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Abstract

Synthesising a genetic network which generates stable Turing patterns is one of the great chal-
lenges of synthetic biology, but a significant obstacle is the disconnect between the mathematical
theory and the biological reality. Current mathematical understanding of patterning is typically re-
stricted to systems of 2 or 3 chemical species, for which equations are tractable, but plausible genetic
networks typically consist of dozens of interacting species. In this article, we suggest a method for
reducing large biochemical systems to systems with 2 or 3 species which can then be studied analy-
tically. We provide conditions to guarantee that the full system forms patterns if the reduced system
does, and vice-versa. We confirm our technique with 3 examples: the Brusselator, an example pro-
posed by Turing, and a biochemically plausible patterning system consisting of 17 species. These
examples show that our method significantly simplifies the study of pattern formation in large sys-
tems.
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1 Introduction

How cells co-ordinate with one another to form regular patterns of alternate differentiated states is a
foundational question in developmental biology [1]. Establishing general rules that biochemistry can
follow to enable pattern formation could impact on our ability to understand and cure developmen-
tal disorders [2], construct synthetic organs/organoids [3], or enable synthetic biology applications
to utilise multicellular self-organisation [4, 5, 6]. While there are several mechanisms that are known
to enable multicellular self-organisation of regular patterns, such as the french flag model [7], we fo-
cus here on diffusion-driven instability (DDI) first described by Alan Turing [8]. He proposed that
two “morphogens” (intercellular signalling molecules) could enable tissues to produce regular pat-
terns, and introduced a framework based on the reaction-diffusion equations that can establish when
a given chemical system has pattern-forming potential. Later, Gierer and Meinhardt proposed that
self-organisation requires a self-enhancing activator, which also up-regulates an inhibitor, forming
a negative feedback, and further that the activator must diffuse more slowly than the inhibitor [9].
While an activator-inhibitor system is the simplest pattern-forming network, requiring only two che-
mical species but with differential diffusion, the introduction of a third (non-diffusing) species has
been found to enable pattern formation when the morphogens have equal diffusion rates [10, 11].

Despite the theory of Turing patterns having existed since the 1950s, only much more recently has
compelling evidence emerged that suggests that Turing patterns are responsible for pattern formation
in natural biological systems, including digit patterning [12, 13] and fish skin colouring [14]. In most
cases, it has been challenging to relate known biology involving many interacting species to simple

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/213298doi: bioRxiv preprint 

https://doi.org/10.1101/213298
http://creativecommons.org/licenses/by/4.0/


2- and 3-species networks for which analysis of DDI is more straightforward [13, 15]. As such, it
remains the subject of debate as to whether the examples of biological pattern formation cited above
actually depend on DDI, or might arise due to other reasons. To help understand the biochemical me-
chanisms that can result in biological pattern formation, several articles have proposed constructing
synthetic biochemical networks that are engineered to specifically implement pattern-forming beha-
viours, some based on Turing instability [16, 17, 18, 19] but also other mechanisms [20, 21, 22, 23].
Libraries of biological parts/components have now been compiled that have been demonstrated to
be functional in specific cellular systems that are frequently used in synthetic biology applications
(e.g. Escherichia coli, Saccharomyces cerevisiae). Knowledge of the functioning of these components
could then be utilised to demonstrate how manipulating kinetic parameters influence the conditions
for DDI, and alter pattern wavelength, in predictable ways. Establishing a close relationship between
theory and experiment would then provide further evidence that Turing’s mechanism can drive bio-
logical pattern formation. However, examples of synthetic biological circuits that can produce Turing
patterns have yet to emerge, further raising the question of whether the Turing mechanism alone is
sufficient to robustly generate regular patterns in a biological system.

Analysis of DDI for two species is now well-established [24], but quickly becomes more com-
plicated with the introduction of additional (often non-diffusing) species [10]. While more theory
and automated mathematical tools are now emerging that facilitate the analysis of DDI in general n-
dimensional systems [25, 11], it still remains a challenge when the underlying system is nonlinear, as
is typically the case in biological systems. Therefore, it is not uncommon to start with a more detailed
mathematical description of a chemical system, then attempt to reduce it to a simpler form whilst
retaining the majority of the behaviour of the detailed model [16]. However, little analysis has emer-
ged that establishes whether the conditions of DDI are preserved during a model reduction, despite
it being observed that model reduction can change the required diffusion ratio for pattern formation
[10].

