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Abstract 9 

Background 10 

The accurate determination of the genomic coordinates for a given gene – its gene model – is of 11 

vital importance to the utility of its annotation, and the accuracy of bioinformatic analyses derived 12 

from it. Currently-available methods of computational gene prediction, while on the whole successful, 13 

often disagree on the model for a given predicted gene, with some or all of the variant gene models 14 

failing to match the biologically observed structure. Many prediction methods can be bolstered by 15 

using experimental data such as RNA-seq and mass spectrometry. However, these resources are 16 

not always available, and rarely give a comprehensive portrait of an organism’s transcriptome due 17 

to temporal and tissue-specific expression profiles. 18 

Results 19 

Orthology between genes provides evolutionary evidence to guide the construction of gene models. 20 

OMGene (Optimise My Gene) aims to optimise gene models in the absence of experimental data by 21 

optimising the derived amino acid alignments for gene models within orthogroups. Using RNA-seq 22 

data sets from plants and fungi, considering intron/exon junction representation and exon coverage, 23 

and assessing the intra-orthogroup consistency of subcellular localisation predictions, we 24 

demonstrate the utility of OMGene for improving gene models in annotated genomes. 25 
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Conclusions 26 

We show that significant improvements in the accuracy of gene model annotations can be made in 27 

both established and de novo annotated genomes by leveraging information from multiple species. 28 

Introduction 29 

The utility of any given genome is dependent on the comprehensiveness and accuracy of its 30 

proteome annotation.  Inaccuracies in the annotated locations and structures of protein coding genes 31 

can lead to myriad downstream errors. These include misinformed conclusions about the biological 32 

properties of an organism, as well as errors in transcript quantification, phylogenetic tree inference, 33 

protein localisation, and protein structure predictions. It is therefore vital to downstream analysis, 34 

both computational and experimental, to ensure that gene annotations are as accurate as possible. 35 

The absolute quantity of publicly available genomic data has grown exponentially over the past two 36 

decades, as has the number of taxa represented [1]–[3], owing to the consistently decreasing costs 37 

of acquiring whole genome sequences [4], [5]. Accordingly, the feasibility of manual proteome 38 

annotation has diminished progressively, with a corresponding increase in reliance on computational 39 

gene prediction software. As such there are numerous tools available for the de novo and data-40 

assisted prediction of genes [6]. These tools typically rely on genetic signatures such as GC content, 41 

codon bias, feature length distributions, and various conserved DNA sequence motifs. Though many 42 

of these tools are highly proficient at gene prediction, mistakes are common. Gene prediction tools 43 

often disagree on the quantity of genes that they predict [7]–[9]. Furthermore, even when gene 44 

predictors agree on the location of a gene, the predicted intron-exon structure for that gene can vary 45 

considerably between the different methods [10]. Common such errors include erroneous 46 

exon/intron retention/omission, inaccurate exon/intron boundaries, frame errors, misplaced start 47 

codons, and fragmentation/fusion of gene models. 48 

When available, the use of extrinsic empirical data, most notably RNA-seq, is the most reliable 49 

currently available method for procuring gene models. For example, single contiguous RNA-seq 50 

reads obtained from mRNA sequencing can be split across multiple loci when mapped to the 51 

genome, providing evidence for the locations of splice junctions. Unfortunately, empirical data is 52 
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generally not available for all genes in a given species: many genes are expressed in a cell-type or 53 

cell-cycle specific manner and for organisms with many disparate tissue types it can be difficult to 54 

obtain RNA-seq data that covers the full breadth of the transcriptome [11], [12]. In addition, not all 55 

gene sequences are amenable to reliable and accurate alignment, in particular identical duplicate 56 

genes and genes that contain repetitive regions found in multiple other genes [13]. Furthermore 57 

library preparation protocols and other statistical factors can make reliable inferences difficult [14]–58 

[16]. Finally, there are some aspects of gene models that are simply not revealed by RNA-seq 59 

analysis: for example the presence of 5’UTR sequences or internal methionine residues mean that 60 

there can often be multiple plausible start codons locations for a given open reading frame (ORF).  61 

Feature locations (splice sites, exons, transcription start sites) have been shown to be highly 62 

conserved across evolutionary timescales, often more so than the constituent amino acid sequences 63 

they encapsulate [17], [18], despite alternative splicing being a driver of divergence [19]. Given 64 

various gene model predictions, it is logical that if multiple highly similar (in sequence and structure) 65 

gene models exist for a gene across multiple taxa, they are more likely to be biologically correct than 66 

disparate alternatives. By considering orthogroups of related genes, one can optimise the similarity 67 

of gene models across species by seeking conserved structure across the various taxa. In the 68 

absence of extrinsic data, it is parsimonious to choose gene models that maximise intra-orthogroup 69 

agreement. 70 

OMGene (Optimise My Gene) aims to improve genome annotations by optimising the agreement 71 

between gene models for orthologous genes in multiple species. It is designed to function without 72 

the need for additional empirical data, utilising only the local genome sequences for the genes in 73 

question, and works on existing predicted gene models. A standalone implementation of the 74 

algorithm is available under the GPLv3 licence at https://github.com/mpdunne/omgene. The 75 

algorithm is available as a python script, instructions for which, along with example data sets, are 76 

included in the git repository.  77 

  78 
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Results 79 

Problem definition, algorithm overview and evaluation criteria 80 

An overview of the OMGene algorithm is provided in Figure 1. OMGene aims to find the most 81 

consistent set of representative gene models for a set of inputted genes by seeking to maximise the 82 

agreement of their aligned amino acid sequences, returning the single best gene model for each 83 

gene. The algorithm constructs gene models based on relatively simple constraints: AUG for start 84 

codons; GU or GC for splice donor sites, AG for splice acceptor sites, and UAA, UGA, or UAG for 85 

stop codons. Other features such as codon bias or poly-pyrimidine tracts are not considered. 86 

