
A Noninvasive Molecular Clock for Fetal Development Predicts Gestational Age and 
Preterm Delivery 
 

Thuy T. M. Ngo1,*,+, Mira N. Moufarrej1,*, Marie-Louise H. Rasmussen2, Joan Camunas-Soler1, 
Wenying Pan1, Jennifer Okamoto1, Norma F. Neff1, Keli Liu3, Ronald J. Wong4, Katheryne 
Downes6, Robert Tibshirani3,8, Gary M. Shaw4, Line Skotte2, David K. Stevenson4, Joseph R. 
Biggio5, Michal A. Elovitz6, Mads Melbye2,7,#,* and Stephen R. Quake1,#,* 

1. Departments of Bioengineering and Applied Physics, Stanford University and Chan 
Zuckerberg Biohub, Stanford CA USA 

2. Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark  

3. Department of Statistics, Stanford University, Stanford CA USA 

4. Department of Pediatrics, Stanford University School of Medicine, Stanford CA USA 

5. Center for Women’s Reproductive Health, Department of Obstetrics and Gynecology, 
University of Alabama at Birmingham, Birmingham, AL USA 

6. Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, 
University of Pennsylvania School of Medicine, Philadelphia, PA USA 

7. Department of Medicine, Stanford University School of Medicine, Stanford CA USA  

8. Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford 
CA USA 

+ Current address:  Cancer Early Detection Advanced Research Center, Knight Cancer Institute 
and Department of Molecular and Medical Genetics, Oregon Health Sciences University, OR 
USA 

* Equal contribution 

# To whom correspondence should be addressed.  SRQ: quake@stanford.edu, MM: 
mmelbye@stanford.edu  

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212910doi: bioRxiv preprint 

https://doi.org/10.1101/212910
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 
  
We performed a high time-resolution, longitudinal study of normal pregnancy development by 
measuring cell-free RNA (cfRNA) in blood from women during each week of pregnancy. 
Analysis of tissue-specific transcripts in these samples enabled us to follow fetal and placental 
development with high resolution and sensitivity, and also to detect gene-specific responses of 
the maternal immune system to pregnancy. We established a “clock” for normal pregnancy 
development and enabled a direct molecular approach to determine expected delivery dates with 
comparable accuracy to ultrasound, creating the basis for a portable, inexpensive fetal dating 
method. We also identified a related gene set that accurately discriminated women at risk for 
spontaneous preterm delivery up to two months in advance of labor, forming the basis of a 
potential screening test for risk of preterm delivery. 
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Introduction 
  
Understanding the timing and programming of pregnancy has been a topic of interest for 
thousands of years. In antiquity, the ancient Greeks had surprisingly detailed knowledge of 
various details of stages of fetal development, and developed mathematical theories to account 
for the timing of important landmarks during development, including delivery of the baby (1–3). 
In the modern era, biologists have amassed detailed cellular and molecular portraits of both fetal 
and placental development. However, these results relate to pregnancy in general, and have not 
directly led to molecular tests that might enable monitoring of fetal development and predicting 
delivery for a given pregnancy. The most widely-used molecular metrics of development are the 
determination of the levels of human chorionic gonadotropin (HCG) and alpha-fetoprotein 
(AFP), which can be used to detect conception and fetal complications, respectively; however, 
neither molecule (either individually or in conjunction) has been found to precisely establish 
gestational age (GA) (4, 5). 
  
Owing to the lack of a useful molecular test, most clinicians use either ultrasound imaging or a 
woman’s estimate of her last menstruation period (LMP) to establish GA and an approximate 
delivery date. However, these methods are imprecise and inadequate for gauging preterm birth, 
which is a substantial source of morbidity and mortality. Moreover, inaccurate dating can 
misguide the assessment of fetal development even for normal term pregnancies, which has been 
shown to ultimately lead to unnecessary induction of labor and Cesarean-sections, extended post-
natal care, and/or increased medical expenses (6–9).  
 