Many techniques have been established that reduce the size of ordinary differential equation
(ODE) models, offering a starting point for interpreting the impact of model reduction on Turing pat-
tern formation. Each technique is based on minimising the fidelity between detailed and reduced mo-
dels with respect to a specific property (see [26, 27] for reviews of model reduction techniques). Some
methods guarantee that equilibrium solutions (and their stability properties) are retained through
a reduction, while others attempt to minimise the deviation of the transient behaviour of a speci-
fied model variable or variables, in response to a stimulus. Furthermore, some methods preserve
the model co-ordinates/variables, while others do not. In biochemical systems, timescale separation
techniques are often used, of which the most common are the quasi-steady state assumption (QSSA)
and the quasi-equilibrium (QE) assumption [26]. Both involve removing species that are fast, substi-
tuting the concentration of these species for functions of the dynamic species that are derived from
equilibrium relationships arising from the full system.

In this article, we investigate the question of whether model reduction can be applied to a chemical
reaction network in a manner that preserves Turing pattern-forming behaviour. In section 2, we prove
that if a reduced model forms patterns, then so does the corresponding full system (and vice-versa),
given that some easily-checkable conditions are fulfilled. In section 3, we confirm our results on
three separate CRNs, including the Brusselator, and a synthetic gene network with 17 species. These
examples show that the method developed in this article allows for quick and easy Turing pattern
analysis of aribtrarily large and complex chemical systems.

2 Theory

2.1 Background description of Turing instability

The majority of theoretical work on Turing patterns builds upon the classical reaction-diffusion equa-
tions for a chemical system undergoing diffusion. In the absence of convection/advection, the reaction-

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/213298doi: bioRxiv preprint 

https://doi.org/10.1101/213298
http://creativecommons.org/licenses/by/4.0/


diffusion equations are given by
∂c
∂t

= f(c) + D∇2c (1)

where f : RN → RN is in general a nonlinear system for the rate equations of a CRN involving N
species (X1, ..., XN), and D is a diagonal matrix containing the diffusion rates of each species. The ∇
operator describes the spatial derivatives in Rd, where d is the number of spatial dimensions. In 1d,
this simply corresponds to ∂2c

∂x2 .
A Turing pattern arises when an equilibrium of the spatially homogoneous system (c = ĉ such

that f(ĉ) = 0) goes unstable in the presence of diffusion. In our definition of a Turing pattern, this
equilibrium is also assumed to be stable in the absence of diffusion. To analyse stability, we consider
standard linear analysis of the system about the equilibrium ĉ. If c = ĉ + c̃ when |c̃| � 1, then (1)
becomes

∂c̃
∂t

= J.c̃ + D∇2c̃ (2)

where J is the matrix of first-order partial derivatives of f with respect to each species j

Jij =
∂ fi
∂cj

(3)

evaluated at c = ĉ.
To assess stability in the presence of diffusion, we consider how perturbations evolve over time.

If wk(x) are the eigenmodes of the Laplacian operator ∇2, i.e. ∇2wk = ηkwk, then it has been shown
that ηk ≤ 0 (with zero flux boundary conditions) [28]. Therefore, it is customary to let ηk = −k2, with
k corresponding to the wavenumber of the eigenmode. As such, in 1d, on a domain x ∈ [0, L], there
are solutions of the form

c̃ = c̃0eλt cos
(

kπx
L

)
, k = 0, 1, 2, . . . (4)

Accordingly, the original linearisation problem (2) translates into

(λI + k2D− J)c̃0 = 0 (5)

Therefore, we are interested in the eigenvalues of J−Dk2. If we denote by λ(k) the solutions of the
eigenvalue problem associated with J−Dk2, then this gives rise to a dispersion relation

h(k2) := max{<(λ) : |λI− (J−Dk2)| = 0} (6)

For Turing instability, we require that the system is stable in the absence of diffusion, which trans-
lates to eigenvalues at k = 0 all having negative real part. Additionally, we require the existence of at
least one unstable wavenumber. i.e. there exists a wavenumber k∗ such that there is a corresponding
eigenvalue λ∗ with positive real part.

