1	Degradation of cyclin B is critical for nuclear division in
2	Trypanosoma brucei
3	
4	Hanako Hayashi and Bungo Akiyoshi [*]
5	Department of Biochemistry, University of Oxford, Oxford, UK
6	*Correspondence: bungo.akiyoshi@bioch.ox.ac.uk
7	
8	Abstract
9	Kinetoplastids have a nucleus that contains the nuclear genome and a kinetoplast that
10	contains the mitochondrial genome. These single-copy organelles must be duplicated
11	and segregated faithfully to daughter cells at each cell division. In Trypanosoma
12	brucei, although duplication of both organelles starts around the same time,
13	segregation of the kinetoplast precedes that of the nucleus. Cytokinesis subsequently
14	takes place so that daughter cells inherit a single copy of each organelle. Very little is
15	known about the molecular mechanism that governs the timing of these events.
16	Furthermore, it is thought that T. brucei lacks a spindle checkpoint that delays the
17	onset of nuclear division in response to spindle damage. Here we show that a mitotic
18	cyclin CYC6 has a dynamic localization pattern during the cell cycle, including
19	kinetochore localization from G2 to metaphase. Using CYC6 as a molecular cell cycle
20	marker, we confirmed that T. brucei cannot delay the onset of anaphase in response to
21	a bipolar spindle assembly defect. Interestingly, expression of a stabilized form of
22	CYC6 caused the nucleus to arrest in a metaphase-like state without preventing
23	cytokinesis. We propose that trypanosomes have an ability to regulate the timing of
24	nuclear division by modulating the CYC6 protein level, without a spindle checkpoint.
25	
26	Keywords
27	Cell cycle, spindle checkpoint, kinetoplastid, Trypanosoma brucei, kinetochore,
28	cyclin B

29 Introduction

Accurate transmission of genetic material to offspring is essential for the survival of 30 31 organisms. The genome in eukaryotes exists in different organelles such as the 32 nucleus, mitochondria, and plastids. Nuclear DNA is duplicated during S phase and 33 segregated equally to daughter cells during M phase. Kinetochores are the 34 macromolecular protein complexes that assemble onto centromeric DNA and interact 35 with spindle microtubules. It is essential that sister kinetochores attach to spindle 36 microtubules emanating from opposite poles in metaphase so that sister chromatids segregate away from each other during anaphase. Cells possess a surveillance 37 38 mechanism, called the spindle checkpoint, that delays the onset of anaphase in 39 response to defects in kinetochore-microtubule attachments (London and Biggins 40 2014; Musacchio 2015). Once all sister kinetochores have achieved proper bi-oriented attachments, the spindle checkpoint is satisfied. This results in the ubiquitylation of 41 42 two key targets cyclin B and securin by the anaphase-promoting complex (APC/C), 43 leading to their destruction by proteasomes.

44 In contrast to nuclear DNA, the mechanism of mitochondrial DNA 45 transmission varies among eukaryotes. For example, in animals that have a high copy 46 number of mitochondria, transmission of mitochondrial DNA is thought to occur 47 randomly (Westermann 2010). On the other hand, a single mitochondrion is present in 48 many unicellular eukaryotes, such as kinetoplastids, *Plasmodium falciparum* and Cvanidioschvzon merolae (Robinson and Gull 1991; Itoh et al. 1997; Okamoto et al. 49 50 2009). The timing of duplication and partition of their mitochondria must be coordinated with the cell cycle machinery in these organisms. Kinetoplastids are a 51 52 group of unicellular organisms that are characterized by the unique structure called 53 the kinetoplast, which is a network of multiple copies of mitochondrial DNA (termed 54 the kDNA) enclosed in a single mitochondrion (Vickerman 1962). They are 55 evolutionarily divergent from commonly studied model eukaryotes (e.g. yeast, 56 worms, flies, and humans) (Cavalier-Smith 2010; Walker et al. 2011), so 57 understanding their biology can provide insights into the extent of conservation or 58 divergence in eukaryotes. Among various kinetoplastids studied thus far, the mechanism of cell cycle is best characterized in *Trypanosoma brucei*, the causative 59 60 agent of human African trypanosomiasis (for reviews, see (McKean 2003; 61 Hammarton 2007; Vaughan and Gull 2008; Li 2012)). T. brucei has a canonical cell 62 cycle for nuclear events (G1, S, G2, and M phases). G1 cells have a single kinetoplast

63 and nucleus (termed 1K1N). Duplication of kinetoplast DNA starts almost simultaneously with that of nuclear DNA, but completes earlier (Woodward and Gull 64 65 1990; Siegel et al. 2008). Segregation of kDNA depends on that of basal bodies and 66 occurs during the nuclear S phase, creating 2K1N cells (Robinson and Gull 1991; 67 Ogbadoyi et al. 2003). Trypanosomes do not break down their nuclear envelope 68 (closed mitosis), and an intranuclear mitotic spindle is assembled in the nucleus 69 during M phase (Vickerman and Preston 1970; Ogbadoyi et al. 2000). Sister 70 kinetochores align at the metaphase plate during metaphase, followed by the 71 separation of nuclear DNA in anaphase (creating 2K2N cells) and split of cells by cytokinesis (Sherwin and Gull 1989; Woodward and Gull 1990). It is essential that 72 73 replication and segregation of these organelles occur prior to cytokinesis in a 74 coordinated manner so that daughter cells inherit a copy of each. Little is known 75 about the underlying molecular mechanism.

