable offset used to 226 
quantify orientation selectivity. Error bars indicate ±1 standard error of mean across 227 
participants. (C) Amplitude of the channel response over time, averaged across all 228 
conditions (black line). The thick black line indicates significant encoding of 229 
orientation based on a cluster-permutation test across participants (cluster p < .05, N 230 
permutations = 20,000). Encoding accuracy was reliable from 52 to 470 ms post-231 
stimulus onset. The error shading (dark grey) indicate bootstrapped 95% confidence 232 
intervals of the mean. (D) Topographic plots of the weights (averaged across the 9 233 
orientation channels) derived from forward encoding at the corresponding time points 234 
shown in panel B.  235 
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 To examine our central question of whether repetition suppression and 236 

prediction error have differential effects on neural representations of orientation, we 237 

split and averaged the results of the forward encoding by trial type, and fitted these 238 

with Gaussians (see Methods) to quantify orientation selectivity (Figure 4). Repetition 239 

suppression did not affect the amount of orientation selectivity contained within the 240 

EEG data, as trials with repeated and alternating orientations could be decoded with 241 

similar accuracies. This was the case even though the repeated trials had a 242 

markedly smaller EEG response over occipital and parietal electrodes, where the 243 

forward encoding model was maximally sensitive (Figure 2A). This result is 244 

consistent with the ‘efficient representation’ hypothesis of repetition suppression, 245 

which argues that the overall neural response is smaller with repetition suppression 246 

due to more efficient coding of stimulus information (Gotts et al., 2012).  247 

  248 
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 249 

Figure 4. The effect of repetition suppression and prediction error on orientation 250 
selectivity measured using forward encoding modelling. (A). Amount of orientation-251 
selective information reconstructed from the EEG signal in response to the second 252 
Gabor in a pair, shown separately for repetition suppression (upper panel) and 253 
prediction error (lower panel). The thick black line indicates significant differences 254 
between the conditions (two-tailed cluster-permutation, alpha p < .05, cluster alpha p 255 
< .05, N permutations = 20,000). Error shading indicates bootstrapped 95% 256 
confidence intervals of the mean. (B) The population tuning curve averaged over the 257 
significant time period (79 – 185 ms) to show how the overall stimulus representation 258 
is affected with a fitted Gaussian. For prediction error, the amplitude increased and 259 
the baseline decreased. There was no effect for the repetition suppression condition. 260 
Error bars indicate ±1 standard error.  261 
 262 
 Examining the effect of prediction error revealed a markedly different pattern 263 

of results. At 79 - 185 ms after the onset of the second stimulus in the pair, 264 

orientation-selectivity increased significantly when the stimulus was unexpected 265 

relative to when it was expected, i.e., the prediction error was associated with an 266 

increased representation of the stimulus at the earliest stages of the brain’s 267 
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response to that stimulus. Moreover, the prediction error signal contained enhanced 268 

information about the specific features of the stimulus that violated expectation, in 269 

this case the orientation of the second grating.  270 

To determine how the orientation representation was affected by prediction 271 

error, we averaged the stimulus reconstruction over this early time period (79-185 272 

ms after stimulus presentation) to increase signal-to-noise, and fitted Gaussians to 273 

each participant’s data individually (Figure 3B). This again showed that the amplitude 274 

of the response was significantly (t(14) = 3.34, p = .0049) higher for unexpected 275 

(M = 0.67, SE = 0.06) than for expected (M = 0.41, SE = 0.03) stimuli. By contrast, 276 

the width of the representations was similar for unexpected (M = 29.62º, SE = 4.72º) 277 

and expected (M = 26.72º, SE = 2.74º) stimuli, paired t-test (t(14) = 0.78, p = .45). 278 

There was also a small, but non-significant (t(14) = 1.94, p = .072) trend for a smaller 279 

baseline response (i.e., non-orientation tuned activity) in the unexpected  (M = -0.01, 280 

SE = 0.07) than in the expected (M = 0.13, SE = 0.02) condition. For comparison, we 281 

also averaged the same time period for the repetition suppression conditions, and 282 

found similar curves for the repeated and alternating trials (all ps > .05).   283 

