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Abstract

Alzheimer’s Disease (AD) is a progressive neurological disorder in which the

death of brain cells causes memory loss and cognitive decline. The identifica-

tion of at-risk subjects yet showing no dementia symptoms but who will later

convert to AD can be crucial for the effective treatment of AD. For this, Mag-

netic Resonance Imaging (MRI) is expected to play a crucial role. During recent

years, several Machine Learning (ML) approaches to AD-conversion prediction

have been proposed using different types of MRI features. However, few studies

comparing these different feature representations exist, and the existing ones do

not allow to make definite conclusions. We evaluated the performance of var-

ious types of MRI features for the conversion prediction: voxel-based features

extracted based on voxel-based morphometry, hippocampus volumes, volumes of

the entorhinal cortex, and a set of regional volumetric, surface area, and cortical

thickness measures across the brain. Regional features consistently yielded the

best performance over two classifiers (Support Vector Machines and Regular-

ized Logistic Regression), and two datasets studied. However, the performance
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difference to other features was not statistically significant. There was a consis-

tent trend of age correction improving the classification performance, but the

improvement reached statistical significance only rarely.

Keywords: Alzheimer’s Disease, Magnetic Resonance Imaging, Brain,

Machine Learning, Feature Representations

1. Introduction

Alzheimer’s Disease (AD) is a progressive neurological disorder in which the

death of brain cells causes memory loss and cognitive decline. The progression

of the neuropathology in AD starts long before clinical symptoms of the disease

become apparent [1, 2, 3, 4, 5]. Also, the symptoms become progressively worse,5

and much effort has been placed on the early diagnosis of the AD. Related to

this, Mild Cognitive Impairment (MCI), defined as a transitional phase from

cognitive changes of normal aging to those typically found in dementia, is an

important construct [6]. Subjects with MCI present a high risk of developing

AD, but still, most people with MCI will not progress to dementia (or AD) even10

after 10 years of follow-up [7, 8]. Thus, identifying MCI subjects who convert

to AD can be crucial for the effective treatment of AD.

Neuroimaging techniques have shown promise as tools for presymptomatic

AD detection [9, 10]. Much research has been focused on T1-weighted Mag-

netic Resonance Imaging (MRI). It is one of the most widely studied imaging15

techniques [11] because it is completely non-invasive, highly available, inexpen-

sive compared to positron emission tomography and has an excellent contrast

between different soft tissues. Over the past few years, many potential MRI

markers, such as the whole brain, hippocampal, and entorhinal cortex atrophy,

have been shown to have diagnostic value [12]. Also, these markers have been20

used as the features for Machine Learning (ML) algorithms trying to predict

MCI-to-AD conversion.

Indeed, there has been a surge of proposed ML algorithms for automati-

cally predicting the future conversion from MCI to AD based on MRI (e.g.,
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[13, 14, 15, 16]). This is partly driven by the free availability of large, high-25

quality datasets such as ADNI 1. However, the principal focus has been in the

development of new ML techniques, and their comparative evaluation has re-

ceived much less attention. In particular, ML algorithms have used different

types of feature sets extracted from MRI, including hippocampal volumes, vol-

umes of the entorhinal cortex, cortical thickness measures, as well as voxel-based30

morphometry (VBM) features (e.g., [17, 18, 19, 20, 21] and [22] for a recent re-

view). Despite that, systematic studies of advantages/disadvantages of various

feature sets have been limited so far, and existing studies do not allow to make

definite conclusions. To add to the confusion, high dimensional feature sets,

such as cortical thickness or voxel-based morphometry, must be coupled with35

dimensionality reduction technique such as averaging the values within a brain

region, Principal Component Analysis (PCA) or feature selection (see [23] for a

review).

Existing comparisons between different feature representations do not pro-

vide a clear answer to the question we are interested in: ”Is there a preferred40

representation of MRI for AD-conversion prediction?”. There are multiple rea-

sons for this. The comparisons have been geared to the AD vs. control classifi-

cation problem ([24, 25, 26]), they have not included voxel-based representations

[24, 27], they have utilized very short follow-up (18-months [27, 28]), they have

been based on a single learning algorithm [27, 29] and/or have had highly un-45

balanced pMCI and sMCI classes (in [29] 149 of 165 MCI subjects converted

during the 4-year follow-up that is in stark contrast to conversion rates reported

in other analyses [8]). An early and important study [28], which we want to

highlight, compared various feature representations including hippocampal vol-

umes, cortical thickness, and VBM with and without regional averaging. No50

feature representation in this study managed to perform significantly better than

chance. This somewhat disappointing result could be because 1) the methods

were early ones, mostly geared to the much easier normal control vs. AD sub-

1Information and data can be found at adni.loni.usc.edu
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ject classification problem, 2) the dataset was smaller than the one currently

available, and 3) the MCI non-converter was somewhat arbitrarily defined as a55

subject who did not convert in 18 months period. Moradi et al. [30] evaluated

their method over the same dataset as [28] managing to obtain significantly

better performance than the chance level, pointing to the reason 1) as the most

significant cause of the improvement.