2.2 Model reduction

We now consider a system of N species in which the first M species can diffuse with diffusion coeffi-
cients D1, . . . , DM, while the remaining species cannot. Accordingly, we describe a spatially inhomo-
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geneous reaction-diffusion system as

∂c1

∂t
= f1(c1, . . . , cM, cM+1, . . . , cN) + D1∇2c1

...
∂cM
∂t

= fM(c1, . . . , cM, cM+1, . . . , cN) + DM∇2cM

∂cM+1

∂t
= fM+1(c1, . . . , cM, cM+1, . . . , cN)

...
∂cN
∂t

= fN(c1, . . . , cM, cM+1, . . . , cN)

(7)

The associated spatially homogeneous system can therefore be written compactly as

dci
dt

= fi(c1, . . . , cN), i = 1, . . . , N. (8)

We further assume that there exists a non-negative spatially homogeneous equilibrium of (1) given
by ĉi, which satisfies:

0 = fi(ĉ1, . . . , ĉN), i = 1, . . . , N. (9)

We now outline a strategy to reduce system (8) to a smaller system of NR species, with M ≤ NR <
N, including all diffusible species. Without loss of generality, we assume that the reduced model
consists of species X1,. . . ,XNR . The reduction is obtained by defining the functions c̄i(c1, . . . , cNR), (i =
NR + 1, . . . , N), which satisfy:

0 = fi(c1, . . . , cNR , c̄NR+1(c1, . . . , cNR), . . . , c̄N(c1, . . . , cNR)), i = NR + 1, . . . , N. (10)

Intuitively, this amounts to solving the steady-state ODEs for the removed species, as functions of the
remaining species, thereby eliminating N − NR species from the system. Note that c̄i(ĉ1, . . . , ĉNR) =
ĉi, (i = NR + 1, . . . , N). The reduced system of ODEs becomes:

dci
dt

= fi(c1, . . . , cNR , c̄NR+1(c1, . . . , cNR), . . . , c̄N(c1, . . . , cNR)), i = 1, . . . , NR. (11)

Using the chain rule, the Jacobian for system (11) is given by:

J̄ =


∂ f1
∂c1

+ ∑N
r=NR+1

∂ f1
∂cr

∂c̄r
∂c1

. . . ∂ f1
∂cNR

+ ∑N
r=NR+1

∂ f1
∂cr

∂c̄r
∂cNR

...
. . .

...
∂ fNR
∂c1

+ ∑N
r=NR+1

∂ fNR
∂cr

∂c̄r
∂c1

. . .
∂ fNR
∂cNR

+ ∑N
r=NR+1

∂ fNR
∂cr

∂c̄r
∂cNR

 , (12)

evualated at ci = x̂i, (i = 1, . . . , NR), and the diffusion matrix is given by:

D̄ =



D1
. . . 0

DM
0

0
. . .

0


. (13)

We now have two systems, (8) and (11), which are models of the same underlying process. To con-
sider how Turing pattern formation is affected by the reduction from (8) to (11), we return to the
mathematical conditions of pattern-forming behaviour introduced above.
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We say a system is pattern-forming if there exist k1, k2, k3, k4 > 0 with k1 ≤ k2 < k3 ≤ k4 such that
all eigenvalues of J− k2D have negative real parts when k < k1 and k > k4, and there is a positive
real eigenvalue when k2 < k < k3. This is a strict definition that explicitly excludes certain systems
that are capable of forming patterns: (i) systems with patterns formed by Turing-Hopf bifurcations,
(ii) systems that are unstable without diffusion, and (iii) systems that can form patterns on arbitrarily
small length-scales (“noise-amplifying networks” [11]). Systems of type (i) are excluded because they
can form either spatial patterns or temporal oscillations depending on the initial conditions, and so
are not consistently pattern-forming; systems of type (ii) are excluded because they violate Turing’s
concept of diffusion-driven instability; systems of type (iii) are excluded because they violate physical
principles by permitting, for example, patterns on length-scales smaller than a molecule [10].

Knowing that we are interested in the behaviour of the matrix J− k2D, and its reduced counterpart
J̄− k2D̄, we note the following relationship between the full and reduced systems:

Lemma 2.1. |J− k2D| and |J̄− k2D̄| have the same roots as functions of k.

Proof. We define:

J1,1 =


∂ f1
∂c1

. . . ∂ f1
∂cNR

...
. . .

...
∂ fNR
∂c1

. . .
∂ fNR
∂cNR

 , J1,2 =


∂ f1

∂cNR+1
. . . ∂ f1

∂cN
... . . .

...
∂ fNR

∂cNR+1
. . .

∂ fNR
∂cN

 , (14)

J2,1 =


∂ fNR+1

∂c1
. . .

∂ fNR+1
∂cNR

... . . .
...

∂ fN
∂c1

. . . ∂ fN
∂cNR

 , J2,2 =


∂ fNR+1
∂cNR+1

. . .
∂ fNR+1

∂cN
...

. . .
...