 To further examine whether orientation-selectivity contained within the overall 284 

pattern of EEG activity differed for unexpected and expected stimuli, we used 285 

multivariate linear discriminant analysis to determine whether backward decoding 286 

produces the same pattern of results as that yielded by the forward encoding 287 

approach described above. A similar cross-validation procedure was used as in the 288 

forward encoding approach, but accuracy was now defined as proportion correct 289 

accuracy of the presented orientation on the test trials. This analysis confirmed the 290 

results of the forward encoding: orientations shown in unexpected trials were 291 
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classified better than orientations shown in expected trials (p <. 05). Again, there was 292 

no effect of repetition on classification accuracy (paired t-test p > .05).  293 

 294 

Figure 5. Peak linear discriminant classification accuracy of the presented grating 295 
orientation for expected and unexpected conditions. The dotted line indicates chance 296 
performance (1/9 orientations).  The error bars indicate ±1 standard error of the 297 
mean.  298 
 299 
Prediction error affects the temporal stability of stimulus representations 300 

 Next, we examined whether repetition suppression and prediction error 301 

affected dynamic, ongoing stimulus representations by using cross-temporal 302 

generalization (Stokes et al., 2013; King et al., 2014; King and Dehaene, 2014; 303 

Myers et al., 2015; Spaak et al., 2017). To do this, we used the same forward 304 

encoding approach as in the previous analysis, but now the weights were derived 305 

from one time-point on one set of trials, and then applied at every time point in the 306 

test trials. Again, a cross-validation approach was used, with all trials serving as both 307 

training and test. This analysis examined whether the same spatial pattern of EEG 308 

activity that allows for orientation selectivity generalizes to other time points, thus 309 

revealing whether there was a stable or dynamic neural representation of the stimuli 310 

over time.   311 

As shown in Figure 6, the best orientation selectivity was on-axis between 100 312 

ms and 300 ms after stimulus presentation, suggesting that the stimulus 313 
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representation changed dynamically over time (King and Dehaene, 2014). There 314 

was also significant off-axis orientation-selectivity from 100-500 ms after stimulus 315 

presentation, suggesting that some aspects of the neural representation of 316 

orientation were stable over time.  317 

 318 
Figure 6. Cross-temporal generalization of the forward encoding model based on T2 319 
orientations for the main effects of repetition suppression (upper panels) and 320 
prediction error (lower panels). The maps have been thresholded (indicated by 321 
opacity) to show clusters (black outlines) of significant orientation selectivity 322 
(permutation testing, cluster threshold p < .05, corrected cluster statistic p < .05, 323 
5,000 permutations). The difference between the conditions is shown in the right-324 
hand column (permutation testing, cluster threshold p < .05, corrected cluster 325 
statistic p < .05). Opacity and outlines indicate significant differences.  326 
 327 
 There was no effect of repetition suppression on the temporal generalization 328 

of orientation information (upper panels of Figure 6), suggesting that repetition 329 

suppression did not affect the temporal stability of neural representations of the 330 

Gabors. Examining the effect of prediction error on cross-temporal generalization 331 

confirmed that there was significantly more on-axis orientation selectivity when the 332 

stimulus was unexpected than when it was expected. This increased on-axis 333 
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orientation selectivity generalized off-axis at around 300-400 ms after stimulus onset. 334 

This finding suggests that the same representation that is activated to process the 335 

prediction error is reactivated later as the stimulus continues to be processed. Such 336 

a signal could constitute the prior of the prediction, as this should be updated on the 337 

basis of the incoming sensory evidence, which in turn would likely require 338 

reactivation of the unexpected stimulus.    339 

Representation of the expected feature is activated even when it is not 340 

presented 341 

In a final set of analyses, we investigated how prediction error signals affect 342 

the interpretation of incoming sensory information, one of the key questions of 343 

predictive coding theory (Rao and Ballard, 1999; Friston, 2005). To do this, we 344 

focused on trials in which the orientation of the first Gabor within a pair did not match 345 

the orientation of the second Gabor (i.e., the alternating trials), and examined the 346 