Understanding the progression of a normal pregnancy would contextualize abnormal phenotypes 
like preterm birth and establish methods to monitor pregnancy for signs of abnormalities or risk 
of preterm birth. Approximately 15 million neonates are born prematurely every year worldwide 
(10). As a major annual cost for the United States upwards of $26.2 billion (11), premature birth 
is the leading cause of neonatal death and the second most common cause of childhood death 
under the age of 5 years (12). Complications continue later into life as preterm birth is a leading 
cause of life years lost to ill health, disabilities, or early deaths (13). Soberingly, two-thirds of 
preterm deliveries occur spontaneously, and the only predictors are a previous history of a 
preterm birth, multiple gestations, and/or vaginal bleeding (11). Efforts to find a genetic cause 
have had only limited success (14–16)  Thus far, most efforts have relied on epidemiological 
studies and the identification of environmental risk factors (17). 
 
Here, we report a high time-resolution, longitudinal study of normal pregnancy development 
through measurements of cell-free RNA (cfRNA) in blood from women during each week of 
pregnancy. By quantifying gene expression in placental, fetal, and maternal tissues through 
cfRNA measurements, we open a window into the phenotypic state of a pregnancy. We have 
previously shown that the use of tissue-specific genes enables direct measurements of tissue 
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health and physiology, which are concordant with the known physiology of pregnancy and fetal 
development at low time-resolution (18). Now we establish a high-resolution “clock” for normal 
pregnancy development and enable a direct molecular approach to determine time to delivery 
and GA. We demonstrated that cfRNA samples from both the second (13 to 24 weeks) and third 
(25 to 40 weeks) trimesters of pregnancy can predict expected delivery dates with comparable 
accuracy to ultrasound, creating the basis for a portable, inexpensive dating method. While this 
dating approach was validated only in normal pregnancies, we were also able to identify and 
validate biomarkers that accurately discriminated women at risk of spontaneous preterm delivery 
up to two months in advance of labor, thus indicating which women were at risk for deviating 
from the normal programmed developmental clock and forming the basis of a potential screening 
test for risk of preterm delivery. 
 
Results and Discussion 
  
For our initial study, we recruited 31 pregnant Danish women, each of whom agreed to donate 
blood on a weekly basis, resulting in a total of 521 plasma samples (Figure 1). All women 
delivered at term, defined as a GA at delivery of ≥ 37 weeks, and their medical records showed 
no unusual health changes during pregnancy (Table 1). Each sample was analyzed by highly 
multiplexed real-time PCR using a panel of genes that were chosen to be specific to the placenta, 
fetal organ-specific tissues, or the immune system (18).  
 
The average time course of gene expression differed by gene function (Figures 2A, S1). 
Placental and fetal genes, defined as organ-specific developmental transcripts, showed a clear 
increase through the course of pregnancy. Some of these genes plateaued before delivery and one 
(CGB) decreased from a peak found in the first trimester. Both placental and fetal organ-specific 
cfRNAs were not present or barely detected after delivery, which supports their predominantly 
fetal-specific origins. Immune genes, which are dominated by the maternal immune system, but 
may also include a fetal contribution, had a more complex trajectory, but, in general, showed 
changes in time with measurable baselines early in pregnancy and after delivery. We then 
calculated the correlation between estimated gene transcript counts across all genes and all 
pregnancies (Figure 2B) and discovered that genes within each set (i.e. placental, immune, and 
fetal) were highly correlated with each other (Pearson correlation r = 0.66 (placental), 0.69 
(immune), 0.62 (fetal)). Moreover, we found that placental and fetal genes also showed a 
moderate degree of cross correlation (r = 0.45), suggesting that placental cfRNA may provide an 
accurate estimate of fetal development and GA throughout pregnancy. 
 
