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Abstract  

Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to non-

invasively study individual-specific brain networks. We propose a multi-session hierarchical 

Bayesian model (MS-HBM) that differentiates between intra-subject (within-subject) and 

inter-subject (between-subject) network variability. Across datasets, sensory-motor networks 

exhibited lower inter-subject, but higher intra-subject variability than association networks. 

Therefore, by ignoring intra-subject variability, previous individual-specific network 

mappings might confuse intra-subject variability for inter-subject differences. Compared with 

other approaches, MS-HBM cortical parcellations generalized better to new rs-fMRI and 

task-fMRI data from the same subjects. Importantly, MS-HBM parcellations from a single rs-

fMRI session (10 min) were comparable to a recent state-of-the-art algorithm using five 

sessions (50 min). Individual-specific MS-HBM parcellations were highly reproducible, yet 

captured inter-subject differences. While other studies have already established that 

individual-specific networks exhibit features not observed in population-average networks, 

here we demonstrate that these features are behaviorally meaningful. Using kernel regression, 

individual differences in the spatial arrangement of cortical networks could be used to predict 

cognition, personality and emotion. Thus, individuals with more spatially similar 

parcellations exhibited more similar behavior. Overall, our results suggest that individual-

specific cortical network topography might serve as a fingerprint of human behavior, 

orthogonal to previously proposed functional connectivity fingerprints. 
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Introduction 

The human cerebral cortex consists of specialized areas whose complex interactions 

form large-scale, spatially distributed functional networks. Recent advances in non-invasive 

brain imaging technologies, especially fMRI (Kwong et al., 1992; Ogawa et al., 1992), 

provide the opportunity to map these brain networks in-vivo. One prominent tool for 

identifying large-scale brain networks is resting-state functional connectivity (RSFC), which 

reflects the synchrony of rs-fMRI signals between brain regions, while a subject is lying at 

rest without any goal-directed task (Biswal et al., 1995; Greicius et al. 2003; Fox and Raichle, 

2007; Buckner et al., 2013).  

RSFC brain networks have been shown to correspond well to task-evoked activation 

patterns (Seeley et al. 2007; Smith et al., 2009; Buckner et al., 2011; Cole et al., 2014; Yeo et 

al., 2015a; Tavor et al., 2016). RSFC is also heritable (Glahn et al. 2010; Yang et al. 2016; 

Ge et al., 2017), correlates with gene expression across the cortical mantle (Hawrylycz et al. 

2015; Richiardi et al. 2015; Krienen et al. 2016), and predicts individual differences in 

behavior (Hampson et al., 2006; van den Heuvel et al., 2009; Finn et al., 2015; Rosenberg et 

al., 2015; Smith et al., 2015; Yeo et al., 2015b). Consequently, RSFC has been widely 

utilized to estimate population-level functional brain networks by averaging data across 

multiple subjects (Beckmann et al. 2005; Damoiseaux et al. 2006; Fox et al. 2006; Dosenbach 

et al. 2007; Margulies et al. 2007; Power et al. 2011; Yeo et al., 2011; Lee et al. 2012). 

Population-level atlases of large-scale networks have provided important insights into 

the broad functional organization of the human brain. However, the fact that RSFC can be 

used to predict the behavior of individual subjects suggest the presence of behaviorally 

relevant inter-subject functional connectivity variability (Mueller et al., 2013; Finn et al., 

2015; Smith et al., 2015). Furthermore, the shape, location and topology of functional brain 

networks vary substantially across individuals (Harrison et al., 2015; Wang et al., 2015; 

Gordon et al., 2017a; Gordon et al., 2017b). Therefore, the estimation of individual-specific 

brain networks could provide an important step towards precision medicine (Beckmann et al., 

2009; Bellec et al., 2010; Zuo et al., 2010; Varoquaux et al., 2011; Hacker et al., 2013; Wig et 

al., 2013; Chong et al., 2017; Gordon et al., 2017c; Braga and Buckner, 2017). 

Previous individual-specific network mappings only accounted for inter-subject 

variability, but not intra-subject variability. However, inter-subject and intra-subject RSFC 

variability can be quite different across regions (Mueller et al., 2013; Chen et al., 2015; 

Laumann et al., 2015). For example, the motor cortex exhibits high intra-subject functional 

connectivity variability, but low inter-subject functional connectivity variability (Laumann et 
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al., 2015). Therefore, observed RSFC variability in the motor cortex might be incorrectly 

attributed to inter-subject spatial variability of brain networks, rather than just intra-subject 

sampling variability, resulting in sub-optimal network mapping.  

Here, we proposed a multi-session hierarchical Bayesian model (MS-HBM) for 

deriving functional parcellations of the cerebral cortex within individual subjects. The 

multiple layers of the hierarchical model allowed the explicit separation of inter-subject 

(between-subject) and intra-subject (within-session) functional connectivity variability. By 

applying the MS-HBM to three multi-session rs-fMRI datasets, we confirmed that sensory-

motor networks exhibited greater intra-subject, but less inter-subject variability than 

association networks. Importantly, compared with three other approaches, the MS-HBM 

parcellations generalized better to new resting and task fMRI data from the same individuals. 

MS-HBM parcellations estimated from a single rs-fMRI session were comparable to those 

generated by a recent influential algorithm using five times the data (Gordon et al., 2017a; 

2017b). 

Having established that the MS-HBM generated high-quality individual-specific 

parcellations, we further characterized their reproducibility and behavioral relevance. We 

found that individual-specific MS-HBM were highly reproducible, yet captured inter-subject 

differences. Although it has been shown that individual-specific functional networks 

exhibited unique features not present in group-average networks (Laumann et al., 2015; 

Glasser et al., 2016; Gordon et al., 2017c), their behavioral relevance is currently unknown. 

Extending previous works showing that inter-region functional connectivity could be an 

effective fingerprint of human behavior (Finn et al., 2015; Smith et al., 2015), we showed 

that individual differences in the spatial configuration of cortical networks could be used to 

predict cognition, personality and emotion. Thus, individuals with more spatially similar 

cortical parcellations had more similar behavior.  
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Methods 

Overview 

We proposed a multi-session hierarchical Bayesian model (MS-HBM) to estimate 

functional network parcellations of the cerebral cortex in individual subjects. The model 

distinguished between inter-subject and intra-subject network variability. Subsequent 

analyses proceeded in three stages. First, to examine whether inter-subject and intra-subject 

variability could be reliably estimated across datasets, the MS-HBM was applied to three 

multi-session resting-state fMRI datasets. Second, the MS-HBM was compared with three 

other approaches using new rs-fMRI and task-fMRI data from the same subjects. Third, we 

examined the reproducibility of the MS-HBM parcellations, how well the parcellations 

captured inter-subject differences, and whether individual differences in cortical parcellations 

reflected individual differences in behavior. 

 

Multi-session fMRI datasets  

The Genomic Superstruct Project (GSP) test-retest dataset (Holmes et al., 2015) 

consisted of structural MRI and resting-state fMRI from 69 healthy young adults (ages 18 to 

35). All imaging data were collected on matched 3T Tim Trio scanners (Siemens Healthcare, 

Erlangen, Germany) at Harvard University and Massachusetts General Hospital using the 

vendor-supplied 12-channel phased-array head coil. Each participant has two sessions, 

acquired on two different days separated by less than 6 months. One or two rs-fMRI runs 

were acquired per session. Each BOLD run was acquired in 3mm isotropic resolution with a 

TR of 3.0 seconds and lasted for 6 minutes and 12 seconds. The structural data consisted of 

one 1.2mm isotropic scan for each session. Details of the data collection can be found 

elsewhere (Holmes et al., 2015).  

The Hangzhou Normal University of the Consortium for Reliability and 

Reproducibility (CoRR-HNU) multi-session dataset (Zuo et al., 2014; Chen et al., 2015) 

consisted of structural MRI and resting-state fMRI from 30 young healthy adults (ages 20 to 

30). All imaging data were collected on 3T GE Discovery MR750 using an 8-channel head 

coil. Each participant was scanned a total of 10 sessions across one month (one session every 

three days). One rs-fMRI run was collected in each session. Each fMRI run was acquired in 

3.4mm isotropic resolution with a TR of 2.0 seconds and lasted for 10 minutes. The structural 

data consisted of one 1mm isotropic scan for each session. Details of the data collection can 

be found elsewhere (Zuo et al., 2014; Chen et al., 2015). 
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The Human Connectome Project (HCP) S900 release (Van Essen et al., 2012b; Smith 

et al., 2013) consisted of structural MRI, resting-state fMRI and task fMRI of 881 subjects. 

All imaging data were collected on a custom-made Siemens 3T Skyra scanner using a 

multiband sequence. Each participant has two fMRI sessions on two consecutive days. Two 

rs-fMRI runs were collected in each session. Each fMRI run was acquired in 2mm isotropic 

resolution with a TR of 0.72 seconds and lasted for 14 minutes and 33 seconds. The structural 

data consisted of one 0.7mm isotropic scan for each subject. Details of the data collection can 

be found elsewhere (Van Essen et al., 2012b; Smith et al., 2013).  

 

Processing of GSP and CoRR-HNU data 

Structural data were processed using FreeSurfer. FreeSurfer constitutes a suite of 

automated algorithms for reconstructing accurate surface mesh representations of the cortex 

from individual subjects’ T1 images (Dale et al., 1999; Fischl et al., 2001; Ségonne et al., 

2007). The cortical surface meshes were then registered to a common spherical coordinate 

system (Fischl et al. 1999a; 1999b). The GSP subjects were processed using FreeSurfer 4.5.0 

(Holmes et al., 2015), while the CoRR-HNU subjects were processed using FreeSurfer 5.3.0.  

Resting-state fMRI data of GSP and CoRR-HNU were initially pre-processed with the 

following steps: (i) removal of first 4 frames, (ii) slice time correction with the FSL package 

(Jenkinson et al., 2002; Smith et al., 2004), (iii) motion correction using rigid body 

translation and rotation with the FSL package. The structural and functional images were 

aligned using boundary-based registration (Greve and Fischl 2009) using the FsFast software 

package (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). 

Framewise displacement (FD) and voxel-wise differentiated signal variance 

(DVARS) were computed using fsl_motion_outliers (Smith et al., 2004). Volumes with FD > 

0.2mm or DVARS > 50 were marked as outliers. Uncensored segments of data lasting fewer 

than 5 contiguous volumes were also flagged as outliers (Gordon et al., 2016). BOLD runs 

with more than half of the volumes flagged as outliers were removed completely. For the 

CoRR-HNU dataset, no session (and therefore no subject) was removed. For the GSP 

subjects, only one run was removed (out of a total of 222 runs). No individuals in the GSP 

dataset lost an entire session, and therefore, all subjects were retained. 

Linear regression using multiple nuisance regressors was applied. Nuisance regressors 

consisted of global signal, six motion correction parameters, averaged ventricular signal, 

averaged white matter signal, as well as their temporal derivatives (18 regressors in total). 

The flagged outlier volumes were ignored during the regression procedure. The data were 
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interpolated across censored frames using least squares spectral estimation of the values at 

censored frames (Power et al., 2014). Finally, a band-pass filter (0.009 Hz ≤ f ≤ 0.08 Hz) 

was applied.  

The preprocessed fMRI data was projected onto the FreeSurfer fsaverage6 surface 

space (2mm vertex spacing). The projected fMRI data was smoothed using a 6mm full-width 

half-maximum kernel and then downsampled onto fsaverage5 surface space (4mm vertex 

spacing). Smoothing on the fsaverage6 surface, rather than in the volume minimized the 

blurring of fMRI signal across sulci. 