∂ fN
∂cNR+1

. . . ∂ fN
∂cN

 ,

so that,

J =
(

J1,1 J1,2
J2,1 J2,2

)
, (15)

and we define:

L =


∑N

r=NR+1
∂ f1
∂cr

∂c̄r
∂c1

. . . ∑N
r=NR+1

∂ f1
∂cr

∂c̄r
∂cNR

...
. . .

...

∑N
r=NR+1

∂ fNR
∂cr

∂c̄r
∂c1

. . . ∑N
r=NR+1

∂ fNR
∂cr

∂c̄r
∂cNR

 , (16)

so that,
J̄ = J1,1 + L. (17)

We now compare |J− k2D| and |J̄− k2D̄|. In the former case, we have that:

|J− k2D| = |J2,2| · |J1,1 − k2D̄− J1,2J−1
2,2 J2,1|, (18)

while in the latter case,
|J̄− k2D̄| = | J1,1 − k2D̄ + L|. (19)

The two determinants are directly proportional if L = −J1,2J−1
2,2 J2,1. We observe that we can write

L = J1,2L̃, where,

L̃ =


∂c̄NR+1

∂c1
. . .

∂c̄NR+1
∂cNR

... . . .
...

∂c̄N
∂c1

. . . ∂c̄N
∂cNR

 , (20)
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so that the condition for proportional determinants becomes that J2,1 + J2,2L̃ = 0, or algebraically,
that

∂ fi
∂cj

+
N

∑
r=NR+1

∂ fi
∂cr

∂c̄r

∂cj
= 0, i = NR + 1, . . . , N, j = 1, . . . , NR. (21)

We note from Eq. (10) that, fi(c1, . . . , cNR , c̄NR+1(c1, . . . , cNR), . . . , c̄N(c1, . . . , cNR)), (i = NR + 1, . . . , N)
is a constant function of c1, . . . , cNR , i.e.,

0 =
∂

∂cj
fi(c1, . . . , cNR , c̄NR+1(c1, . . . , cNR), . . . , c̄N(c1, . . . , cNR)), i = NR + 1, . . . , N, j = 1, . . . , NR.

(22)
Expanding this gives precisely the condition (21). It follows that the determinants of the full and
reduced systems are directly proportional, and consequently that any zero eigenvalues of the full
system are replicated in the reduced system, and vice versa.

In the case of two systems with two diffusible species, we can also make the following statement:

Lemma 2.2. A system with two diffusible species (M = 2) is pattern-forming if it has the following properties:

(I) the system is linearly stable without diffusion (i.e. max(Re(eig(J))) < 0),

(II) the non-diffusible subsystem is either linearly stable without diffusion (i.e. max(Re(eig(J2,2))) < 0), or
else non-existent (i.e. M=N=2),

(III) |J− k2D| has two positive real roots (k2, k3 with 0 < k2 < k3) as a function of k.

Proof. By (I), all eigenvalues of J− k2D are negative when k = 0, and by continuity, also negative up to
some k1 > 0 with k1 ≤ k2. When k is very large, the characteristic polynomial of the system will have
the form (λ − k2D1)(λ − k2D2)|J2,2 − λI| + O(k2) = 0 if N > 2, or else (λ − k2D1)(λ − k2D2) = 0
if N = 2. The eigenvalues of J − k2D will therefore converge to −k2D1, −k2D2 and (if N > 2)
the eigenvalues of J2,2, which are all negative by (II). It follows that all eigenvalues of J − k2D are
negative for sufficiently large k (say, larger than some k4 ≥ k3). Furthermore, since M = 2, |J− k2D|
is a quadratic function of k2, it follows from (III) that |J− k2D| changes sign at k2 and k3, and nowhere
else. Since there exist k < k2 and k > k3 both corresponding to all negative eigenvalues of J− k2D, it
follows that there is at least one positive eigenvalue when k2 < k < k3. The system therefore satisfies
all conditions required for pattern-forming behaviour.

The combination of Lemmas 2.1 and 2.2 directly provides the conditions for which model re-
duction preserves pattern-forming behaviour. In particular, we have the following result:

Lemma 2.3. If a full (reduced) system is pattern-forming, then the reduced (full) system is also pattern-forming
if both the reduced (full) system and - if it exists - its non-diffusible subsystem is stable without diffusion.

Proof. Conditions (I) and (II) of Lemma 2.2 hold by definition. Since the full (reduced) system is
pattern-forming, there must exist distinct k2, k3 > 0 such that |J− k2

2D|=|J− k2
3D|=0. By Lemma 2.1,

zeros of the full and reduced systems’ determinants coincide, so condition (III) of Lemma 2.2 also
holds. Therefore the reduced (full) system is pattern-forming.