Building upon these observations, we sought to build a more accurate predictor of GA using a 
machine learning model with cfRNA measurements as the primary features. We trained a 
random forest model on cfRNA data from 21 women across 24 time points (n = 306) and were 
able to show that a subset of 9 placental genes provided more predictive power than using the 
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full panel of measured genes (Figure S2). Using these 9 genes (CGA, CAPN6, CGB, ALPP, 
CSHL1, PLAC4, PSG7, PAPPA, and LGALS14), we accurately predicted the time from sample 
collection until delivery (Pearson correlation r = 0.91, P < 1x10-15), which was an objective 
criterion independent of ultrasound-estimated GA (Figure 2C). Our model’s performance 
improved significantly over the course of gestation (root mean squared error (RMSE) = 6.0 (1st 
trimester, T1), 3.9 (2nd trimester, T2), 3.3 (3rd trimester, T3), 3.7 (post-partum, PP) weeks). 
Remarkably, our model performed equally well (r = 0.89, P < 1x10-15) on a separate cohort of 10 
Danish women (RMSE = 5.4 (T1), 4.2 (T2), 3.8 (T3), 2.7 (PP) weeks) (Figure 2D). We also built 
a separate model to predict GA (as estimated by ultrasound) and using the same 9 placental 
genes, the model performed comparably well both in training (r = 0.91, P < 1x10-15) and in 
validation (r = 0.90, P < 1x10-15) (Figure S3).  
 
The random forest model selects placental genes as most predictive of time from sample 
collection until delivery and GA. Although, several of these genes showed similar changes in 
gene expression over time, their detection rate early in pregnancy varied. The redundant 
expression profiles of these genes may improve accuracy at early timepoints, when both 
placental and fetal cfRNAs were low and led to drop-out effects. As cfRNA increased during 
gestation, the accuracy of the model improved. This is in contrast to the efficacy of ultrasound 
dating, which relies on a constant fetal growth rate, an assumption that deteriorates over time (7, 
19).  
 
Further investigating the drivers of the model revealed several markers with known roles during 
pregnancy. CGA and CGB, the two most important features together with CAPN6, behaved 
differently from other genes in the model. CGA and CGB are the two subunits of HCG, known 
to play a major role in pregnancy initiation and progression and are involved in trophoblast 
differentiation (20). The trend observed for these two genes was consistent with what is known 
from HCG levels during pregnancy (21). Free CGB and PAPPA are also used as biochemical 
markers for risk of Down syndrome in the first trimester (22). Other genes selected by the model 
were related to trophoblast development (LGALS14, PAPPA).  
  
We then used our model to estimate expected delivery dates from samples taken during the 
second, third, or both trimesters (Figure 2E). We found that 32% (T2), 23% (T3), 45% (T2 and 
T3), and 48% (T1 ultrasound) of all 31 Danish women delivered within 14 days of their expected 
delivery dates (Table 2). Similarly, prior studies reported that under normal circumstances, 
women delivered within 14 days of the expected date with 57.8% accuracy using ultrasound and 
48.1% using LMP (7). Our results are not only comparable to ultrasound measurements, but also 
use a method that is inexpensive and more easily ported to resource-challenged settings.  
 
While the first generation clock model was able to predict GA and time of delivery for normal 
pregnancies, we were also interested in testing its performance for predicting preterm delivery. 
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We therefore used two separately-recruited cohorts, one collected by the University of 
Pennsylvania and the other by the University of Alabama at Birmingham, representing 
populations at elevated risk for spontaneous premature delivery to test model performance on an 
abnormal phenotype (Figure 1, Table 1). We discovered that while the model validated 
performance for full-term pregnancies (RMSE = 4.3 weeks) in these cohorts, it generally failed 
to predict time until delivery for preterm deliveries (RMSE = 10.5 weeks) (Figure S4). This 
suggests that the model’s content was reflective of a normal term pregnancy and may not 
account for the various outlier physiological events that may lead to preterm birth. In other 
words, from a molecular perspective, the premature fetus does not appear to have reached full 
gestation, and therefore preterm birth is likely not caused by fetal or placental “overmaturation” 
signals. This conclusion is supported by the observation that pharmacological agents designed to 
stop or slow down uterine contractions prevent only a small number of preterm deliveries (23, 
24).  
 