OMGene can also use non-canonical translation initiation and splice sites if inputted by the user as 87 

a command-line option. 88 

The input for OMGene is a user-selected set of gene models, in GTF format, which are assumed to 89 

belong to a single orthogroup. For a given set of species, an orthogroup is the set of genes 90 

descended from a single ancestral gene in the last common ancestor of those species [20]: these 91 

may contain paralogous as well as orthologous genes, though OMGene is principally designed to 92 

work on single-copy genes. The suggested pipeline for using OMGene is to determine orthogroups 93 

using OrthoFinder [20], and to apply OMGene to a chosen subset of orthogroups. 94 

OMGene uses Exonerate [21] as an initial step to cross-align amino acid sequences from all user-95 

supplied genes to the genomic regions of the genes in question, in order to find conserved 96 

translatable features. It then combines this information with the original gene models to produce an 97 

initial set of prototype exonic regions, or gene parts, for optimisation. The amino acid sequences for 98 

these prototype gene models are then aligned, and the constituent gene parts are split into adjacency 99 

groups based on overlaps in the alignment (see Methods). Adjacency groups are sequentially 100 

appended to the gene models, and the genetic coordinates are recursively adjusted and assessed 101 

to optimise the agreement of the amino acid sequences. The resultant gene models are then subject 102 

to stringent filtering criteria before the finalised set of gene models are presented as sets of GTF 103 

coordinates, amino acid FASTA and CDS FASTA sequences. 104 
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To demonstrate the utility of OMGene, it was applied to orthogroups formed from two sets of test 105 

species: a set of five fungal species and a set of five plant species (Table 1). OMGene was applied 106 

to those orthogroups that contained exactly one gene from each species, referred to as single-copy 107 

ubiquitous (SCU) orthogroups. In addition, OMGene was run on the same set but with all genes from 108 

two representative species – A. thaliana and S. cerevisiae – replaced with de novo predicted genes, 109 

obtained by running the Augustus [22] gene finder on those genomes. These species were chosen 110 

as they have the best annotated genomes and thus the existing gene models will provide the best 111 

possible training set for Augustus de novo prediction. This de novo prediction analysis was done to 112 

simulate a typical genome-sequencing project where a user has generated a well-trained set of gene 113 

models solely using computational prediction. 114 

OMGene was assessed in three ways: RNA-seq data was used to compare the quality of genes 115 

before and after application of OMGene, from both coverage (i.e. the proportion of the predicted 116 

gene that is encompassed by reads mapped from RNA-seq data) and splice junction perspectives. 117 

To assess the accuracy of start codon prediction, OMGene-modified gene models were subject 118 

subcellular localisation prediction and the results were evaluated for consistency across the 119 

orthogroup. The RNA-seq data used to assess the success of OMGene were downloaded from the 120 

NCBI Sequence Read Archive [23] and are listed in Table 2.  121 

Application of OMGene to publicly available datasets 122 

 123 

Quantities and nature of changes made 124 

The full plant data set produced 3694 SCU orthogroups, containing 18470 genes. Application of 125 

OMGene to this test set resulted in gene model changes to one or more genes in 1543 (41.8%) of 126 

these orthogroups. In total, 2017 of the inputted genes (10.9%) were altered. Of these altered 127 

versions, 154 genes (7.6% of 2017) were present in the original annotation as alternative (non-128 

primary) transcripts for the inputted gene. Figure 2 shows examples of various types of gene model 129 

alteration for genes in A. thaliana. A full breakdown of per-species change quantities can be found 130 

in Table 3, Figure 3 and Figure 4; Table 4 and Figure 5 show the distribution of the types of changes 131 

made. All gene models that were changed by OMGene are included in the supplementary material 132 

as a set of GTF files. 133 
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The plant species that experienced the highest number of changes were C. papaya and T. cacao, 134 

which is consistent with them being more recently published and less well-studied genomes. For all 135 

species, more nucleotides were removed than were added, indicating either that gene models 136 

predictions tend to be over-cautious or that OMGene is more proficient at removing material than at 137 

adding it in. In terms of the types of changes made, exon deletion was by far the most commonly 138 

seen change, followed by moved start codon and exon boundary adjustment (Figure 5). It should be 139 

noted that exon deletion events also encapsulate the separation of erroneously fused gene models, 140 

which can contribute many exon deletion events simultaneously.  141 

For the full fungal data set, 2710 SCU orthogroups were considered, containing 13550 genes. Of 142 

these, 100 orthogroups (3.7%) exhibited some change, and 109 genes (0.8%) were altered. As 143 

above, a full breakdown of per-species change quantities can be found in Table 3, Figure 3, and 144 