   

Processing of HCP data 

Details of the HCP preprocessing can be found elsewhere (HCP S900 manual; Van 

Essen et al. 2012b; Glasser et al. 2013; Smith et al. 2013). Of particular importance is that the 

rs-fMRI data has been projected to the fsLR surface space (Van Essen et al. 2012a), 

smoothed by 2mm and denoised with ICA-FIX (Salimi-Khorshidi et al. 2014; Griffanti et al., 

2014).  

However, recent studies have shown that ICA-FIX does not fully eliminate global and 

head-motion related artifacts (Burgess et al., 2016; Siegel et al., 2016). Therefore, further 

processing steps were performed on the rs-fMRI data in fsLR surface after ICA-FIX 

denoising, which included nuisance regression, motion censoring and interpolation, and 

band-pass filtering. Volumes with FD > 0.2mm or DVARS > 75, as well as uncensored 

segments of data lasting fewer than 5 contiguous volumes were flagged as outliers. BOLD 

runs with more than half the volumes flagged as outliers were completely removed. 

Consequently, 56 subjects were removed. Furthermore, for this work, only subjects with all 

four runs remaining (N = 676) were considered.  

Nuisance regression utilized regressors consisting of global signal, six motion 

parameters, averaged ventricular signal, averaged white matter signal, and their temporal 

derivatives (18 regressors in total). The outlier volumes were ignored during the regression 

procedure. The data were interpolated across censored frames using least squares spectral 

estimation (Power et al., 2014). A band-pass filter (0.009 Hz ≤ f ≤ 0.08 Hz) was then applied 

to the data. Finally, spatial smoothing was applied by iteratively averaging the data at each 

surface mesh vertex with its neighbors four times. 

 

Population-level parcellation and functional connectivity profiles 
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We have previously developed an approach to derive a population-level parcellation 

of the cerebral cortex into large-scale resting-state networks (Yeo et al., 2011). The cortical 

networks were defined as sets of cortical regions with similar corticocortical functional 

connectivity profiles. Here we applied the same approach to the GSP, CoRR-HNU and HCP 

datasets. Our previous analyses (Yeo et al., 2011) identified 7 and 17 networks to be 

particularly stable. For simplicity, we will only consider 17 networks. Details of this 

approach have been previously described (Yeo et al., 2011). For completeness, we briefly 

described its application to the current datasets. 

Recall that the preprocessed fMRI data from the CoRR-HNU and GSP subjects have 

been projected onto the fsaverage5 surface meshes. The fsaverage5 surface meshes consisted 

of 18715 cortical vertices. Following previous work (Yeo et al., 2011), the connectivity 

profile of a cortical region (vertex) was defined to be its functional coupling to 1175 regions 

of interest (ROIs). The 1175 ROIs consisted of single vertices uniformly distributed across 

the fsaverage5 surface meshes. For each rs-fMRI run of each subject, the Pearson’s 

correlation between the fMRI time series at each spatial location (18715 vertices) and the 

1175 ROIs were computed. The 18715 x 1175 correlation matrix were then binarized by 

keeping the top 10% of the correlations to obtain the final functional connectivity profiles. 

Outlier volumes (flagged during preprocessing) were ignored when computing the 

correlations. 

In the case of the HCP dataset, the preprocessed fMRI data have been projected onto 

the fsLR surface space. The fsLR_32K surface meshes consisted of 59412 cortical vertices. 

We defined the connectivity profile of a cortical region (vertex) to be its functional coupling 

to 1483 ROIs. The 1483 ROIs consisted of single vertices uniformly across the fsLR_32K 

surface meshes. For each rs-fMRI run of each subject, the Pearson’s correlation between the 

fMRI time series at each spatial location (59412 vertices) and the 1483 ROIs were computed. 

The 59412 x 1483 correlation matrix were then binarized by keeping the top 10% of the 

correlations to obtain the final functional connectivity profile. Outlier volumes (flagged 

during preprocessing) were ignored when computing the correlations. 

To obtain a population-level parcellation from a group of subjects, each vertex’s 

connectivity profiles were averaged across all BOLD runs of all subjects. The averaged 

connectivity profiles were clustered using a mixture of von Mises–Fisher distributions 

(Lashkari et al., 2010; Yeo et al., 2011). The expectation-maximization (EM) algorithm 

operated by first randomly assigning the vertices (18715 in the GSP and CoRR-HNU 

datasets, or 59412 in the HCP dataset) to different networks. The algorithm then iterated 
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between two steps (E-step and M-step) until convergence. In the M-step, the algorithm 

computed a network-level connectivity profile based on vertices assigned to the same 

network. In the E-step, the algorithm re-assigned the network membership of vertices based 

on the similarity between each vertex’s connectivity profile and the network-level 

connectivity profile. The clustering algorithm was repeated 1000 times with different random 

initializations and the estimate with the best model likelihood was selected. 

 

Multi-session hierarchical Bayesian model (MS-HBM) 

The previous section described an approach to estimate a population-level 

parcellation from a group of subjects. Figure 1 illustrates the MS-HBM model for estimating 

individual-specific cerebral cortex parcellations using multi-session fMRI data. Some of the 

model parameters (e.g., inter-subject variability) must be estimated from a training set of 

subjects. A new subject (possibly from another dataset) could then be parcellated without 

access to the original training data. Even though the model was defined on multi-session 

fMRI data, an effective workaround was provided for single-session fMRI data. The exact 

mathematical model is found in Supplemental Methods S1. Here we provide the intuition 

behind this model.  

Let 𝑋𝑛
𝑠,𝑡 denote the (binarized) functional connectivity profile of cortical vertex 𝑛 

from session 𝑡 of subject 𝑠. For example, Figure 1 illustrates the binarized functional 

connectivity profile for a posterior cingulate cortex vertex (𝑋𝑃𝐶𝐶
1,1 ) and a precuneus vertex 

(𝑋𝑝𝐶𝑢𝑛
1,1 ) from the 1st session of the 1st subject. Based on the connectivity profiles of all 

vertices from all sessions of a single subject, the goal is to assign a network label 𝑙𝑛
𝑠  for each 

vertex of the subject. Even though a vertex’s connectivity profiles were unlikely to be the 

same across different fMRI sessions, the vertex’s network label was assumed to be the same 

across sessions.  

Consistent with previous work (Yeo et al., 2011), the von Mises–Fisher mixture 

model was utilized to encourage brain locations with similar functional connectivity profiles 

to be assigned the same network label (illustrated by arrow from network label 𝑙𝑛
𝑠  to 

connectivity profile 𝑋𝑛
𝑠,𝑡 in Figure 1). For example, the connectivity profiles of PCC (𝑋𝑃𝐶𝐶

𝑠,𝑡 ) 

and precuneus (𝑋𝑝𝐶𝑢𝑛
𝑠,𝑡 ) were very similar, so they were more likely to be grouped into the 

same network (i.e., default mode network or DMN).  
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Figure 1. Multi-session hierarchical Bayesian model (MS-HBM) of individual-specific 
cortical parcellation. Given RSFC profile 𝑋𝑛

𝑠,𝑡 at brain location 𝑛 for subject 𝑠 during rs-fMRI 
session 𝑡, the goal is to estimate the network label 𝑙𝑛

𝑠 . 𝜇𝑙
𝑔 is the group-level RSFC profile of 

network 𝑙, 𝜇𝑙
𝑠 is the subject-level RSFC profile of network 𝑙, and 𝜇𝑙

𝑠,𝑡 is the subject-level 
RSFC profile of network 𝑙 during session t. Inter-subject and intra-subject RSFC profile 
variabilities are captured by 𝜖𝑙 and 𝜎𝑙 respectively. 𝜅 captures inter-region RSFC variability, 
e.g., posterior cingulate cortex (PCC) and precuenus (pCun) might belong to the same 
network, but might exhibit slightly different RSFC profiles. Finally, 𝛩𝑙 captures inter-subject 
variability in the spatial distribution of networks, while smoothness prior 𝑉 encourages 
network labels to be spatially smooth. See text for details.  
 

However, unlike the group averaged connectivity profiles, the functional connectivity 

profiles of individual subjects are generally very noisy. If the connectivity profiles of PCC 
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and pCun were too noisy, the mixture model might not assign them to the same network. 

Therefore, an additional spatial smoothness prior was incorporated. More specifically, the 

spatial smoothness prior 𝑉 (Potts model) encouraged neighboring vertices (e.g., PCC and 

pCun) to be assigned to the same network. 

To model inter-subject spatial variability, the spatial prior 𝛩𝑙,𝑛 denote the probability 

of network 𝑙 occurring at a particular spatial location 𝑛. As an example, the spatial variability 

map of the default network (𝛩𝐷𝑀𝑁) is shown in Figure 1 (bottom left), where warm color 

indicates high probability and cool color indicates low probability. Both PCC and pCun had 

high prior probabilities of being assigned to the default network.  

To model inter-subject functional connectivity variability, let 𝜇𝑙
𝑔denote the group-

level functional connectivity profile of network 𝑙. For example, Figure 1 (top left) illustrates 

the group-level DMN connectivity profile (𝜇𝐷𝑀𝑁
𝑔 ). Let 𝜇𝑙

𝑠 denote the functional connectivity 

profile of network 𝑙 and subject 𝑠. For example, Figure 1 (top right) illustrates the DMN 

connectivity profiles of two different subjects (𝜇𝐷𝑀𝑁
1  and 𝜇𝐷𝑀𝑁

2 ). The parameter 𝜖𝑙 controlled 

how much the individual-specific network connectivity profile 𝜇𝑙
𝑠 can deviate from the 

group-level network connectivity profile 𝜇𝑙
𝑔, and therefore represented the amount of inter-

subject functional connectivity variability. For example, Figure 1 illustrates the inter-subject 

connectivity variability 𝜖 for the 17 networks considered in this paper. Hotter colors indicate 

higher connectivity variability. The default network was colored green, which indicated an 

intermediate amount of inter-subject functional connectivity variability. 

To model intra-subject functional connectivity variability, let 𝜇𝑙
𝑠,𝑡 denote the 

functional connectivity profile of network 𝑙 and subject 𝑠 during session 𝑡. For example, 

Figure 1 illustrates the default network connectivity profiles of subject 1 during sessions 1 

and 2 (𝜇𝐷𝑀𝑁
1,1  and 𝜇𝐷𝑀𝑁

1,2 ). The parameter 𝜎𝑙 controlled how much the session-specific network 

connectivity profile 𝜇𝑙
𝑠,𝑡 could deviate from the individual-specific network connectivity 

profile 𝜇𝑙
𝑠, and therefore represented the amount of intra-subject variability. For example, the 

intra-subject functional connectivity variability 𝜎 for the 17 networks are shown in Figure 1. 

Hotter colors indicate higher connectivity variability. The default network was colored blue, 

which indicated low intra-subject functional connectivity variability. 

The functional connectivity profile 𝜇𝑙
𝑠,𝑡 could be thought of as the representative 

connectivity profile of vertices belonging to network 𝑙 of subject 𝑠 during session 𝑡. 

However, the connectivity profiles of two regions belonging to the same network (e.g., 𝑋𝑝𝐶𝑢𝑛
𝑠,𝑡  
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and 𝑋𝑃𝐶𝐶
𝑠,𝑡 ) might exhibit slightly different connectivity profiles. Suppose vertex 𝑛 is assigned 

to network 𝑙. The parameter 𝜅 controlled how much the connectivity profile 𝑋𝑛
𝑠,𝑡 of vertex 𝑛 

from session 𝑡 of subject 𝑠 could deviate from the individual-specific session-specific 

network connectivity profile 𝜇𝑙
𝑠,𝑡. For simplicity, 𝜅 was assumed to be the same across 

networks and all subjects.  