Since [28], we can a find few studies of different feature representations pre-60

senting partially conflicting results. As an example, [21] found that the prog-

nostic efficacy of hippocampus volumetry was better than combined regional

volumetrics in two commercially available brain volumetric software packages

for MCI conversion prediction. On the other hand, Gaser et al. [17] have

demonstrated the superiority of their voxel-based brainAGE approach over the65

hippocampus volume biomarker and Westman et al. have emphasized the im-

portance of having a complete set of regional features [27, 24]. Some researchers

have opted to study feature selection, either supporting [20, 31] or opposing

[32] data-driven feature selection. The comparisons of different automatic algo-

rithms for hippocampal [33] and entorhinal cortex volumetry [34] have indicated70

that the algorithm-choice did not affect the classification accuracy. Intracranial

volume adjustment to regional volumetry appears to only have subtle effects to

the conversion prediction accuracy [35, 27]. Finally, it has been demonstrated

that the neurophychological test scores are the best predictors of conversion, but

combining them with MRI information leads to improved prediction accuracy75

[30, 36].

To close this information gap, we asked what type of feature representations

are the best for the MRI-based AD-conversion prediction. We used follow-up

period of 3 years to define the AD-conversion, twice longer than in [27, 28].

We evaluated the performance of various MRI features, including VBM-style,80

voxel-based features [17], coupled with feature preselection [30] or PCA-based

dimensionality reduction, hippocampus volumes, volumes of the entorhinal cor-

tex, and a complete set of regional volumetry, surface area, and cortical thickness

measures extracted by FreeSurfer. This complements earlier studies which did
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not include voxels -based representations [27, 21]. We additionally evaluated age85

removal [30, 37], which have been found to improve the prognostic efficacy of

ML-based MRI biomarkers. Moreover, we used two different classifiers (Support

Vector Machines, SVM, and Regularized Logistic Regression, RLR) for reducing

the classifier specificity of the conclusions and trained them applying a repeated

10-fold cross-Validation (CV) with a sound statistical inference to compare the90

methods, which can be seen as an improvement of separate training and test

sets in [28].

2. Material and methods

ADNI data

Data is collected from the the Alzheimers Disease Neuroimaging Initiative95

(ADNI) public database, available at adni.loni.usc.edu. The ADNI initia-

tive was launched in 2003 as a public-private partnership, led by Principal In-

vestigator Michael W. Weiner, MD. The primary goal of ADNI has been to

test whether serial magnetic resonance imaging (MRI), positron emission to-

mography (PET), other biological markers, and clinical and neuropsychological100

assessment can be combined to measure the progression of mild cognitive im-

pairment (MCI) and early Alzheimers disease (AD). For up-to-date information,

see www.adni-info.org.

ADNI material considered in this work included all subjects from ADNI1

for whom baseline MRI data (T1-weighted MP-RAGE sequence at 1.5 Tesla,105

typically 256 x 256 x 170 voxels with the voxel size of approximately 1 mm x 1

mm x 1.2 mm) and sufficient follow-up information were available. We focused

on the classification of MCI individuals based on their future diagnosis (AD or

not AD) and, therefore, MRI scans were all obtained at the baseline visit.

Two flavors of this dataset were evaluated. The first dataset, Quality Control110

(QC) dataset, included 183 MCI subjects whose FreeSurfer 4.3 MRI segmenta-

tions had passed the complete quality control. The second one, Non QC dataset,

included the complete dataset of 264 MCI subjects without any quality control.
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The reason for evaluating the two different sets was to study if the quality con-

trol yielded an improvement in the data analysis. Note that the QC dataset115

was a subset of the non-QC dataset.

Following [30], a subject was considered as a progressive MCI (pMCI) if

diagnosed as MCI at baseline and the diagnosis changed to AD during the 3-

year follow-up period. The subject was considered as a stable MCI (sMCI)

if diagnosed as MCI at baseline and the diagnosis remained as MCI during120

the follow-up. The minimum length of follow-up was 3 years and the subject

was excluded from the study if she converted after the 3 year follow-up, the

diagnosis fluctuated after the 3-year follow-up period, or less than 3-years of

follow-up information was available. Table 1 lists the main characteristics of

the subjects of each dataset and the list of Roster IDs of the included subjects125

and their diagnostic categories are available in the supplement.

Table 1: Demographics of the two flavors of the dataset (QC and Non-QC) used in this work.

The NC and AD subjects’ data were not used directly in the learning algorithms. The NC

subjects were used for the age-correction. The AD and NC subjects were used in Moradi-

method for feature selection.