There are two important implications of this result for model reduction in practice. Firstly, if we
reduce a large model and find a set of parameters for which the reduced model forms patterns, then
we only have to check the Jacobian of the full model to find if it also forms patterns. This is useful
because checking the stability of a Jacobian is computationally much simpler than finding largest
real eigenvalues as functions of k, especially for systems with many species. Secondly, if the reduced
model is stable for a region of parameter space, then the full model cannot form patterns in that
region. This is useful because the stable region is typically large, and unstable regions frequently
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correspond to physically impossible parameter values, and so model reduction can be an efficient
way of eliminating systems incapable of pattern formation.

In the next section we apply our technique to some example systems and confirm that our results
hold.

3 Examples

3.1 Brusselator

One of the simplest chemical systems that is known to exhibit Turing patterns is the Brusselator,
which in its original form is described by four reactions involving only two essential chemical species
X and Y [29]

A→ X, B + X → Y + D, 2X + Y → 3X, X → E (23)

Here, the species A, B, D and E are explicitly included to ensure that mass is conserved. However,
they are often removed during analysis as they do not contribute to the characterisation of the system
behaviour, under the assumption that A and B are never depleted.

Following some debate over the chemical plausibility of reactions with more than two reactants,
it was proposed in [30] that by introducing a third chemical species, the trimolecular reaction could
be converted to a pair of bimolecular reactions

2X → Z, Z + Y → Z + X (24)

As the resulting bimolecular Brusselator system has not previously been analysed for Turing pat-
tern formation explicitly, we applied our model reduction approach to determine conditions for
which Turing instability is preserved. To simplify the reaction network whilst retaining full co-
verage of the space of possible behaviours of the bimolecular Brusselator system, we remove the
non-essential species and remove two of the rate parameters, leaving:

∅
a−⇀↽−
1

X, X b−→ Y, 2X
1−⇀↽−
1

Z, Z + Y 1−→ Z + X (25)

Assuming that X diffuses with unit rate, Y at a relative rate DY and Z is immobile, the concentrations
of X, Y and Z for this system evolve as:

∂x
∂t

= a− (1 + b)x− 2x2 + 2z + zy +∇2x (26)

∂y
∂t

= bx− zy + Dy∇2y,

∂z
∂t

= x2 − z,

with equilibria x̂ = a, ŷ = b
a , ẑ = a2. We perform a model reduction which removes Z from the

system. As per our strategy, this is achieved by solving dz
dt = 0 for z = z̄(x, y). We get:

z̄ = x2. (27)

The reduced model is obtained by substituting Eq. (27) into Eq. (26):

dx
dt

= a− (1 + b)x + x2y, (28)

dy
dt

= bx− x2y.
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Figure 1: Model reduction of a bimolecular Brusselator mostly retains the bifurcation structure of the clas-
sical Brusselator model. Bifurcation diagrams are shown for (a) the bimolecular Brusselator (26) system and
(b) the classical Brusselator (28) system. The clear area indicates parameter values of b and DY for which the
homogeneous equilibrium is stable, while the black region indicates parameter values corresponding to Turing
instability. The grey region indicates where the equilibrium solution is unstable in the spatially homogeneous
scenario. (c),(d) Stable patterns formed by species X in the bimolecular Brusellator (26) and classical Brusselator
(28) systems respectively. The parameter values used in these analyses were a = 1, DX = 1, b = 1.88, DY = 10.
Spatial simulations used a domain length of 20 (arbitrary units).
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Figure 2: Dispersion relations for the bimolecular and classical Brusselators. Dispersion relations are shown
for the bimolecular Brusselator (26) system and the classical Brusselator (28) system. Although the two plots are
different in general, they both cross the zero line at the same points. Parameter values are as in Fig. 1.
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which recovers the reaction-diffusion equations for the classical Brusselator model.
In general, we find that parameter values which lead to patterns in the bimolecular Brusselator

model also lead to patterns in the classical Brusselator model (Fig. 1 (a), (b)). To see this, we varied the
parameter b and the diffusion constant DY over large ranges, and compared the bifurcation diagrams.
As we would expect from Lemma 2.3, these show that parameter values which lead to patterns in the
reduced system also lead to patterns in the full system; correspondingly, parameters which lead to
patterns in the full system lead either to patterns or instability in the reduced system. In Fig. 1 (c), (d)
we show the patterns formed by the species X in systems (26) and (28) respectively.