Given a dataset of subjects with multi-session rs-fMRI data, the group-level network 

connectivity profiles 𝜇𝑙
𝑔, the inter-subject functional connectivity variability 𝜖𝑙, the intra-

subject functional connectivity variability 𝜎𝑙, the spatial smoothness prior 𝑉 and the inter-

subject spatial variability prior 𝛩𝑙 could be estimated. Given the estimated model parameters 

(𝜇𝑙
𝑔, 𝜖𝑙, 𝜎𝑙, 𝑉, 𝜃𝑙), the parcellation of a new subject could then be inferred. Here we utilized a 

variational Bayes Expectation-Maximization (VBEM) algorithm to learn the model 

parameters from the training data and to estimate individual-specific parcellations. Details of 

the VBEM algorithm can be found in Supplementary Methods S2.  

 Although the MS-HBM was formulated for multi-session fMRI data, most studies 

only collect a single run of fMRI data. We considered the ad-hoc approach of splitting the 

single fMRI run into two and treating the resulting runs as two separate sessions. Our 

evaluations (see Results) suggest that this workaround worked surprisingly well.  

 

Characterizing inter-subject and intra-subject network variability 

We first evaluate whether inter-subject and intra-subject variability can be reliably 

estimated across datasets. For the purpose of subsequent experiments, the GSP dataset was 

divided into training (N = 37) and validation (N = 32) sets. The CoRR-HNU dataset (N = 30) 

was kept unchanged. The HCP dataset was divided into training (N = 40), validation (N = 40) 

and test (N = 596) sets. Furthermore, different fMRI runs within the same session were 

treated as data from different sessions. For example, each HCP subject underwent two fMRI 

sessions on two consecutive days. Within each session, there were two rs-fMRI runs. For the 

purpose of our analyses, we treated each HCP subject as having four sessions of data. Future 

work might differentiate between intra-session and inter-session variability. 

 The group-level parcellation algorithm was applied to the GSP training dataset. The 

resulting group-level parcellation was then used to initialize the estimation of the group-level 

network connectivity profiles 𝜇𝑙
𝑔, the inter-subject functional connectivity variability 𝜖𝑙, the 

intra-subject functional connectivity variability 𝜎𝑙, and the inter-subject spatial variability 

prior 𝛩𝑙. For this analysis, the spatial smoothness prior 𝑉 was ignored. The estimated inter-
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subject functional connectivity (𝜖𝑙) and intra-subject functional connectivity (𝜎𝑙) variability 

maps, as well as the inter-subject spatial variability (𝛩𝑙) maps were visualized in Figures 2 

and 3. The procedure was repeated for the CoRR-HNU dataset and HCP training set, 

allowing us to evaluate whether inter-subject and intra-subject variability could be reliably 

estimated across datasets.  

 

Comparison with alternative approaches 

Having established that inter-subject and intra-subject functional connectivity 

variability are indeed different across cortical networks, we tested whether the MS-HBM 

produced better individual-specific parcellations than three alternative approaches. The first 

approach was to apply the population-level parcellation (Yeo et al., 2011) to individual 

subjects. We will refer to this approach as “Yeo2011”. For the second approach, recall that 

the population-level parcellation algorithm iteratively computed a network connectivity 

profile based on vertices assigned to the same network (M-step) and then re-assigned the 

network membership of vertices based on the similarity between each vertex’s connectivity 

profile and the network connectivity profile (E-step). Using the network connectivity profiles 

from the Yeo2011 population-level parcellation, we can estimate networks in an individual 

subject by assigning a network label to each vertex based on the similarity between the 

vertex’s connectivity profile (for that subject) and the population-level network connectivity 

profile (i.e., E-step). Since this approach is analogous to the ICA back-projection algorithm 

(Calhoun et al., 2009; Beckmann et al., 2009; Filippini et al., 2009; Zuo et al., 2010; Calhoun 

and Adali 2012), we will refer to this second alternative approach as “YeoBackProject”. 

Finally, we also implemented the influential individual-parcellation algorithm of Gordon and 

colleagues (Gordon et al., 2017a; Gordon et al., 2017b), where the binarized functional 

connectivity map of each cortical vertex was matched to binarized network templates derived 

from the group-level parcellation. We refer to this approach as “Gordon2017”. All algorithms 

were applied to the CoRR-HNU dataset and the HCP test set.  

In the case of the CoRR-HNU dataset, the model parameters of all algorithms were 

estimated from the GSP dataset and then utilized to infer the parcellations of CoRR-HNU 

subjects. This is especially important for the MS-HBM because inter-subject and intra-

subject variability might differ across datasets, so it was important to evaluate whether model 

parameters estimated from one dataset could be generalized to another dataset. More 

specifically, the training procedure for the MS-HBM was the same as the previous section, 
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except that the GSP validation set was also used to tune the spatial smoothness prior 𝑉. 

Similarly, “free” parameters in Gordon2017 were tuned using the GSP validation set.  

In the case of the HCP dataset, recall that the HCP data were in a different surface 

space from the GSP data, so the GSP model parameters could not be applied to the HCP 

subjects. Instead, the model parameters of all algorithms were re-estimated from the HCP 

training and validation sets, and then utilized to infer the parcellation of each subject in the 

HCP test set.  

 

Quantitative evaluation measures 

If an individual-specific parcellation captured the system-level organization of the 

individual’s cerebral cortex, then each network should have homogeneous connectivity and 

function. Therefore, the following resting-state connectional homogeneity and task functional 

inhomogeneity measures were used as parcellation evaluation metrics (Gordon et al., 2016; 

Gordon et al., 2017c; Schaefer et al., in press): 

 

1. Resting-state connectional homogeneity. Resting-state connectional homogeneity was 

computed by averaging the Pearson’s correlations between the resting-state fMRI time 

courses of all pairs of vertices within each network (Schaefer et al., in press). The average 

correlations are then averaged across all networks while accounting for network size: 

∑ 𝜌𝑙|𝑙|𝐿
𝑙=1

∑ |𝑙|𝐿
𝑙=1

,                   (1) 

where 𝜌𝑙 is the resting-state homogeneity of network 𝑙 and |𝑙| is the number of vertices 

within network 𝑙 (Schaefer et al., in press). For each subject from CoRR-HNU (N = 30) 

and HCP test set (N = 596), we used one session to infer the individual-specific 

parcellation and computed the resting-state homogeneity of the individual-specific 

parcellation with the remaining sessions. Because the HNU dataset has the most amount 

of data (100 min), we also parcellated each CoRR-HNU subject using one or more fMRI 

sessions, and evaluated the resting-state homogeneity with the remaining sessions. This 

allowed us to estimate how much the various algorithms would improve with more data. 

When comparing between parcellations, a two-sided paired-sample t-test (dof = 29 for 

CoRR-HNU, dof = 595 for HCP) was performed. 
 

2. Task functional inhomogeneity. The HCP task-fMRI data consisted of seven functional 

domains: social cognition, motor, gambling, working memory, language processing, 
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emotional processing and relational processing, each with multiple task contrasts (Barch 

et al., 2013). For a given task contrast, task inhomogeneity was defined as the standard 

deviation of (activation) z-values within each network (Gordon et al., 2017c; Schaefer et 

al., in press). A lower standard deviation indicates higher functional homogeneity within 

the network. The standard deviations are averaged across all networks while accounting 

for network size: 

∑ 𝑠𝑡𝑑𝑙|𝑙|𝐿
𝑙=1
∑ |𝑙|𝐿

𝑙=1
,                      (2) 

where 𝑠𝑡𝑑𝑙 is the standard deviation of task activation z-values for network 𝑙 and |𝑙| is the 

number of vertices in parcel 𝑙 (Gordon et al., 2017c; Schaefer et al., in press).  

For each subject in the HCP test set (N = 596), the first rs-fMRI run from the first 

session was used to infer the individual-specific parcellation. The individual-specific 

parcellation was then utilized to evaluate task inhomogeneity for each task contrast (Eq. 

(2)) and then averaged across all contrasts within a functional domain, resulting in a 

single functional inhomogeneity measure per functional domain. The number of task 

contrasts per functional domain ranged from three for the emotion domain to eight for the 

working memory domain. When comparing between parcellations, the inhomogeneity 

metric (Eq. (2)) was averaged across all contrasts within a functional domain before a 

two-sided paired-sample t-test (dof = 595) was performed for each functional domain. 
 

Characterizing the MS-HBM parcellations 

Having established that the MS-HBM was better than other approaches in generating 

individual-specific parcellations, we further characterized the reproducibility of individual-

specific MS-HBM networks using the CoRR-HNU data and HCP test set. Given that intra-

subject and inter-subject network variability were different across networks, we were 

interested in evaluating whether intra-subject network reproducibility and inter-subject 

network similarity were also different across networks.  

Individual-specific MS-HBM parcellations were independently inferred using the first 

two runs and the last two runs of the HCP test set. Therefore, there were two individual-

specific parcellations for each subject based on data from two independent sets of rs-fMRI 

data. MS-HBM parcellations were also independently inferred using sessions 1-5 and 

sessions 6-10 of the CoRR-HNU dataset. Therefore, there were two individual-specific 

parcellations for each subject based on data from two independent sets of five sessions.  
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To evaluate the reproducibility of individual-specific parcellations, the Dice 

coefficient was computed for each network from the two parcellations of each subject. The 

Dice coefficients were then averaged across all networks and all subjects to provide an 

overall measure of intra-subject parcellation reproducibility. To evaluate inter-subject 

parcellation similarity, for each pair of subjects, the Dice coefficient was computed for each 

network. Since there were two parcellations for each subject, there were a total of four Dice 

coefficients for each network, which were then averaged. The Dice coefficients were then 

averaged across all networks and all pairs of subjects to provide an overall measure of inter-

subject parcellation similarity.  

 

Behavioral relevance of individual-specific MS-HBM parcellations 

 Given that individual-specific functional networks exhibited unique topological 

features not observed in group-level networks, we further investigated whether the spatial 

configuration of individual-specific cortical parcellations was behaviorally meaningful. Since 

the HCP dataset has a rich repertoire of behavior data, we selected 58 behavioral phenotypes 

measuring cognition, personality and emotion (Table S1). Individual-specific MS-HBM 

parcellations were estimated for each HCP test subject (N = 596) using all four rs-fMRI runs. 

17 subjects were excluded from further analyses because they did not have all behavioral 

phenotypes, resulting in a final set of 579 subjects.  

Kernel regression (Murphy et al., 2012) was utilized to predict each behavioral 

phenotype in individual subjects. Suppose 𝑦 is the behavioral measure (e.g., fluid 

intelligence) and 𝑙 is the individual-specific parcellation of a test subject. In addition, suppose 

𝑦𝑖 is the behavioral measure (e.g., fluid intelligence) and 𝑙𝑖 is the individual-specific 

parcellation of the 𝑖-th training subject. Then kernel regression would predict the behavior of 

the test subject as the linear combination of the behaviors of the training subjects: 𝑦 ∝

 ∑ 𝑦𝑖 Similarity(𝑙𝑖, 𝑙)𝑖∈training set . Here, Similarity(𝑙𝑖, 𝑙) is set to be the Dice coefficient for 

each network, averaged across 17 networks. Therefore, kernel regression makes the 

appealing assumption that subjects with more similar parcellations have similar behavioral 

measures.  

In practice, we included a regularization term (i.e., kernel ridge regression) estimated 

via an inner-loop cross-validation procedure (Murphy et al., 2012). More specifically, we 

performed 20-fold cross-validation for each behavioral phenotype. Care was taken so that 

family members were not split between folds. For each test fold, inner-loop cross-validation 
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was applied to the remaining 19 folds to determine the best regularization parameter. The 

optimal regularization parameter from the 19 folds was then used to predict the behavioral 

phenotype in the test fold. Accuracy was measured by correlating the predicted and actual 

behavior across all subjects within the test fold (Finn et al., 2015), resulting in 20 correlation 

accuracies for each behavior. To test whether the predictions were statistically better than 

chance, the accuracies were averaged across all behaviors and a corrected two-sided 

resampled t-test (dof = 19) was performed (Nadeau and Bengio, 2000; Bouckart and Frank, 

2004).  