EEG response to the second stimulus (see Figure 7). Here, we trained the forward 347 

encoding model on the orientation of the Gabor that was actually presented (stimulus 348 

driven), or on the orientation that was expected based on the first Gabor in the pair 349 

(non-stimulus driven). We did not combine data across the repeat and alternating 350 

conditions because the orientations were now different upon presentation of the 351 

second Gabor in the pair.  352 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2017. ; https://doi.org/10.1101/213710doi: bioRxiv preprint 

https://doi.org/10.1101/213710
http://creativecommons.org/licenses/by/4.0/


Repetition suppression and prediction error  

 19 

 353 
Figure 7. Cross-temporal generalization of the forward encoding model for the 354 
orientations presented in T1 relative to the onset of T2 (T1 was presented at -600 355 
ms). The orientation in the T2 period is randomized but there are still periods for the 356 
unexpected alternation in which there is significant orientation selectivity. These 357 
maps have been thresholded (indicated by opacity) to show clusters (black outlines) 358 
of significant orientation selectivity (permutation testing, cluster threshold p < .05, 359 
corrected cluster statistic p < .05, 5,000 permutations). The opacity in the right-hand 360 
column indicates areas of statistically significant difference between the two 361 
conditions (permutation testing (n = 5,000), cluster threshold p < .05, corrected 362 
cluster statistic p < .05).  363 
 364 
 365 

In the case of unexpected alternation trials (central panel in Figure 7), the 366 

orientation presented in the first Gabor would be expected to repeat, so when a 367 

different orientation occurred as T2 this prediction had to be suppressed and the 368 

prior updated. Inspecting the plot for the difference between expected and 369 

unexpected trials (right panel in Figure 7) provides clues as to how this process 370 

might occur. As expected, for the time that T1 was presented there was significant 371 

on- and off-axis encoding for T1 orientation, with little difference between expectation 372 

conditions. More interestingly, in the unexpected alternation condition there was 373 

significantly better on-axis orientation selectivity for the T1 orientation between 150 374 

and 300 ms after the onset of T2, relative to the expected alternation condition 375 

(upper right quadrant of right panel in Figure 7). Furthermore, over the same time 376 

period, there was significantly better off-axis generalization of the T1 representation 377 

to the T2 epoch (lower right quadrant of right panel in Figure 7). This is confirmed by 378 
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the occurrence of significantly increased off-axis orientation selectivity between 379 

training time of -500 ms and +300 ms. The time course of this effect is consistent 380 

with our earlier findings, as the unexpected condition yielded better orientation 381 

selectivity for the presented (T2) orientation between 79 and 150 ms after the 382 

second Gabor presentation. An intriguing possibility is that the relevant neural 383 

circuits re-activate the representation of the expected stimulus when faced with 384 

unexpected sensory signals.   385 

Discussion 386 

 Our findings demonstrate that repetition suppression and prediction error 387 

have distinct effects on neural representations of simple visual stimuli. We found that 388 

repetition suppression had no effect on orientation selectivity, even though the neural 389 

response to repeated stimuli was significantly decreased over occipital-parietal 390 

areas. Prediction error, on the other hand, significantly increased the amount of 391 

feature-selective information contained within patterns of EEG activity very soon 392 

after stimulus onset. This same early representation of the unexpected stimulus was 393 

reactivated at 200-300 ms after the initial neural response, supporting the idea that 394 

sensory prior expectations may be updated through comparison with the incoming 395 

sensory evidence.   396 

The present work provides a significant advance in our understanding of how 397 

predictive coding allows the brain to process incoming sensory information by 398 

comparing what is expected with what actually occurs. Prediction errors have been 399 

extensively investigated using mismatch negativity protocols in which an unexpected 400 

stimulus causes a significantly larger response than an expected stimulus (Näätänen 401 

et al., 2007; Bekinschtein et al., 2009; Garrido et al., 2009). Typically, this increased 402 
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response to an unexpected stimulus has been attributed to the need to update the 403 

prediction based on sensory evidence (Garrido et al., 2009). However, our results 404 

suggest that the increased response may reflect two distinct processes that occur at 405 

separate times. Incoming sensory information is first evaluated against the prior 406 

