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Interaction between the genotype and the environment (G×E) has a strong impact on the7

yield of major crop plants. Although influential, taking G×E explictily into account in plant8

breeding has remained difficult. Recently G×E has been predicted from environmental and9

genomic covariates, but existing works have not shown that generalization to new environ-10

ments and years without access to in-season data is possible and practical applicability re-11

mains unclear. Using data from a Barley breeding program in Finland, we construct an12

in-silico experiment to study the viability of G×E prediction under practical constraints. We13

show that the response to the environment of a new generation of untested Barley cultivars14

can be predicted in new locations and years using genomic data, machine learning and his-15

torical weather observations for the new locations. Our results highlight the need for models16

of G×E: non-linear effects clearly dominate linear ones and the interaction between the soil17

type and daily rain is identified as the main driver for G×E for Barley in Finland. Our study18

implies that genomic selection can be used to capture the yield potential in G×E effects for19

future growth seasons, providing a possible means to achieve yield improvements, needed for20
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feeding the growing population.21

Global yield improvements are needed to feed the growing population 1. One possibility is to22

breed varieties for higher environmental adaptability, known as targeted breeding 2. By improving23

the genetic fit of varieties in their growth environments, yield potential in the interaction between24

the genotype and environment could be realised. While the importance of G×E for agronomic25

performance is widely accepted, utilisation calls for methods that predict yields in new environ-26

ments, because actual experimental data, consisting of yields of plant variety candidates from yield27

trials, will in practice be available from only a very limited number of environments. Importantly,28

prediction of a plant’s response to a new environment cannot be based on weather data from the29

growth season, as those will never be available at the time of prediction.30

Methods for “cold start” prediction problems 3, where predictions are needed for completely31

novel instances, have been developed within the machine learning community. Example appli-32

cations include design of novel drugs for previously unseen cancers 4, and recommendations in33

on-line shopping for new customers and/or products 3. These methods are based on using ex-34

ternal covariate data that describe properties of the novel instances. We develop a new method,35

an extension of the Kernelized Bayesian Matrix Factorization 5, to account for the uncertainty in36

the covariates, which allows the use of historical records to predict weather conditions for future37

growth seasons, and eventually makes future G×E prediction for yield possible. Therefore, our38

new method, unlike the existing alternatives 6–8, does not rely on accurate weather information39

from the growth season from the new location (Figure 1).40
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Figure 1: Outline of our approach. a) Precision breeding aims at producing varieties that are
optimal for a specific environment. As compared to traditional breeding (b), targeted breeding aims
at higher environmental adaptation, i.e., smaller target environments. Weather (microclimate) is a
crucial driver for agronomic performance, but as it is unknown for future growth seasons, we use
historical weather records (c) to predict the environmental stresses. The growth locations differ
with respect to their estimated probabilities of extreme conditions and our method can be used
to manage risks by trading-off yield potential for stress tolerance, when the risk in a particular
environment is elevated.

In genomic selection (GS) 9, field trials are replaced with genomic predictions to speed-up41

plant breeding. We formulate an in silico experimental setup for GS in targeted breeding that,42

unlike existing works 7, 8, 10–12, strictly satisfies all realistic constraints: test locations, years, and43

genotypes are all genuinely new (not part of the training set) and yields are predicted for the off-44

spring of the training set. In this setup, we demonstrate the feasibility of targeted breeding by in-45

vestigating the accuracy of G×E prediction using environmental data including historical weather46

information but without in-season data (Model M hist
G+E+GE). We compare this with multiple com-47

peting settings, including the non-realistic ideal situation having in-season data (MG+E+GE), a48
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model without the G×E interaction (MG+E), a previous implementation with G×E interactions49

using in-season data (GE-BLUP) 8, and the industry-standard that does not include G×E (best50

linear unbiased prediction using genomic data 13; GBLUP). Data from a barley breeding program51

in Finland from Boreal Plant Breeding Ltd, including historical weather information for the target52

environments, are divided into training, validation, and test sets, and the prediction accuracy is53

measured as the average correlation between predicted and observed yields in the test sets 8 (Fig-54

ure 2c). A sensitivity analysis is done to explore the impact of model assumptions. A description55

of the model and the setup can be found in Materials and Methods, and further details are given in56

the Supporting Information.57

Modelling G×E with historical weather data, M hist
G+E+GE , improves predictive accuracy as58

compared to the industry-standard, GBLUP (Figure 2a; p=0.011, a two-sided paired Wilcoxon59

signed rank test, df=17). The improvement is comparable to using in-season data (MG+E+GE ,60

p=0.023). The Bayesian methods in general show higher accuracy whereas GE-BLUP performs61

poorly with the data available. Overall, the absolute prediction accuracy of all methods was rel-62

atively low in this challenging setup, with M hist
G+E+GE having the highest correlation of 0.105.63