Figure 4 with the full distribution of change types shown in Table 4 and Figure 5. In this case, E. 145 

gossypii was the most commonly altered proteome, consistent again with it being one of the lesser-146 

studied species on the list. By far the most common change type in the fungal data set was a moved 147 

start codon, consistent with the fact that splicing is a rare event in fungal genes (on average 5.09 148 

exons for plants, 1.08 exons for fungi). 149 

To simulate a de novo genome annotation project, OMGene was also applied to plant and fungal 150 

data sets with de novo predicted gene models for representative species, A. thaliana and S. 151 

cerevisiae. These species were chosen as they have the most complete annotations of their 152 

respective data sets, and therefore these genes are likely to be the most reliable for training a gene 153 

finding algorithm. The genome annotation tool used was Augustus (see Methods) as it is one of the 154 

best and most frequently used gene prediction algorithms. 155 

For the plants data set with Augustus predictions for A. thaliana, 3694 SCU orthogroups were 156 

considered. Of these, 598 (16.2%) saw some change in an A. thaliana gene. For the fungi data set, 157 

2710 SCU orthogroups were considered. Of these, 19 (0.7%) saw some change in a S. cerevisiae 158 

gene. Table 3 and Table 4 show a full breakdown of the types and amounts of changes made. As 159 

expected, in both cases, the total number changes and the average size of change made is greater 160 
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for the de novo predicted gene models than the curated gene models. However, the distribution of 161 

types of changes made remained roughly the same.  162 

Splice junction and feature coverage analysis 163 

To assess the validity of changes made by OMGene, both the original and the updated gene model 164 

sets were compared using publicly available RNA-seq data from the NCBI Sequence Read Archive 165 

[23] (see Methods and Table 2). Each amended gene was assessed in two ways relative to this data: 166 

firstly by comparing the exact splice junction locations with RNA-seq derived splice junctions; 167 

secondly by evaluating the coverage of exonic regions with RNA-seq. To control for unreliable data, 168 

some genic regions were omitted from this analysis. Gene regions in which the RNA-seq data 169 

suggested there were indels in the reference genome, or that were within 1000bp of the end of a 170 

contig or scaffold, or that contained 10 or more contiguous “N” nucleotide bases were omitted from 171 

the analysis (see Methods). Regions with these characteristics prevent the creation of reliable gene 172 

models, and so are not useful for determining gene model accuracy. 173 

Gene models outputted by OMGene were assessed on whether or not their junction and coverage 174 

F-scores (see Methods) had improved or been reduced. The full results can be seen in Table 5. For 175 

the plant data set, OMGene improved the agreement of the gene model with the splice junctions 176 

inferred from RNA-seq data for 729 genes, while 125 gene models exhibited reduced agreement 177 

(85.3% improved). Similarly, when assessing RNA-seq coverage of gene models OMGene improved 178 

the agreement of the models with the data for 1026 genes, while 167 genes exhibited reduced 179 

agreement (86.0% improved). For the de novo predicted A. thaliana genes, the success rates were 180 

essentially the same as for the public data (87.3% and 91.1% improved by junction and coverage F-181 

scores respectively), but the absolute quantity of genes exhibiting a changed score increased 182 

roughly four-fold. This difference represents the considerable effort and evidence-based curation 183 

that has been invested in the A. thaliana genome annotation.  184 

The results for the fungal data set (see Table 6) were not as good. Notably very few gene models 185 

showed any change in junction F-score, with only 8 genes exhibiting a changed score. This is due 186 

to the relatively simple exon structure of fungal genes, for which splicing is very rare, and splicing 187 

events predicted by OMGene are much less likely to be correct. In this case 3 genes had an improved 188 
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score, and 5 had a reduced score (37.5% success), with all 5 of the losing genes coming from Y. 189 

lipolytica. The most common change made to fungal genes was a moved start codon, which, 190 

although not detectable in the junction F-score, can be detectable in the coverage F-score. This is 191 

reflected in the results, where 30 genes showed an improved coverage F-score and 10 genes 192 

showed a worse coverage F-score (75% improved). In the de novo case, again the numbers 193 

increased while the percentage success remained roughly the same, with 4 (100%) genes improving 194 

by junction for S. cerevisiae and 11 (64.7%) improving by coverage score. The highly compact nature 195 

of fungal genomes, with few exons and limited space between genes means that the accuracy of de 196 

novo predicted genes is higher than in plants. Thus the utility of OMGene on these comparatively 197 

simpler genomes is limited.  198 

Many of the cases for which OMGene results differ from RNA-seq evidence are attributable to real 199 

biological variability that confounds the evaluation criteria of the algorithm. For example, there are 200 

some instances where the most evolutionary conserved splice site was not the splice site observed 201 

in the RNA-seq data. Such events, by definition, cannot be detected by OMGene. Furthermore, RNA-202 

seq mapping errors also contributed to reduced scores, as did artefacts resulting from spliced UTRs, 203 

and jagged read profiles, particularly in the fungal data, that made some coverage scores difficult to 204 

calculate reliably. Finally, the presence of multiple transcript isoforms within the RNA-seq data can 205 

reduce the score for a valid transcript even if it is the best choice for that particular gene. While users 206 

of OMGene should be aware of these confounding factors, the above data demonstrates that, in 207 

general, OMGene is much more likely to improve a given gene model than not. 208 

Assessment of subcellular localisation predictions for 5’ end analysis 209 

Given that genes from the same orthogroup are, by definition, assumed to be evolutionarily related, 210 

it is reasonable to assume that they should be consistent in their predicted subcellular localisation. 211 