76 Available evidence suggests that T. brucei is not capable of halting their cell 77 cycle in response to various defects in the nucleus. For example, when bipolar spindle 78 assembly is blocked in procyclic (insect form) cells, they undergo cytokinesis without 79 a noticeable delay despite a lack of nuclear division (Robinson et al. 1995; Ploubidou 80 et al. 1999). This results in the formation of one daughter cell that has one kinetoplast 81 DNA without nuclear DNA (1K0N, termed zoid) and another cell that has one 82 kinetoplast with tetraploid DNA content, suggesting that the spindle checkpoint is not operational (Ploubidou et al. 1999). In fact, most of the spindle checkpoint 83 84 components (i.e. Mps1, Mad1, Mad3/BubR1, Bub1, Bub3) are not found in T. brucei or other kinetoplastids. Although a Mad2 homolog is present, this protein localizes at 85 86 basal bodies, not kinetochores (Akiyoshi and Gull 2013). It is therefore thought that 87 trypanosomes cannot delay cytokinesis even when nuclear division fails to occur. Yet, 88 there must be a mechanism to coordinate the segregation of nuclear DNA with 89 cytokinesis in unperturbed cells. One possibility is the presence of a cell cycle 90 oscillator that triggers cell cycle events in a set sequence even without feedback 91 control systems. The best characterized components of cell cycle oscillators are 92 cyclin/CDK (cyclin-dependent kinase) complexes (Nurse 1990; Morgan 1997; Gérard 93 et al. 2015). The rise and fall of their kinase activities trigger cell cycle events in a set 94 sequence. For example, increased activities of mitotic CDK complexes promote entry 95 into M phase and various mitotic events, whereas their decrease is essential for exit 96 from mitosis. T. brucei has ten cyclins and eleven CDKs, among which CYC6/CRK3

97	is the major mitotic cyclin/CDK complex in <i>T. brucei</i> (CYC6 is also known as
98	CycB2) (Li and Wang 2003; Hammarton et al. 2003). When degradation of CYC6
99	was inhibited by proteasome inhibitors or APC/C downregulation, cells accumulated
100	in a metaphase-like state with a bipolar spindle (Mutomba et al. 1997; Kumar and
101	Wang 2005). These observations suggested that degradation of cyclin B could be a
102	trigger for the metaphase-anaphase transition. Here we directly tested this possibility
103	by expressing a non-degradable version of CYC6 in T. brucei.
104	
105	Results
106	Identification of cyclin B ^{CYC6} as a molecular cell cycle marker
107	Cellular localization of CYC6 has not been reported thus far, so we first examined it
108	by endogenously tagging CYC6 with an N-terminal YFP tag in T. brucei procyclic
109	cells. We observed the following localization pattern (Figure 1A). There was no
110	distinct signal in G1 cells. From S phase onwards, CYC6 was found at the basal body
111	area and flagellum. From G2 to metaphase, nuclear signal was observed with
112	significant enrichment at kinetochore regions in metaphase. In fact, these nuclear dots
113	co-localized with a kinetochore marker protein, KKT2 (Figure 1B). CYC6
114	disappeared from the nucleus in anaphase. We obtained similar results for CRK3,
115	which formed dots in metaphase and disappeared in anaphase (Figure 1C). Thus,
116	CYC6 and CRK3 exhibit a differential localization pattern depending on cell cycle
117	stages, and can therefore be used as a molecular cell cycle marker.
118	
119	Cyclin B ^{CYC6} is important for bipolar spindle assembly, but not for kinetochore
120	assembly
121	CDK activities are known to be important for kinetochore assembly in some
122	eukaryotes, including humans (Gascoigne and Cheeseman 2013). The finding that
123	CYC6 localizes at kinetochores from G2 to metaphase in trypanosomes prompted us
124	to study its importance for kinetochore assembly. We therefore depleted CYC6 by
125	RNAi-mediated knockdown (Ngô et al. 1998). We confirmed that CYC6 is essential
126	for cell growth, as previously reported (Li and Wang 2003; Hammarton et al. 2003)
127	(data not shown). Because cyclin/CDK activities are known to be important for
128	various mitotic events (Bishop et al. 2000), we first examined bipolar spindle
129	formation. We used a spindle marker protein that we identified from our previous
130	tagging screen (ORF Tb927.11.14370) (Archer et al. 2011; Akiyoshi and Gull 2014).

131 This protein had a localization pattern characteristic of spindle microtubules, so we named it MAP103 for microtubule-associated protein 103 kDa (Figure S1). We 132 133 observed defective spindle microtubules in CYC6-depleted cells, suggesting that 134 CDK activities are essential for proper bipolar spindle assembly (Figure 2A). Under 135 these conditions, however, localization of all KKT proteins we examined was not 136 affected (KKT1, KKT4, KKT7, KKT8, KKT10, KKT14, KKT16) (Figure 2B). 137 Therefore, CYC6 is dispensable for the assembly of these kinetochore proteins in procyclic cells. 138

139

140 Cells fail to delay the onset of anaphase in response to spindle defects

We next used CYC6 as a molecular cell cycle marker to examine the effect of drugs. 141 We first used an anti-microtubule agent, ansamitocin, to examine the effect of a 142 bipolar spindle assembly defect for cell cycle progression (Robinson and Gull 1991). 143 By testing various concentrations of ansamitocin, we found that 5 nM of ansamitocin 144 significantly slowed down cell growth (Figure 3A). After a 4-hr treatment, nuclear 145 division and bipolar spindle assembly was perturbed as expected (Figure 3B). In this 146 147 condition, however, we found no significant enrichment of nuclear CYC6-positive 148 cells (Figure 3C). This corroborates previous studies (Ploubidou et al. 1999) and confirms that trypanosomes are not capable of delaying the onset of anaphase in 149 150 response to spindle damage.

151

152 Stabilization of cyclin B^{CYC6} causes metaphase arrest in the nucleus

We next examined the effect of cyclin B stabilization for cell cycle progression. We 153 154 first used a proteasome inhibitor MG-132 that blocked cell cycle progression and 155 stabilized the CYC6 protein (Mutomba et al. 1997; Bessat et al. 2013). When cells expressing YFP-CYC6 were treated with 10 µM MG-132 for 4 hr, ~30% of cells had 156 157 nuclear CYC6 signal (compared to ~ 10 % in control), suggesting that the nucleus 158 arrested prior to anaphase (Figure 4A, B). Indeed, these cells had a bipolar spindle 159 (often elongated) and most of their kinetochores were aligned at the metaphase plate 160 (Figure 4C, D). We also noted that the distance between the two kinetoplast DNA in these cells was often greater than that in control metaphase cells. These results 161 suggest that, upon MG-132 treatment, trypanosomes arrest the nucleus in a 162 metaphase-like state in which cyclin B is not degraded, although their cytoplasm 163 164 transits to an anaphase-like state.