Nevertheless, the improvement is considerable over the industry-standard with correlation 0.077,64

with the proposed new method explaining 85% more of the variation of the phenotype on average.65

The sensitivity analysis demonstrates considerable variability between test environments66

(Figure 2c). Indeed, including G×E interaction terms into the model decreased accuracy in 1/1867

environments, had little effect in 11/18 environments, but improved the accuracy substantially in68
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6/18 environments. In the last group, increasing model complexity by adding more G×E com-69

ponents consistently improved performance, which highlights the potential to increase accuracy70

through complex modelling of G×E. Importance of different data sources to the predictions can71

be further analysed by investigating the weights of the different kernels, used to summarise the data72

sources (Figure S 3). We see that the two most influential kernels were the ones that represented 1)73

the non-linear interaction between soil type and daily rainfall, and 2) the non-linear effect of rain,74

matching well the biological understanding of the problem.75

Our experiments confirmed that prediction in new environments is a challenging task, as76

reported earlier 8, our method reaching the highest correlation of 0.105 between predictions and77

observations. Nevertheless, the usefulness of including multiple G×E interaction terms and non-78

linear interactions between environmental covariates became evident from our results. We expect79

that gains from modelling G×E will increase in the future as more data, representing further loca-80

tions and years, will allow more accurately distinguishing the interactions from the main effects.81

Other ways to improve the predictions inlcude using more detailed genomic modeling, e.g. using82

Gaussian and other kernels for summarizing the SNP data.83

Besides targeted breeding, there are several other needs for G×E prediction models. They84

could mitigate the problems of conventional breeding: accounting for historical weather in the85

actual target population of environments can help prevent overfitting to the conditions in the few86

field trials performed, as discussed in detail in SI Gains from modelling G×E for current target87

population of environments. The assumption of the match between field trials and actual growing88
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Model mean SEmean P
MG+E+GE 0.104 0.036 0.011
M historical

G+E+GE 0.105 0.034 0.023
GE-BLUP 0.016 0.026 0.132
GBLUP 0.077 0.034 N/A
MG+E 0.097 0.035 0.109
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Figure 2: Predicting G⇥E with historical weather information improves genomic prediction accu-
racy in strictly new environments. a) Comparison of prediction accuracies; mean: correlation be-
tween predicted and observed yields, averaged across test environments; SEmean: standard error of
the mean; P: p-value compared to the industry standard (GBLUP). b) Outline of the in silico setup
for comparing methods. c) Sensitivity analysis: the difference in prediction accuracies (y-axis)
between G⇥E prediction with historical data (M hist

G+E+GE) and the industry standard (GBLUP) is
shown in 18 different environments (x-axis); values above the horizontal line mean that M hist

G+E+GE

is more accurate. Six vertical bars are shown for each environment, representing variability in
results (median and 90 % confidence intervals). Starting from the left, they correspond to models
with 0, 1, 2, 3, 4 or 5 G⇥E interaction terms (0 corresponds to the MG+E model). The color indi-
cates the performance of GBLUP in the environment, red meaning GBLUP performed poorly (Loc
C, 2015 were omitted from the comparison as all methods performed poorly there). Vertical lines
divide the environments into three groups: G⇥E decreased: including G⇥E terms to the model
decreased performance; G⇥E neutral: 10 environments where G⇥E terms had neutral effect;
G⇥E increased: 6 environments where performance increased by adding more G⇥E terms.
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locations is equally crucial for the official variety trials for value of cultivation and use (VCU),89

required in most countries to evaluate new varieties. G×E models are also needed in assessing the90

effects of climate change and to select for varieties that react favourably to the altering conditions91

1. For this purpose, the historical weather observations in M hist
G+E+GE can be replaced with climate92

simulations to assess the performance of varieties under various climate scenarios. To summarise,93

we showed that G×E prediction in the setup required by targeted breeding, where the environ-94

ments are strictly new and predictions are based on historical weather data available at the time of95

prediction, improves prediction accuracy significantly compared to the industry standard, which is96

needed to accelerate the implementation of targeted breeding.97

Methods98

Data All data used in the experiment come from a barley breeding program in Finland, which is99

a part of a larger population of target environments for barley as varieties used in Finland are also100

used in other Nordic countries. The phenotype consists of (z-transformed) yield measurements101