Several sub-cellular targeting sequences are located at the N-termini of genes [24], thus one expects 212 

genes with inaccurately predicted start codons to yield inaccurate results when assessing their 213 

targeting signals. Genes belonging to orthogroups changed by OMGene were assessed to 214 

determine whether the changes resulted in increased consistency of their predicted subcellular 215 

localisation characteristics of all genes in the orthogroup. Targeting predictions were made using 216 
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TargetP [25], and Shannon entropy was calculated to assess the consistency of the predictions 217 

within the orthogroups (see Methods). Entropy scores were compared only for orthogroups in which 218 

at least one gene model was altered by OMGene. An entropy score of 0 indicates that all members 219 

of the orthogroup are predicted to localise to the same sub-cellular compartment; the worst possible 220 

entropy score given five genes and four possible localisations identified by TargetP (chloroplast, 221 

mitochondrion, secreted, cytoplasmic) is −
2

5
log2 (

1

5
) −

3

5
log2 (

1

5
) ≈ 1.92, indicating that only two of 222 

the genes agree. An example orthogroup whose prediction entropy score has been improved by 223 

start codon adjustment can be seen in Figure 6Error! Reference source not found.. 224 

The 1543 plant orthogroups in which one or more genes were altered were subject to subcellular 225 

prediction analysis. Of these, gene model changes made by OMGene resulted in changes in 226 

predicted subcellular localisation for one or more constituent members of 55 orthogroups. In total, 227 

74 improved agreement between gene models (74%), 13 remained the same (13%), and 13% 228 

increased entropy and thus increased disagreement between gene models. In contrast, for the fungal 229 

dataset only 7 out of 95 changed orthogroups exhibited a change in subcellular localisation 230 

prediction, with 6 of these changes improving the consistency of localisation prediction (85.7%) and 231 

1 increasing disagreement (14.3%). Similar results were obtained for the simulated de novo 232 

annotation analysis in plants, although again the data were sparse here. Orthogroups containing the 233 

de novo predicted A. thaliana gene were considered together with the four original genes for the 234 

other species. Here, 11 of the A. thaliana genes experienced a change in subcellular localisation 235 

following application of OMGene. Of the 11 orthogroups containing these, 9 improved consistency 236 

(81.9%) and 2 reduced the consistency (18.2%). For the fungal data set, the data was extremely 237 

sparse, with only one gene experiencing a change in its targeting prediction, which reduced the 238 

consistency for its parent orthogroup. Thus, although data were sparse for the fungal dataset, in both 239 

the fungi and plant dataset the consistency of gene models was improved from a subcellular 240 

targeting perspective. 241 
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Discussion 242 

Here we present OMGene, an automated method for improving the consistency of gene model 243 

annotations across species. OMGene is intended for use in computational de novo genome 244 

annotation projects where no empirical data (such as RNA-seq data) is available to train or correct 245 

gene model predictions, or to assist the construction of gene models for genes that are not expressed 246 

in the data available. OMGene is also designed to help users who wish to leverage conservation 247 

information to correct gene models of a single gene of interest across a set of species. Thus OMGene 248 

is suitable for both large and small scale analyses.  249 

OMGene results reflect differences in gene model complexity between species sets 250 

To demonstrate the utility and performance characteristics of OMGene, it was applied to two 251 

separate datasets of well-annotated plant and fungal genomes. When applied to the plant data set, 252 

OMGene altered the gene models of one or more genes in 41.8% of the orthogroups that were 253 

evaluated. In contrast, only 3.7% of orthogroups were subject to modification in the fungal data set. 254 

This result reflects the differences in gene model complexity between the two species groups. 255 

Specifically, gene models in plants tend to have more exons than fungi (mean = 5.09 exons for 256 

plants, 1.08 exons for fungi) and thus there is considerably more potential for gene model variation 257 

in plants than in fungi. In light of this it was unsurprising that the most frequently observed change 258 

made in fungi was a change in choice of start codon. This is also reflected in the high number of 259 

removed exons from plant genes, which is contributed to partly by the separation of erroneously 260 

fused adjacent genes.  261 

OMGene works well on complex gene models 262 

The changes made by OMGene were assessed relative to splice-mapped RNA-seq data to assess 263 

the level to which it had improved the gene models. For the plant data set, the results from OMGene 264 

clearly resembled the empirical data much more closely on the whole, with 85.4% and 86.0% of 265 

genes improving in terms of their splice junctions and their coverage respectively. The profiles were 266 

different for different species, with many more changes being made for C. papaya and T.cacao; in 267 

addition the number of successes for B. rapa was slightly lower than for the other species. 268 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2017. ; https://doi.org/10.1101/212530doi: bioRxiv preprint 

https://doi.org/10.1101/212530
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