In Fig. 2 we show the dispersion relations for systems (26) and (28). As predicted by Lemma 2.1,
while the relations themselves are different, they both change sign at the same values of k, implying
that both systems will form patterns on the same wavelengths.

3.2 Turing’s example

We next considered a larger example that is closely related to one proposed by Turing [8]. It consists
of species X, Y, W, C, and C′, and concentrations x, y, w, c, and c′ respectively. X and Y can diffuse
with diffusion coefficients DX and DY, and the reactions are given by:

X + Y
k1−→ W, W

k2−→ 2Y, 2X
k3−→W, ∅

k4−→ X, (29)

Y
k5−→ ∅, Y + C

k6−→ C′, C′
k7−→ X + C,

We note that the C and C′ are related via a conservation law, and so we substitute c′ = cTot − c
(cTot constant), which leads to four independent ODEs that completely characterise the deterministic
behaviour of the system:

dx
dt

= −k1xy− 2k3x2 + k4 + k7(cTot − c), (30)

dy
dt

= −k1xy + 2k2w− k5y− k6yc,

dw
dt

= k1xy− k2w + k3x2,

dc
dt

= −k6yc + k7(cTot − c).

To demonstrate how the model reduction can be applied to different extents, we reduce this sy-
stem to both 3- and 2-species system approximations. First, we eliminate c by solving dc

dt = 0 for
c̄(x, y, w), which gives

c̄ =
k7cTot

k7 + k6y
(31)

Substituting c = c̄ in system (30), we obtain a 3 species system defined by

dx
dt

= −k1xy− 2k3x2 + k4 + y
k6k7cTot

k7 + k6y
, (32)

dy
dt

= −k1xy + 2k2w− k5y− y
k6k7cTot

k7 + k6y
,

dw
dt

= k1xy− k2w + k3x2.

Next, we eliminate w by solving dw
dt = 0 for w̄(x, y), which gives

w̄ =
k3

k2
x2 +

k1

k2
xy, (33)
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Substituting w = w̄ in (32), we obtain a 2 species system defined by

dx
dt

= −k1xy− 2k3x2 + k4 + y
k6k7cTot

k7 + k6y
, (34)

dy
dt

= k1xy + 2k3x2 − k5y− y
k6k7cTot

k7 + k6y
.

We therefore arrive at three models of system (29) with varying levels of dynamical complexity.
A complete model is described by 4 species, whereas two successive equilibrium assumptions applied
to C and then W generate two simpler models. To demonstrate the equivalence of Turing instability
(Lemma 2.3) across these models, we illustrate bifurcation diagrams of the full system (Figure 3 (a)),
and the reduced 3 (Figure 3 (b)) and 2 species (Figure 3 (c)) systems. These show that the 4 and 3
species models have indistinguishable parameter-dependent behaviour, while the 2 species model
is unstable for a region of parameter space where the other models are stable. We note that this
unstable region prevents the 2 species model from forming patterns when the diffusion rates of X
and Y are equal (DX = DY = 1), though such equal diffusion rates can produce patterns for the 3
and 4 species models. We also observe that pattern-forming parameters in the 2 species system also
lead to patterns in the larger systems (Figure 3 (d)–(f)). This is similar to the situation observed for
the Brusselator, whereby model reduction leads to a shrinkage of the parameter space that produces
patterns. However, we have not established whether this is generally the case following equilibrium-
based model reduction.

In Fig. 4 we show the dispersion relations for the 4- (30), 3- (32) and 2-species (34) systems. As
predicted by Lemma 2.1, while the relations themselves are generally different (although the 3- and
4- species relations are near-indistinguishable), they all change sign at the same values of k, implying
that all systems will produce patterns on the same lengthscales.

3.3 A synthetic gene circuit

In our final example, we consider a much larger system consisting of 17 species, which is based on
the synthetic gene circuit proposed in [18]. While this publication presents only a theoretical analysis
of the synthetic gene circuit, it represents a biologically plausible approach to realising a synthetic
cellular Turing patterning circuit in live cells. The synthetic gene circuit is arranged in an activator-
inhibitor network, whereby the intercellular signalling molecule Acyl Homoserine Lactonase (AHL)
plays the role of a short-range activator, and hydrogen peroxide gas (H2O2) plays the role of a long-
range inhibitor. Activation is achieved by AHL binding a constitutively expressed LuxR receiver
protein, forming an activating complex for PLux promoters, which are placed upstream of coding
sequences for the AHL synthase luxI [31] and the H2O2-producing ndh. The inhibitory loop is for-
med by an H2O2-sensitive topA promoter stimulating production of the AHL lactonase aiiA, which
degrades AHL [32], thus inhibiting its action.