(kg/ha) for 2,244 lines observed in trials at 11 locations across the 4 southernmost growth zones102

in Finland from 2008 to 2015. The total number of observed location × year combinations is103

35. In some locations, trials have been performed on several years and several fields with varying104

soil properties, and a total of 12,277 yield observations have been recorded. The number of ob-105

servations per genetic line ranges from 1 to 118 (median 4). The lines were genotyped with the106

Illumina 9k iSelect SNP Chip, SNPs with minor allele frequence (MAF) < 0.05 or with > 5%107

values missing were omitted. Also all genotypes with > 5% of SNPs missing were omitted. The108

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/213231doi: bioRxiv preprint 

https://doi.org/10.1101/213231
http://creativecommons.org/licenses/by-nc-nd/4.0/


final proportion of missing genotype data is 0.002.109

The soil characteristics for each field block are measured in terms of the proportions of sand,110

silt and clay (soil classification triangle 14) and the proportion of organic content. Meteorological111

information consists of daily averages of temperature and rainfall, and the distances to the closest112

meteorological station range from 1 to 40 km (average 13.5 km). The baseline approach GE-BLUP113

8 requires summarising the weather information per crop stage: vegetative (from sowing to visible114

awns), heading time (from visible awns to the end of anthesis), and grain filling (from the end115

of anthesis to maturity). The times of the crop stages are estimated using temperature sum accu-116

mulation; the details are given in Section Comparison methods. In the weather observations, the117

proportion of missing values in daily average temperature and rainfall measurements is < 0.0015118

(max 3 missing values/environment) and < 0.0032 (max 2 missing values/environment), respec-119

tively.120

Experimental setup. To study prediction accuracy, we use a setup that strictly imposes the121

realistic constraints related to modelling G×E in targeted breeding for new locations. Predictions122

are required for new locations (not part of the experimental grid) and for years for which no phe-123

notype data are available (to mimic future growth seasons). Additionally, predictions are needed124

for the offspring of the lines in the training set, which have no phenotype data observations. More125

details with a summary of the differences between our setup and earlier works are given in SI126

Details of experimental setup. We measure prediction accuracy using cross-validation, where the127

training, validation and test sets are selected to enforce the realistic constraints (Figure 2c). As the128
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performance measure for prediction accuracy, we follow the conventional approach, i.e., the Pear-129

son correlation between the predicted and observed yields in the test set 8, 10–12. This correlation130

is computed for each cross-validation fold in turn, and averaged over the test cases. Similarly to131

Malosetti et al. 8, the test case -specific correlations are transformed into Fisher’s z-scores before132

averaging and back-transformed to obtain the final results. We regress the G×E interactions on133

the average characteristics of the growing season: for each yield trial, we use the weather obser-134

vations from the typical growing season (1st of May until end of August) regardless of the sowing135

date. This indirect approach allows predicting with historical weather data. When predicting with136

historical data, the prediction for each genotype is made for each year for which historical weather137

observations are available, and the median of those is used as the final predicted value.138

We also carry out a sensitivity analysis that allows studying the impact of modelling assump-139

tions, such as inclusion of G×E interaction components to the model. In detail, the sensitivity140

analysis shows variability (median and 90% interval) in the predictive performance in a given141

environment (location, year combination) when we vary i) the hyperparameter values over their142

spesified ranges, ii) the genotype sets that we are predicting, and iii) the training set by removing143

any single training environment.144

Model. In the models MG+E , MG+E+GE and M hist
G+E+GE we assume that i) the yield yij of145

genotype i in environment j is affected by the genotype, the environmental conditions through-146

out the growing season and the interactions between the two. We assume that ii) the response to147

the environmental properties is non-linear and that iii) it may involve interactions between differ-148
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ent environmental properties. For instance, temperature/rainfall either too low or too high reduces149

yield, and the response to rainfall is also affected by the soil type. We further assume that iv) the re-150

sponses to the environmental conditions are highly polygenic. Assumptions i-iv are encoded using151

the kernel trick 15, in which covariate data are represented as similarities, or kernels, between dif-152

ferent data items. Kernel methods are a computationally effective way to model non-linearities and153

interactions and they have been applied to breeding data 16. An additional complication in the data154

is the low number of observed trials compared to the complexity of the problem. To handle this, we155

constrain our model to only learn the most prominent combinations of environmental conditions156

affecting yield, by assuming a low-rank approximation for the model parameters accounting for the157