The number of junction changes made for the fungal data set was considerably lower: only 8 269 

changed genes had an altered junction F-score, 62.5% of which become worse after OMGene. 270 

Though this is less than the plant data set, it should be noted that the resolution of this data set does 271 

not lend itself to accurate conclusions about the general validity of changes made to fungal genes. 272 

The resolution and success rate for fungal genes from a coverage perspective was slightly higher, 273 

with 75% of the genes with changed scores improving. The low resolution of junction data for fungal 274 

genes reflects the rarity of complex gene models in these species, and thus the low likelihood that 275 

deviations from simple, single-exon gene models are correct. Thus, while OMGene does not always 276 

produce gene models that agree optimally with transcriptome data, it does improve the overall quality 277 

of gene model annotations even for relatively simple fungal genomes. 278 

The improvements in gene model accuracy made by OMGene for the de novo predicted proteomes 279 

were much the same as for the publicly available, curated genes models. However, the number of 280 

changes made to the de novo predicted set was much greater, indicating that the considerable labour 281 

that has been applied to these model organisms has successfully controlled for potential errors. It 282 

should be noted that, although OMGene managed to improve many of the gene models outputted 283 

by Augustus, the two agreed in most cases (86.1% and 98.6% for plants and fungi respectively), 284 

indicating that the basic implementation of a well-trained Augustus de novo prediction produces 285 

genes that are highly consistent with their orthogroups. 286 

OMGene improves the consistency of subcellular localisation predictions 287 

In addition to assessment of splice junctions, gene models were assessed by the consistency of their 288 

predicted subcellular localisation. Given that the orthogroups used in this analysis comprise 289 

ubiquitously conserved single copy genes, it is logical to assume that these genes should generally 290 

have the same subcellular localisation. For the full plant data set, of all orthogroups whose genes 291 

had different subcellular targeting predictions after application of OMGene, 76.4% had improved 292 

intra-orthogroup consistency, with 85.5% either improving or remaining the same. For the full fungal 293 

data set, although the data were sparse, 85.7% of the orthogroups considered had improved 294 

consistency. 295 
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The results for the plant data set were similar for the de novo annotated set (85.7% improvement). 296 

For fungal orthogroups containing de novo predicted S. cerevisiae genes, the only gene whose 297 

localisation prediction changed caused the consistency of its orthogroup to decrease, however the 298 

resolution of the data in this case is not sufficient to draw any conclusions. Thus, application of 299 

OMGene improves the accuracy of start codon specification in gene models.  300 

Conclusion 301 

When applied to publicly available plant and fungal data sets, OMGene demonstrates proficiency in 302 

improving gene models from multiple perspectives. The overall improvement is larger for genomes 303 

with complex gene models. 304 

Methods 305 

Algorithm description 306 

The input for OMGene is a set of GTF gene model files and a set of corresponding FASTA genome 307 

files. There should be one GTF per FASTA file, and each GTF should contain the coordinate 308 

information for a single gene. If the GTF contains multiple transcript variants then these are 309 

considered together as variants of a single gene. 310 

For each inputted gene, the algorithm defines its gene region to be the region spanning the first and 311 

last base of any of its corresponding gene models, with a user-selected number of buffer bases 312 

either side (default value is 600bp). The initial step of OMGene is to cross-align the amino acid 313 

sequences from each gene with the gene regions of the other genes, using Exonerate [21]. The 314 

rationale behind this step is to find exonic regions that are present in one or more gene models but 315 

absent from one or more annotated gene model. This is performed three times: first by cross-aligning 316 

the input protein sequences against all gene regions, second by cross aligning the protein sequences 317 

that have been found in the first step against all gene regions, and finally by cross aligning all 318 

individual exon sequences from the first step. This three-step process mitigates against lack of 319 

detection due to gene model errors in one or more of the input genes. This, together with the exons 320 

from the original gene sequences, comprises a set of potential gene parts, which may overlap and 321 

which may be incompatible in reading frame. Compatible combinations of gene parts (i.e. without 322 
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frame-shift errors) are strung together to form a putative gene model. Many such putative gene 323 

models may exist: the set of putative gene models with the highest alignment score (see alignment 324 

score calculation below) is carried forward to the next step. 325 

The set of putative gene models from the previous step are aligned, and the set of putative exons 326 

from all genes is divided into adjacency groups: sets of exons that overlap each other in the 327 

alignment (see below). Exons are added in sequentially in these adjacency groups, and at each 328 

stage a valid gene model is sought on the left hand side of the gene (i.e. starting at the start codon 329 

and seeking to adjoin exons in valid donor-acceptor pairs). Multiple options for each gene are 330 

produced at each new junction, by recursively seeking out, or “wiggling” splice junctions (or start 331 

codons) in each frame either side of the existing exons start and end points. This produces a set of 332 

junction options for each pair of exon ends. A multipartite choice function is then used to choose the 333 

best option for each pair of exons, as described below. In the event that a particular exon is very 334 

small (<40bp), or does not yield any valid junction sites, both that exon and the one before it are 335 

probed for removal, and the variant with the removed exon is compared against the other partial 336 