Finally, we should mention that certain behavioral measures are known to correlate 

with motion (Siegel et al., 2016). Therefore, age, sex and motion were regressed from the 

behavioral data before kernel ridge regression. To prevent information from the training data 

to leak to the test data, for each test fold, the nuisance regression was performed on the 

training folds and the regression coefficients were applied to the test fold. 

 

Code availability 

Code for this work is freely available at the github repository maintained by the 

Computational Brain Imaging Group (https://github.com/ThomasYeoLab/CBIG). More 

specifically, the GSP and CoRR-HNU datasets were preprocessed using an in-house pipeline 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_f

MRI_Preproc2016). The group-level parcellation code (Yeo et al., 2011) are available here 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Yeo

2011_fcMRI_clustering). Finally, the individual-specific parcellation code is also available 

(GITHUB_LINK_TO_BE_ADDED). 
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Results 

Overview 

 The MS-HBM (Figure 1) was applied to three multi-session rs-fMRI datasets to 

ensure that inter-subject and intra-subject variability can be reliably estimated. Given that 

inter-subject and intra-subject variability are different across functional brain networks, a 

parcellation strategy might benefit from distinguishing between the two types of variability. 

We then tested whether the MS-HBM can produce better individual-specific parcellations 

than other approaches. Finally, having established that the MS-HBM produced better 

parcellations, we then characterized the parcellations' reproducibility, inter-subject 

differences, and behavioral relevance. 

 

Sensory-motor networks exhibit lower inter-subject, but higher intra-subject, functional 

connectivity variability than association networks. 

 Figure 2A shows the 17-network population-level parcellation estimated from the 

HCP training set. The 17 networks were divided into eight groups (Visual, Somatomotor, 

Auditory, Dorsal Attention, Salience/Ventral Attention, Control, Default and TempPar), 

which broadly corresponded to major networks discussed in the literature. The 17 networks 

are referred to as “Default A”, “Default B” and so on (Figure 2A). 

 The HCP population-level parcellation was replicated in the GSP (Figure S1A) and 

CoRR-HNU (Figure S2A) datasets, although there were some interesting differences, likely 

due to acquisition differences. For example, the Limbic networks (A and B) from the GSP 

population-level parcellation (Figure S1A) were absorbed into the Default networks (A and 

B) in the HCP population-level parcellation (Figure 2A). Instead, there were two additional 

networks in the HCP population-level parcellation: Visual C and Auditory networks. The 

Visual C network (Figure 2A) might correspond to the foveal representation within the 

primary visual cortex, while the Auditory network (Figure 2A) appeared to have split off 

from the Somatomotor B network in the GSP population-level parcellation (Figure S1A). The 

higher resolution HCP data might allow the separation of the auditory and Somatomotor 

network B, which are in close spatial proximity. 

Figure 2B shows the inter-subject functional connectivity variability map estimated 

from the HCP training set. Sensory-motor networks exhibited lower inter-subject functional 

connectivity variability than association networks. More specifically, Somatomotor (A and 

B) and Visual (A and B) networks were the least variable, while Salience/Ventral Attention 

Network B was the most variable. The results were largely consistent in the GSP (Figure 
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S1B) and CoRR-HNU (Figure S2B) datasets, although there were some notable differences. 

For example, the Somatomotor B network exhibited low variability in both the GSP and HCP 

datasets, but intermediate variability in the CoRR-HNU dataset.  

 

 
Figure 2. Sensory-motor networks exhibit lower inter-subject, but higher intra-subject, 
functional connectivity variability than association networks in the HCP training set. (A) 17-
network group-level parcellation. (B) Inter-subject functional connectivity variability for 
different cortical networks. (C) Intra-subject functional connectivity variability for different 
cortical networks. Results were replicated in the GSP (Figure S1) and Corr-HNU (Figure S2) 
datasets. Note that (B) and (C) correspond to the 𝜖𝑙 and 𝜎𝑙 parameters in Figure 1, where 
higher values indicate lower variability. 
 

 Figure 2C shows the intra-subject functional connectivity variability map estimated 

from the HCP training set. In general, association networks exhibited lower intra-subject 

functional connectivity variability than sensory-motor networks. More specifically, Default 

networks (A and B) were the least variable, while Somatomotor (A and B), Auditory and 

Visual C networks were the most variable. The results were largely consistent in the GSP 

(Figure S1C) and CoRR-HNU (Figure S2C) datasets, although there were some interesting 
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differences. Of particular note is that the Visual Network B exhibited high intra-subject 

functional connectivity variability in the GSP dataset, but low or intermediate functional 

connectivity variability in the CoRR-HNU and HCP datasets.  

 It is worth noting that in the model (Figure 1), higher values of 𝜖𝑙 and 𝜎𝑙 indicate 

lower variability. The values in Figure 2C are much larger than Figure 2B, suggesting that 

intra-subject functional connectivity variability is much lower than inter-subject functional 

connectivity variability. These results are replicated in the GSP (Figure S1) and CoRR-HNU 

(Figure S2) datasets.  

 

Sensory-motor networks are less spatially variable than association networks across subjects 

 The MS-HBM model differentiated between inter-subject functional connectivity and 

network spatial variability. Like inter-subject functional connectivity variability, the sensory-

motor networks were found to be less spatially variable than association networks across 

subjects. For example, Figure S3 shows the inter-subject spatial variability maps of four 

representative networks from the HCP training set. Yellow color at a spatial location 

indicates that across subjects, there is a high probability of the network appearing at that 

spatial location, suggesting low inter-subject spatial variability. The Somatomotor network A 

and Visual network B showed higher probabilities (more yellow color) than the Dorsal 

Attention networks, suggesting that Somatomotor network A and Visual network B exhibited 

lower inter-subject spatial variability than Dorsal Attention networks. These results were 

consistent in the GSP (Figure S4) and CoRR-HNU (Figure S5) datasets. 

 

Individual-specific networks generated by MS-HBM exhibit higher resting-state homogeneity 

than other approaches 

 Individual-specific parcellations were estimated using one rs-fMRI session from the 

CoRR-HNU dataset and HCP test set. The resting-state homogeneity of the parcellations 

were evaluated in the leave-out sessions (Figure 3A). Across both CoRR-HNU and HCP 

datasets, the group-level parcellation (Yeo2011) achieved the worst resting-state 

homogeneity, while MS-HBM performed the best. In the CoRR-HNU dataset, compared with 

Yeo2011, YeoBackProject and Gordon2017, the MS-HBM achieved a homogeneity 

improvement of 16.6% (p = 3.23e-21), 5.32% (p = 4.47e-18) and 6.88% (p = 1.23e-17) 

respectively. In the HCP dataset, compared with Yeo2011, YeoBackProject and Gordon2017, 

the MS-HBM achieved an improvement of 9.8% (p < 5e-324), 9.54% (p < 5e-324) and 
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5.74% (p < 5e-324) respectively. All significant p-values (i.e., p < 0.05) survived false 

discovery rate (q < 0.05) correction. 

 

Figure 3. Resting-state homogeneity in the CoRR-HNU and GSP dataset. (A) 17-network 
individual-specific parcellations were estimated using one rs-fMRI session and resting-state 
homogeneity were computed on the remaining sessions for each subject from the CoRR-
HNU and HCP dataset. (B) 17-network individual-specific parcellations were estimated using 
different number of rs-fMRI sessions and resting-state homogeneity were computed on the 
remaining sessions for each subject from the CoRR-HNU dataset. Using just one single fMRI 
sessions (10 min), the MS-HBM algorithm was able to match the homogeneity achieved with 
the Gordon2017 approach using five fMRI sessions (50 min). Box plots utilized default 
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Matlab parameters, i.e., box shows median and inter-quartile range (IQR). Whiskers indicate 
1.5 IQR. Dot indicates mean. 
 

Individual-specific parcellations were estimated with increasing number of rs-fMRI 

sessions using the CoRR-HNU dataset. The resting-state homogeneity of the parcellations 

were evaluated in the leave-out sessions (Figure 3B). Not surprisingly, performance of the 

Yeo2011 group-level parcellation remained constant regardless of the amount of data. The 

remaining three approaches (YeoBackProject, Gordon2017 and MS-HBM) exhibited higher 

homogeneity with increased number of sessions. Critically, the improvement of our model 

over the other approaches grew with the inclusion of additional fMRI sessions. For example, 

as the number of sessions was increased from two to three to four to five, our approach 

achieved improvement of 5.44%, 5.9%, 6.13% and 6.38% respectively over Gordon2017. 

Interestingly, the improvement of our approach over Gordon2017 was largest when only one 

rs-fMRI session was utilized (6.88%). Furthermore, using just one fMRI sessions (10 min), 

our algorithm was able to match the homogeneity achieved with the Gordon2017 approach 

that used five fMRI sessions (50 min). 

 

Individual-specific networks generated by the MS-HBM exhibit lower task functional 

inhomogeneity than other approaches 

 Individual-specific parcellations were estimated using one rs-fMRI session (15 min) 

from the HCP test set. Figure S6 shows the task inhomogeneity of the different approaches. 

Compared with Yeo2011, YeoBackProject and Gordon2017, our approach achieved a modest 

average improvement of 0.54% (p = 0.9 for social, p = 0.578 for motor, p < 5e-324 for other 

5 domains), 1.93% (p < 5e-324 for all domains) and 0.94% (p < 5e-324 for all domains) 

respectively. All significant p-values (i.e., p < 0.05) survived false discovery rate (q < 0.05) 

correction. Interestingly, the Yeo2011 group-level parcellation performed as well as (or even 

better than) YeoBackProject and Gordon2017. 

 

Individual-specific MS-HBM parcellations exhibit high intra-subject reproducibility and low 

inter-subject similarity 

To assess intra-subject reproducibility and inter-subject similarity, our model (Figure 

1) was tuned on the HCP training and validation sets, and then applied to the HCP test set. 

Individual-specific parcellations were generated by using the first two runs and last two runs 

separately for each subject. Figures 4 and S7 show the parcellations of four representative 
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subjects. The 17 networks were present in all individual-specific parcellations, but the shapes, 

sizes and topologies were varied across subjects.  

For example, the Default A (yellow) network exhibited a posterior temporal 

component for certain subjects (black arrows in Figure 4), but was missing in other subjects. 

As another example, the two lateral prefrontal components of the Control A (orange) network 

(Figure 2A) were fused into a single component in certain subjects (green arrows in Figure 

4). These features were mostly replicated across sessions. Examples from the CoRR-HNU 

dataset are shown in Figures S8 and S9. 

 
Figure 4. 17-network parcellations were estimated using runs 1-2 and runs 3-4 separately for 
each subject from the HCP test set. Parcellations of four representative subjects are shown 
here. Black and green arrows indicate individual-specific parcellation features. Right 
hemisphere parcellations are shown in Figure S7.   

 

Figure 5A shows the across-subject spatial similarity (Dice coefficient) of individual-

specific parcellations. A higher value (hot color) indicates greater inter-subject agreement. 

Figure 5B shows the within-subject reproducibility (Dice coefficient) of individual-specific 

parcellations. A higher value (hot color) indicates greater inter-session agreement within 
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subjects. Further quantification is shown in Figure 5C, where the Dice coefficients were 

averaged across sub-networks. 

Figure 5. Individual-specific MS-HBM parcellations show high within-subject 
reproducibility (overlap = 77.9%) and low across-subject similarity (overlap = 65.4%) in the 
HCP test set. (A) Inter-subject spatial similarity for different networks. (B) Intra-subject 
reproducibility for different networks. Warm color indicates higher overlap. Cool color 
indicates lower overlap. (C) Quantification of inter-subject similarity and intra-subject 
reproducibility for different networks. “VentAttnAB” corresponds to Salience/Ventral 
Attention networks A and B. “SomoAB” corresponds to Somatomotor networks A and B. 
Box plots utilized default Matlab parameters, i.e., box shows median and inter-quartile range 
(IQR). Whiskers indicate 1.5 IQR. Dot indicates mean. 

