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Abstract 

Background: Lesion load is a common biomarker in multiple sclerosis, yet it has historically 

shown modest associations with clinical outcomes. Lesion count, which encapsulates the natural 

history of lesion formation and is thought to provide complementary information, is difficult to 

assess in patients with confluent (i.e. spatially overlapping) lesions. We introduce a statistical 

technique for cross-sectionally counting pathologically distinct lesions. 

Methods: MRI is used to assess the probability of lesion at each location. The texture of this 

map is quantified using a novel technique, and clusters resembling the center of a lesion are 

counted. 

Results: Validity was demonstrated by comparing the proposed count to a gold-standard count in 

60 subjects observed longitudinally. The counts were highly correlated (r = .97, p < .001) and not 

significantly different (t59 = -0.83, p > .40). Reliability was determined using 14 scans of a 

clinically stable subject acquired at 7 sites, and variability of lesion count was equivalent to that 

of lesion load. Accounting for lesion load and age, lesion count was negatively associated (t58 = 

-2.73, p < .01) with the Expanded Disability Status Scale (EDSS). Average lesion size had a 

higher association with EDSS (r =.35, p < .01) than lesion load (r = .10, p > .40) or lesion count 

(r = -.12, p > .30) alone. 

Conclusion: These findings demonstrate that it is possible to recover important aspects of the 

natural history of lesion formation without longitudinal data, and suggest that lesion size 

provides complementary information about disease. 
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1. Introduction 

Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by demyelinating 

lesions that occur in the central nervous system. Magnetic resonance imaging (MRI) is the most 

commonly used method to observe these lesions, especially in the white matter of the brain1. The 

presence of new lesions on MRI is often considered an important clinical marker of disease 

activity, yet MRI-based measures of disease severity have been elusive2. The total lesion burden 

in the white matter, or “lesion load” – measured as volume or volume fraction of brain size – is 

often used in the study of MS, typically as a measure of disease severity3 and as a clinical trial 

outcome4. However, lesion load has consistently shown a surprisingly weak association with 

clinical measures of disease severity, calling into question its usefulness as a surrogate and 

reinforcing the need for further development of MRI outcomes for MS2,5. 

In past years, several clinical studies have discussed the number of lesions in a patient’s 

brain as a possible outcome of interest6–8. In these studies, baseline lesion count has been shown 

to be correlated with EDSS and changes in lesion count have been shown to be correlated with 

changes in EDSS. However, obtaining an accurate count of biologically distinct lesions in the 

brain can be costly and logistically challenging, typically requiring expert review of scans taken 

at regular follow-up visits. This process is especially difficult in patients with a high lesion load 

and many confluent lesions9. 

Confluent lesions commonly occur when pathologically distinct lesions (i.e., lesions that 

arise due to spatially separate sources of structural damage in the brain, usually separated in 

time) occur in close proximity to each other, creating a larger connected region of lesion tissue. 

Depending on the level of lesion burden, confluent lesions can range from two overlapping 

lesions with a single connecting edge to dozens of connected lesions spanning large stretches of 

white matter. The existence of such confluent tissue can make it difficult or impossible to obtain 

an accurate estimate of the number distinct lesions in the brain at any given visit. Instead, to 

determine lesion counts a patient must be scanned regularly, with temporality of appearance 

serving to separate spatially confluent lesions. However, MRI scans are extremely costly, which 

can make regular follow-up visits infeasible. Additionally, in patients with a great deal of disease 

activity, even monthly or bi-monthly scans can produce multiple new lesions that are 

overlapping in space10,11. 
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To address this issue, the current study introduces a statistical analysis technique for 

obtaining valid and reliable estimates of lesion count from a single cross-sectional MRI study. 

This fully automated method utilizes cutting-edge statistical models for segmenting lesion tissue 

and well-demonstrated mathematical methods for quantifying texture to obtain the number and 

location of temporally distinct white matter lesions. Additionally, this study provides evidence 

that the derived lesion counts are associated with clinical measures of disease severity, 

independent of total lesion volume. 

 

2. Methods 

2.1 Proposed lesion count algorithm 

 To obtain the lesion count estimate in a given subject, the following steps are carried out. 

First, a map of lesion probability at each voxel in the brain is obtained using preprocessed and 

co-registered MRI volumes from a single visit. Depending on the automated segmentation 

method that is used, a combination of T1-weighted (T1), fluid attenuated inversion recovery 

(FLAIR), T2-weighted (T2), and proton density (PD) volumes will be required for probability 

estimation. A threshold is then applied to the probability map create a binary mask of regions 

that are considered lesion tissue. 