gene models in the evaluation step. Once this recursive step ceases to produce new gene modes, 337 

the gene model set with the highest alignment score is declared the winner, and the next putative 338 

exon from the next adjacency group is added. This is repeated until there are no further exons to 339 

add. 340 

To ensure that the optimisation process did not overlook potentially better variants in the user-341 

supplied gene models, the process above is repeated. This time, instead of varying exons start and 342 

end sites, the set of newly created junctions are compared against the original junctions, aiming to 343 

find the optimal combination of new and old junctions.  344 

The final step involves filtering the changes based on a selection of categories that have been 345 

observed to over-fix gene models. Firstly, we require the alignment score 𝛼 of a 10 amino acid region 346 

each side of the change to have either remained the same or improved. This is a basic requirement 347 

which should be met in most cases due to the way in which sequence variants are chosen. Secondly, 348 

changes that have opened gaps in the alignment of three or more of the sequences are not allowed: 349 

this is a common occurrence due to sequences proximal to exon termini that that by chance feature 350 
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valid splice junction sequences that are in frame with the adjacent exons and are evolutionarily 351 

conserved. These tend not to be correct. Thirdly, very small changes are forbidden: changes that 352 

have resulted in two or fewer amino acids being changed in a gapless region of the alignment, such 353 

that the new alignment is also gapless, are ignored. Similar changes to larger regions require an 𝛼 354 

increase of 4 or more. This is to avoid changes that reflect multiple choices of donor-acceptor pairs 355 

for essentially identical sequences. Thirdly, the alignment in the region of the change must be of 356 

reasonable quality: for unchanged 5 amino acid regions near the change, the adjusted alignment 357 

score �̅� must be 3 or higher (or all gaps) for some subset of three sequences containing the 358 

sequence of interest. Similarly the resulting score for the changed region must also be higher than 359 

3 or all gaps. Exon boundaries that do not pass the filters are discarded and the genes are 360 

reconstructed a final time, allowing only the surviving boundaries and those that were present in the 361 

original gene. The resultant genes are outputted in GTF, amino acid FASTA and CDS FASTA format. 362 

Data sources 363 

For algorithm development and evaluation, a set of five small, well-annotated fungal genomes and 364 

a set of five well-annotated plant genomes (Table 1) were selected. Orthogroups were inferred using 365 

OrthoFinder [20]. For the plant data set, where multiple transcript variants were available, the primary 366 

transcript was used as listed in Phytozome [26]. RNA-seq data sources are listed in Table 2, and 367 

were downloaded from the Sequence Read Archive [23]. 368 

De novo gene prediction 369 

De novo gene predictions were made using Augustus [22] version 3.2.2. Training was performed 370 

using all well-formed gene models from each species, and using the autoAugTrain.pl script included 371 

with the software. Augustus was run individually on each genome with the default settings.  372 

Alignment score 373 

An amino acid alignment can be considered as an ordered sequence 𝐴 =  (𝐶𝑛)𝑛=1
𝑛=𝑙  of columns 𝐶𝑛 =374 

(𝑐1
𝑛, … , 𝑐𝑙

𝑛). The column score 𝛾 for a column 𝐶𝑛 is defined as the average pairwise Blosum62 score 375 

for amino acids in that column:  376 

𝛾(𝐶𝑛) =
∑ 𝐵𝑙𝑜𝑠(𝑐𝑖

𝑛, 𝑐𝑗
𝑛)1≤𝑖<𝑗≤𝑙

𝑙
 377 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2017. ; https://doi.org/10.1101/212530doi: bioRxiv preprint 

https://doi.org/10.1101/212530
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

The Blosum62 matrix was used as it is the basis for the MAFFT alignment algorithm. The alignment 378 

score 𝛼 for an alignment 𝐴 is constructed column-wise as:  379 

𝛼(𝐴) =  ∑ 𝛾(𝐶𝑛)

𝑙

𝑛=1

 380 

The adjusted alignment score �̅� is defined as �̅� =
𝛼

𝑙
, where 𝑙 is the alignment length. 381 

Multipartite choice function 382 

The multipartite choice function (Figure 7) aims, for a set of 𝑘 gene regions and a set of 𝑙𝑘 gene 383 

model variants for each gene region, to choose an optimal set containing one gene model variant 384 

from each gene region such that the alignment score is maximised. This problem is equivalent to 385 

finding the heaviest maximal clique in an edge-weighted complete multipartite graph. 386 

To reduce the complexity of the problem, options are chosen by comparison with a reference 387 

consensus alignment, produced by taking the most consistent set of amino acids for each column in 388 

a global alignment individually (Figure 7A-B). This column-wise optimisation is fast, and provides a 389 

basis for the sequence-wide optimisation. To produce the consensus, The set of ∑ 𝑙𝑘 options is 390 

aligned to the reference (the original alignment) using MAFFT –add [27]. The inconsistent regions 391 

are then isolated and re-aligned using the more accurate but more computationally intensive MAFFT 392 

l-ins-i. For each column in the alignment, the set of amino acid choices (one for each gene region) 393 

that optimises the alignment score for that column is chosen as the consensus.  394 