QC dataset Non-QC dataset

sMCI pMCI AD NC sMCI pMCI AD NC

No. subjects 73 110 126 182 100 164 200 231

Males / Females 46/27 58/52 65/61 91/91 66/34 97/67 103/97 119/112

Age range 59-88 55-89 55-91 60-90 57-88 55-89 55-91 60-90

2.1. Image preprocessing

Table 2 details the feature representations we investigated and their respec-

tive number of features. Hippocampus volumes consisted of left and right hip-

pocampal volumes. Hippocampus + Entorhinal volumes consisted of left and130

right volumes of hippocampus and left and right volumes of entorhinal cortex.

We considered both raw volumes as well as volumes normalized by the intra-

cranial volume (ICV) as it is still unclear if the normalization by ICV is beneficial

for the prediction task [35, 27]. Region based features included a complete set

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/213132doi: bioRxiv preprint 

https://doi.org/10.1101/213132
http://creativecommons.org/licenses/by-nc-nd/4.0/


of 257 regional cortical thickness, surface area and volume measures provided135

by FreeSurfer 2 , 3. We note that this set of features included also ICV.

Freesurfer 4.3 software was employed for the extraction of hippocampus and

entorhinal cortex volumes as well as region features. Particularly, the FreeSurfer

4.3 processing results available at the ADNI website were used (UCSF Cross-

sectional Freesurfer version 4.3), and the description of the pipeline and the QC140

procedure can be found at 4. The rationales for using the processing results pro-

vided by ADNI was to ensure that the processing pipeline was a standard one,

the processing results are readily available to other researchers, and the quality

control, independent from the authors of this study, has been performed. We

note that albeit different versions of FreeSurfer can result in different segmen-145

tations, the classification results based on different software versions have been

found to be the same [34].

Voxel-Based Morphometry (VBM) based features consisted of 29852 gray

matter density values from the VBM style preprocessing by the VBM8 software.

In brief, the MRIs were preprocessed into gray matter tissue images in the150

stereotactic space as described in [17, 30], smoothed with the 8-mm FWHM

Gaussian kernel, resampled to 4 mm spatial resolution, and masked into 29852

voxels. In the Moradi set of features, VBM features were further processed

through the feature selection method of [30]. This method applies MRIs of AD

and NC subjects to select features for MCI classification through a repeated155

application of the elastic net penalized linear regression. We applied the ADNI

data from 231 (182) normal controls and 200 (126) AD subjects for this feature

selection with the non-QC (QC dataset). We reduced the number of VBM

2http://surfer.nmr.mgh.harvard.edu/
3Originally, this set included 274 measures. We selected a subset of 256 regions from

the aforementioned 274 measures discarding the regions that presented missed data. A

more detailed description of the 256 features is provided in https://github.com/MartaGomez/

Regions-list-/wiki/Regions-list.
4https://adni.bitbucket.io/reference/docs/UCSFFRESFR/

UCSFFreeSurferMethodsSummary.pdf
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features also using principal component analysis (PCA). For this, we retained

the PCA components that explained 99 % of the variance.160

Table 2: Summary of the sets of features considered in this study. Note that the number of

Moradi and PCA voxel features was dataset dependent.

Feature Set Number of features

Hippocampus volumes 2

Hippocampus + Entorhinal volumes 4

Region 257

Voxel 29852

Moradi 525 (non-QC); 431 (QC)

PCA Voxel 225 (non-QC); 157 (QC)

We further evaluated the representations with and without the age correc-

tion. The age correction may be important as the effects of normal aging on

the brain structure partially overlap with the effects of AD [38, 37]. We applied

the age correction procedure of [30]. This method estimates the age effect by a

linear regression for each feature separately based on the MRIs of normal con-165

trols (231 normal controls with the age range from 55 to 90 years of ADNI) and

then adjusts the features of the MCI subjects based on the estimated model.

2.2. Validation and test procedure

For the implementation and evaluation of the classification methods, we per-

formed a repeated and nested 10-fold Cross Validation (CV). In the outer CV170

loop, data was split in 10 different folds from which one fold at time was des-

ignated as the test fold (for performance evaluation) and the nine remaining

folds were used for classifier training. The train/test cycle was repeated with

each fold once as the test fold. In the inner CV loop, each train fold was, itself,

split into 10 validation folds from which one part was used to select the clas-175

sifier hyperparameters. The optimal hyperparameters were selected evaluating

either the classification accuracy (ACC, number of correctly classified samples
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over the total number of samples) or the Area Under the receiving operating

Curve (AUC) [39]. The nested CV was repeated 10 times, each with a different

randomly selected folding scheme, to minimize the effect of a particular folding180

scheme to the results. Also, the hypothesis test we used to compare different

representations requires the repeated use of CV.

To study the classifier performance, we considered several metrics: AUC,

ACC, Sensitivity (SEN, number of correctly classified pMCI subjects divided by

the total number of pMCI subjects and Specificity (SPE, number of correctly185

classified sMCI subjects divided by the total number of sMCI subjects). We

selected AUC as our principal performance measure as it is insensitive to the

class-imbalance whereas ACC can be strongly affected by the class-imbalance.