G×E effects. Finally, we follow the Bayesian statistical framework 17, and regularise the model158

by placing priors on all parameters, which alleviates overfitting to the training data and improves159

prediction accuracy in the test data.160

Mathematically, the model for yield is formulated as161

yij = gi + ej + ξij + εij, i = 1, . . . , Ng, j = 1, . . . , Ne, (1)

where gi is the genetic main effect, ej is the environmental effect, ξij is the effect that arises from162

interaction between genotype i and environment j, εij is noise distributed as N(0, σ2
j ), and Ng and163

Ne are the numbers of genotypes and environments. The genetic main effect gi is modeled as a164

linear function of the genomic covariates. In detail, the model for the vector of genetic main effects165
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g∗ = (g1, . . . , gNg)T is given in terms of a linear genomic kernel Kg by166

g∗

Ng×1
= Kg

Ng×Ng

· ag0
Ng×1

+ eg0
Ng×1

, (2)

where ag0 are kernel regression weights and eg0 is the noise vector with elements distributed inde-167

pendently as N(0, σ2
g0). The dimension of each matrix is shown in equation (2) below the corre-168

sponding matrix symbol. The genomic kernel Kg is computed by first concatenating the genomic169

covariates gi as the rows of a matrix G and then using the standard linear kernel, Kg = GGT .170

The environmental main effect ej in equation (1) is modeled as a random effect,171

ej ∼ N(0, σ2
e0), j = 1, . . . , Ne.

The G×E terms ξij are modelled as non-linear functions of the genomic and environmental172

covariates, gi and ej . Each environment and genotype is first represented by R latent variables.173

The interactions ξij are modelled as the inner product of the latent variable vectors corresponding174

to genotype i and environment j, that is,175

ξij =
R∑
r=1

hgir · hejr, i = 1, . . . , Ng, j = 1, . . . , Ne. (3)

Here, hgik is the kth latent variable for the ith genotype, and hejk is the kth latent variable for the jth176
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enviroment. Using matrix notation, equation (3) can be written as177

Ξ
Ng×Ne

= Hg
Ng×R

· HT
e ,

R×Ne

(4)

where Ξ = [ξij] is the matrix of interaction terms, and Hg = [hgij] and the He = [heij] are matri-178

ces having as their rows the R-dimensional latent variable representations for each genotype and179

environment, respectively.180

The latent variables Hg and He are obtained from genotype and environment kernels Kg and

Ke:

Hg
Ng×R

= Kg
Ng×Ng

· Ag
Ng×R

+ EHg

Ng×R
and

He
Ne×R

= Ke
Ne×Ne

· Ae
Ne×R

+ EHe
Ne×R

,

where Ag and Ae are kernel regression weights, and EHg and EHe are matrices containing error181

terms distributed independently as N(0, σ2
g) or N(0, σ2

e), respectively. The environmental ker-182

nel Ke is obtained by combining multiple kernels K1
e , . . . , K

E
e , computed from enviromental data183

ej, j = 1, . . . , Ne, each kernel representing a different aspect of the environment (weather, soil,184

etc). Details about processing the raw data into kernels and about combining multiple environmen-185

tal kernels into a single kernel are presented in SI Data processing and kernels.186

For inference we use variational approximation 18, which is a computationally feasible way187

to approximate posterior distributions of parameters in complex models. The variational updates188
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required here can be derived similarly to Gönen et al. 5, except that we have extended their model189

and algorithm by including the genotype and environment main effects, i.e., the terms gi and ej190

in equation (1). Detailed distributions of the model parameters and the guidelines for specifying191

hyperparameter values are given in Sections SI Detailed model specification and SI Specifying192

hyperparameter values, respectively. Further details about the inference algorithm in SI Details of193

the variational inference algorithm.194

Comparison methods. The mixed model computations for the comparison methods GBLUP195

and GE-BLUP are performed using the R library rrBLUP 19. For both methods, fixed effects196

were used to account for field block-specific effects, corresponding to the terms ej in M hist
G+E+GE ,197

MG+E+GE and MG+E . For GBLUP, the genomic kernel (see Section Model) was used as the198

covariance matrix Σ. For GE-BLUP, the environmental kinship model (GE-KE) 8, is used and the199

full covariance matrix Σ is generated through the Kronecker product Σ = ΣG ⊗ ΣE , where ΣG200

and ΣE are the genetic and environmental covariance matrices, respectively. The environmental201

covariance matrix ΣE is generated from the available environmental data to describe soil properties202

and the growth conditions during the vegetative, heading time and grain filling developmental203

stages. All soil data and growth zone information are used as such whereas the daily average204

temperature and rainfall measurements are summarised as the mean and the standard deviation of205

the daily observations per crop stage. The growth periods are estimated using the sowing date206

and temperature sum accumulation-based estimates of heading and ripening times (440.2 ◦C and207