165 Because MG-132 treatment affects the protein level of many other proteins. we next tested whether the presence of cyclin B in the nucleus is sufficient to prevent 166 167 nuclear division. Overexpression of wild-type CYC6 did not affect cell growth (data 168 not shown). We therefore expressed a GFP-NLS fusion of a non-degradable form of CYC6 (CYC6^{$\Delta 1-57$}). Interestingly, we detected a decrease in 2K2N cells and 169 accumulation of 2K1N cells upon expression of non-degradable CYC6 for 8 hr 170 171 (Figure 4E), suggesting that the nucleus was arrested in a metaphase-like state. Indeed, kinetochores were aligned at the metaphase plate in these cells (Figure 4F). 172 We also detected a significant increase in the number of zoids (1K0N cells). This 173 174 implies that cytokinesis occurred despite the lack of nuclear division (Figure 4E, F). These results show that CYC6 is capable of arresting the nucleus in a metaphase-like 175 state, although it cannot stop cytokinesis. Taken together, our data show that 176 trypanosomes have an ability to control the timing of nuclear division by modulating 177 the degradation of a mitotic cyclin in the nucleus. 178

179

180 Discussion

Previous studies observed the formation of zoids despite a lack of nuclear division 181 182 due to spindle damage (Ploubidou et al. 1999), cyclin/CDK depletion (Hammarton et al. 2003; Li and Wang 2003; Tu and Wang 2004), or expression of a non-degradable 183 cohesin subunit SCC1 (Gluenz et al. 2008). These studies strongly suggested that T. 184 brucei cannot prevent cytokinesis in response to a lack of nuclear division at least in 185 186 procyclic cells (although this is likely to be the case in bloodstream form too, see (Gluenz et al. 2008)). In this study, we established CYC6 as a molecular marker for 187 188 cell cycle progression, and confirmed that trypanosomes indeed failed to delay the anaphase onset in response to spindle damage. This implies that the timing 189 190 mechanism of the nuclear cell cycle progression is likely governed by an intrinsic cell 191 cycle timer, as observed in embryonic divisions (Yang and Ferrell 2013; Yuan and 192 O'Farrell 2015) and in spindle checkpoint mutants of yeasts and flies (Hoyt et al. 193 1991; Li and Murray 1991; Buffin et al. 2007).

Interestingly, we found that expression of non-degradable cyclin B can delay
the onset of anaphase (in the nucleus). This means that trypanosomes could
potentially coordinate the timing of nuclear division with that of cytokinesis by
regulating the level of the CYC6 protein in the nucleus. Because APC/C is
responsible for the degradation of mitotic cyclins, understanding its regulatory

199	mechanism is of critical importance. It is interesting to note that two kinetochore
200	proteins (KKT4 and KKT20) co-purified with several components of the APC/C
201	(Akiyoshi and Gull 2014; Nerusheva and Akiyoshi 2016), suggesting that
202	kinetochores may directly regulate APC/C activities. It will be important to
203	understand the underlying mechanism.
204	It remains unclear how the timing of cytokinesis onset is determined in
205	trypanosomes. It has been suggested that it may be the segregation of basal bodies,
206	rather than that of the nucleus, that is linked to cytokinesis in trypanosomes
207	(Ploubidou et al. 1999). Interestingly, CYC6 signal was found not only at
208	kinetochores but also at basal bodies and flagella. Therefore, CYC6 might also have
209	an ability to regulate the onset of cytokinesis, which will need to be tested in future
210	studies.
211	
212	
213	Supplemental material
214	Supplemental material contains Figure S1, and Tables S1, S2, and S3.
215	
216	Materials and methods
217	Trypanosome cells
217 218	Trypanosome cells All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927
218	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927
218 219	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy-
218 219 220	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy-cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in
218 219 220 221	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10%
218 219 220 221 222	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth
218 219 220 221 222 223	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth was monitored using a CASY cell counter and analyzer system (Roche). RNAi was
218 219 220 221 222 223 224	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth was monitored using a CASY cell counter and analyzer system (Roche). RNAi was induced with doxycycline at a final concentration of 1 μ g/ml. Non-degradable CYC6
218 219 220 221 222 223 224 225	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth was monitored using a CASY cell counter and analyzer system (Roche). RNAi was induced with doxycycline at a final concentration of 1 μ g/ml. Non-degradable CYC6 was expressed with doxycycline at 0.1 μ g/ml. Ansamitocin P-3 was purchased from
218 219 220 221 222 223 224 225 226	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth was monitored using a CASY cell counter and analyzer system (Roche). RNAi was induced with doxycycline at a final concentration of 1 µg/ml. Non-degradable CYC6 was expressed with doxycycline at 0.1 µg/ml. Ansamitocin P-3 was purchased from Abcam (catalog number, ab144546) and MG-132 was purchased from Merck (catalog
218 219 220 221 222 223 224 225 226 227	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth was monitored using a CASY cell counter and analyzer system (Roche). RNAi was induced with doxycycline at a final concentration of 1 µg/ml. Non-degradable CYC6 was expressed with doxycycline at 0.1 µg/ml. Ansamitocin P-3 was purchased from Abcam (catalog number, ab144546) and MG-132 was purchased from Merck (catalog
218 219 220 221 222 223 224 225 226 227 228	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracycline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth was monitored using a CASY cell counter and analyzer system (Roche). RNAi was induced with doxycycline at a final concentration of 1 μ g/ml. Non-degradable CYC6 was expressed with doxycycline at 0.1 μ g/ml. Ansamitocin P-3 was purchased from Abcam (catalog number, ab144546) and MG-132 was purchased from Merck (catalog number, 474790).
218 219 220 221 222 223 224 225 226 227 228 229	All trypanosome cell lines used in this study were derived from <i>T. brucei</i> SmOxP927 procyclic form cells (TREU 927/4 expressing T7 RNA polymerase and the tetracy- cline repressor to allow inducible expression) (Poon et al. 2012) and are listed in Table S1. Cells were grown at 28 °C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated fetal calf serum (Brun and Schönenberger 1979). Cell growth was monitored using a CASY cell counter and analyzer system (Roche). RNAi was induced with doxycycline at a final concentration of 1 µg/ml. Non-degradable CYC6 was expressed with doxycycline at 0.1 µg/ml. Ansamitocin P-3 was purchased from Abcam (catalog number, ab144546) and MG-132 was purchased from Merck (catalog number, 474790).