(which occurs very early after stimulus presentation). Later, around 300 ms after 407 

stimulus presentation, this same representation is reactivated to update the 408 

expectation against the initially predicted representation. The present work thus 409 

provides a novel insight into how predictive coding might change neural 410 

representations of sensory information.  411 

Multivariate pattern classification methods have been widely used to examine 412 

BOLD activity (Kamitani and Tong, 2005; 2006; Kriegeskorte et al., 2008; Haxby et 413 

al., 2014), but have only recently been applied to EEG and MEG data (Garcia et al., 414 

2013; King et al., 2013; 2014; King and Dehaene, 2014; Cichy et al., 2015; Myers et 415 

al., 2015; King et al., 2016; Wolff et al., 2017). These kinds of analyses permit non-416 

invasive neuroimaging to move beyond the measurement of overall levels of neural 417 

activity, and instead to uncover subtle patterns of neural activity associated with 418 

specific stimuli or task demands, and which are more directly comparable with those 419 

obtained from invasive neurophysiological recordings of neuronal activity (Kamitani 420 

and Tong, 2006; Doeller et al., 2010; Sprague and Serences, 2013; Constantinescu 421 

et al., 2016). Such model-based approaches are especially appealing since changes 422 

in overall activity levels could be consistent with many different changes in the nature 423 

of the underlying neural representation. For instance, sharpening and gain reduction 424 

could both reduce the magnitude of the overall neural response but cause very 425 

different effects on the amount of information conveyed by those representations.  426 
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Surprisingly few studies have used invasive recording methods to examine 427 

how predictive coding affects stimulus representations at the neuronal level. One 428 

study in macaques (Kaliukhovich and Vogels, 2010) used the same design as 429 

Summerfield and colleagues but found no attenuation of repetition suppression by 430 

expectation on spiking and local field potentials in inferior temporal cortex when 431 

using high-level objects as stimuli (fractals and real-world objects). A later fMRI study 432 

in humans (Kovács et al., 2013), used a similar stimulus set and also found no 433 

attenuation of repetition suppression by expectation in the same cortical region. A 434 

follow-up study explained the apparent conflict finding that the attenuation effects of 435 

repetition suppression are only found with familiar but not unfamiliar stimuli (Grotheer 436 

and Kovács, 2014). Taken together, these results  potentially suggests that the 437 

stimulus sets used by (2010)  were sufficiently unfamiliar to the animals to induce 438 

expectation effects on repetition suppression. 439 

 Some other work has, however, found that context plays a large role in 440 

determining the magnitude of single neuron responses, with rare stimuli generating 441 

significantly larger responses than more commonly-occurring stimuli (Ulanovsky et 442 

al., 2003). This result has been considered a single-neuron equivalent of the 443 

mismatch negativity, but the design did not control for adaptation effects, thus 444 

making it difficult to draw an unambiguous comparison with the current work. A more 445 

recent study found that neurons in mouse visual cortex show a large response when 446 

task-irrelevant visual stimuli presented during training were omitted, suggesting a 447 

strong expectation had been violated (Fiser et al., 2016). This result is consistent 448 

with the literature on the mismatch negativity, in which the omission of an expected 449 

stimulus results in a large prediction error (Garrido et al., 2009; Wacongne et al., 450 
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2011). Future single-unit work characterising how response selectivity of neural 451 

populations is affected by prediction would help illuminate the neuronal 452 

underpinnings of expectation effects derived from non-invasive imaging in human 453 

observers.   454 

Unlike the effects of prediction, there is a large body of electrophysiological 455 

work showing how adaptation affects neuronal stimulus representations across 456 

various sensory modalities in different species (Dragoi et al., 2000; Felsen et al., 457 

2002; Kohn and Movshon, 2004; Patterson et al., 2013; Adibi et al., 2013a; 2013b). 458 