Using the probability map, the texture of the lesion tissue is quantified to find regions that 

exhibit the properties expected of the center of a single lesion. Texture is quantified using the 

eigenvalues of the Hessian matrix. The Hessian matrix is calculated for the intensity of the lesion 

probability map at every voxel in the lesion mask, with a gradient window of one voxel in each 

direction. In the context of a 3-dimensional image, the Hessian matrix describes the second-order 

variation in image intensity in the local neighborhood around a voxel. When applied to a lesion 

probability map, the eigenvalues of the Hessian matrix at each voxel represent the three primary 

directions of change in lesion probability at that voxel.  

Thus, voxels in the center of a lesion would be expected to have a negative eigenvalue, 

implying a decrease in probability, in all directions. This follows from the commonly accepted 

pathology of MS lesions, in which initial damage to a vein causes residual inflammation to 

spread outwards from the vein in a relatively ovoid fashion, with less damage occurring around 

the periphery of the visible lesion12. Therefore, voxels are eliminated if any of the three 

eigenvalues are positive, indicating that the voxel is less likely to be lesion than its surroundings 
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in at least one direction. Remaining voxels with three negative eigenvalues are clustered by 

location, and connected clusters (operationalized as the centers of distinct lesions) are counted. 

 

2.2 Data and preprocessing 

2.2.1 Validation and clinical-radiological association 

Sixty subjects diagnosed with MS were scanned between 2000 and 2008 on a monthly 

basis over a period of up to 5.5 years (mean = 2.2 years, sd = 1.2) as part of a natural history 

study at the National Institute of Neurological Disorders and Stroke in Bethesda, Maryland. The 

subjects ranged from 18 to 60 years of age, with a mean age of 38 years (sd = 9). Of the 60 

subjects, 38 were female and 22 were male. The majority of the subjects (n = 44) were diagnosed 

with relapsing-remitting MS, 13 were characterized as secondary-progressive, one as primary 

progressive, and two were unspecified. Subjects were either untreated or treated with a variety of 

disease-modifying therapies during the observation period, including both FDA-approved 

(various preparations of interferon-beta) and experimental therapies. 

Details of the image acquisition and preprocessing have been previously published13 and 

are briefly summarized in this section. Whole-brain 2D FLAIR, PD, T2, and 3D T1-weighted 

volumes were acquired in a 1.5 tesla (T) MRI scanner (Signa Excite HDxt; GE Healthcare, 

Milwaukee, Wisconsin). The 2D FLAIR, PD, and T2 volumes were acquired using fast-spin-

echo sequences, and the 3D T1 volume was acquired using a gradient-echo sequence. All 

scanning parameters were clinically optimized for each acquired image. Subjects were each 

scanned over multiple visits, and subjects’ images at each visit were rigidly co-registered 

longitudinally and across sequences to a template space14.  

All images are N4 bias-corrected, and FLAIR, T2, and PD volumes for each subject are 

interpolated and rigidly co-registered to the T1 volume in isotropic 1 mm3 space15. Extracerebral 

voxels were removed using the T1 volume via a skull-stripping procedure16, and intensity 

normalization17 of the volumes based on z-scoring was applied. Studies were manually quality 

controlled by a researcher with over five years’ experience with structural MRI, and studies with 

analysis-limiting motion or other artifacts were removed. Following preprocessing and quality 

control, automatic lesion segmentation was performed on co-registered T1, T2, FLAIR, and PD 

volumes using the OASIS is Automated Statistical Inference for Segmentation (OASIS) model18 
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to produce a lesion probability map for each subject. A conservative threshold of 30% was 

applied to the probability maps to create binary lesion masks. 

2.2.2 Reliability 

Data from one 45-year-old man diagnosed with clinically stable relapsing-remitting MS 

were used to test reliability. This patient was imaged at seven sites in the United States as part of 

a pilot study for the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative. He 

was characterized as having mild-to-moderate physical disability, which was stable between the 

first and last visits, and had no clinical relapses nor radiological changes during the course of the 

study19. 

Details of the image acquisition have been previously published19 and are briefly 

summarized in this section. Whole-brain 3D high-resolution FLAIR, T2, and T1-weighted 

volumes were acquired on seven 3T Siemens MRI scanners across the United States (4 Skyra, 2 

Tim Trio, 1 Verio). A standardized high-resolution scanning protocol was developed through a 

consensus agreement in the NAIMS Cooperative, and was used to the extent possible (allowing 

for different scanner types and software versions) for each scan. The participant was scanned 

twice on the same day at each site, and was removed and repositioned between scan and rescan.  