To further investigate this question and identify genes, which discriminate a spontaneous preterm 
from a full-term delivery, we performed RNA-sequencing (RNA-Seq) on plasma-derived cfRNA 
collected from women who delivered at full-term (n = 7) and preterm (n = 9) in a preterm-
enriched cohort (Pennsylvania) (Figure 1, Table 1). Analysis of RNA-Seq data indicated that 
nearly 40 genes could separate term from preterm births with statistical significance (P < 0.001, 
See Methods) (Figure 3A). We then created a PCR panel with the highest scoring candidate 
preterm biomarkers and other immune and placental genes. We confirmed that the differential 
expression observed in our RNA-Seq analyses was also observed with this qPCR panel (Figure 
S5) .  
 
When used in unique combinations of three (Table S1), the top ten genes from the panel 
(CLCN3, DAPP1, POLE2, PPBP, LYPLAL1, MAP3K7CL, MOB1B, RAB27B, RGS18, and 
TBC1D15) (FDR ≤ 5%, Hedge’s g ≥ 0.8) (Figure 3B), accurately classified 7 out of 9 preterm 
samples (78%) and misclassified only 1 of 26 full-term samples (4%) from both Pennsylvania 
and Denmark with a mean AUC of 0.87 (Figure 3C). These 10 genes in combination also 
showed successful validation in an independent preterm-enriched cohort from Alabama, 
accurately classifying 4 out of 6 preterm samples (66%) and misclassifying 3 of 18 full-term 
samples (17%) (Figure 1). Moreover, this independent validation cohort showed that it is 
possible to discriminate spontaneous preterm from full-term pregnancies up to 2 months in 
advance of labor with an AUC of 0.74 (Figure 3C). Several of the genes used to predict 
spontaneous preterm delivery were also individually significantly more highly expressed in 
women who delivered preterm (FDR ≤ 5%, Hedge’s g ≥ 0.8), demonstrating the robustness of 
their effect (Figure 3B). Our evidence suggests that the genes associated with spontaneous 
preterm birth are distinct from those found to be most predictive for GA and full-term delivery.  
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The cfRNA results can be compared attempts to estimate preterm risk using mass spectroscopic 
measurements of the ratio of two proteins (SHBG and IBP4) (25). Our method not only yields 
higher mean accuracy for comparable sample sizes in the validation cohorts (AUC=0.74 
(cfRNA), AUC=0.67(IBP4/SHBG)), but also has several advantages, specifically broader 
applicability and cost. The mass spectroscopic approach is only applicable in a very narrow two 
week gestational interval and only on a limited range of body mass indices (BMI). Moreover, at 
a fraction of the cost of mass spectrometry, PCR can easily be applied to resource-challenged 
settings where its impact may be most direct.  
 