For instance, there is a sharpening of stimulus selectivity in MT neurons following 40 459 

s of adaptation to a drifting grating (Kohn and Movshon, 2004). As we have 460 

highlighted, however, prolonged adaptation is likely also associated with a significant 461 

prediction that the next stimulus will be the same as the previous one. Perhaps more 462 

relevant to the current results, the width of the orientation tuning in V1 is only 463 

marginally sharpened with brief (400 ms) adaptation (Patterson et al., 2013). Again, 464 

however, this latter work did not control for expectation, so it is impossible to 465 

determine the role of predictive coding in these results. Our result where repetition 466 

suppression did not affect the bandwidth of orientation selectivity measured using 467 

EEG is also consistent with models of orientation adaptation based on human 468 

psychophysical data, which suggest that adaptation does not affect the width of the 469 

adapted neurons (Clifford, 2002; Dickinson et al., 2010; Clifford, 2014; Tang et al., 470 

2015; Dickinson et al., 2017).   471 

We found that a prediction error increased the gain of early stimulus 472 

representations, but did not affect the sharpness of their tuning. This lack of 473 

sharpening is in contrast with the findings of a previous study (Kok et al., 2012), in 474 
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which a high-level prediction error led to ‘sharper’ multivariate decoding for expected 475 

versus unexpected visual stimuli. Kok and colleagues used an auditory tone to cue 476 

the orientation of a subsequent visual stimulus, and found significantly less off-label 477 

classification accuracy for predicted than for unpredicted stimuli. They concluded 478 

that predictions cause sharpening of stimulus representations. It is noteworthy, 479 

however, that in their study Kok et al. (2012) employed a ‘backward’ decoding 480 

analysis to quantify sharpness, rather than forward encoding as here, which might 481 

account for the discrepant findings. It has been argued that the forward encoding 482 

approach, which reconstructs feature representations, is more appropriate than 483 

decoding for determining how stimulus selectivity is changed (Cichy et al., 2015). 484 

Another possible reason for the different results relates to the manner in which 485 

predictions are generated within a task. Kok and colleagues generated predictions 486 

by pairing an auditory cue with a visual stimulus, whereas we exploited the 487 

properties of the visual stimuli themselves (i.e., their orientation) to generate 488 

predictions. An intriguing possibility is that combining predictions generated across 489 

distinct cortical areas (e.g., visual and auditory) leads to sharpening of tuning, 490 

whereas predictions generated within a single cortical area lead to gain modulation. 491 

 In summary, we have shown that repetition suppression and prediction error 492 

differentially affect the neural representation of simple, but fundamental, sensory 493 

features. Our results further highlight how the context in which a stimulus occurs, not 494 

just its features, affect the way it is represented by the brain. Our findings suggest 495 

encoding priority through increased gain may be given to unexpected events which 496 

could potentially speed responses. This prioritized representation is then re-activated 497 

at a later time period supporting the idea that the feedback from higher cortical areas 498 
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reactivates an initial sensory representation in early cortical areas.   499 

Method 500 

Participants  501 

 A group of 15 healthy adult volunteers (9 females, median age = 20.5 yr, 502 

range = 18 to 37 yr) participated in exchange for partial course credit or financial 503 

reimbursement (AUD$20/hr). We based our sample size based on work that 504 

investigated the interaction between repetition suppression and predictive error (N = 505 

16; Summerfield et al., 2008) and that used forward encoding modelling to 506 

investigate orientation selectivity using MEEG with a comparable number of trials as 507 

the current study (N =10; Myers et al., 2015). Each person provided written informed 508 

consent prior to participation, and had normal or corrected-to-normal vision. The 509 

study was approved by The University of Queensland Human Research Ethics 510 

Committee and was in accordance with the Declaration of Helsinki.	511 

Experimental setup 512 

 The experiment was conducted inside a dimly illuminated room with the 513 

participants seated in a comfortable chair. The stimuli were displayed on a 22-inch 514 