905.9 ◦C, respectively), which were estimated from external breeding data. The vegetative stage208

is assumed to last 3 weeks starting from sowing, the time of heading is assumed to start 2 weeks209
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before and last 1 week after the estimated heading time and grain filling was assumed to start210

after heading and to last 1 week longer than the estimated time of ripening. Wide estimates for the211

growth periods were used to account for varying growth speeds. The resulting set of environmental212

covariates is z-normalized and a linear kernel is used, which is further normalized according to213

equation (()) in SI Data preprocessing and kernels.214

Data availability215

The data accompanied by the method code will be made available upon publication in the form of216

kernels to allow reproducing the results.217
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Supplementary Information (SI)278

Data preprocessing and kernels. A summary of different kernels, including transformations279

specific to each data source, preprocessing and kernel transformations used, is given in Table S 1.280

The bandwidth parameter of all the Gaussian kernels is set to the conventional default value equal281

to the number of covariates used to compute the kernel. All kernels K are normalized to make282

them unit diagonal:283

K̃ = (d−1/2 × d−1/2) ·K (1)

where d is a vector of the diagonal values of kernel K, × denotes the outer product, and the284

d−1/2 denotes a vector with all elements of d raised to the power of −1/2. The interaction kernel285

between the soil type and rainfall is computed from other kernels as286

Ksoil x rain = K̃soil, Gaussian � K̃rain, Gaussian, (2)

where � denotes the Hadamard (elementwise) product. Finally, all kernels are normalized with287

respect to their summed total variance by multiplication with a constant c288

˜̃
K = c · K̃ (3)

where c =
[∑Nz

i=1 Var(k̃i)
]−1/2

and k̃i is the ith column of K̃. The motivation for this normalisa-289

tion comes from the expectation that a priori each kernel explains the same amount of variance,290

and, when combining the kernels as described below, this prior expectation is realised by the nor-291
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malisation.292

Combining environmental kernels. The final environmental kernel Ke is obtained as a293

weighted sum of the different normalized ( ˜̃K) kernels in Table S 1. The weights are learnt from the294

training data by fitting BEMKL 20, a multiple kernel learning regression method, using experiment-295

specific yield means as the target variable. For BEMKL, shape (α) and scale (β) parameter values296

for the prior Gamma distributions are set to 1 except for the λ parameter, for which the scale is297

fixed to 10, providing stronger regularization. Regression bias term b is set to 0. For further details298

of BEMKL, see Gönen et al. 20. Before combining the kernels, the learnt weights are normalized299

such that their sum of squares is equal to 1, and the largest weight (in absolute value) is positive.300

The distributions of the normalised kernel weights from the sensitivity analysis are presented in301

Figure S 3. The composite kernel Ke is again normalized according to equation (3).302

Detailed model specification. The distributional assumptions of the model are303

yij|Hg, He, gi, ej, σ
2
j ∼ N (gi + ej + (hgi )

Thej , σ
2
j ), ∀(i, j)

σ−2
j ∼ G(αj, βj), ∀(j)

ag0i |λg0 ∼ N (0, λ−1
g0 ), ∀(i)

gi|ag0, Kg, σ
2
g0 ∼ N (aTg0k

g
i , σ

2
g0), ∀(i)

agij|λg ∼ N (0, λ−1
g ), ∀(i, j)
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Variable
(unit)

transformation preprocessing parameters missing value im-
putation

kernel
transforma-
tion(s)

Soil con-
tent (%,
Ncovs =3)

log transfor-
mation

z-normalization (none) linear and
Gaussian

Soil or-
ganic
content (%,
Ncovs =3)

log transfor-
mation

z-normalization (none) Gaussian

daily rain-
fall (mm,
Ncovs =123)

7-day moving
average (6 pre-
vious days)

z-normalization with 3rd

order polynomial smooth-
ing

0-imputation linear and
Gaussian

daily av-
erage
tempera-
ture (C◦,
Ncovs =12
3)

z-normalization with 3rd

order polynomial smooth-
ing of daily mean/scale pa-
rameters

0-imputation linear and
Gaussian

growth
zone (1-4,
Ncovs =1)

z-normalization (none) Gaussian

genotype
mark-
ers (SNPs,
Ncovs =5696)