In [18], it is shown that a model containing 5 variables (but analysis over 4 variables due to the
presence of a conservation law) can give rise to diffusion-driven instability for certain parameter
choices. Already, analysis of Turing instability is made challenging by virtue of there being more than
2 essential dependent variables. One might categorise their model as having intermediate complexity,
as a simpler model could be arrived at by considering only the concentrations of the diffusive signals
AHL and H2O2. In contrast, a more complex model might be considered that describes more of the
intracellular components, and complexes between them, directly.

Here, we show that the bifurcation properties of models of the synthetic gene circuit in [18] are
preserved across models of varying complexity. To demonstrate this, we start by considering a model
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Figure 3: Turing pattern analysis for a reaction network from Turing [8]. (a–c) Bifurcation diagrams for 4- (30),
3- (32) and 2-species (34) systems. In all cases, the parameter values used were k1 = 2, k2 = 0.2, k3 = 0.01,
k4 = 0.08, k5 = 0.04, k7 = 2, cTot = 6, DX = 1. (d–f) Stable patterns formed by species X in the 4- (30), 3- (32)
and 2-species (34) systems respectively. In all cases, the parameter values used were as in (a–c) but additionally
k6 = 3.37, DY=0.04, domain length= 6.
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Figure 4: Dispersion relations for the reaction network from Turing [8]. Dispersion relations are shown 4- (30),
3- (32) and 2-species (34) systems (blue, red and yellow respectively). Although the plots are different in general,
all three cross the zero line at the same points. An inset plot shows the crossing of the zero line at the lower value
of k. Parameter values are as in Fig. 3.
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described by elementary chemical reactions, as follows:

LuxR activity: ∅
aR−⇀↽−
dR

luxR 2 AHL.luxR
kdim−−⇀↽−−
kun

D (35)

Signal binding: AHL + luxR
bR−⇀↽−
uR

AHL.luxR Fis + H2O2
bF−⇀↽−
uF

FisA

Promoter binding: P1 + D
b1−⇀↽−
u1

PA
1 P3 + D

b3−⇀↽−
u3

PA
3 P4 + FisA b4−⇀↽−

u4
PA

4

Transcription: PA
1

a1−→ PA
1 + luxI PA

3
a3−→ PA

3 + Ndh PA
4

a4−→ PA
4 + Aiia

Degradation: luxI
dI−→ ∅ aiiA

γ3−→ ∅ H2O2
γ2−→ ∅ Ndh

dN−→ ∅

Lactonase activity: aiiA + AHL
bA−⇀↽−
uA

aiiA.AHL
kA−→ aiiA

Synthesis: luxI
kAHL−−−→ luxI + AHL Ndh

kH2O2−−−→ Ndh + H2O2

For brevity, we do not write out the full system of reaction rate equations here (although code is
available from the authors upon request). We reduce the full system of equations to one of interme-
diate complexity consisting only of AHL, H2O2, AHL.luxR, and aiiA (as considered in [18], whose
concentrations we write as L, H, P and A respectively. The reduced ODEs are:

dL
dt

=

(
uR +

a1kAHLb1kdimPnP

b1dIkdimP2 + dIkunu1

)
P−

(
bRaR

dR
+ bA A

kA
uA + kA

)
L, (36)

dH
dt

=
b3kdimP2a3kH2O2nP

dN(b3kdimP2 + kunu3)
− γ2H,

dP
dt

=
bRaR

dR
L− uRP,

dA
dt

=
a3b4bF HnFnP

b4bF HnF + u4(bF H + uF)
− γ3 A,

where nP is the total promoter concentration and nF is the total Fis concentration. While this system
is very similar to the four species model studied in [18], there are some minor differences, but we
nevertheless still find that Turing instabilities arise.