LED monitor (resolution 1920 x 1080 pixels, refresh rate 120 Hz) using the 515 

PsychToolbox presentation software (Brainard, 1997; Pelli, 1997) for MATLAB 516 

(v7.3). Viewing distance was maintained at 45 cm using a chinrest, meaning the 517 

screen subtended 61.18º x 36.87º (each pixel 2.4’ x 2.4’).  518 

Task 519 

 The stimuli were Gabors (diameter: 5º, spatial frequency: 2 c/º, 100% 520 

contrast) presented centrally in pairs for 100 ms, separated by 500 ms (600 ms 521 

stimulus onset asynchrony) with a variable (650 to 750 ms) inter-stimulus interval 522 
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between trials. Across the trials, the orientations of the Gabors were evenly spaced 523 

between 0º and 160º (in 20º steps) so we could reconstruct orientation selectivity 524 

contained within the EEG response using forward encoding modelling. The 525 

relationship of the orientations of the pairs Gabors was also used to construct the 526 

different repetition suppression and prediction conditions. The orientation presented 527 

in the second Gabor in the pair could either repeat or alternate with respect to the 528 

orientation of the first Gabor. In the alternation trials, the orientation of the first Gabor 529 

was drawn randomly, without replacement, from an even distribution of orientations 530 

that was different to the orientation of the second Gabor. To vary the degree of 531 

prediction, in half of the blocks 80% of the trials had repeated orientations and 20% 532 

of the trials had alternating orientations, whereas in the other half of the blocks these 533 

contingencies were reversed. This design allowed us to separately examine the 534 

effects of repetition suppression and prediction because of the orthogonal nature of 535 

the blocked design. The blocks of 135 trials (~3 mins) switched between the 536 

expectation of a repeating or alternating pattern, with the starting condition 537 

counterbalanced across participants.  538 

The participants’ task was to monitor the stream for rare, faintly coloured red 539 

or green Gabors, and to discriminate the colour as quickly and accurately as 540 

possible. Any trial with a coloured target was excluded from analysis. The orientation 541 

match between the pairs was made to be consistent with the dominant contingency 542 

(i.e., repeated or alternating) within that block. Pilot testing was used prior to the 543 

main experiment to set the task at approximately threshold, to ensure that 544 

participants focused exclusively on the colour-discrimination task rather than the 545 

orientation contingencies associated with prediction and repetition. Only one 546 
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participant reported being aware of the changing stimulus contingencies across the 547 

blocks when asked at the end of the experiment. Self-paced breaks were provided 548 

between each of the 20 blocks within a session, at which time feedback was 549 

provided on performance in the preceding block. Each participant completed two 550 

sessions of 2700 trials each (5400 trials in total), with each session lasting around 70 551 

mins of experimental time and 45 mins of EEG setup.    552 

EEG acquisition and pre-processing  553 

Continuous EEG data were recorded using a BioSemi Active Two system 554 

(BioSemi, Amsterdam, Netherlands). The signal was digitised at 1024 Hz sampling 555 

rate with a 24-bit A/D conversion. The 64 active scalp Ag/AgCl electrodes were 556 

arranged according to the international standard 10–20 system for electrode 557 

placement (Oostenveld and Praamstra, 2001) using a nylon head cap. As per 558 

BioSemi system design, the common mode sense and driven right leg electrodes 559 

served as the ground, and all scalp electrodes were referenced to the common mode 560 

sense during recording.  561 

Offline EEG pre-processing was performed using EEGLAB in accordance with 562 

best practice procedures (Keil et al., 2014; Bigdely-Shamlo et al., 2015). The data 563 

were initially down sampled to 256 Hz and subjected to a 0.5 Hz high-pass filter to 564 

remove slow baseline drifts. Electrical line noise was removed using the 565 

clean_line.m, and clean_rawdata.m in EEGLAB (Delorme and Makeig, 2004) was 566 

used remove bad channels (identified using Artifact Subspace Reconstruction), 567 

which were then interpolated from the neighbouring electrodes. Data were then re-568 

referenced to the common average before being epoched into segments around 569 

each stimulus pair (-0.5 s to 1.25 s from the first stimulus in the pair). Systematic 570 
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artefacts from eye blinks, movements and muscle activity were identified using semi-571 

automated procedures in the SASICA toolbox (Chaumon et al., 2015) and regressed 572 

out of the signal. After this stage, any trial with a peak voltage exceeding ±100 uV 573 

was excluded from the analysis. The data were then baseline corrected to the 574 

average EEG activity from -100 to 0 ms before the presentation of the second Gabor 575 

pair.  576 

Design 577 

 We used a modified version of a factorial design that has previously been 578 

used to separately examine the effects of repetition suppression and prediction error 579 