233 pBA106 (for CYC6 and CRK3) tagging vectors. pBA106 is a modified version of the pEnT5-Y vector (Kelly et al. 2007) to allow N-terminal 3FLAG-6HIS-YFP tagging. 234 235 A targeting sequence for the CRK3 tagging (consisting of *Xba*I site, 4–250 bp of the 236 CRK3 coding sequence, NotI site, 250 bp of CRK3 5'UTR, BamHI site) was 237 synthesized by GeneArt. To make pBA106, a synthetic DNA fragment that encodes a 238 3FLAG-6HIS tag (made by annealing BA403 and BA404) was ligated into pEnT5-Y 239 using *Hind*III and *Spe*I sites. For generation of the inducible CYC6 RNAi cell line, 424 bp fragment targeting 378-801 bp of the CYC6 coding sequence was amplified 240 from genomic DNA and cloned into the p2T7-177 vector (Wickstead et al. 2002), 241 creating pBA734. To make a non-degradable version of CYC6 with an N-terminal 242 GFP-NLS tag (pBA1319: GFP-NLS-CYC6^{$\Delta 1-57$}), DNA fragment encoding CYC6^{58–} 243 ⁴²⁶ was amplified from genomic DNA and cloned into pBA310 (Nerusheva and 244 Akiyoshi 2016) using PacI and AscI sites. Plasmids linearized by NotI were 245 transfected to trypanosomes by electroporation into an endogenous locus (pEnT5-Y, 246 247 pBA106, and pBA148 derivatives) or 177 bp repeats on minichromosomes (p2T7-177 248 and pBA310 derivatives). Transfected cells were selected by the addition of 25 µg/ml 249 hygromycin (pEnT5-Y and pBA106 derivatives), 10 µg/ml blasticidin (pBA148 250 derivatives), or 5 µg/ml phleomycin (p2T7-177 and pBA310 derivatives). Microscopy 251 was performed essentially as previously described using a Leica DM5500 B 252 microscope (Leica Microsystems) housed in the Keith Gull's laboratory (Akiyoshi and Gull 2014) to image YFP-MAP103 or DeltaVision fluorescence microscope 253 254 (Applied Precision) housed in the Micron Oxford Advanced Bioimaging Unit (Nerusheva and Akiyoshi 2016) for all other experiments. 255

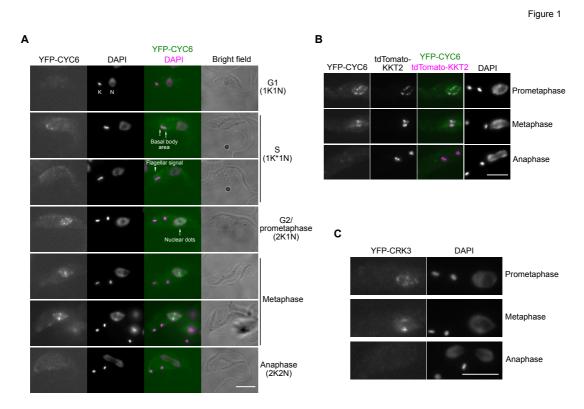
256

257 Acknowledgments

We thank Keith Gull for discussion, and Bela Novak, Olga Nerusheva, Gabriele
Marcianò, Midori Kanazawa, and Patryk Ludzia for comments on the manuscript. We
also thank the Micron Oxford Advanced Bioimaging Unit. H.H. was supported by a
Uehara Memorial Foundation fellowship. B.A. was supported by a Sir Henry Dale
Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant
number 098403/Z/12/Z), Wellcome-Beit Prize Fellowship (grant number

- 264 098403/Z/12/A), and the EMBO Young Investigator Program.
- 265

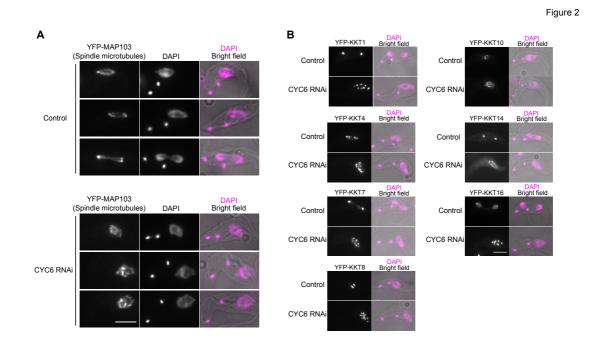
266 **Competing interests**


267	The authors declare no competing or financial interests.
268	
269	Author's contributions
270	B.A. conceived and designed the project. H.H. performed experiments for Figure 1B
271	and Figure 4E, 4F. B.A. performed the rest of experiments, analyzed data, and wrote
272	the manuscript.
273	
274	
275	References
276 277	Akiyoshi B., Gull K. (2013) Evolutionary cell biology of chromosome segregation: insights from trypanosomes. Open Biol 3, 130023. doi: 10.1098/rsob.130023
278 279	Akiyoshi B., Gull K. (2014) Discovery of unconventional kinetochores in kinetoplastids. Cell 156, 1247–1258. doi: 10.1016/j.cell.2014.01.049
280	Archer S. K., Inchaustegui D., Queiroz R., Clayton C. (2011) The cell cycle
281	regulated transcriptome of Trypanosoma brucei. PLoS ONE 6, e18425. doi:
282	10.1371/journal.pone.0018425
283	Bessat M., Knudsen G., Burlingame A. L., Wang C. C. (2013) A minimal
284 285	anaphase promoting complex/cyclosome (APC/C) in <i>Trypanosoma brucei</i> . <i>PLoS ONE</i> 8 , e59258. doi: 10.1371/journal.pone.0059258
286	Bishop A. C., Ubersax J. A., Petsch D. T., Matheos D. P., Gray N. S., Blethrow J.,
287	Shimizu E., Tsien J. Z., Schultz P. G., Rose M. D., et al. (2000) A chemical
288	switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395-
289	401. doi: 10.1038/35030148
290	Brun R., Schönenberger (1979) Cultivation and in vitro cloning or procyclic culture
291	forms of Trypanosoma brucei in a semi-defined medium. Short
292	communication. Acta Trop 36, 289–292.
293	Buffin E., Emre D., Karess R. E. (2007) Flies without a spindle checkpoint. Nat Cell
294	<i>Biol</i> 9 , 565–572. doi: 10.1038/ncb1570
295	Cavalier-Smith T. (2010) Kingdoms Protozoa and Chromista and the eozoan root of
296	the eukaryotic tree. Biol Lett 6, 342-345. doi: 10.1098/rsbl.2009.0948
297	Gascoigne K. E., Cheeseman I. M. (2013) CDK-dependent phosphorylation and
298	nuclear exclusion coordinately control kinetochore assembly state. <i>J Cell Biol</i>
299	201 , 23–32. doi: 10.1083/jcb.201301006
300	Gérard C., Tyson J. J., Coudreuse D., Novák B. (2015) Cell cycle control by a
301	minimal Cdk network. PLoS Comput Biol 11, e1004056. doi:
302	10.1371/journal.pcbi.1004056