Finally, we can further reduce the system of intermediate complexity to a system comprising only
the diffusive molecules AHL and H2O2:

dL
dt

=
a1kAHLL2b1b2

Rkdima2
RnP

L2b1dIb2
Rkdima2

R + dId2
Ru2

Rkunu1
− L

nPa3b4bF HkAbAnF
γ3(uA + kA)(b4bF HnF + u4(bF H + uF))

dH
dt

=
L2b3b2

Rkdima2
Ra3kH2O2nP

dN(L2b3b2
Rkdima2

R + d2
Ru2

Rkunu3)
− γ2H (37)

In Fig. 5 (a)–(c), we show bifurcation diagrams of the full system (35), the four species model
(36) and the two species model (37). In this case, we find that the diagrams for the full (35) and
intermediate (36) complexity systems are identical, while the diagram for fully reduced system (37)
shows an unstable region of parameter space where the larger models are stable (in accordance with
Lemma 2.3). All three models have identical pattern forming regions. In Fig. 5 (d)–(f) we show
stable two-dimensional patterns of [AHL] in each system, which illustrates how patterns of a similar
wavelength emerge. This is confirmed by the dispersion relations shown in Fig. 6, which show that
each system’s dispersion relation changes sign at precisely the same wavenumbers (in accordance
with Lemma 2.1).
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Figure 5: Turing patterns are robust to reductions of a model of a synthetic gene circuit with intercellular
signalling. (a–c) Bifurcation diagrams for systems (35), (36) and (37) respectively. (d–f) Stable patterns formed
by species AHL in systems (35), (36) and (37) respectively. Parameter values: a1 = 2142, a3 = 1190, kAHL =
2, kH2O2 = 0.057, b1 = 0.156, b3 = 0.03, b4 = 0.25, bF = 2, dN = 2, dI = 2, dR = 2, γ2 = 2, γ3 = 2, bR =
0.0156, uR = 2, uA = 2, kA = 2, bA = 0.0117, aR = 0.5, kun = 2, nF = 2, nP = 2, u1 = 2, u3 = 2, u4 = 2, uF =
2, DAHL = 1; in panels d–f, kdim = 2, DH2O2 = 100, domain length= 100.
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Figure 6: Dispersion relations for the synthetic gene circuit model. Dispersion relations are shown for systems
(35), (36) and (37) (blue, red and yellow respectively). Although the plots are different in general, all three cross
the zero line at the same points. Parameter values are as in Fig. 5.
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4 Discussion

In this article we have proposed a technique for reducing a large chemical system to a small one, in a
manner that preserves pattern-forming behaviour as far as possible. In essence, the reduction relies
on a quasi-steady-state approximation (QSSA), since it assumes that the concentrations of the remo-
ved species can be written in terms of the remaining species without reference to time. However,
the comparison to the QSSA is slightly disingenuous, since all species (not just the removed sub-
set) must be in steady-state for stable Turing patterns to form, and the QSSA is normally applied to
time-dependent systems. Comparison with other model reduction techniques is also difficult, since
unlike typical approaches, our strategy is not necessarily interested in preserving the correct dyna-
mical behaviour of the full system: indeed, we make no claims that the reduced model is an accurate
description of the original system. The reduced model is derived with one aim in mind: to help find
parameters of the full model which can lead to Turing patterns, or to help prove that none exist.

In that respect, our technique is very successful. We have shown that, if we can find a pattern-
forming parameter set for the reduced system, then it is simply a matter of checking the stability of
the Jacobian of the full system to determine whether it, too, forms paterns with those parameters.
Furthermore, if we can find a region of parameter space for which the reduced system is stable, then
we know for certain that the full system cannot form patterns in that region.

The power of our technique is demonstrated very well on system (35): a biologically plausible
system consisting of 17 species and 31 reactions. At face-value, it is impossible to know whether this
system is capable of forming patterns, and, if so, which parameters correspond to pattern-forming
behaviour. By performing a dramatic reduction from 17 to 2 species, we quickly found regions of
parameter space corresponding to pattern-forming and stability in the reduced model. Our results
prove that these regions necessarily correspond to potential-pattern-forming and no-pattern-forming
respectively in the full system. The fact that both systems generate near-indistinguishable patterns is
an added bonus. Temporal dynamics are not conserved, which can be seen in the larger eigenvalues
of reduced systems (Figures 2, 4 and 6), which is known to correlate with faster pattern emergence
[33]. However, this is not surprising. Our model reduction technique is to simply assume that certain
species equilibrate infinitely fast, and so the overall dynamics of reduced systems will be faster in
general.

Overall, our results provide a quick and rigorous way to check for pattern-forming behaviour in
large biochemical networks. While we do not attempt to automate this process here, such automation
could be of serious utility to synthetic biologists in their attempts to find and synthesise genetic net-
works capable of forming stable patterns. The results in this article will also be of general interest to
those in the reaction-diffusion field, since they provide a means to extend the current analytical tools
developed for 2 or 3 species Turing-patterning systems to systems composed of an arbitrary number
of species.
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