All images are N4 bias-corrected, and the subject’s images at each scan were rigidly co-

registered across sequences to the T1 volume in isotropic 1 mm3 space15. Extracerebral voxels 

were removed using the T1 volume via a skull-stripping procedure20, and intensity 

normalization17 of the volumes based on z-scoring was applied. Following preprocessing, 

automatic lesion segmentation was performed on co-registered T1, T2, and FLAIR volumes 

using an extension of the OASIS model21 to produce a lesion probability map for each scan 

session. A conservative threshold of 30% was applied to the probability maps to create binary 

lesion masks. 

 

2.3 Statistical analysis 

2.3.1 Validation 

Using the longitudinal nature of the data, a ‘gold-standard’ count of lesions that appeared 

during the course of the study was developed for validation. A state-of-the-art technique for 

segmenting new lesions since a previous visit22 was applied at each visit after baseline, resulting 

in the number and location of new lesions at each visit for every patient. For the gold-standard 
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count, segmented regions containing lesions that were separated in space or time were 

considered distinct. For example, if a large contiguous region at study’s end consisted of one 

lesion that appeared at the sixth visit and one lesion that appeared at the eighth visit, this would 

be considered two lesions in the gold-standard count. 

 The gold-standard count, henceforth referred to as CG, was compared to two counts 

obtained cross-sectionally at the final of observation for each patient. The first, CP, is the count 

based on the technique proposed in this study. CP was obtained by applying the algorithm 

described in Section 2.1 to the images obtained at each patient’s final visit, then restricting the 

count to the number of lesion centers contained in the lesion voxels determined to have appeared 

during the course of the study. Importantly, this restriction means that CP represents a subset of 

the total number of lesions in a subject’s scan, and is distinct from the full lesion count that is 

later described in the context of the clinical-radiological analysis. This limitation was 

implemented to make direct comparison between CP and CG possible, since a gold-standard 

count can only be obtained for lesions that appeared during the study. 

The second cross-sectional count, CC, refers to a count based on the standard connected 

components technique. CC was obtained by performing lesion segmentation on the images 

obtained at each patient’s final visit, thresholding at a probability of 30%, and labeling lesions as 

distinct if they were separated in space. CC was then restricted to the number of unique lesion 

labels contained in the lesion voxels known to have appeared during the course of the study, in 

order to facilitate comparison with CP and CG. 

Comparison between CG, CC, and CP occurred in two ways. First, to compare the linear 

correspondence between the gold-standard and the different counting techniques, the correlation 

between CG and CP was compared to that of CG and CC. Then, to determine whether the counts 

themselves differ meaningfully from the gold-standard, paired t-tests were run for CG and CP, as 

well as CG and CC. 

2.3.2 Reliability 

 Determination of the reliability of the proposed counting method was be based on the 

coefficient of variation (CV) of the counts obtained from the 14 repeated scans. Because the 

typical connected components technique for counting automatically or manually segmented 

lesions yields a stable but invalid estimate of the true count, there is no current gold-standard CV 
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for a lesion count. Thus, the CV of the proposed count was compared to a commonly used 

outcome measure for MS: total cerebral lesion volume (“lesion load”). 

 This comparison took place in two contexts. The first represented a fully automated 

version of the proposed count, in which variation may arise from false negatives in the 

segmentation mask, false positives in the segmentation mask, thresholding of the segmentation 

mask, and changes in the Hessian structure of the segmentation mask. This coefficient was 

compared to the CV of automated lesion load, as determined by the segmentation method.  

The second context represented a manually supplemented version of the count, where a 

mask of lesion tissue was provided by an expert rater19, and the count was obtained using the 

segmentation probability map within the manual lesion tissue mask. In this case, variation in the 

count arises solely due to changes in the Hessian structure of the segmentation mask and changes 

in the manual segmentation. This coefficient was compared to the CV of the manually obtained 

lesion load. 

2.3.3 Clinical-radiological association 

As the Expanded Disability Status Score (EDSS) is known to be noisy, a more stable 

measure of neurologic disability was created by averaging the EDSS scores over all visits for 

each subject in the NINDS longitudinal study, hereby referred to as EDSSavg. One subject had no 

EDSS information across all follow-ups, and was excluded from this analysis. Using OASIS 

lesion probability maps18, lesion load was obtained at the final visit for each subject using a 

probability threshold of 30%. Then, using the lesion count technique described in Section 2.1, a 

full count of white matter lesions at the final visit was obtained for each subject. Importantly, the 

counts obtained for the clinical-radiological analysis are distinct from the CP measure described 

in Section 2.3.1, as these counts represent the application of the proposed method to the entire 

brain, while CP represents the application of the proposed method to only lesion tissue that 

appeared during the course of the longitudinal study.  