303 304 305 306	Gluenz E., Sharma R., Carrington M., Gull K. (2008) Functional characterization of cohesin subunit SCC1 in <i>Trypanosoma brucei</i> and dissection of mutant phenotypes in two life cycle stages. <i>Mol Microbiol</i> 69 , 666–680. doi: 10.1111/j.1365-2958.2008.06320.x
307 308	Hammarton T. C. (2007) Cell cycle regulation in <i>Trypanosoma brucei</i> . Mol Biochem Parasitol 153, 1–8. doi: 10.1016/j.molbiopara.2007.01.017
309 310 311 312	Hammarton T. C., Clark J., Douglas F., Boshart M., Mottram J. C. (2003) Stage- specific differences in cell cycle control in <i>Trypanosoma brucei</i> revealed by RNA interference of a mitotic cyclin. <i>J Biol Chem</i> 278 , 22877–22886. doi: 10.1074/jbc.M300813200
313 314	Hoyt M. A., Totis L., Roberts B. T. (1991) <i>S. cerevisiae</i> genes required for cell cycle arrest in response to loss of microtubule function. <i>Cell</i> 66 , 507–517.
315 316 317	Itoh R., Takahashi H., Toda K., Kuroiwa H., Kuroiwa T. (1997) Checkpoint control on mitochondrial division in <i>Cyanidioschyzon merolae</i> . <i>Protoplasma</i> 196 , 135–141. doi: 10.1007/BF01279562
318 319 320 321 322	 Kelly S., Reed J., Kramer S., Ellis L., Webb H., Sunter J., Salje J., Marinsek N., Gull K., Wickstead B., et al. (2007) Functional genomics in <i>Trypanosoma brucei</i>: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. <i>Mol Biochem Parasitol</i> 154, 103–109. doi: 10.1016/j.molbiopara.2007.03.012
323 324 325 326	Kumar P., Wang C. C. (2005) Depletion of anaphase-promoting complex or cyclosome (APC/C) subunit homolog APC1 or CDC27 of <i>Trypanosoma</i> <i>brucei</i> arrests the procyclic form in metaphase but the bloodstream form in anaphase. <i>J Biol Chem</i> 280, 31783–31791. doi: 10.1074/jbc.M504326200
327 328	Li R., Murray A. W. (1991) Feedback control of mitosis in budding yeast. <i>Cell</i> 66, 519–531.
329 330	Li Z. (2012) Regulation of the cell division cycle in <i>Trypanosoma brucei</i> . Eukaryotic Cell. doi: 10.1128/EC.00145-12
331 332 333	Li Z., Wang C. C. (2003) A PHO80-like cyclin and a B-type cyclin control the cell cycle of the procyclic form of <i>Trypanosoma brucei</i> . <i>J Biol Chem</i> 278 , 20652–20658. doi: 10.1074/jbc.M301635200
334 335	London N., Biggins S. (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15, 736–747. doi: 10.1038/nrm3888
336 337	McKean P. G. (2003) Coordination of cell cycle and cytokinesis in <i>Trypanosoma</i> brucei. Curr Opin Microbiol 6, 600–607.
338 339 340	Morgan D. O. (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. <i>Annu Rev Cell Dev Biol</i> 13 , 261–291. doi: 10.1146/annurev.cellbio.13.1.261

341	Musacchio A. (2015) The Molecular Biology of Spindle Assembly Checkpoint
342	Signaling Dynamics. <i>Curr Biol</i> 25 , R1002-1018. doi:
343	10.1016/j.cub.2015.08.051
344	Mutomba M. C., To W. Y., Hyun W. C., Wang C. C. (1997) Inhibition of
345	proteasome activity blocks cell cycle progression at specific phase boundaries
346	in African trypanosomes. Mol Biochem Parasitol 90, 491–504.
347	Nerusheva O. O., Akiyoshi B. (2016) Divergent polo box domains underpin the
348	unique kinetoplastid kinetochore. Open Biol 6, 150206. doi:
349	10.1098/rsob.150206
350	Ngô H., Tschudi C., Gull K., Ullu E. (1998) Double-stranded RNA induces mRNA
351	degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 95, 14687-
352	14692.
353	Nurse P. (1990) Universal control mechanism regulating onset of M-phase. Nature
354	344 , 503–508. doi: 10.1038/344503a0
355	Ogbadoyi E., Ersfeld K., Robinson D., Sherwin T., Gull K. (2000) Architecture of
356	the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma
357	108 , 501–513.
358	Ogbadoyi E. O., Robinson D. R., Gull K. (2003) A high-order trans-membrane
359	structural linkage is responsible for mitochondrial genome positioning and
360 361	segregation by flagellar basal bodies in trypanosomes. <i>Mol Biol Cell</i> 14 , 1769–1779. doi: 10.1091/mbc.E02-08-0525
362	Okamoto N., Spurck T. P., Goodman C. D., McFadden G. I. (2009) Apicoplast
363	and Mitochondrion in Gametocytogenesis of <i>Plasmodium falciparum</i> .
364	Eukaryotic Cell 8, 128–132. doi: 10.1128/EC.00267-08
365	Ploubidou A., Robinson D. R., Docherty R. C., Ogbadoyi E. O., Gull K. (1999)
366	Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast
367	segregation and cytokinesis in the absence of mitosis. J Cell Sci 112 (Pt 24),
368	4641–4650.
369	Poon S. K., Peacock L., Gibson W., Gull K., Kelly S. (2012) A modular and
370	optimized single marker system for generating Trypanosoma brucei cell lines
371	expressing T7 RNA polymerase and the tetracycline repressor. Open Biol 2,
372	110037. doi: 10.1098/rsob.110037
373	Robinson D. R., Gull K. (1991) Basal body movements as a mechanism for
374	mitochondrial genome segregation in the trypanosome cell cycle. <i>Nature</i> 352 ,
375	731–733. doi: 10.1038/352731a0
376	Robinson D. R., Sherwin T., Ploubidou A., Byard E. H., Gull K. (1995)
377	Microtubule polarity and dynamics in the control of organelle positioning,
378	segregation, and cytokinesis in the trypanosome cell cycle. <i>J Cell Biol</i> 128 ,
379	1163–1172.