2.3. Classifiers

To evaluate each feature set, we considered two types of widely used super-190

vised learning classifiers: Support Vector Machine (SVM) [40] and elastic-net

Regularized Logistic Regression (RLR) [41]. Accessible description of these

learning methods can be found in [42]. For the SVM implementation, we

used the Python open source library Scikit-learn (http://scikit-learn.org/

stable/modules/generated/sklearn.svm.SVC.html), which is based on the195

LIBSVM implementation (https://www.csie.ntu.edu.tw/~cjlin/libsvm/).

For the RLR classifiers, we applied the GLMNET Python library (https:

//web.stanford.edu/~hastie/glmnet_python/), which solves the resulting

penalized optimization problem by a coordinate descent algorithm. We note

that both of these learning algorithms tolerate high-dimensional data via reg-200

ularization and are therefore suited for the cases where the number of features

is higher than the number of subjects. Especially, elastic-net includes an L1-

penalty, which leads to feature selection embedded to the classifier learning [43].

A large majority of supervised learning techniques have utilized these learning

algorithms [22] and a comparison of different classification algorithms MCI-to-205

AD prediction is available in [44]. We note that we did not include Random

Forests [45] as these are not straight-forwardly suitable for high-dimensional
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small-sample problems and the computation time and memory requirements for

nearly all implementations would be prohibiting for the voxel-based features

(however, see [46]).210

For the case of the SVM classifier, we decided to use the linear SVM (we

have also analyzed the possibility of using a RBF (Radial Basis Function) ker-

nel, however, experimental results showed similar performances). In this way,

we had to select only the soft margin parameter, C, whose value was explored

among the set {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103} (see [40] for nota-215

tion). Despite considering the linear SVM, its implementation was carried out in

the dual space, precomputing a linear kernel; in this way, we simplified the cal-

culations and reduced the computation time with the high dimensional feature

representations, such as VBM ones.

For the RLR classifier, using the notation of [41], we set the parameter of the220

elastic net α to 0.5, just in between lasso (α=1) and ridge (α = 0) regularization.

The principal regularization parameter of the RLR (λ), which sets the balance

between the regularization and the data terms, was chosen among the set of

values {10−10, 10−4, 10−3, 5 · 10−3, 10−2, 5 · 10−2, 10−1, 5 · 10−1}.

Finally, as a step prior to training the classifiers, we normalized the data by225

removing its mean and scaling it to the unit variance.

2.4. Statistical test

To compare the AUC values provided by different approaches, we applied

the corrected resampled t-test [47]. The problem in applying standard statis-

tical methodology, such as uncorrected t-test to assess the differences between230

AUCs is that r × k AUC values from in a k-fold CV repeated r times are not

statistically independent. Instead, the corrected resampled t-test assumes de-

pendency among the AUCs in a k-fold CV repeated r times and, therefore, it

allows to statistically compare two mean AUC values by correcting the vari-

ance estimation. The corrected resampled t-test can be seen as an improvement235

over the 5x2 CV of [48] and McNemar’s test for the classification accuracy [47].

Although the test was developed for the classification accuracy, it is as well
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applicable for testing the differences between AUCs.

To describe the test formally, let n1 and n2, respectively, denote the number

of instances used for training and testing in each fold, and aij and bij represent240

the AUCs of the i-th fold and j-th run of the method A and B with i =

1, ..., k and j = 1, ..., r. Denoting the estimated mean and variance values of the

differences between methods A and B by m̂ and σ̂2 i.e.,

m̂ =
1

kr

k∑
i=1

r∑
j=1

aij − bij (1)

σ̂2 =
1

kr − 1

k∑
i=1

r∑
j=1

(aij − bij − m̂)2 (2)

we can estimate the statistic of the test, t, as:245

t =
m̂√(

1
kr + n2

n1

)
σ̂2

(3)

The statistic t follows a student’s t-distribution with kr− 1 degrees of freedom.

In our case, r = k = 10.

3. Results

Tables 3, 4 and 5 show, respectively, the results for the QC dataset and

non-QC datasets using the AUC for model selection and the results of the non-250

QC dataset when the best model was selected using ACC. In particular, each

table includes for the SVM and RLR classifiers the values of AUC (area un-

der the curve), ACC (accuracy), SEN (sensitivity), SPE (specificity), as well as

three p-values from hypothesis tests comparing the AUCs: pAge (comparing age

removed features vs. non age removed features), pHippo (comparing hippocam-255

pus features with the remaining features for the age removed case) and pClass

(comparing SVM vs. LR results over the same set of features).

The AUC values of region features were the highest in all the experiments.

However, the performance improvement over the hippocampus feature set, which

was our baseline, did not reach the statistical significance and these improved260
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Table 3: Cross-validated performance measures with the QC dataset using AUC as the model

selection criterion. Hippocampus (Hippo. and entor. vol.) volumes ICV refers to hippocam-

pus (hippocampus + entorhinal) volumes normalized by the ICV.