To determine the clinical relevance of the proposed lesion count independent of other 

potentially confounding variables, a linear regression model was created for EDSSavg with age, 

lesion load, and lesion count as predictors. Additionally, Pearson correlations with EDSSavg were 

calculated for lesion load and lesion count, as well as a new variable we refer to as average 

lesion size (defined as lesion load divided by lesion count). 
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3. Results 

3.1 Validation 

 The temporally informed gold-standard count of new lesions appearing over the course of 

study, CG, ranged from 0 to 75 among the 60 subjects, with a median of 4 (IQR = [1, 12]). The 

connected components count, CC, ranged from 0 to 14 with a median of 2 (IQR = [1, 5]). The 

proposed count, CP, ranged from 0 to 60 with a median of 5 (IQR = [1, 15]). Figure 1 provides a 

visual example of these counting techniques. 

 The correlation between CP and CG was .97, compared to the correlation of .67 between 

CC and CG. Figure 2 shows the scatterplots for the two linear associations, along with the line 

demonstrating a one-to-one relationship. The paired t-test comparing CC and CG yielded a highly 

significant result (t59 = 4.19, p < .001), with CG being 6.9 lesions larger than CC on average (95% 

CI: [3.6, 10.2]). The paired t-test comparing CP and CG did not find a significant difference 

between the counts (t59 = -0.83, p > .40), with CP being 0.4 lesions larger than CG on average 

(95% CI: [-1.3, 0.5]). 

 

3.2 Reliability 

 For the fully automated count, the coefficient of variation was .19, compared to a CV of 

.22 for the automated lesion load. Using the manual segmentation as a mask, the CV for the 

lesion count was reduced to .12, compared to a CV of .10 for the manual lesion load. In one case, 

automated lesion segmentation was discovered to have failed, creating a probability map with a 

drastically different Hessian structure and large regions of false positive segmentation. With this 

scan removed the CV of the fully automated lesion count remained at .19 and the CV of the 

manual segmentation-based lesion count dropped to less than .06, suggesting that the proposed 

count has equivalent or lower variability than the current clinical standard of lesion load.  

 

3.3 Clinical-radiological association 

 Accounting for lesion load and age, the proposed lesion count was negatively associated 

with EDSSavg (t58 = -2.73, p < .01), suggesting that for a given lesion load and age, a higher 

count is associated with lower disease severity. The inclusion of lesion count in the model 

explains an additional 10% of the variance in EDSSavg compared to a model with only age and 
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lesion load, providing support to the hypothesis that the proposed count contains disease 

information independent of other commonly used measures. 

 The Pearson correlation between lesion load and EDSSavg was small and did not reach 

significance (r = .10, p > .40), nor did the correlation between lesion count and EDSSavg (r = -

.12, p > .30). However, average lesion size was significantly correlated with EDSSavg (r = .35, p 

< .01), indicating that larger lesions were associated with higher disability. 

 

4. Discussion 

 In this paper, we introduce a novel technique for obtaining cross-sectional counts of 

pathologically distinct lesions, and demonstrate it to be a valid, reliable, and clinically 

meaningful biomarker for MS disease status. Utilizing information contained in the Hessian 

structure of lesion probability maps produced by automated segmentation methods, this 

technique counts distinct lesions by identifying regions that resemble the physiological traits of 

distinct lesion centers. 

 Validity of this measure was established by comparing counts obtained at a single time 

point to gold-standard counts that incorporated temporal information on lesion development. The 

proposed count had a correlation of .97 with the gold-standard count, indicating very strong 

validity of this measure. A count obtained using the connected components method had only a 

.67 correlation with the gold-standard, and appeared to strongly underestimate the number of 

lesions in individuals who developed more than one or two lesions per year over the course of 

the study. This underestimation manifested in a highly significant difference between the 

connected components counts and the gold-standard counts in a paired t-test, whereas no 

difference was found between the proposed counts and the gold-standard counts. These findings 

demonstrate that the proposed technique yields a count that is consistent with the natural history 

of lesion formation. 