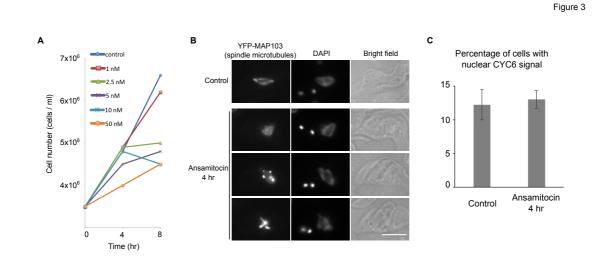
380	Sherwin T., Gull K. (1989) The cell division cycle of <i>Trypanosoma brucei brucei</i> :
381	timing of event markers and cytoskeletal modulations. <i>Philos Trans R Soc</i>
382	<i>Lond, B, Biol Sci</i> 323, 573–588.
383	Siegel T. N., Hekstra D. R., Cross G. A. M. (2008) Analysis of the <i>Trypanosoma</i>
384	brucei cell cycle by quantitative DAPI imaging. <i>Mol Biochem Parasitol</i> 160,
385	171–174. doi: 10.1016/j.molbiopara.2008.04.004
386	Tu X., Wang C. C. (2004) The involvement of two cdc2-related kinases (CRKs) in
387	<i>Trypanosoma brucei</i> cell cycle regulation and the distinctive stage-specific
388	phenotypes caused by CRK3 depletion. J Biol Chem 279, 20519–20528. doi:
389	10.1074/jbc.M312862200
390	Vaughan S., Gull K. (2008) The structural mechanics of cell division in
391	<i>Trypanosoma brucei. Biochem Soc Trans</i> 36, 421–424. doi:
392	10.1042/BST0360421
393 394 395	Vickerman K. (1962) The mechanism of cyclical development in trypanosomes of the <i>Trypanosoma brucei</i> sub-group: an hypothesis based on ultrastructural observations. <i>Trans R Soc Trop Med Hyg</i> 56, 487–495.
396 397	Vickerman K., Preston T. M. (1970) Spindle microtubules in the dividing nuclei of trypanosomes. <i>J Cell Sci</i> 6, 365–383.
398	Walker G., Dorrell R. G., Schlacht A., Dacks J. B. (2011) Eukaryotic systematics:
399	a user's guide for cell biologists and parasitologists. <i>Parasitology</i> 138, 1638–
400	1663. doi: 10.1017/S0031182010001708
401 402	Westermann B. (2010) Mitochondrial fusion and fission in cell life and death. <i>Nat Rev Mol Cell Biol</i> 11, 872–884. doi: 10.1038/nrm3013
403 404 405	Wickstead B., Ersfeld K., Gull K. (2002) Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of <i>Trypanosoma brucei</i> . <i>Mol Biochem Parasitol</i> 125 , 211–216.
406	Woodward R., Gull K. (1990) Timing of nuclear and kinetoplast DNA replication
407	and early morphological events in the cell cycle of <i>Trypanosoma brucei</i> . <i>J</i>
408	<i>Cell Sci</i> 95 (Pt 1), 49–57.
409	Yang Q., Ferrell J. E. (2013) The Cdk1-APC/C cell cycle oscillator circuit functions
410	as a time-delayed, ultrasensitive switch. <i>Nat Cell Biol</i> 15, 519–525. doi:
411	10.1038/ncb2737
412	Yuan K., O'Farrell P. H. (2015) Cyclin B3 is a mitotic cyclin that promotes the
413	metaphase-anaphase transition. <i>Curr Biol</i> 25, 811–816. doi:
414	10.1016/j.cub.2015.01.053
415	


416 **Figures and legends**

- 417
- 418

419 Figure 1. Cyclin B^{CYC6} is enriched at kinetochores in metaphase and disappears 420 in anaphase

- 421 (A) CYC6 has a dynamic localization pattern during the cell cycle. Examples of
- 422 procyclic form cells that express YFP-CYC6 are shown (cell line BAP426). K and N
- 423 stands for the kinetoplast and nucleus, respectively.
- 424 (B) CYC6 nuclear dots partially co-localize with a kinetochore protein, KKT2
- 425 (BAP1005).
- 426 (C) CRK3 has nuclear dots in metaphase and disappears in anaphase (BAP463).
- 427 Bars, 5 μm.