(Summerfield et al., 2008; Kaliukhovich and Vogels, 2010; Summerfield et al., 2011; 580 

Todorovic et al., 2011; Todorovic and de Lange, 2012; Kovács et al., 2013). By 581 

comparing the two repeat conditions with the two alternating conditions, we could 582 

examine repetition suppression while controlling for different levels of expectation. 583 

Conversely, by comparing across the expected and unexpected trials, we could 584 

examine prediction error while controlling for repetition suppression. 585 

Measuring orientation selectivity  586 

 We used a forward encoding approach to estimate the amount of orientation-587 

selective information contained in the EEG data at each time point of the trial. This 588 

approach differs from standard decoding approaches by modelling each presented 589 

orientation as a continuous variable of a set of tuned orientation-selective channels. 590 

The forward-encoding technique has been successfully used to reconstruct colour 591 

(Brouwer and Heeger, 2009) and spatial (Sprague and Serences, 2013) selectivity in 592 

fMRI data. More recently it has been extended to orientation (Garcia et al., 2013; 593 

Myers et al., 2015; Wolff et al., 2017) and space (Foster et al., 2016) encoding of 594 
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MEG and EEG data, which allows for far greater temporal resolution than fMRI.  595 

We applied forward encoding modelling to determine how repetition 596 

suppression and prediction error affected orientation selectivity. To do this, the 597 

second orientation in the Gabor pair in each trial was used to construct a regression 598 

matrix, with a separate regressor for the 9 orientations used across the experiment. 599 

This regression matrix was convolved with a set of basis functions (half cosines 600 

raised to the 8th power, which allowed complete and unbiased coverage of 601 

orientation space) to allow us to pool similar information patterns across nearby 602 

orientations (Brouwer and Heeger, 2009). We used this tuned regression matrix to 603 

estimate time-resolved orientation selectivity contained within the EEG activity in a 604 

16 ms sliding window, in 4 ms steps (Myers et al., 2015). To avoid overfitting, we 605 

used a cross-validation procedure where the regression weights were estimated for 606 

a training set and applied to an independent test set. This was done by solving the 607 

linear equation:  608 

    B1= WC1                                                      (1) 609 

Where B1 (64 sensors x N training trials) is the electrode data for the training set, C1 610 

(9 channels x N training trials) is the tuned channel response across the training 611 

trials, and W is the weight matrix for the sensors we want to estimate (64 sensors x 9 612 

channels). W can be estimated using least square regression to solve equation (2): 613 

     W = (C1 C1
T)-1 C1

T B1                                                                         (2) 614 

The channel response in the test set C2 (9 channels x N test trials) was estimated 615 

using the weights in (2) and applied to activity in B2 (64 sensors x N test trials). 616 

C2 = (W WT) WT B2                                                   (3)  617 

We repeated this process by holding one trial out as test, and training on the 618 
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remaining trials until all trials had been used in test and training. The procedure was 619 

repeated for each trial within the trial epoch. We then shifted all trials to a common 620 

orientation, meaning that 0º corresponded to the orientation presented on each trial.  621 

 The reconstructed channel activations were separated into the four 622 

conditions, and averaged over the trials. These responses were then smoothed with 623 

a Gaussian kernel with a 16 ms window, and fit with a Gaussian function (4) using 624 

least square regression to quantify the amount of orientation selective activity. 625 

𝐺(𝑥) = 	𝐴	𝑒𝑥𝑝(− (+,-).

/0.
) + 𝐶                                            (4) 626 

Where A is the amplitude representing the amount of orientation selective activity, 𝜑 627 

is the orientation the function is centred on (in degrees), 𝜎 is the standard deviation 628 

(degrees) and C is a constant used to account for non-orientation selective baseline 629 

shifts. 630 
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