 Reliability was considered using a rich set of data from the NAIMS Cooperative. In that 

study, a clinically and radiologically stable subject was scanned two times at each of seven 

different sites across the United States. To judge the reliability of the proposed measure, the 

lesion count was obtained for all 14 scans of this subject, and the coefficient of variation of the 

counts was compared to that of lesion load in two contexts. In the fully automated comparison, 

lesion count had a slightly lower CV than lesion load. This indicates that across repeated scans of 
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the same brain, automated lesion count is a less variable measure than automated lesion load. In 

the manually supplemented comparison, lesion count had a slightly higher CV than lesion load, 

implying that manually obtained lesion load is a slightly less variable measure than semi-

automated lesion count. Upon inspection there appeared to be one scan where automated lesion 

segmentation failed, producing an abnormal Hessian structure within the manually segmented 

lesion mask. With this scan removed, the CV of semi-automated lesion count dropped to slightly 

more than half that of manual lesion load. This suggests that when automated lesion 

segmentation methods perform as expected, semi-automated lesion count is appreciably more 

reliable than manual lesion load, a widely used measure of disease severity. 

 Clinically, the lesion count measure appears to be a potentially important addition to 

commonly used radiological biomarkers for MS. In a model accounting for lesion load and age, 

lesion count was highly significantly associated with EDSS. Interestingly, this association was 

negative, indicating that for subjects who have similar lesion load, better outcomes are associated 

with more (and smaller) lesions rather than fewer (and larger) lesions. This lends support to the 

idea that neither the number of lesions nor the amount of tissue damage alone captures all 

relevant clinical information, and instead that suggests they should be considered together. One 

way to conceptualize the combination of these metrics is average lesion size, which taps into the 

degree to which the brain is capable of halting the growth of lesions and encouraging lesional 

recovery13,23,24 after incidence. 

 To investigate this concept more directly, a measure of average lesion size was created by 

dividing lesion load by lesion count. Pearson correlations with EDSS were then compared for the 

three biomarkers of lesion load, lesion count, and average lesion size. These findings provided 

further support for the combined importance of lesion load and lesion count, with both showing 

small and nonsignificant associations with EDSS. However, average lesion size showed a 

significant positive association with EDSS, consistent with the notion that the brain’s ability to 

slow or stop lesion growth is clinically relevant. These findings point to the importance of 

considering lesion count in MS research, and provide further evidence of the validity of the 

proposed counting technique. 

 The main limitation of the current study is the possibility of alternate explanations of 

confluence that are not accounted for in the design of the proposed count. It has been 

hypothesized that confluent lesions may occasionally occur as a result of the growth of older 
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lesions, or the expansion of pathological processes. Future research should consider the degree to 

which this technique does or does not characterize these types of confluence as pathologically 

distinct lesions. 

 The lesion count method presented in this paper has several appealing features, including 

its low computational burden and its easy and flexible implementation. Computationally, the 

counting algorithm takes less than a minute to run once probability maps are obtained. The speed 

of the full technique varies depending on the lesion segmentation method used, but took 

approximately 25 minutes per subject as presented in this study. In terms of implementation, this 

method can be quickly and easily coded in any program capable of calculating the Hessian 

structure of a 3D image, a feature included in most image processing packages. It can also be 

used with any lesion segmentation method that yields a probability map, allowing it be added to 

almost any pipeline regardless of preferred segmentation algorithm.  

 

5. Conclusion 

 This paper introduces a novel and reliable fully automated method for counting 

pathologically distinct lesions using images obtained at a single time point, allowing for an 

accurate reconstruction of the natural history of lesion formation without longitudinal data. 

Lesion count was found to be significantly associated with EDSS, independent of potential 

confounders such as lesion load and age, and the results suggest that individuals with more small 

lesions may have better clinical outcomes than those with fewer large lesions. This study also 

demonstrates the importance of obtaining both lesion count and lesion load by using them to 

construct a new MS biomarker, average lesion size, and showing that average lesion size has a 

significantly larger association with EDSS than both lesion load and lesion count. With further 

study, this technique and the findings it produces could set the stage for new lesion-level 

considerations in research and treatment of MS. 
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Figure 1. Example of the lesion counts in a region with four apparently distinct lesions, two of 

which develop with observable temporal separation. Panels A-D show development of two new 

and temporally distinct lesions. Panels E and F show the performance of a connected 

components count and the proposed count, respectively. The connected components method 

finds one confluent lesion in the visualized space (connected in an adjacent plane), and the 

proposed method finds four distinct lesion centers. Days from scan in panel A: (B) 28 days; (C) 

91 days; (D-F) 252 days. 
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Figure 2. Scatterplots for the comparison between the gold-standard count and the connected 

components count and comparison between the gold-standard count and the proposed count, 

respectively. Diagonal lines represent a one-to-one relationship. 
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