Minor allele frequency
scaling for SNP A:

A− 2 ·MAFA√
2 ·MAFA · (1−MAFA)

mean imputation linear ker-
nel

Table S 1: Preprocessings and kernel functions applied to covariates.
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Figure S 3: Estimated normalized kernel weights in the sensitivity analysis.

hgij|Ag,Kg, σ
2
g , ∼ N ((kgi )

Tagj , σ
2
g), ∀(i, j)

ej|σ2
e0 ∼ N (0, σ2

e0), ∀(j)

aeij|λe ∼ N (0, λ−1
e ), ∀(i, j)

heij|Ae, Ke, σ
2
e ∼ N ((kei )

Taej , σ
2
e), ∀(i, j),
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where kgi , k
e
j , a

g
j , a

e
j , denote columns of matricesKg,Ke,Ag,Ae, with subscripts i and j specifying304

the column index; hgi and hej denote ith and jth rows of Hg and He, represented as column vectors;305

ag0i is the ith element of vector ag0; a
g
ij and aeij are the (i, j)th elements in matrices Ag and Ae. N306

and G denote the Gaussian and Gamma distributions, respectively.307

Specifying hyperparameter values. Prior knowledge about the approximate weights of308

different sources of variance, e.g. the relative weight of genetic and environmental main effects, is309

used to specify hyperparameter values. We determine for each hyperparameter either a single fixed310

value or a grid of values to be selected from by cross-validation. Parameters (αj, βj) of the Gamma311

distribution for environment-specific residual noise variances σ2
j are set to (10, 1), corresponding312

to an expected value of approximately 0.1 for σ2
j . The variance of environment mean effects σ2

e0 is313

fixed to 0.25. To set the parameters λg0 and σ2
g0 that determine the amount of signal and noise in314

the genetic main effects, we find values for them such that two conditions are satisfied. First, 95%315

of the variance of the genetic effects g∗ is assumed to be signal, that is,316

Var(Kg · ag0)
Var(Kg · ag0) + σ2

g0

= 0.95.

The second condition is that the variance of the genetic main effects, Var(Kg · ag0) + σ2
g0, is either317

0.2, 0.4, or 0.6. In practice we find these values for σ2
g0 and λg0 by simulating multiple realisations318

from the model with specific values for the parameters, and select values that on average satisfy319

the two conditions.320

The parameters λg, σ2
g , λe, and σ2

e , controlling the proportion of signal and noise in the la-
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tent components Hg and He that model the G×E interactions, are selected according to similar

principles: by inspecting the proportion of signal of the total variance of the latent factors and the

relative contribution of the interaction terms compared to the genetic main effects. In detail, we

assume first that

Tr(Var(Kg · Ag))
Tr(Var(Kg · Ag)) +Rσ2

g

= 0.95, and

Tr(Var(Ke · Ae))
Tr(Var(Ke · Ae)) +Rσ2

e

= 0.95,

where Tr() denotes the trace of a matrix. Second, we assume that the total variance of the interac-321

tions is either the same or half of the total variance from the genetic main effects, i.e.322

Tr(Var(Hg ·HT
e )) = Φ×R× [Var(Kg · ag0) + σ2

g0],

where Φ is either 0.5 or 1, to be selected with cross-validation.323

Details of the variational inference algorithm. For short-hand, the hyper-parameters in the324

model are denoted jointly by325

ζ = {αj, βj, σ2
g0, σ

2
e0, σ

2
g , σ

2
e , λg0, λg, λe},

and the parameters by326

Θ = {ag0, Ag, Ae, Hg, He,g
∗, e∗, σ2

∗},
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where σ2
∗ = (σ2

1, . . . , σ
2
Ne

). In the following the dependence on ζ is omitted for clarity. We assume327

the factorized variational approximation328

p(Θ|Kg, Ke, Y ) ≈ q(Θ) = q(ag0)q(Ag)q(Ae)q(Hg)q(He)q(g
∗)q(e∗)q(σ2

∗)

and define each factor in the ensemble just like its full conditional:

q(ag0) = N (ag0;µ(ag0),Σ(ag0))

q(Ag) =
R∏
r=1

N (agr ;µ(agr),Σ(agr))

q(Ae) =
R∏
r=1

N (aer;µ(aer),Σ(aer))

q(Hg) =

Ng∏
i=1

N (hgi ;µ(hgi ),Σ(hgi ))

q(He) =
Ne∏
j=1

N (hej ;µ(hej),Σ(hej))

q(g∗) =

Ng∏
i=1

N (gi;µ(gi),Σ(gi))

q(e∗) =
Ne∏
j=1

N (ej;µ(ej),Σ(ej))

q(σ2
∗) =

Ne∏
j=1

G(σ−2
j ;α(σ−2

j ), β(σ−2
j )).