 

Across all networks, intra-subject reproducibility was greater than inter-subject 

similarity. Compared with association networks, the Somatomotor networks (A and B) and 

Visual networks (A and B) were more spatially similar across subjects, but also exhibited 

greater within subject inter-session reproducibility. Overall, the MS-HBM parcellation model 

achieved 77.9% intra-subject reproducibility and 65.4% inter-subject similarity. 
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The results are similar in the CoRR-HNU dataset (Figure S10), although intra-subject 

reproducibility was higher (81.6%) and inter-subject similarity was lower (59.4%). The 

improvement might be the result of longer scan duration in the CoRR-HNU dataset (50 min 

versus 30 min). 

 

Individual differences in cortical network parcellations can predict cognition, personality 

and emotion 

Across all 58 behavioral measures, average prediction accuracy was r = 0.084 (p < 4e-

10). While the accuracy might seem modest, they were comparable to (if not better than) 

other studies using functional connectivity for behavioral prediction (HCP MegaTrawl; 

https://db.humanconnectome.org/megatrawl/; Noble et al., 2017; Dubois et al., biorxiv). For 

example, of the 58 behavioral measures, 49 of them were also utilized in the HCP 

MegaTrawl. For the 300-dimensional group-ICA results, HCP MegaTrawl achieved an 

average accuracy of r = 0.059 (original data space), while kernel regression yielded an 

average accuracy of r = 0.091.  
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Figure 6. Prediction accuracy of 13 cognitive measures (NIH toolbox) based on inter-subject 
differences in the spatial arrangement of cortical networks. Average prediction accuracy is r 
= 0.15 (p = 1.7e-8) for the 13 measures. Other behavioral measures are found in Figures S11 
and S12. Box plots utilized default Matlab parameters, i.e., box shows median and inter-
quartile range (IQR). Whiskers indicate 1.5 IQR. Dot indicates mean. 
 

Figure 6 shows the prediction accuracy for 13 cognitive measures from the NIH 

toolbox. Average prediction accuracy was r = 0.15 (p = 1.7e-8). The prediction accuracies for 

the remaining cognitive, emotion and personality measures are found in Figures S11 and S12. 

In the case of the NEO-5 personality scores (Figure S11), average predication accuracy was r 

= 0.10 (p = 0.0018). Interestingly, the prediction of emotional recognition (Figure S12) was 

poor with an average prediction accuracy of r = -0.036 (p = 0.21). In the case of the 

emotional measures (all items in Figure S12 except for emotional recognition), the average 

prediction accuracy was r = 0.10 (p = 5.9e-4). All significant p-values (i.e., p < 0.05) 

survived false discovery rate (q < 0.05) correction. 
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Discussion 

We proposed a multi-session hierarchical Bayesian model (MS-HBM) that took into 

account inter-subject and intra-subject network variability. Across three multi-session 

datasets, we found that compared to association networks, sensory-motor networks exhibited 

lower inter-subject, but higher intra-subject network variability. Furthermore, in both rs-fMRI 

and task-fMRI data, the MS-HBM individual-specific parcellations were more homogeneous 

than parcellations derived with three alternative approaches. Finally, we showed that 

individual-specific parcellations were reproducible within individuals, while reflecting 

individual differences. Importantly, individual differences in the spatial arrangement of 

cortical networks could be used to predict individuals’ cognition, emotion and personality.  

 

Association networks exhibit more inter-subject variability than sensory-motor networks 

Over the course of primate evolution, the human association cortex underwent 

marked expansion, while the size of primary sensory cortices largely stayed constant (Hill et 

al., 2010; Preuss 2011). This rapid expansion might result in massive organizational 

differences between association and sensory cortices (Buckner & Krienen, 2013). 

Furthermore, the association cortex matures late during neurodevelopment (Hill et al., 2010; 

Buckner & Krienen, 2013). The prolonged exposure to environmental factors during a time 

of high neuroplasticity (Petanjek et al., 2011) might lead to greater individual differences in 

association cortical anatomy, function and connectivity. Indeed, anatomical studies have 

shown that early sensory-motor cortical areas (e.g., Area 17) exhibit less inter-subject spatial 

variability than association areas (e.g., Areas 44 and 45) after accounting for cortical folding 

patterns (Amunts et al., 1999; Amunts et al., 2000; Fischl et al., 2008; Yeo et al., 2010a).  

The hypothesis that association regions exhibit greater inter-subject functional 

connectivity variability than sensory-motor regions is strongly supported by recent rs-fMRI 

studies (Mueller et al., 2013; Chen et al., 2015; Laumann et al., 2015). One important 

methodological consideration is that previous studies assumed functional correspondence 

across subjects after macro-anatomical alignment (Mueller et al., 2013; Chen et al., 2015; 

Laumann et al., 2015). However, it is well-known that macro-anatomical alignment (or even 

functional alignment) is not sufficient to achieve perfect functional correspondence across 

subjects (Fischl et al 1999b; Yeo et al., 2010b; Robinson et al., 2014; Harrison et al., 2015; 

Langs et al., 2016; Glasser et al., 2016). Therefore, a portion of the inter-subject functional 

connectivity variability observed in previous studies might be the result of functional network 

misalignment across subjects (also see Bijsterbosch et al., biorxiv).  
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By contrast, we explicitly differentiated between inter-subject spatial variability and 

inter-subject functional connectivity variability, allowing the possibility that for certain 

networks, inter-subject variability might be attributed to spatial variability, rather than 

functional connectivity variability. Neverthless, our results were largely in agreement with 

previous studies. Across three datasets, association networks exhibited higher inter-subject 

functional connectivity (Figures 2, S1, S2) and spatial (Figures S3 to S5) variability than 

sensory-motor networks. Among the association networks, the Salience/Ventral Attention 

network B was especially variable. Furthermore, networks with higher inter-subject 

functional connectivity variability also exhibited greater inter-subject spatial variability. 

 

Sensory-motor networks exhibit more intra-subject variability than association networks 

 While there have been many rs-fMRI test-retest studies (Meindl et al., 2010; Wang et 

al., 2011; Guo et al., 2012; Zuo and Xing 2014), there are few studies focusing on the spatial 

topography of intra-subject functional connectivity variability (Mueller et al., 2013; Chen et 

al., 2015; Laumann et al., 2015). Laumann and colleagues found that sensory-motor (visual, 

somatosensory, motor) regions exhibited high intra-subject functional connectivity 

variability, while association regions exhibited low intra-subject functional connectivity 

variability. On the other hand, Mueller and colleagues (2013) found that low signal-to-noise 

regions (orbital frontal and temporal pole) exhibited high intra-subject variability, while 

portions of the default network exhibited low intra-subject variability. Therefore, there were 

agreements and discrepancies between the two studies. Like before, it is worth noting that 

Mueller et al. (2013) assumed functional correspondence after macro-anatomical registration, 

while Laumann et al. (2015) utilized a subject-specific parcellation.  

 By contrast, our model differentiated between intra-subject and inter-subject 

functional connectivity variability, as well as inter-subject network spatial variability. Our 

results largely agreed with Laumann et al. (2015) in that sensory-motor networks exhibited 

high intra-subject variability, while association networks exhibited low intra-subject 

variability. Default networks (A and B) were the least variable, consistent with Mueller et al. 

(2013). These results were replicated across three datasets, although a particularly interesting 

difference is that Visual B network showed high intra-subject variability in the GSP dataset, 

but low or intermediate intra-subject variability in the CoRR-HNU and HCP datasets. This 

difference might be due to the fact that subjects were told to fixate on a cross in the CoRR-

HNU and HCP datasets, while subjects were told to keep their eyes open (with no fixation 

cross) in the GSP dataset.  
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An important criterion for a good biomarker is high test-retest reliability, which 

requires inter-subject differences to dominate intra-subject variability. One approach to 

reduce intra-subject variability is to increase the acquisition time (Van Dijk et al., 2010; Xu et 

al., 2016). However, intra-subject functional connectivity variability is detectable even when 

concatenating many sessions of data (~100 minutes; Anderson et al., 2011; Laumann et al., 

2015; Gordon et al., 2017c). Since intra-subject variability cannot be completely removed, a 

better parcellation strategy might be achieved by taking into account intra-subject variability.   

 

Individual-specific MS-HBM parcellations are more homogeneous than other approaches 

during resting and task states 

If an individual-specific parcellation is capturing the unique network organization of a 

subject’s cerebral cortex, then regions within the same network should have similar resting-

state time series, as well as similar activation amplitude for any given task contrast (Gordon 

et al., 2017c; Schaefer et al., in press). Across the CoRR-HNU and HCP datasets, individual-

specific MS-HBM parcellations exhibited greater resting-state functional connectivity 

homogeneity than parcellations from three other approaches (Figure 3), suggesting that MS-

HBM parcellations better capture the “intrinsic” organization of individuals’ cerebral cortex. 

Importantly, model parameters (e.g., inter-subject and intra-subject variability) estimated 

from the GSP dataset could improve the estimation of individual-specific parcellations in the 

CoRR-HNU dataset (Figure 3A). This demonstration is important because estimates of inter-

subject and intra-subject functional connectivity variability were similar, but not the same 

across datasets (Figures 2, S1, S2). Therefore, our results suggest that the MS-HBM approach 

can be used to parcellate individuals from new datasets (using the same preprocessing 

pipeline), without having to re-estimate the model parameters (e.g., inter-subject and intra-

subject functional connectivity variability). 

In the HCP dataset, individual-specific MS-HBM parcellations also exhibited greater 

task functional homogeneity than parcellations from three other approaches (Figure S6), 

suggesting that MS-HBM parcellations better capture the “extrinsic” organization of 

individuals’ cerebral cortex. Given the strong link between task fMRI and resting-state fMRI 

(Smith et al., 2009; Mennes et al., 2010; Cole et al., 2014; Krienen et al., 2014; Bertolero et 

al., 2015; Yeo et al., 2015a; Tavor et al., 2016), this might not seem surprising. However, it is 

worth pointing out that the group-level parcellation performed as well as, if not better than 

the two other individual-specific parcellation approaches (Figure S6). Furthermore, the MS-

HBM approach only demonstrated (modest) improvements over the group-level parcellation 
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in five of seven functional domains, while there was no statistical difference in the two 

remaining two functional domains. One explanation is that the resting-state parcellations 

might be too coarse to capture the finer details of task activation. For example, the right-hand 

motor task preferentially activates the hand region of the left somatomotor cortex. However, 

Somatomotor network A is bilateral and covers the hand, foot and body regions of bilateral 

somatomotor cortex. As such, even if individual-specific Somatomotor network A was highly 

accurate, the resulting task inhomogeneity might still be relatively high.  

 

MS-HBM approach works well with single-session rs-fMRI data  

As discussed in a previous section, increasing the scan duration of resting-state fMRI 

can improve the reliability of functional connectivity measures (Van Dijk et al., 2010; Xu et 

al., 2016). While earlier studies have suggested that 5 to 12 minutes of resting-state scan 

might be sufficient to provide reliable measurements (Van Dijk et al., 2010; Birn et al., 

2013), more recent studies have suggested the need for 25 to 30 minutes of data (Anderson et 

al., 2011; Laumann et al., 2015; Gordon et al., 2017c). However, it is important note that the 

amount of data necessary for reliable measurements depends on the functional connectivity 

measures being computed (Gordon et al., 2017c).  

Consistent with previous studies, our experiments showed that the quality of the 

individual-specific parcellations improved with more rs-fMRI data, although the 

improvements plateaued after around 30 to 40 minutes of data (Figure 3B). Importantly, even 

though the MS-HBM was developed for multi-session rs-fMRI, the algorithm performed well 

even with single-session data. For example, the individual-specific MS-HBM parcellations 

estimated with one rs-fMRI session (10 minutes) exhibited comparable resting-state 

connectional homogeneity with parcellations estimated using a recent prominent approach 

with five times the amount of data (Gordon et al., 2017a, 2017b).  