428 429

430 Figure 2. Cyclin B^{CYC6} is important for bipolar spindle assembly, but

431 dispensable for kinetochore assembly

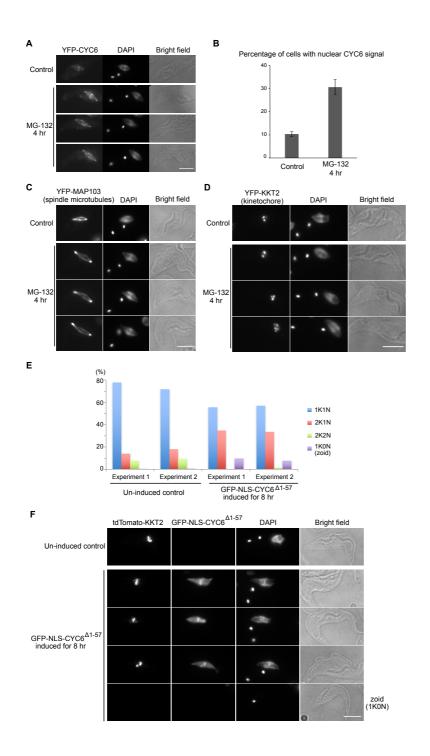
- 432 (A) Bipolar spindle formation was perturbed upon induction of CYC6 RNAi. Cells
- 433 expressing YFP-MAP103 (a marker for spindle microtubules) were fixed at 24 hr
- 434 post-induction (BAP504).
- 435 (B) Kinetochore localization of KKT1, KKT4, KKT7, KKT8, KKT10, KKT14, and
- 436 KKT16 proteins was not affected by CYC6 depletion (BAP503, BAP585, BAP505,
- 437 BAP593, BAP596, BAP506, and BAP604, respectively). Examples of 2K1N
- 438 (prometaphase/metaphase) or 2K2N (anaphase) cells expressing indicated YFP-KKT
- 439 proteins fixed at 24 hr post-induction are shown.
- 440 Bars, 5 μm.

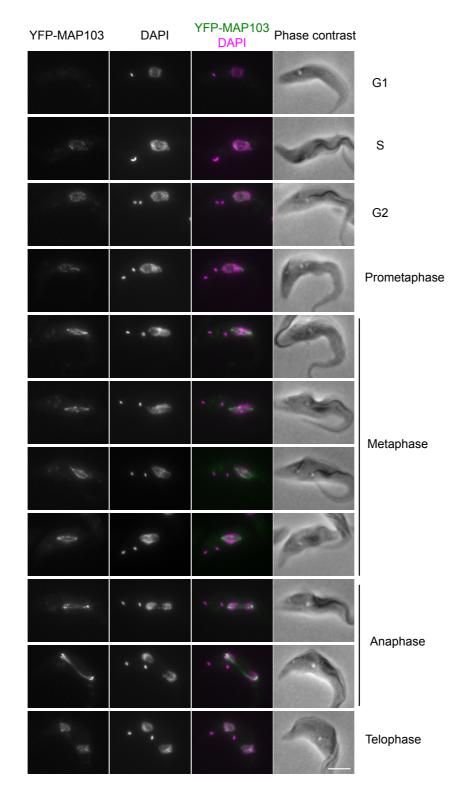
441

442

Figure 3. Spindle assembly defects do not cause cyclin B^{CYC6} accumulation in the nucleus

- 445 (A) Growth curves of control and ansamitocin-treated cultures show a concentration-
- 446 dependent growth inhibition (BAP125).
- 447 (B) Ansamitocin prevents bipolar spindle assembly. Cells expressing YFP-MAP103
- 448 (BAP79) were treated with 5 nM ansamitocin for 4 hr and fixed. Bar, 5 μ m.
- 449 (C) Ansamitocin treatment does not result in the accumulation of nuclear CYC6-
- 450 positive cells. Cells expressing YFP-CYC6 (BAP426) were treated with 5 nM
- 451 ansamitocin for 4 hr and fixed. Three hundred cells were counted for each sample,
- 452 and experiments were performed three times. Error bars represent standard deviation.




Figure 4

- 453
- 454

455 Figure 4. Cyclin B^{CYC6} prevents nuclear division

- 456 (A–D) MG-132 treatment causes metaphase arrest. Cells expressing YFP-CYC6 (A,
- 457 B: BAP426), YFP-MAP103 (C: BAP79), or YFP-KKT2 (D: BAP122) were treated
- 458 with 10 μ M MG-132 for 4 hr and fixed, showing that a higher ratio of cells have
- 459 nuclear CYC6 signal with a bipolar spindle and aligned kinetochores upon MG-132
- 460 treatment. For quantification of nuclear CYC6-positive cells (B), 300 cells were

- 461 counted for each sample, and experiments were performed three times. Error bars
- 462 represent standard deviation.
- 463 (E, F) Expression of a non-degradable CYC6 protein in the nucleus delays nuclear
- 464 division. GFP-NLS-CYC6^{$\Delta 1-57$} expression was induced with 0.1 µg/ml doxycycline in
- 465 cells that have tdTomato-KKT2 (BAP945) for 8 hr. Four hundred cells were counted
- 466 for each sample, and experiments were performed twice.
- 467 Bars, 5 μm.

Supplemental material, Hayashi and Akiyoshi

Figure S1. MAP103 localizes onto spindle microtubules during mitosis

Examples of cells expressing YFP-MAP103 at indicated cell cycle stages are shown.

Bar, 5 µm.

Strain	Description
SmOxP9	Parental cell line that expresses TetR and T7 RNAP (Kelly et al. 2007)
BAP79	TY-YFP-MAP103 (this study)
BAP122	TY-YFP-KKT2 (Akiyoshi and Gull 2014)
BAP125	TY-YFP-KKT4 (Akiyoshi and Gull 2014)
BAP426	3FLAG-6HIS-YFP-CYC6 (this study)
BAP463	3FLAG-6HIS-YFP-CRK3 (this study)
BAP503	TY-YFP-KKT1, Inducible CYC6 RNAi (this study)
BAP504	TY-YFP-MAP103, Inducible CYC6 RNAi (this study)
BAP505	TY-YFP-KKT7, Inducible CYC6 RNAi (this study)
BAP506	TY-YFP-KKT14, Inducible CYC6 RNAi (this study)
BAP585	TY-YFP-KKT4, Inducible CYC6 RNAi (this study)
BAP593	TY-YFP-KKT8, Inducible CYC6 RNAi (this study)
BAP596	TY-YFP-KKT10, Inducible CYC6 RNAi (this study)
BAP604	TY-YFP-KKT16, Inducible CYC6 RNAi (this study)
BAP945	TY-tdTomato-KKT2, Inducible GFP-NLS-CYC6 ^{$\Delta 1-57$} (this study)
BAP1005	3FLAG-6HIS-YFP-CYC6, TY-tdTomato-KKT2 (this study)

Table S1. Trypanosome cell lines used in this study.

Table S2. Plasmids used in this study.