Classifier Feature Age AUC ACC SEN SPE pAge pHippo pClass

Set Removal

SVM Hippocampus No 73.50 % 63.15 % 93.00 % 18.16 % 0.873

SVM Hippocampus Yes 77.31 % 66.42 % 90.54 % 30.20 % 0.052 0.819

SVM Hippocampus vol. ICV No 69.61 % 67.21 % 81.36 % 45.82 % 0.690

SVM Hippocampus vol. ICV Yes 72.67 % 68.31 % 82.36% 47.11 % 0.124 0.169 0.416

SVM Hippo. and entor. No 75.91 % 63.69 % 94.55 % 17.14 % 0.314

SVM Hippo. and entor. Yes 78.59% 61.77 % 97.82 % 7.29 % 0.055 0.492 0.285

SVM Hippo. & entor. vol. ICV No 72.66 % 68.26% 83.82 % 44.79 % 0.850

SVM Hippo. & entor. vol. ICV Yes 74.50 % 68.86 % 81.64 % 49.66 % 0.325 0.399 0.505

SVM Voxel features No 63.19 % 60.51 % 91.36 % 13.98 % 0.649

SVM Voxel features Yes 66.67 % 61.65 % 91.82 % 16.20 % 0.175 0.042 0.923

SVM PCA VF No 63.50 % 59.88 % 92.73 % 10.23 % 0.604

SVM PCA VF Yes 65.53 % 60.75 % 92.64 % 12.54 % 0.535 0.035 0.509

SVM Moradi features No 71.92% 63.54% 92.63 % 19.66 % 0.025

SVM Moradi features Yes 75.08 % 62.32 % 97.10 % 9.86 % 0.243 0.610 0.001

SVM Region features No 74.06 % 64.67% 92.27 % 22.91 % 0.739

SVM Region features Yes 77.34% 69.29 % 88.45 % 37.27 % 0.241 0.990 0.759

LR Hippocampus No 73.38 % 68.41 % 82.00 % 47.86 % %

LR Hippocampus Yes 77.19 % 71.31 % 83.91 % 52.43 % 0.042

LR Hippocampus vol. ICV No 69.80 % 66.57 % 75.16 % 38.88 %

LR Hippocampus vol. ICV Yes 72.25 % 68.32 % 84.64% 43.68 % 0.253 0.138

LR Hippo. and entor. No 72.52 % 66.85 % 80.82% 45.73 %

LR Hippo. and entor. Yes 74.13 % 68.05 % 81.64 % 47.55 % 0.085 0.767

LR Hippo. & entor. vol. ICV No 71.72 % 68.59% 84.47 % 42.60 %

LR Hippo. & entor. vol. ICV Yes 73.60 % 68.90 % 83.51 % 45.00 % 0.332 0.348

LR Voxel features No 64.40 % 61.91 % 76.18 % 40.43 %

LR Voxel features Yes 66.94 % 63.57 % 77.36 % 40.43 % 0.268 0.029

LR PCA VF No 61.95 % 59.12 % 78.73 % 26.68 %

LR PCA VF Yes 63.40 % 61.33 % 80.82 % 31.91 % 0.600 0.006

LR Moradi features No 65.83 % 63.28 % 75.00 % 42.73 %

LR Moradi features Yes 67.89 % 65.52 % 77.54 % 57.50 % 0.348 0.038

LR Region features No 74.57 % 70.67 % 81.91 % 53.70 %

LR Region features Yes 77.91 % 71.93 % 81.45 % 57.50 % 0.171 0.839
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Table 4: Cross-validated performance measures with the non QC dataset using AUC as the

model selection criterion. Hippocampus (Hippo. and entor. vol.) volumes ICV refers to

hippocampus (hippocampus + entorhinal) volumes normalized by the ICV.

Classifier Feature Age AUC ACC SEN SPE pAge pHippo pClass

Set Removal

SVM Hippocampus volumes No 70.29 % 63.09 % 96.02 % 9.10 % 0.708

SVM Hippocampus volumes Yes 75.57 % 63.94 % 95.39 % 12.30 % 0.047 0.398

SVM Hippocampus vol. ICV No 69.56 % 68.25 % 85.60 % 39.80 % 0.987

SVM Hippocampus vol. ICV Yes 72.28 % 69.46 % 85.3% 43.50 % 0.172 0.181 0.807

SVM Hippo. and entor. vol. No 73.23 % 64.57 % 98.16 % 3.50 % 0.358

SVM Hippo. and entor. vol. Yes 76.05 % 63.73 % 96.86 % 9.50 % 0.088 0.744 0.253

SVM Hippo. & entor. vol. ICV No 71.75 % 68.55 % 84.36 % 42.60 % 0.948

SVM Hippo. & entor. vol. ICV Yes 73.77 % 69.60 % 82.95 % 47.90 % 0.194 0.495 0.756