The parameters in the factor distributions can be derived as by Gönen et al 5, and they are therefore329

omitted from here.330

Initialisation of the variational algorithm. The parameter g∗ was initialised to the main331
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genetic effects learnt by GBLUP, and e∗ was initialised to the average yields in the different en-332

vironments. Parameters Hg and He were initialised by applying the regularized Singular Value333

Decomposition (SVD) implemented in R library softImpute to the yield matrix Y after re-334

gressing out the initialised main effects g∗ and e∗. Parameters ag0, Ag and Ae were initialised to335

0. Environment-specific residual variance parameters σ2
∗ were initialised to environment-specific336

sample variances.337

Details of experimental setup. Different prediction tasks, distinguished by the availability338

of different data types, are presented in Figure S 4. Setups 1-4 correspond to those studied by339

Malosetti et al. 8: in setup 1, phenotype measurements are available for the genotypes and envi-340

ronments to be predicted, and both genotypes and environmental covariates are fully observed. In341

setups 2 and 3, phenotype measurements are still available but only for the genotypes or the envi-342

ronments to be predicted, but not both, and covariates are fully observed. In setup 4, no phenotype343

data are available for environments/genotypes to be predicted, but both genetic and environmental344

covariates are still fully observed.345

Two additional setups can be considered. In setups 5 and 6 environmental covariates from the346

environments of interest are only partially available: location and soil characteristics are known but347

the in-season weather measurements are not available for the year of interest. However, historical348

observations for the same locations are available and they are used to estimate the performance of349

each genotype. Setups 5 and 6 differ depending on whether phenotype measurements are available350

from some other environment for the genotypes (5) or not at all (6). The results in this paper are for351
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Figure S 4: Comparison of prediction setups with respect to the availability of phenotype data
and the genomic and environmental covariates as presented by Malosetti et al 8. White colour
indicates missing value. In setups 1, 3 and 5, ”lines with phenotypes”, the lines to be predicted
have phenotype observations (from some environments). In setups 1 and 2, ”phenotypes from
environment”, phenotypes have been measured from the prediction target environments (for some
lines). In setups 1-4 presented by Malosetti et al 8., environmental covariates are available for
all environments, whereas in the new setups 5 and 6, environmental covariates from the trials of
interest are missing and they are replaced by using several years of historical data.

setup 6 where no phenotype data are available for any of the lines of interest. We emphasize that352

a further difference to earlier work 8 is that we strictly require the test environments to be simul-353

taneously both from a location and from a year not included among the training environments and354

that the genotypes in the test/validation sets are from the progeny of the training set. A summary355

of the differences between our setup to those presented by earlier works is given in Table S 2356

Gains from modelling G×E for current target population of environments. Our results357

indicate targeted breeding could improve yields by dividing a single target population of environ-358

ments (TPE) into several parts, but the same methodology could be used even when developing359

only 1 variety for a larger population of target environments as in traditional breeding. Traditional360

breeding makes the implicit assumption that varieties’ observed yields g ∈ 1, . . . , G in trial exper-361

iments in environments (location × year) e ∈ 1, . . . , E, are representative of the yield in the TPE,362
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Publication New environment New genotypes
Burgueño et al.
2012 (CV1/CV2)
10

CV1/CV2: test locations and years
are present in the location-year
combinations in the training data

new lines in CV1: not restricted to
the offspring generation. In CV2
the test lines have phenotype obser-
vations

Heslot et al. 2013
7

Random split, balanced wrt years
and locs → year and locations not
new

only 544/2195 genotypes have no
phenotype observations, test set not
restricted to the offspring genera-
tion

Albrecht et al.
2014 11

the year-location combination is
new but the test locations and years
are a present in other location-year
combinations in the training data

genotypes are new and from the off-
spring

Malosetti et al.
2016 8

time-structured DTD: 2/6 test lo-
cations new according to strict cri-
teria; physically structured DTD:
none of the environments are
strictly new (as the year is not new)

all genotypes within the same fam-
ily, not from the next generation.