Name	Descriptions
pEnT5-Y	TY-YFP tagging vector, Hygromycin (Kelly et al. 2007)
p2T7-177	Inducible RNAi vector, integrate at 177 bp repeats (Wickstead et al. 2002)
pBA18	TY-YFP-KKT1 tagging vector, Hygromycin (Akiyoshi and Gull 2014)
pBA31	TY-YFP-MAP103 tagging vector, Hygromycin (this study)
pBA67	TY-YFP-KKT2 tagging vector, Hygromycin (Akiyoshi and Gull 2014)
pBA68	TY-YFP-KKT8 tagging vector, Hygromycin (Akiyoshi and Gull 2014)
pBA71	TY-YFP-KKT4 tagging vector, Hygromycin (Akiyoshi and Gull 2014)
pBA72	TY-YFP-KKT7 tagging vector, Hygromycin (Akiyoshi and Gull 2014)
pBA74	TY-YFP-KKT10 tagging vector, Hygromycin (Akiyoshi and Gull 2014)
pBA96	TY-YFP-KKT16 tagging vector, Hygromycin (Akiyoshi and Gull 2014)
pBA97	TY-YFP-KKT14 tagging vector, Hygromycin (Akiyoshi and Gull 2014)

pBA106	3FLAG-6HIS-YFP tagging vector, Hygromycin (this study)
pBA148	TY-tdTomato tagging vector, Blasticidin (Akiyoshi and Gull 2014)
pBA164	TY-tdTomato-KKT2 tagging vector, Blasticidin (Nerusheva and Akiyoshi 2016)
pBA310	Inducible expression vector, integrate at 177 bp, Phleomycin (Nerusheva and Akiyoshi 2016)
pBA586	3FLAG-6HIS-YFP-CYC6 tagging vector, Hygromycin (this study)
pBA670	3FLAG-6HIS-YFP-CRK3 tagging vector, Hygromycin (this study)
pBA734	p2T7-177, CYC6 RNAi, integrate at 177 bp, Phleomycin (this study)
pBA1319	Inducible GFP-NLS-CYC6 ^{$\Delta 1-57$} expression vector, integrate at 177bp, Phlelomycin (this study)

Table S3. Primers and synthetic DNA sequences used in this study.

To make	Primer (all are listed 5' to 3') or synthetic DNA sequences
pBA31	MAP103 coding sequence (CDS) targeting sequence with <i>Xba</i> I and <i>Not</i> I BA140: gatcgatc TCTAGA GGAGCAGGT TCCAAGGAGGCTCCACATCG BA141: gatcgatc GCGGCCGC ACAAGATGAGAAGCCCTTTC MAP103 5'UTR targeting sequence with <i>Not</i> I and <i>Bam</i> HI BA142: gatcgatc GCGGCCGC GAAATATTGGTCTTTAAGTC BA143: gatcgatc GGATCC AACCGCTACAGCTATAGTAA
pBA106	3FLAG-6HIS tag with <i>Hind</i> III and <i>Spe</i> I cut sequences BA403: AGCTT ATGGATTACAAGGATGACGACGATAAGGATTACAAGGATGACGACGAT AAGGATTACAAGGATGACGACGATAAG CACCATCACCATCACCAT A BA404: CTAGT ATGGTGATGGTGATGGTGCTTATCGTCGTCATCCTTGTAATCCTTATCGT CGTCATCCTTGTAATCCTTATCGTCGTCATCCTTGTAATCCAT A
pBA586	CYC6 CDS targeting sequence with <i>Xba</i> I and <i>Not</i> I BA977: gatcgatc TCTAGA GGAGCAGGT AATCCCACGGCACTTCGTGA BA978: gatcgatc GCGGCCGC ATACCGGATTATTCTCACGA CYC6 5'UTR targeting sequence with <i>Not</i> I and <i>Bam</i> HI BA979: gatcgatc GCGGCCGC CATTAGTTGAACGTCTAACG BA980: gatcgatc GGATCC TGCCGTGCAGGACCCCTAAT
pBA670	Synthetic DNA for the N-terminal tagging target sequence for CRK3 with <i>Xba</i> I and <i>Bam</i> HI TCTAGA GGAGCAGGT acaatgettggggegttaaceggtegacaacttteetetggtettaaggateagttegacegetataategaatggacatae ttggagaaggaacgtatggagttgtgtacegtegttgacagggeaacgggacagategtegcactgaagaaagtga gattagategcacegatgagggaataceteaaacagetettegggaggtatetattttgeaagaaaatecateacecaaca

ttgttaGCGGCCGCtctgtatttagctatgatctcactatttccctcttttcttcgttgggttgtgtacctagcgatgttttacctcggacaattctcggtcgagggggctaaggcggtttctacccctatcaatctttgaaagaagttatgggtgtctcctcctaccttcatttattgcaaggtggttgctacataaaatttttatttttgtctctgctttcctcttaagttcttcaggaaacgttaggttgaagggggagatGGATCC

- pBA734 CYC6 coding sequence (378 801 bp) with *SpeI* and *Hind*III BA1249: gategate ACTAGT AATGATTCTCGTCGATTGGC BA1250: actgactg AAGCTT CTGCGATTGGATCTGCTGTA
- pBA1319 CYC6 coding sequence (172–1278 bp) with *PacI* and *AscI* BA1825: gate TTAATTAA G TACAGCCCCGTAGGTACGGC BA1828: gate GGCGCGCC CTA AAAGTCAGGTACTTCACTAG

Supplemental references

- Akiyoshi B., Gull K. (2014) Discovery of unconventional kinetochores in kinetoplastids. *Cell* 156, 1247–1258. doi: 10.1016/j.cell.2014.01.049
- Kelly S., Reed J., Kramer S., Ellis L., Webb H., Sunter J., Salje J., Marinsek N., Gull K., Wickstead B., et al. (2007) Functional genomics in *Trypanosoma brucei*: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. *Mol Biochem Parasitol* 154, 103–109. doi: 10.1016/j.molbiopara.2007.03.012
- Nerusheva O. O., Akiyoshi B. (2016) Divergent polo box domains underpin the unique kinetoplastid kinetochore. *Open Biol* **6**, 150206. doi: 10.1098/rsob.150206
- Wickstead B., Ersfeld K., Gull K. (2002) Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of *Trypanosoma brucei*. *Mol Biochem Parasitol* **125**, 211–216.