SVM Voxel based features No 68.55% 62.11 % 97.10 % 4.80 % 0.695

SVM Voxel based features Yes 69.55% 63.79 % 96.55 % 10.10 % 0.659 0.169 0.489

SVM PCA VF No 68.41 % 62.30 % 96.19 % 6.80 % 0.328

SVM PCA VF Yes 69.13 % 63.90 % 95.12 % 12.70 % 0.754 0.149 0.549

SVM Moradi features No 73.26% 64.20% 96.04 % 12.00 % 0.078

SVM Moradi features Yes 75.72% 63.40 % 96.89 % 8.50 % 0.180 0.965 0.288

SVM Region features No 73.11% 65.29 % 90.07 % 24.60 % 0.123

SVM Region features Yes 76.89% 66.94 % 95.30 % 20.50 % 0.091 0.680 0.101

LR Hippocampus volumes No 70.95 % 67.00 % 88.04 % 32.40 %

LR Hippocampus volumes Yes 74.95 % 67.68 % 86.34 % 37.00 % 0.046

LR Hippocampus vol. ICV No 69.60 % 67.94 % 87.91 % 35.20 %

LR Hippocampus vol. ICV Yes 72.37 % 69.44 % 88.76 % 37.80 % 0.148 0.272

LR Hippo. and entor. vol. No 72.59 % 69.72 % 85.88 % 43.20 %

LR Hippo. and entor. vol. Yes 75.31 % 70.61 % 84.98% 47.00 % 0.094 0.801

LR Hippo. & entor. vol. ICV No 71.72 % 68.59% 84.47 % 42.60 %

LR Hippo. & entor. vol. ICV Yes 73.60 % 68.90 % 83.51 % 45.00 % 0.210 0.603

LR Voxel based features No 69.46 % 66.63 % 83.42 % 39.10 %

LR Voxel based features Yes 71.34 % 66.99 % 82.68 % 41.30 % 0.370 0.394

LR PCA VF No 66.02 % 64.50 % 86.28 % 28.80 %

LR PCA VF Yes 67.58 % 64.68 % 87.02 % 28.10 % 0.536 0.058

LR Moradi features No 69.94% 67.77 % 83.81 % 41.50 %

LR Moradi features Yes 74.04 % 70.84 % 86.79 % 44.70 % 0.068 0.798

LR Region features No 76.38 % 71.27 % 85.97 % 47.10 %

LR Region features Yes 79.58 % 71.73 % 84.07 % 51.50 % 0.120 0.060
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Table 5: Cross-validated performance measures with the non-QC dataset using ACC as the

model selection criterion

Classifier Feature Age AUC ACC SEN SPE page pHippo pClass

Set Removal

SVM Hippocampus volumes No 70.51 % 67.35 % 85.06 % 38.30 % 0.330

SVM Hippocampus volumes Yes 74.99 % 68.86 % 81.91 % 47.40 % 0.026 0.759

SVM Hippo. and entor. vol. No 72.43 % 69.03 % 81.36 % 48.8 % 0.968

SVM Hippo. and entor. vol. Yes 75.40 % 71.71 % 82.20 % 53.50 % 0.065 0.777 0.880

SVM Voxel based features No 67.10% 61.71 % 79.86 % 32.10 % 0.939

SVM Voxel based features Yes 68.35% 62.46 % 80.59 % 32.90 % 0.506 0.106 0.548

SVM PCA VF No 66.78 % 62.15 % 79.56 % 33.70 % 0.621

SVM PCA VF Yes 67.98 % 63.14 % 80.18 % 35.30 % 0.613 0.085 0.784

SVM Moradi features No 72.85% 68.93% 84.49 % 43.40 % 0.356

SVM Moradi features Yes 75.00% 70.09 % 83.99 % 47.30 % 0.292 0.997 0.650

SVM Region features No 72.55 % 69.16% 82.73 % 46.90 % 0.122

SVM Region features Yes 75.98% 71.01 % 86.94 % 44.90 % 0.105 0.763 0.076

LR Hippocampus volumes No 70.96 % 66.28 % 88.92 % 29.10 %

LR Hippocampus volumes Yes 74.85 % 69.12 % 84.10 % 44.50 % 0.050

LR Hippo. and entor. vol. No 72.40 % 69.55 % 85.50 % 43.30 %

LR Hippo. and entor. vol. Yes 75.50 % 70.50 % 84.68 % 47.20 % 0.056 0.650

LR Voxel based features No 67.33 % 64.81 % 80.76 % 38.60 %

LR Voxel based features Yes 69.95 % 66.15 % 80.21 % 43.10 % 0.235 0.244

LR PCA VF No 65.42 % 63.52 % 87.46 % 24.30 %

LR PCA VF Yes 67.35 % 64.96 % 87.76 % 27.60 % 0.513 0.059

LR Moradi features No 71.08 % 68.60 % 85.35 % 41.10 %

LR Moradi features Yes 74.10 % 70.42 % 85.94 % 45.00 % 0.125 0.836

LR Region features No 75.91 % 71.01 % 84.52 % 48.80 %

LR Region features Yes 79.41 % 72.07 % 84.24 % 52.10 % 0.123 0.717
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Figure 1: ROC curves corresponding to distinct the features sets used in RLR classification

with the non-QC dataset. The age effect was removed.