For each option 𝑖 a binary string 𝐻𝑖 = {ℎ1
𝑖 , … , ℎ𝑛

𝑖 } is produced describing for each position in the 395 

alignment whether or not that option matches the consensus (Figure 7C). The chosen subset will be 396 

the set of options that globally maximises agreement with the consensus. If the strings {𝐻𝑖}𝑖 are 397 

stacked vertically, such that they can be read as columns {𝑉𝑗}
𝑗=1

𝑛
 then the task is equivalent to finding 398 

a columnar binary string 𝑉 with one nonzero entry for each gene region such that |𝑉𝑖: 𝑉 ⊆ 𝑉𝑖| is 399 

maximised. 400 

Given the set 𝐴0 = {𝑉𝑗}
𝑗=1

𝑛
, an optimal subset is deduced by sequential random sampling. Ignoring 401 

all-1 strings, an initial 𝑊0 =  𝑉𝑘 is chosen at random from 𝐴0. For sets 𝑆1, 𝑆2 and a set of “checkpoints” 402 
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𝑅, the set 𝑆1 is compatible with  𝑆2 with respect to 𝑅 =  {𝑅𝑖}𝑖 if the binary intersection 𝑆1 ∩ 𝑆2 ∩ 𝑅𝑖 is 403 

nonzero for all 𝑖. Define 𝐴𝑛 = {𝑎 ∩ 𝑊𝑛−1: 𝑎, 𝑊𝑛−1 compatible w.r.t 𝐺}, where 𝐺 is the set of binary 404 

strings which are zero for all but one gene region, at each stage choosing 𝑊𝑛 at random from 𝐴𝑛. 405 

The process 𝐴0, 𝐴1, 𝐴2, …  eventually converges on a single binary string. This reduction is performed 406 

a user-selected number of times, the default being 1000. The result that is a subset of the largest 407 

number of 𝑉𝑖 is declared the winner. In the event that the result still contains more than one option 408 

for each gene region, subsets of options are calculated and their multiple alignment score 𝛼 is 409 

calculated, the winner being the subset with the highest 𝛼. In the event that multiple subsets exhibit 410 

the same maximal 𝛼, a subset is chosen arbitrarily from them. 411 

Adjacency group calculation 412 

OMGene builds genes sequentially by iteratively adding in putative exons to multiple genes 413 

simultaneously. Care must be taken to ensure the gene parts (which in turn become exons once 414 

gene models are constructed) are added in a way conducive to vertical comparison of relevant 415 

regions (see Figure 8). In OMGene, gene parts are considered in sequential adjacency groups based 416 

on their coordinates in a multiple sequence alignment. Prototype gene models are formed by 417 

stringing together amino acid sequences for individual putative exons for each gene region: these 418 

are then aligned, and a graph is formed from this alignment. Each putative exon is a node on the 419 

graph, and two exons are connected by an edge if one of the exons overlaps the other by a third or 420 

more of its length. The adjacency groups are then defined to be cliques in this graph. Cliques are 421 

determined using the python implementation of the NetworkX package [28]. 422 

Junction F-score 423 

The junction F-score for a gene is a measure of how well the splice junctions observed in mapped 424 

RNA-seq data are represented in the gene model. For a gene model 𝐺 and corresponding gene 425 

region 𝑅, define 𝐽𝐺 to be the set of individual intron beginning and end coordinates in the gene model, 426 

and define 𝐽𝑅 to be the set of map junction beginning and end coordinates in the mapped RNA-seq 427 

data. A minimum of 10 reads is required for a given RNA-seq junction to be counted. We may then 428 

define the junction F-score as: 429 
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𝑗𝐹(𝐽𝐺 , 𝐽𝑅) =
2 ∙ 𝑗𝑃(𝐽𝐺 , 𝐽𝑅) ∙ 𝑗𝑅(𝐽𝐺 , 𝐽𝑅)

𝑗𝑅(𝐽𝐺 , 𝐽𝑅) + 𝑗𝑃(𝐽𝐺 , 𝐽𝑅)
 430 

where 431 

𝑗𝑃(𝐽𝐺 , 𝐽𝑅) =
|𝐽𝐺 ∩ 𝐽𝑅|

|𝐽𝐺|
;       𝑗𝑅(𝐽𝐺 , 𝐽𝑅) =

|𝐽𝐺 ∩ 𝐽𝑅|

|𝐽𝐺|
. 432 

The direction of each junction site (start or end of a junction) is taken into account when considering 433 

the intersection of the two sets. 434 

Coverage score 435 

The coverage score is a measure of how well RNA-seq data represents a given gene. Given that 436 

gene expression levels can vary considerably and irregularly across the length of a transcript [13]–437 

[16], care must be taken to ensure the expression profile for a gene region is properly interpreted. 438 