In summary, we have described a molecular clock of pregnancy development that reflects a 
roadmap of placental and fetal gene expression, and enables prediction months in advance of 
time to delivery, GA, and expected delivery date with comparable accuracy to ultrasound. 
Because this model is derived from cfRNA measurements, it has several advantages, namely cost 
and applicability later during pregnancy. At a fraction of the cost of ultrasound, cfRNA 
measurements can be easily applied to resource-challenged settings. Even in countries that 
regularly use ultrasound, cfRNA presents an attractive, accurate alternative to ultrasound, 
especially during the second and third trimesters. Predicting expected delivery dates using 
cfRNA improves during gestation as opposed to ultrasound predictions, which deteriorate from 
15 (T2) to 27 (T3) day estimates of delivery (26). We expect that this clock will also be useful 
for discovering and monitoring fetuses with congenital defects that can be treated in utero, which 
represents a rapidly growing area in maternal-fetal medicine. Furthermore, we investigated our 
model’s application to spontaneous preterm delivery, and discovered and validated a separate set 
of 10 biomarkers, suggesting that the physiology of preterm delivery is distinct from normal 
development, forming the basis for a screening test for assessing risk of spontaneous preterm 
birth.  
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Figure 1: Sample collection timelines from Denmark, Pennsylvania, and Alabama. Squares, 
inverted triangles, and lines indicate sample collection, delivery dates, and individual women, 
respectively. 
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Figure 2: (A) Gene-specific inter-woman monthly means±standard error of the mean (SEM) 
plotted over the course of gestation (shaded in gray) for placental, immune, and fetal organ-
specific genes. † represents genes for which data for only 21 women were available. (B) 
Correlation between gene-specific estimated transcript counts. Genes are listed in the same order 
as (A) omitting genes for which data was only available for 21 women. Color bar represents 
Pearson correlation r values. (C-D) Solid blue lines and shadings indicate linear fits and 95% 
confidence intervals, respectively. (C) Random forest model prediction of time to delivery for 
training data (n = 21, r = 0.91, P < 1 x 10-15, cross-validation). (D) Random forest model 
prediction of time to delivery for validation data (n = 10, r = 0.89, P < 1 x 10-15). (E) Comparison 
of expected delivery date prediction by ultrasound versus cfRNA. 
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Figure 3: (A) RNA-Seq performed on samples from Pennsylvania highlights 40 differentially-
expressed genes (P < 0.001) between preterm and term deliveries. Color bar represents z-scores. 
(B) Individual plots of 10 genes identified and validated in an independent cohort from Alabama, 
which accurately predicted preterm delivery in unique combinations of 3. All P-values reported 
are calculated using the Fisher exact test (FDR < 5%). *, **, and *** indicate significance levels 
below 0.05, 0.005, and 0.0005, respectively. (C) Predictive performance of 10 validated preterm 
markers in unique combinations of 3. Area under the curve (AUC) values are highlighted both 
for the discovery (Pennsylvania and Denmark) and validation (Alabama) cohorts. 
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 Table 1: Patient and pregnancy characteristics. 
 

Demographics Denmark 
(n=31) 

Pennsylvania (n = 16) Alabama (n = 26) 

 At-term 

(n = 31) 

Preterm 

(n = 9) 

At-term 

(n = 7) 

Preterm 

(n = 8) 

At-term 

(n = 18) 

Age (years, mean±SD) 29.9±3.2 23.6±5.7 23.7±3.4 

 

23.9±2.8 25.8±4.4 

Parity (% nulliparous) 19 (61.3) 4 (44.4) 3 (42.9) 0 (0) 0 (0) 

BMI (kg/m2, mean±SD) 22.1±3.6 24.4±5.1 31.9±5.7 28.9±10.
5 

28.6±7.0 

Ethnicity (% Hispanic) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Caucasian (%) 31 (100) 0 (0) 0 (0) 0 (0) 1 (6) 

African-American (%) 0 (0) 9 (100) 7 (100) 8 (100) 17 (94) 

Gestational age at delivery 
(weeks, mean±SD) 

40±1.2 26.7±2.3 39.4±0.5 30.8±2.5 38.7±1.2 

Mode of delivery      

Spontaneous 23 (74.2) 5 (55.6) 7 (100) 7 (88) 16 (29) 

Cesarean-section 8 (25.8) 4 (44.4) 0 (0) 1 (12) 2 (11) 

Gender (% male) 14 (45.2) 4 (44.4) 4 (57.1) 5 (63) 10 (56) 

Birthweight (kg, mean±SD) 3.6±0.6 1.0±0.3 3.4±0.4 1.7±0.7 3.1±0.4 
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Table 2: Comparing the distribution of expected delivery date predictions using cfRNA 
measurements from only the second (T2), third (T3), or both (T2 and T3) trimesters and 
ultrasound measurements from the first trimester (T1). 
 
Method Δ (Observed – Expected delivery date) (%) 

   < -2 weeks -1 to -2 weeks ± 1 week +1 to +2 weeks > +2 weeks 

cfRNA (T2, n = 28) 50 18 32 0 0 

cfRNA (T3, n = 31) 0 6 23 29 42 

cfRNA (T2 and T3, n = 31) 19 6 45 10 20 

Ultrasound (T1, n = 31) 0 26 48 23 3 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212910doi: bioRxiv preprint 

https://doi.org/10.1101/212910
http://creativecommons.org/licenses/by-nc-nd/4.0/