 

Spatial configuration of individual-specific cortical parcellations is behaviorally meaningful 

Given that inter-subject and intra-subject functional connectivity variability are 

different across functional brain networks, it is important for a parcellation strategy to 

distinguish between the two types of variability. For example, Somatomotor networks (A and 

B) exhibited low inter-subject, but high intra-subject, functional connectivity variability. A 

naïve algorithm might wrongly attribute differences in somatomotor connectivity between 

two subjects to inter-subject differences, rather than just within-subject (inter-session) noise. 
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The individual-specific parcellation approach in this paper modeled both inter-subject 

and intra-subject variability, allowing the identification of individual-specific functional 

networks that were highly reproducible within each subject, while also capturing variations 

across subjects (Figures 4, S8). Although all networks showed higher intra-subject 

reproducibility than inter-subject similarity, there were also differences across networks, with 

sensory-motor networks showing higher intra-subject reproducibility and higher inter-subject 

similarity than association networks (Figures 5, S10). 

Recent work has suggested that individual-specific functional networks exhibit unique 

topological features not observed in group-level networks (Harrison et al., 2015; Laumann et 

al., 2015; Glasser et al., 2016; Langs et al., 2016; Braga & Buckner, 2017; Gordon et al., 

2017a; 2017b; 2017c). This is also clearly the case with individual-specific MS-HBM 

parcellations (Figures 4, S8). While we have pointed out two examples (Default A and 

Control A networks), it is also obvious that many of these individual-specific parcellation 

features are replicable across sessions.   

A major unanswered question in the literature is whether individual differences in 

cortical parcellations are actually behaviorally meaningful. Here, kernel regression was 

utilized to demonstrate that the spatial arrangement of individual-specific cortical networks 

can be used to predict behavior in individual subjects (Figures 6, S11, S12). More 

specifically, kernel regression models the possibility that subjects with more similar 

parcellations exhibited similar behavior. Successful prediction suggests that inter-subject 

variation in the spatial configuration of cortical networks are strongly related to inter-subject 

variation in behavior.  

Previous works have suggested that inter-region functional connectivity can be 

utilized as an effective fingerprint of human intelligence (Finn et al., 2015) and a positive-

negative axis of human behavior (Smith et al., 2015). Here, we showed that the spatial 

topography of individual-specific networks can be used to predict a wide range of behavioral 

measures covering cognition, personality and emotion. It would be worthwhile to investigate 

whether inter-subject network spatial variability and inter-subject functional connectivity 

variability can be combined to improve the prediction of individuals’ behavior. 

  

Methodological considerations and future work 

 Although the MS-HBM approach did not account for inter-site variability, we 

demonstrated that model parameters estimated from one site can generalize to another site 

with a different acquisition protocol (Figures 3, S8 to S10). Given the increasing availability 
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of multi-session rs-fMRI (Zuo et al., 2014; Holmes et al., 2015; Poldrack et al., 2015; 

Filevich et al., 2017; Gordon et al., 2017c), it might be possible to add another layer to the 

hierarchical model to account for inter-site variability, in addition to intra-subject and inter-

subject variability. Furthermore, our experiments did not differentiate between rs-fMRI runs 

collected within the same session versus rs-fMRI runs collected from different sessions. 

Another layer could again be inserted into the model to differentiate between within-subject 

intra-session and within-subject inter-session variability. However, we suspect diminishing 

returns.   

 By assuming individual-specific parcellations to be the same across sessions (Figure 

1), the MS-HBM essentially treats inter-session differences as noise. The implication is that 

the individual-specific MS-HBM parcellations seek to capture stable, trait-like network 

organization in individuals. However, it is well-known that certain factors (e.g., caffeine 

intake, sleepiness, attention) result in different brain states and thus functional network 

organization (Tagliazucchi and Laufs, 2014; Laumann et al., 2015; Poldrack et al., 2015; Yeo 

et al., 2015b; Wang et al., 2016; Shine et al., 2016). Moreover, in longitudinal studies of 

certain populations, e.g., Alzheimer’s Disease dementia, the goal is to detect neurological 

changes between consecutive sessions that are relatively far apart in time (Misra et al., 2009; 

Raj et al., 2015; Risacher et al., 2010; Zhang et al., 2016; Lindemer et al., 2017). To capture 

transient session-specific or longitudinal changes in brain network organization, the model 

could be modified to allow for spatial differences in individual-specific parcellations across 

sessions.   

 Here, we focused on parcellating the cerebral cortex into a small number of (less than 

twenty) networks. Each spatial (e.g., parietal) component of a network likely spans multiple 

cytoarchitectonically, functionally and connectionally distinct cortical areas (Kaas 1987; 

Felleman and Van Essen 1991; Amunts and Zilles 2015; Eickhoff et al., in press). It would be 

interesting to extend the MS-HBM to estimate a finer division of the cerebral cortex that 

might approximate classically defined cortical areas. The main challenge is that because of 

strong long-range functionally connectivity (Sepulcre et al., 2010), the MS-HBM will always 

result in spatially distributed networks even when estimating large number (e.g., hundreds) of 

networks. We are working on an additional spatial prior to ensure parcels are spatially 

localized, but not necessarily spatially connected (Glasser et al., 2016). 
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Conclusions 

We developed a multi-session hierarchical Bayesian model (MS-HBM) that differentiated 

between inter-subject and intra-subject variability when estimating individual-specific 

cortical network parcellations. Across three datasets, sensory-motor networks exhibited lower 

inter-subject, but higher intra-subject functional connectivity variability than association 

networks. Sensory-motor networks were also more spatially variable across subjects than 

association networks. Using a single rs-fMRI session (10 min), our approach yielded 

parcellations comparable to those estimated by a recent template matching algorithm using 

five rs-fMRI sessions (50 min). Furthermore, individual-specific MS-HBM parcellations 

were highly reproducible within individuals, while capturing network variations across 

subjects. Finally, inter-subject variation in the spatial configuration of cortical networks are 

strongly related to inter-subject variation in behavior, suggesting their potential utility as 

fingerprints of human behavior. 
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Supplemental Material 

This supplemental material is divided into Supplemental Methods and Supplemental Results to 

complement the Methods and Results sections in the main text, respectively. 
 

Supplementary Methods 

This section provides additional mathematical and implementation details of the multi-session 

hierarchical Bayesian model (MS-HBM). Section S1 provides mathematical details about the 

generative model. Section S2 describe the algorithms for estimating group-level priors and deriving the 

individual-specific parcellations. Section S3 provides details on how “free” parameters of the model 

are set. 

 

S1. Mathematical model 

In this section, we describe our model for individual-level parcellation of the cerebral cortex. 

We assume a common surface coordinate system, where the cerebral cortex is represented by left and 

right hemisphere spherical meshes such as FreeSurfer fsaverage surface meshes. Each mesh consists of 

a collection of vertices and edges connecting neighboring vertices into triangles 

(https://en.wikipedia.org/wiki/Triangle_mesh). 

Let ! denote the total number of vertices, " denote the number of resting-state fMRI (rs-fMRI) 

sessions, # denote the number of subjects, $ denote the number of networks, and %& denote the 

neighboring vertices of vertex ' (as defined by the cortical mesh). For each subject ( and session ), 

there is a preprocessed rs-fMRI time course associated with each vertex '. For each subject (, there is 

an unknown parcellation label *&+  at vertex '. Note that the parcellation label is assumed to be the same 

across sessions (hence there is no index on the session). In this work, we use 1: # to denote a set of 

subjects {1, 2, … , #}, 1: " to denote a set of sessions {1, 2, … , "}, 1:! to denote a set of vertices 

{1, 2, … , !}, 1: $ to denote a set of parcellation labels {1, 2, … , $}.  

For each subject ( at a particular session ), we computed the functional connectivity profile of 

each vertex (of the cortical mesh) by correlating the vertex’s fMRI time course with the time courses 

of uniformly distributed cortical regions of interests (ROIs). For the GSP and HNU datasets, the 

preprocessed data were in fsaverage5 surface space. In this case, the ROIs consisted of 1175 vertices 
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approximately uniformly distributed across the two hemispheres (Yeo et al., 2011). For the HCP 

dataset, the preprocessed data is in fsLR32k surface space. In this case, the ROIs consisted of 1483 

vertices spaced approximately uniformly distributed across the two hemispheres. Each vertex’s 

connectivity profile was binarized (see Methods in main manuscript) and normalized to unit length. 

Let 3&
+,4 denote the binarized, normalized functional connectivity profile of subject ( at vertex ' during 

session ). Let 5 denote the total number of ROIs and hence the length of 3&
+,4. We denote the 

connectivity profiles from all sessions of all subjects at all cortical vertices as 3
6:7

6:8,6:9.  

Figure 1 (main text) illustrates the schematic of the multi-session hierarchical Bayesian model 

(MS-HBM). Following previous work (Yeo et al., 2011), the functional connectivity profile 3&
+,4 of 

subject ( from a session ) at vertex n is assumed to be generated from a von Mises-Fisher distribution,  

 

: 3&
+,4
*&
+
= *, <

6:=

+,4
, > = : 3&

+,4
<
?

+,4
, > = @A > exp > 3&

+,4
, <
?

+,4 ,            (1) 

 

where *&+  is the parcellation label at vertex ' of subject (, and 	,  denote inner product.	<
?

+,4 and > are 

the mean direction and concentration parameter of the von Mises-Fisher distribution for network label 

* of subject ( during session ). <
6:=

+,4  are the mean directions for networks 1 to $. We can think of	<
?

+,4 as 

the mean connectivity profile of network label * normalized to unit length. If functional connectivity 

profile 3&
+,4 is similar to mean connectivity profile <

?

+,4 (i.e., 3&
+,4
, <
?

+,4  is big), then vertex ' is more 

likely to be assigned to network *. The concentration parameter > controls the variability of the 

functional connectivity profiles within each network. A higher > results in a lower dispersion (i.e., 

lower variance), which means that vertices belonging to the same network are more likely to possess 

functional connectivity profiles that are close to the mean connectivity profile of the network. > is 

assumed to be the same for all networks, subjects and sessions. Finally,  @A(>) is a normalization 

constant to ensure a valid probability distribution (Banerjee et al., 2005): 

 

@A > =
>

AH6

I
	H6

2J

AH6

I KAH6
I

H6
(>)

		,																																															(2) 

 

where KLMN
O
H6
(∙) is the modified Bessel function of the first kind with order AH6

I
− 1.  
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To model intra-subject functional connectivity variability, we assume a conjugate prior on the 

subject-specific and session-specific mean connectivity profiles <
?

+,4, which turns out to also be a von 

Mises-Fisher distribution: 

 

: <
?

+,4
<?
+
, R? = @A R? exp	(R? <?

+,4
, <?

+
),                 (3) 

 

where <?+ and R? are the mean direction and concentration parameter of the von Mises-Fisher 

distribution for network label * of subject (. We can think of <?+ as the individual-specific functional 

connectivity profile of network * of subject (. The concentration parameter R? controls how much the 

session-specific mean direction <
?

+,4 of subject ( during session ) can deviate from the subject-specific 

mean direction <?+. A higher R? would imply lower intra-subject functional connectivity variability 

across sessions. R? is network-specific but is assumed to be the same for all subjects.  

To model inter-subject functional connectivity variability, we assume a conjugate prior on the 

subject-specific mean connectivity profiles <?+, which is again a von Mises-Fisher distribution whose 

mean direction corresponded to the group-level mean direction <S: 

 

: <?
+
<
?

S
, T? = @A T? exp	(T? <?

+
, <
?