AUCs need to be interpreted with care. In the particular case of the non-QC

dataset and the RLR classifier, the regions feature set produced significantly

higher AUC than hippocampus volumes.

Figure 1 depicts the ROC curves for the different feature sets under study for

the RLR classifier in the non-QC dataset. Focusing on the center of these curves265

(see the panel 1b), we can corroborate that the region feature set appeared

superior, but the performance differences were small. To avoid crowding, the

ROCs of the PCA voxel feature set was not visualized as it always performed

worse than the voxel features without PCA. For similar reason, the figure only

displays the ROC curves of raw Hippocampus and Hippocampus + Entorhinal270

cortex volumes and not the ICV-normalized ones. The same principle will be

followed in later figures.

Regarding the use of two different classifiers, differences between AUCs of

SVM and RLR were not significant. However, SVM yielded low specificity

values and the relation between SPE and SEN was more balanced with the LR275

classifier. Because of this we studied whether the use of AUC as the model

selection criteria contributed to this imbalance with the SVM classifier. Using

ACC as a model selection criterion avoids this SPE/SEN imbalance, as can be

seen in Figure 2 where the specificity values are compared between ACC and

AUC based model selection. As the comparison of Tables 4 and 5 reveals, the280
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Figure 2: Specificity values of SVM classifiers when AUC and ACC were used for model

selection. The models selected with ACC resulted in specificity values close 50 % whereas the

models selected with AUC resulted in very low specificity values.

final AUC values did not markedly differ between the two model selectors.

We evaluated the effects of age removal on the feature sets. For this purpose,

Figure 3 shows a detailed analysis of the advantages of removing the age effects.

As a result, classification scores improved for every age removed effects feature

set (see the panel 3c). However, as visible in Tables 3 and 4, significant improve-285

ment (p-value < 0.1) was observed only for hippocampus and hippocampus +

entorhinal volume feature sets.

The differences between the AUCs of raw and ICV-normalized hippocampus

and hippocampus + entorhinal volumes were not significant. Surprisingly, the

raw volumes performed slightly better in terms of AUC within each dataset.290

However, this result agrees with findings in [35, 27] and it is not central for the

purposes of this work to analyze the potential reasons for this result.

Finally, Figure 4 shows the differences between QC and non QC datasets

when age effects were removed. As expected Hippocampus and Hippocam-
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Figure 3: Analysis of age removal effects: (a) AUC comparison for different feature sets and

both classifiers; (b) and (c) ROC curves for RLR classifier using hippocampus volumes; (d)

and (e) ROC curves for LR classifier using region features. Age removal improved predictions

in all cases.

pus plus Entorhinal volumes were benefited from the Quality Control process,295

whereas remaining features sets resulted in better performances when all the

available data were used.
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Figure 4: Differences between the AUC values with the QC dataset and the non-QC dataset

for SVM (left) and RLR (right).

4. Discussion

In this work, we compared six different feature representations of MRI for

predicting the AD conversion in MCI subjects. The feature sets we studied300

varied from high dimensional feature sets produced by VBM via regional cortical

thickness, surface area, and volumetry to simple and easily interpretable features

such as hippocampus and entorhinal cortex volumes (see Table 2). We addressed

the feature representations using two learning algorithms, SVM and RLR, and

with several metrics, AUC, ACC, SEN and SPE, that gave a reliable insight305

into the relative performance of different feature sets. AUC was selected as

the principal figure of merit, due to its insensitivity to the class imbalance

(note that the datasets contained twice the number of pMCIs (subjects who

converted to AD) compared to sMCIs (subjects who remained as MCIs)). The

evaluation process was carried out with a nested fold CV repeated 10 times310
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ensuring the insensitivity of the conclusions to random train/test division of the

holdout method used previously [28]. Selecting the parameters of the classifiers

inside nested CV ensures that there are no biases towards particular feature

representations due to arbitrarily selected classifier parameters.

We found that age-corrected regions feature set (see https://github.com/315

MartaGomez/Regions-list-/wiki/Regions-list for a detailed description)

outperformed the remaining feature sets, specifically in AUC, even though the

improvement did not reach statistical significance. This result suggests that

regions based features were equal or better predictors than the left and right

hippocampal volumes (HV) alone (which were included in the region feature320

set). This is interesting as a recent study [21] concluded that HV had the

highest AUC among a set of individual regional volume features and was better

in terms of the prognostic efficacy of combining various volumetrics. Their

experimental setting was similar to the one analyzed here, however, with three

main differences. First, removing age related effects from MRI data was not325

considered; second, the set of pMCI patients was about half of ours; and, third,

the combined volumetric analysis did not consider measures such as surface area

or cortical thickness. This can explain the improvement in the best classification

accuracy from 69 % of [21] to 80 % in the present study.