Saint Pierre et al.
2016 12 (leave-
one-side-out)

location new but year part of the
training set

test lines have phenotype observa-
tions

Table S 2: Comparison of the proposed in silico setup to the existing setups.
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in other words363

p(yieldg|TPE) ≈ 1

E

∑
e

p(yieldg|environmente) (4)

However, with geographic field use information and weather data widely available, this

strong assumption can be replaced with an estimate for the yield in the TPE given the actual fields

and their microclimates:

p(yieldg|TPE) ≈
F∑
f

Pf × p(yieldg|f) (5)

=
F∑
f

Pf ×
∫
θf

p(yieldg|θf )× p(θf )dθf , (6)

where f ∈ 1, . . . , F , are fields in the TPE used for cultivation of the new variety, θf are parameters364

(e.g. weather conditions) related to a certain field f , p(θf ) is the uncertainty related to these365

conditions, estimated from historical records, p(yieldg|θf ) is the predictive distribution for the366

yield under conditions θf , obtained from the model, and Pf is the proportion of the total volume367

cultivated in field f .368
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environment GBLUP MG+E MG+E+GE M hist
G+E+GE GE-BLUP Ntest

1 Loc B, 2011 -0.147 -0.146 -0.109 -0.07 0.068 59
2 Loc A, 2011 -0.237 -0.086 -0.206 -0.2 -0.015 59
3 Loc G, 2011 -0.02 -0.028 0.045 0.031 0.183 58
4 Loc B, 2013 -0.016 0.057 0.051 0.046 0.182 182
5 Loc A, 2012 0.167 0.198 0.167 0.163 0.057 106
6 Loc G, 2012 0.023 -0.079 0.017 0.031 -0.166 106
7 Loc D, 2012 0.01 -0.031 -0.01 -0.026 -0.075 105
8 Loc E, 2013 0.124 0.2 0.265 0.245 -0.354 91
9 Loc B, 2012 0.089 0.166 0.17 0.195 -0.047 106

10 Loc G, 2013 0.228 0.21 0.278 0.282 -0.256 91
11 Loc B, 2012 0.171 0.223 0.179 0.192 0.127 260
12 Loc A, 2012 0.046 0.113 0.087 0.043 0.1 243
13 Loc E, 2013 0.467 0.488 0.503 0.518 -0.122 153
14 Loc G, 2013 0.2 0.308 0.353 0.344 -0.107 152
15 Loc C, 2014 0.208 0.197 0.068 0.045 0.054 79
16 Loc B, 2013 0.267 0.309 0.291 0.225 0.147 153
17 Loc A, 2013 0.05 0.128 0.116 0.114 0.089 153
18 Loc E, 2014 -0.02 -0.007 0.027 -0.013 0.354 79
19 Loc B, 2014 -0.037 -0.021 -0.046 -0.044 -0.133 79
20 Loc B, 2014 0.258 0.272 0.012 0.054 0.122 106
21 Loc C, 2014 0.344 0.324 0.375 0.345 0.065 106
22 Loc E, 2014 0.325 0.42 0.371 0.404 0.275 105
23 Loc H, 2015 0.199 0.12 0.166 0.122 0.251 64
24 Loc F, 2015 0.246 0.245 0.197 0.295 0.097 64
25 Loc B, 2015 -0.069 -0.093 0.227 0.257 -0.289 64
26 Loc B, 2013 0.091 0.084 0.078 0.083 0.058 488
27 Loc G, 2013 0.181 0.236 0.151 0.138 -0.015 244
28 Loc E, 2013 0.243 0.222 0.234 0.236 -0.052 244
29 Loc C, 2014 0.292 0.36 0.385 0.382 -0.069 120
30 Loc F, 2015 0.053 0.169 0.186 0.161 0.002 39
31 Loc E, 2014 0.232 0.217 0.25 0.208 -0.062 120
32 Loc B, 2015 -0.056 -0.083 -0.062 -0.071 -0.292 39
33 Loc B, 2014 0.01 -0.016 -0.145 -0.137 0.086 91
34 Loc E, 2014 0.221 0.306 0.382 0.367 -0.157 91
35 Loc C, 2014 0.273 0.25 0.232 0.258 0.089 91
36 Loc H, 2015 0.044 0.006 0.159 0.123 -0.206 42
37 Loc B, 2015 -0.041 0.035 0.145 0.128 0.219 42
38 Loc B, 2015 0.095 -0.039 0.008 0.012 0.039 64
39 Loc F, 2015 -0.037 0 -0.039 0.03 0.078 64
40 Loc H, 2015 0.25 0.259 0.261 0.262 0.253 63
41 Loc C, 2015 -0.204 -0.341 -0.353 -0.359 -0.143 60

Table S 3: Results for individual test folds.
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