S
),             (4) 

 

where <S and T? are the mean direction and concentration parameter of the von Mises-Fisher 

distribution for network label *. We can think of <
?

S as the group-level functional connectivity profile 

of network *. The concentration parameter T? controls how much the individual-specific connectivity 

profile <?+ can deviate from the group-level connectivity profile <
?

S. A higher T? would imply lower 

inter-subject functional connectivity variability across subjects.  

Because the functional connectivity profiles of individual subjects are generally very noisy, 

we impose a MRF prior on the hidden parcellation labels *6:7+   

 

: *6:7
+

=
6

U(V,W)
exp	(X log	\ *&

+
] − ^ _(*&

+
, *`
+
)`∈%b

7
&c6

7
&c6 ),      (5) 

 

where d(X, ^) is a normalization term (partition function) to ensure :(*6:7+ ) is a valid probability 

distribution.	log	\ *&
+
= * ] = log	e?,&	is a singleton potential encouraging certain vertices to be 

associated with certain labels. _(*&+ , *`+ ) is a pairwise potential (Potts model) encouraging neighboring 

vertices to have the same parcellation labels: 
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_ *&
+
, *`
+

=
0,									if	*&

+
= *`

+

1,									if	*&
+
≠ *`

+ ,           (6)  

 

The parameters X and ^ are tunable parameters greater than zero, and control the tradeoffs between the 

various terms in the generative model. Assuming that X = 1 and ^ = 0, then e?,& can be interpreted as 

the probability of label * occurring at vertex ' of subject (. 

 

S2. Model estimation 

In this section, we describe how model parameters are estimated from a training set and a 

validation set (Section S2.1), and how the parameters can be used to parcellate a new subject (Section 

S2.2). Throughout the entire section, we assume that the number of networks $	 = 	17 without loss of 

generality.  

 

S2.1 Learning model parameters 

Our goal is to estimate the model parameters {T6:=, R6:=, ]6:7,6:=, <6:=
S
, ^, X} from a training set 

and a validation set of binarized and normalized functional connectivity profiles, which can then be 

utilized for estimating individual-specific parcellations in unseen data of new subjects (Section S2.2). 

As a reminder, T6:= is a group prior representing inter-subject functional connectivity variability, R6:= is 

a group prior corresponding to intra-subject functional connectivity variability, ]6:7,6:= is a group prior 

representing inter-subject spatial variability and reflects the probability of a network occurring at 

particular spatial location, and <
6:=

S  is the group-level connectivity profile for each network. The 

parameters X and ^ tradeoff between various terms in the generative model. Because the partition 

function d(X, ^) (Eq. (5)) is NP-hard to compute, for computational efficiency, we first assume X = 1, 

^ = 0 in order to estimate T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:=  from the training dataset. Under this 

scenario, d X, ^ = 1, and e?,& can be interpreted as the probability of label * occurring at vertex ' of 

subject (. The tunable parameters X and ^ are then estimated in the validation set using a grid search.   

 

S2.1.1 Estimating T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:=  from training set 

Given observed binarized, normalized functional connectivity profiles 3
6:7

6:8,6:9 from the training 

set, we seek to estimate   T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:=  using Expectation-Maximization 

(EM). As previously explained, we assume X = 1, ^ = 0.  
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Let k = {T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:=}. We consider the following maximum-a-

posterior (MAP) estimation problem: 

 

argmax
o

log : T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:= 36:7

6:8,6:9
) . 							(7) 

 

Assuming a uniform (improper) prior on {]6:7,6:=, >, R6:=, T6:=}, the MAP problem can be written as 

 

argmax
o

log : 3
6:7

6:8,6:9
<
6:=

6:8,6:9
, >, ]6:7,6:=): <

6:=

6:8,6:9
R6:=, <6:=

6:8
):(<6:=

6:8
|T6:=, <6:=

S
).     (8) 

 

We then introduce the parcellation labels *6:7+  for each subject ( as latent variables, and use 

Jensen’s inequality to define a lower bound ℒ(s, k), where s = s6:7,6:=
6:8  are the parameters of the t 

functions t *6:7+ = t(*&
+
|s&,6:=
+

)
7
&c6 : 

 

					log : 3
6:7

6:8,6:9
<
6:=

6:8,6:9
, >, ]6:7,6:=): <

6:=

6:8,6:9
R6:=, <6:=

6:8
): <6:=

6:8
T6:=, <6:=

S
)	

= log	 : 3
6:7

+,6:9
<
6:=

+,6:9
, >, ]6:7,6:=)

8

+c6

+ log : <
?

+,6:9
R?, <?

+
: <?

+
T?, <?

S

=

?c6

8

+c6

																		(9)	

= log : 3
6:7

+,6:9
, *6:7
+

<
6:=

+,6:9
, >, ]6:7,6:=)

?
N:w

x

8

+c6

+ log : <
?

+,6:9
R?, <?

+
: <?

+
T?, <?

S

=

?c6

8

+c6

					(10)	

≥ t *6:7
+

log
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6:7

+,6:9
, *6:7
+

<
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+,6:9
, >, ]6:7,6:=

t *
6:7

+
+ log : <

?

+,6:9
R?, <?

+
: <?

+
T?, <?
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=

?c6

8

+c6?
N:w

x

8

+c6

		(11)	

= s
&,?b

x
+

log : 3&
+,4
<
?b
x

+,4
, > + s

&,?b
x

+
log]&,=b

x

=

?b
x
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7

&c6

8

+c6

=

?b
x
c6

7

&c6

9

4c6

8

+c6

												

− s
&,?b

x
+

log s
&,?b

x
+

+ ( log : <
+,4
R?, <?

+

9

4c6

=

?c6

8

+c6

=

?b
x
c6

7

&c6

8

+c6

+ log :(<?
+
|T?, <?

S
))			(12)	

= ℒ s, k ,																																																																																																																																																												(13) 

 

where equality is achieved when t *6:7+ = s6:7,6:=+
	are the posterior probability of the individual-

specific parcellation of subject ( given the parameters k. Therefore, instead of maximizing the original 

MAP problem (Eq. (7)), we instead maximize the lower bound:  
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s
∗
, k

∗
= argmax

|,o

ℒ(s, k).															(14) 

 

In the E-step, we fix k = {T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:=}, and estimate s: 

s = argmax
|

ℒ s, k 														(15)	

= argmax
|

s
&,?b

x
+

log :(3&
+,4
|<
?b
x

+,4
, >)

=

?b
x
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7

&c6

9
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8

+c6

+ s
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x
+

log]&,?b
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?b
x
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&c6

8

+c6

− s
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x
+

log s
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x
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x
c6

7

&c6

8

+c6

+ �&
+
	 s

&,?b
x

+

=

?b
x
c6

− 1 	

7

&c6

,

8

+c6

				(16) 

 

where �&+ 	are the Lagrange multipliers enforcing the constraint s&,?
+
= 1

=

?c6 . Optimizing Eq. (16), we 

get: 

log sÅ,?
+
∝ log : 3

Å

+,4
<
?

+,4
, >

9

4c6

+ log]Å,? 																								(17)	

																				= log @A > exp > 3&
+,4
, <
?

+,4

9

4c6

+ log]Å,? 						(18)	

																				= " log @A > + > 3&
+,4
, <
?

+,4

9

4c6

+ log]Å,? 									(19) 

 

In the M-step, we fix s and estimate	k: 

 

k = argmax
o

ℒ s, k .													(20) 

 

By using the constraints that <
?

+,4
, <
?

+,4
= 1, <?+, <?+ = 1, <

?

S
, <
?

S
= 1, > > 0, R? > 0, T? > 0, and 

differentiating ℒ s, k  with respect to T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:=, and setting the derivatives 

to zero, we get the following update equations: 

 

<
?

+,4
=
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+
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+,4
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+7
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							(26)	

]&,? =
1

#
s&,?
+

8

+c6

		,																(27) 

 

where 5 is the length of 3&
+,4 (i.e., number of ROIs in each functional connectivity profile), # is the 

number of subjects, " is the number of sessions, and ∙  corresponds to the *I-norm. Therefore, the 

estimate of the functional connectivity profile <
?

+,4 (Eq. (21)) of network * of subject ( during session ) 

is the weighted sum of the average time course of vertices constituting network * of subject ( during 

session ) ( s&,?
+
3&
+,47

&c6 ) and the subject-specific mean direction <?+, with weights > and R? for each 

term, normalized to be unit norm. If R? is much greater than >, then <
?

+,4 is more likely to be dominated 

by subject-specific mean direction <?+, which means that the functional connectivity profile of network 

* is highly stable across sessions. Similarly, the estimate of the functional connectivity profile <?+ (Eq. 

(23)) of network * of subject ( is the weighted sum of the average session-specific mean directions 

across all sessions for network * of subject ( ( <
?

+,49
4c6 ) and the group-level mean direction <

?

S, with 

weights R? and T? for each term, normalized to be unit norm. If T? is much greater than R?, then <?+ is 

more likely to be dominated by group-level mean direction <
?

S, which means that the functional 

connectivity profile of network * is highly stable between subjects. Finally, the estimate of the group-

level functional connectivity profile <
?

S (Eq. (25)) of network * is the sum of the subject-specific mean 

directions across all subjects for network * ( <?
+8

+c6 ), normalized to be unit norm. The estimate of ]&,? 

(Eq. (27)) is the posterior probability of network * being assigned to vertex ', averaged across all the 

subjects. 

Given the training set, the algorithm first estimates a group-level parcellation (Yeo et al., 

2011), which is then used to initialize the EM algorithm. The EM algorithm iterates E-step (Eq. (19)) 

and M-step (Eqs. (21-27)) till convergence. We note that the update equations (Eqs. (21-27)) in the M-
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step are dependent on each other. Therefore, within the M-step, the update equations (Eqs. (21-27) are 

iterated till convergence. 

 

S2.1.2 Estimating tunable parameters c and X 

In the previous subsection (Section S2.1.1), the training set was used to estimate k =

{T6:=, R6:=, >, <6:=
S
	<6:=
6:8
, <
6:=

6:8,6:9
, ]6:7,6:=}, assuming X = 1, ^ = 0. To tune the parameters c and X, we 

assume access to a validation set.  

Recall that each subject in the validation set has multiple rs-fMRI sessions. We consider ^ ∈

10,20,30,40, 50,60  and X ∈ {100,150,200,250}. For a given pair of ^, X , and given 

{T6:=, R6:=, ]6:7,6:=, <6:=
S
} estimated from the training set, we estimate for each subject in the validation 

set, the individual-specific parcellation based on a subset of rs-fMRI sessions (see Section S2.2 for 

algorithm). Resting-state homogeneity (Eq. (1) in main text) is then computed in the remaining rs-

fMRI sessions of the validation subjects. The pair of ^, X  with the highest homogeneity in the unseen 

rs-fMRI sessions of the validation subjects is then utilized for parcellating new subjects.  

  In the case of the GSP data, the optimal pair of parameters is ^ = 30 and X = 200. In the 

case of the HCP data, the optimal pair of parameters is ^ = 40 and X = 200. Note that we do expect 

the parameters to be different between the GSP and HCP datasets because of resolution differences 

between the fsaverage5 and fs_LR32k surface meshes.  

Throughout the paper (main text), the reported quality (Figures 5, 6 and 7) of the individual-

specific parcellations was evaluated using subjects not used to tune the parameters. For example, in the 

case of the CoRR-HNU subjects (Figures 5 and 6), the model parameters were estimated from the GSP 

training and validation sets. In the case of the HCP data (Figures 6 and 7), model parameters were 

estimated the HCP training and validation sets, while the reported quality of the individual-specific 

parcellations was evaluated using the HCP test set.  