Voxel-based representations did not perform well in this study when coupled330

with standard feature reduction techniques (elastic-net or PCA). This was in

contrast to a recent data-analysis competition, where the goal was to classify

subjects into NC, MCI, and AD categories based on MRI [26]. However, as

multiple factors have effect to a performance of an approach in a data analysis

competition, definite conclusions on feature representations cannot be made335

based on such competitions. However, also in our own experience, voxel-based

methods, coupled with elastic-net feature selection, perform well in classifying

between NC and AD or NC and MCI [31]. These discrepancies may suggest that

NC vs. MCI (or AD) classification and AD-conversion prediction have different

characteristics. Further, we note that feature pre-selection based on AD and340

NC data suggested by Moradi et al. [30] improved the conversion prediction
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accuracy markedly.

Retico et al. found that the voxel based VBM features best discriminate

between sMCI and pMCI after applying Recursive Feature Elimination (RFE)

[20]. However, again, the maximum accuracy in [20] was much lower than the345

accuracies in the present study and pMCI vs. sMCI classifiers were trained only

using AD and NC subjects that may explain this. Additionally, the statisti-

cal framework was incomplete as no hypothesis testing was done and the exact

definition of stable MCI class remained unclear. Other works, such as [18], con-

cluded that the combination of different feature representations resulted into a350

better classification accuracy than one representation alone. Again, the classi-

fication accuracies were lower than in the present work. Moreover, [18] selected

classifier hyperparameters based on test data that may cause upward bias in

the reported accuracies [15].

It is important to point out that while our classification accuracies were355

better than those in the studies reviewed above, the performance measures are

not directly comparable because different definitions of pMCI and sMCI. In

fact, this is a problem that complicates the comparison of ML methods for this

particular application and it is reviewed in further length in [22]. Namely, the

definition of sMCI subject based on a certain cutoff (say 3 years) is problematic360

as this simple criterion would place a subject who received an AD diagnosis

4 years after the baseline visit into the sMCI category. Our view is that this

would create unrealistic heterogeneity into the sMCI class and therefore tracking

subjects’ status after the cutoff is necessary (if possible). We have populated

our sMCI category based on all the information available by ADNI.365

Regarding the used ML methods, RLR provided, in general, similar AUC

values than SVM, but had an advantage of higher specificity (it classified sMCI

cases much better than the SVM did). SVM had a tendency of overpopulating

the pMCI class. However, in the case of SVM, low specificity seemed to depend

on the using AUC as the criterion for the hyperparameter selection. The val-370

ues in Table 5 reveal how selecting the hyperparameters instead through ACC

resulted in an overall improvement of specificity with a small loss of sensitivity.
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This is an interesting phenomenon, as it seems to be a problem of a specific

class of learning algorithms, which invites further research. However, as this

issue is not central to the goals of this work, we do not analyze it further.375

There were no significant differences between the classification accuracies or

AUCs obtained with non-QC and QC datasets. However, the small differences

between the two datasets were as expected as shown in Figure 4. For Hippocam-

pus and Hippocampus and Entorhinal volumes, the QC was moderately useful

whereas for the Moradi and Voxel based features it was moderately detrimen-380

tal. This is as expected since the QC was based on Freesurfer segmentations

(as Hippocampus and Entorhinal volumes) but the voxel-based and Moradi fea-

tures were not. Interestingly, for region based features (also based on Freesurfer

segmentation), the QC seemed not to influence the performance of the classifier.

It is remarkable that the age removal seem to be a key for better perfor-385

mances. As Figure 3 illustrates, age removal always led to better classification

performances, although the improvements were not always statistically signifi-

cant. This agrees with a recent work of [31] which demonstrated the same for

NC vs. MCI classification.

5. Conclusion390

This paper evaluated the performance of various types of MRI features for

the future AD conversion prediction and it also analyzed the performance of

each feature set over two classifiers (Support Vector Machines and Regularized

Logistic Regression) and with and without applying an age correction process.

Experimental results showed that regional features consistently yielded the395

best performance, although the performance difference to other features was not

statistically significant. Besides, the age removal seemed to be a key for better

performances, but the improvement reached statistical significance only rarely.
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[13] S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, J. D.460

Rohrer, N. C. Fox, C. R. Jack Jr, J. Ashburner, R. S. Frackowiak, Au-

tomatic classification of MR scans in Alzheimer’s Disease, Brain 131 (3)

(2008) 681–689.

[14] S. Adaszewski, J. Dukart, F. Kherif, R. Frackowiak, B. Draganski, A. D. N.

Initiative, et al., How early can we predict Alzheimer’s Disease using com-465

putational anatomy?, Neurobiology of aging 34 (12) (2013) 2815–2826.
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