 

S2.2 Individual-level parcellation estimation 

  Using parameters {T6:=, R6:=, ]6:7,6:=, <6:=
S
} estimated from the training set (Section S2.1.1), 

and for a particular pair of ^, X , we can estimate the individual-specific parcellation *6:7+  of a new 

subject ( with " sessions by employing the variational Bayes expectation maximization (VBEM) 

algorithm.  

Let â = {>, <
6:=

+,6:9
, <6:=

+
	}. We consider the following maximum-a-posterior (MAP) estimation 

problem: 
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argmax
ä

log : 	>, <
6:=

+,6:9
, <6:=

+
3
6:7

+,6:9
, T6:=, R6:=, <6:=

S
, ]6:7,6:=).														(28) 

 

Assuming a uniform (improper) prior on >, and by introducing the parcellation labels *6:7+  of the new 

subject ( as latent variables, the lower bound ℒ(s,â) of the MAP problem (Eq. (28)) can be written 

as: 

 

ℒ s
+
, â = s

&,?b
x

+
log : 3&
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<
?b
x
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, > + X s
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x

+
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where equality is achieved when s+ is the posterior probability of the individual-specific parcellation 

of subject ( given the parameters â. Similar to Section S2.1.1, we can maximize the lower bound (Eq. 

(29)) by iteratively updating s+ and â. Unlike Section S2.1.1, we cannot compute the exact posterior 

probability s+ because of the pairwise potentials in the Markov random field (Wainwright and Jordan, 

2008). Using the mean-field approximation (Wainwright and Jordan, 2008), an approximate posterior 

probability s+ is estimated in the variational E-step, while â is updated in the variational M-step.  

More specifically, in the variational E-step, â is fixed and s+ is estimated as follows: 
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In the variational M-step, s+ is fixed and â = {>, <
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Once the VBEM algorithm converges, vertex ' of subject ( will be assigned to label * with the highest 

(approximate) posterior probability.  
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Supplemental Results
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Description HCP field
Visual Episodic Memory PicSeq_Unadj

Cognitive flexibility (DCCS) CardSort_Unadj
Inhibition (Flanker task) Flanker_Unadj

Fluid Intelligence (PMAT) PMAT24_A_CR
Vocabulary (pronounciation) ReadEng_Unadj

Vocabulary (picture matching) PicVocab_Unadj
Processing Speed ProcSpeed_Unadj
Delay Discounting DDisc_AUC_40K
Spatial orientation VSPLOT_TC

Sustained Attention - Sens. SCPT_SEN
Sustained Attention - Spec. SCPT_SPEC

Verbal Episodic Memory IWRD_TOT
Working Memory (list sorting) ListSort_Unadj

Cognitive status (MMSE) MMSE_Score
Sleep quality  (PSQI) PSQI_Score
Walking endurance Endurance_Unadj

Walking Speed GaitSpeed_Comp
Manual dexterity Dexterity_Unadj

Grip strength Strength_Unadj
Odor identificaiton Odor_Unadj

Pain Interference Survey PainInterf_Tscore
Taste intensity Taste_Unadj

Contrast Sensitivity Mars_Final
Emotional Face Matching Emotion_Task_Face_Acc

Arithmetic Language_Task_Math_Avg_Difficulty_Level
Story comprehension Language_Task_Story_Avg_Difficulty_Level
Relational processing Relational_Task_Acc

Social Cognition - random Social_Task_Perc_Random
Social Cognition - interaction Social_Task_Perc_TOM

Working Memory (n-back) WM_Task_Acc
Agreeableness (NEO) NEOFAC_A

Table S1. Lookup table showing the original HCP variable names with the corresponding 
descriptive labels used in the manuscript 
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Description HCP field
Openness (NEO) NEOFAC_O

Conscientiousness (NEO) NEOFAC_C
Neuroticism (NEO) NEOFAC_N
Extraversion (NEO) NEOFAC_E
Emot. Recog. - Total ER40_CR
Emot. Recog. - Angry ER40ANG
Emot. Recog. - Fear ER40FEAR

Emot. Recog. - Happy ER40HAP
Emot. Recog. - Neutral ER40NOE

Emot. Recog. - Sad ER40SAD
Anger - Affect AngAffect_Unadj

Anger - Hostility AngHostil_Unadj
Anger - Aggression AngAggr_Unadj

Fear - Affect FearAffect_Unadj
Fear - Somatic Arousal FearSomat_Unadj

Sadness Sadness_Unadj
Life Satisfication LifeSatisf_Unadj

Meaning & Purpose MeanPurp_Unadj
Positive Affect PosAffect_Unadj

Friendship Friendship_Unadj
Loneliness Loneliness_Unadj

Perceived Hostility PercHostil_Unadj
Perceived Rejection PercReject_Unadj
Emotional Support EmotSupp_Unadj
Instrument Support InstruSupp_Unadj
Perceived Stress PercStress_Unadj

Self-Efficacy SelfEff_Unadj

Table S1 (cont.). Lookup table showing the original HCP variable names with the 
corresponding descriptive labels used in the manuscript 
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(A) Group parcellation

(B) Inter-subject RSFC variability (C) Intra-subject RSFC variability

Figure S1. Sensory-motor networks exhibit lower inter-subject, but higher intra-subject, 
functional connectivity variability than association networks in the GSP training set. (A) 17-
network group-level parcellation. (B) Inter-subject functional connectivity variability for 
different cortical networks. (C) Intra-subject functional connectivity variability for different 
cortical networks. Note that (B) and (C) correspond to the 𝜖𝑙 and 𝜎𝑙 parameters in Figure 1, 
where higher values indicate lower variability. .
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(A) Group parcellation

(B) Inter-subject RSFC variability (C) Intra-subject RSFC variability

Figure S2. Sensory-motor networks exhibit lower inter-subject, but higher intra-subject, 
functional connectivity variability than association networks in the CoRR-HNU dataset. (A) 
17-network group-level parcellation. (B) Inter-subject functional connectivity variability for 
different cortical networks. (C) Intra-subject functional connectivity variability for different 
cortical networks. Note that (B) and (C) correspond to the 𝜖𝑙 and 𝜎𝑙 parameters in Figure 1, 
where higher values indicate lower variability.
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Figure S3.  Sensory-motor networks are less spatially variable than association networks 
across subjects in the HCP training set. Spatial probability maps of (A) Somatomotor
network A, (B) Visual network B, (C) Dorsal Attention network A, and (D) Dorsal Attention 
network B. A higher value (bright color) at a spatial location indicates high probability of a 
network appearing at that spatial location. Results were replicated in the GSP (Figure S4) 
and Corr-HNU (Figure S5) datasets. Note that this corresponds to the Θ𝑙 parameter in 
Figure 1.

(A) Somatomotor A (B) Visual B

(D) Dorsal Attention B(C) Dorsal Attention A
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(A) Somatomotor A (B) Visual B

(D) Dorsal Attention B(C) Dorsal Attention A

Figure S4.  Sensory-motor networks are less spatially variable than association networks 
across subjects in the GSP dataset. Spatial probability maps of (A) Somatomotor network 
A, (B) Visual network B, (C) Dorsal Attention network A, and (D) Dorsal Attention network 
B. A higher value (bright color) at a spatial location indicates high probability of a network 
appearing at that spatial location. Note that this corresponds to the Θ𝑙 parameter in Figure 
1.
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(A) Somatomotor A (B) Visual B

(D) Dorsal Attention B(C) Dorsal Attention A

Figure S5.  Sensory-motor networks are less spatially variable than association networks 
across subjects in the CoRR-HNU dataset. Spatial probability maps of (A) Somatomotor
network A, (B) Visual network B, (C) Dorsal Attention network A, and (D) Dorsal Attention 
network B. A higher value (bright color) at a spatial location indicates high probability of a 
network appearing at that spatial location. Note that this corresponds to the Θ𝑙 parameter 
in Figure 1.
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Figure S6. Task inhomogeneity of resting-state parcellations in the HCP dataset. 17-network 
individual-specific parcellations were estimated using one rs-fMRI session. Task 
inhomogeneity was then defined as the standard deviation of task activation within each 
network, and then averaged across all networks and contrasts within each behavioral domain. 
Lower value indicates better functional homogeneity. Compared with Yeo2011, 
YeoBackProject and Gordon2017, the MS-HBM individual-specific parcellations achieved a 
modest average improvement of 0.54% (p = 0.9 for social, p = 0.578 for motor, p < 5e-324 for 
other 5 domains), 1.93% (p < 5e-324 for all domains) and 0.94% (p < 5e-324 for all domains) 
respectively. Box plots utilized default Matlab parameters, i.e., box shows median and inter-
quartile range (IQR). Whiskers indicate 1.5 IQR. Dot indicates mean.
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Figure S7. 17-network parcellations were estimated using runs 1-2 and runs 3-4 separately 
for each subject from the HCP test set. Parcellations of four representative subjects are 
shown here. Left hemisphere parcellations are shown in Figure 4.  
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Figure S8. 17-network parcellations were estimated using sessions 1-5 and sessions 6-10 
separately for each subject from the CoRR-HNU dataset. Parcellations of four representative 
subjects are shown here. Black and green arrows indicate individual-specific parcellation
features. The Default C (dark blue) network exhibited a dorsal prefrontal component for 
certain subjects (black arrows), but was missing in other subjects. As another example, the 
lateral prefrontal component of the Control A (orange) network was separated into two 
separate components by the Control B (brown) network (green arrows). These features were 
mostly replicated across sessions. Right hemisphere parcellations are shown in Figure S9.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2017. ; https://doi.org/10.1101/213041doi: bioRxiv preprint 

https://doi.org/10.1101/213041
http://creativecommons.org/licenses/by/4.0/


Figure S9. 17-network parcellations were estimated using sessions 1-5 and sessions 6-10 
separately for each subject from the CoRR-HNU dataset. Parcellations of four representative 
subjects are shown here. Left hemisphere parcellations are shown in Figure S8.  
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(A) Inter-subject similarity (B) Intra-subject reproducibility

(C)

Figure S10. Individual-specific MS-HBM parcellations show high within-subject reproducibility 
(overlap = 81.6%) and low across-subject similarity (overlap = 59.4%) in the CoRR-HNU 
dataset. (A) Inter-subject spatial similarity for different networks. (B) Intra-subject 
reproducibility for different networks. Warm color indicates higher overlap. Cool color indicates 
lower overlap. (C) Quantification of inter-subject similarity and intra-subject reproducibility for 
different networks. “VentAttnAB” corresponds to Salience/Ventral Attention networks A and B. 
“SomoAB” corresponds to Somatomotor networks A and B. Box plots utilized default Matlab
parameters, i.e., box shows median and inter-quartile range (IQR). Whiskers indicate 1.5 IQR. 
Dot indicates mean.
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Figure S11. Prediction accuracy of 22 cognitive, emotion, personality and other non-imaging 
measures based on inter-subject differences in the spatial arrangement of cortical networks. 
In the case of the NEO-5 personality scores, average predication accuracy was r = 0.10 (p = 
0.0018). Other measures are found in Figures 6 and S12. Box plots utilized default Matlab
parameters, i.e., box shows median and inter-quartile range (IQR). Whiskers indicate 1.5 
IQR. Dot indicates mean.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2017. ; https://doi.org/10.1101/213041doi: bioRxiv preprint 

https://doi.org/10.1101/213041
http://creativecommons.org/licenses/by/4.0/


Figure S12. Prediction accuracy of 23 cognitive, emotion, personality and other non-imaging 
measures based on inter-subject differences in the spatial arrangement of cortical networks. 
In the case of the emotional measures (all items in Figure S10 except for emotional 
recognition), the average prediction accuracy was r = 0.10 (p = 5.9e-4). Other measures are 
found in Figures 6 and S11. Interestingly, prediction accuracy for the emotion recognition task 
was poor. Box plots utilized default Matlab parameters, i.e., box shows median and inter-
quartile range (IQR). Whiskers indicate 1.5 IQR. Dot indicates mean.
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