For example, sample preparation methods can bias coverage towards the centre and 3’ ends of the 439 

transcript; furthermore, jagged read profiles and transcription of antisense regions [29] and other 440 

intronic ncRNAs can cause expression profiles to be highly non-binary. To mitigate this, a rolling 441 

threshold approach is used. For a gene region 𝑅, and a genomic coordinate 𝑥 ∈ 𝑅, the expression 442 

characteristic 𝜒 is defined as: 443 

𝜒(𝑥) = min (max ({𝜌(𝑦): 𝑦 ∈ 𝑅, 𝑦 < 𝑥}), max ({𝜌(𝑦): 𝑦 ∈ 𝑅, 𝑦 > 𝑥})) 444 

Where 𝜌(𝑦) is the read count at genomic coordinate 𝑦. Bases in the gene region to which the RNA-445 

seq data has been mapped are categorised based on whether they are likely to correspond to exonic 446 

or non-exonic regions:  a base 𝑥 is considered to be on (i.e. likely included in the mature mRNA) if 447 

𝜌(𝑥) >
𝜒(𝑥)

5
, and off (i.e. likely not included in the mature mRNA) if 𝜌(𝑥) <

𝜒(𝑥)

5
. The coverage score 448 

for a gene model 𝐺 = {𝐺1, … , 𝐺𝑛}, where the 𝐺𝑖 are alternately exons and introns, is defined to be: 449 

𝐶(𝐺) =
1

𝑛
 ( ∑

 |{𝑥 ∈ 𝐺𝑖: 𝑥 on}|

|𝐺𝑖|
𝐺𝑖 exonic

+ ∑
|{𝑥 ∈ 𝐺𝑖: 𝑥 off}|

|𝐺𝑗|
𝐺𝑗 intronic

 ) 450 

that is, the average length-adjusted coverage score for each individual feature in the gene. 451 
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RNA-seq data 452 

RNA-seq data were downloaded from the Sequence Read Archive, and aligned to the genome with 453 

Hi-SAT2 [31], [32] using default parameters. Per-base coverage was calculated using SAMtools 454 

mpileup [33]. 455 

Subcellular localisation analysis 456 

Subcellular localisation for both the plant and fungal datasets was determined using TargetP [25]. 457 

For the plant dataset only, TargetP was run with the –P option to predict chloroplast targeting 458 

sequences. The localistion consistency for an orthogroup 𝑂 was calculated as an entropy score 459 

across the categories for each gene: 460 

𝐻(𝑂) = −
1

|𝑂|
∑

|𝐶|

|𝑂|
∙ log (

|𝐶|

|𝑂|
)

𝐶𝜖𝒞(𝑂)

 461 

where 𝒞(𝑂) = {𝐶1, … , 𝐶𝑛} is the partition of genes in 𝑂 into their localisation categories. 462 

  463 
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Tables 464 

Table 1: Species sets used for algorithm validation 465 

 Species Name Source Version/Strain Taxonomy ID References 

P
la

n
t 

s
p

e
c
ie

s
 

Arabidopsis thaliana JGI TAIR10 3702 [26] 

Brassica rapa JGI v1.3 3711 [26] 

Carica papaya JGI ASGPBv0.4 3649 [26] 

Capsella rubella JGI v1.0 81985 [26] 

Theobroma cacao JGI v1.1 3641 [26] 

F
u

n
g

a
l 

s
p

e
c
ie

s
 

Eremothecium gossypii  JGI1 ATCC10895 284811 [34] 

Debaromyces hansenii  JGI CBS767 284592 [35] [36] 

Kluyveromyces lactis  JGI CLIB210 284590 [35] 

Saccharomyces cerevisiae  SGD2 S288C 559292 [37] 

Yarrowia lipolytica  JGI CLIB122 284591 [35] 

1Joint Genome Institute; 2Saccaromyces Genome Database 466 

Table 2: SRA RNA-seq data sources 467 

 Species SRA ID Instrument/details  Genes in original annotation 

 Total W/ reads % 

P
la

n
t 

s
p

e
c
ie

s
 

A. thaliana SRR3932355 Illumina HiSeq 2500, paired end. Wild type Columbia rep1 27416 26110 95.2 

B. rapa SRR2984945 Illumina HiSeq 2000, paired end. ga-deficient dwarf (gad1-2) 

+GA rep2 

40492 35793 88.4 

C. papaya SRR3509576 Illumina HiSeq 2500, paired end. SunUp/Sunset cultivar, 

young hermaphrodite leaf 

27751 24589 88.6 

C. rubella SRR797557 Illumina Genome Analyzer IIx, paired end 26521 21239 80.1 

T. cacao SRR3217315 Illumina HiSeq 2000, paired end. Flower/leaf sample 29452 25758 87.5 

F
u

n
g

a
l 
s
p

e
c
ie

s
 

E. gossypii  N/A1 N/A 4768 N/A N/A 

D. hansenii  SRR1296968 Illumina HiSeq 2000, paired end 5781 6272 92.2% 

K. lactis  SRR1200528 Illumina Genome Analyzer II, single 5075 5076 100% 

S. cerevisiae  SRR539284 Illumina HiSeq 2000, paired end 6560 6572 99.8% 

Y. lipolytica  SRR868669 Illumina HiSeq 2000, single 6432 6447 99.8% 

 468 

 469 
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Table 3: Per-species gene change breakdown 470 

 Species No. changed 

genes 

Nucleotides added/removed (means per change) In original 

annotation as 

alternative “non-

primary” gene 

model 

 + (mean) - (mean) Net (mean) 

P
la

n
t 

s
p

e
c
ie

s
 

A. thaliana 175 1749 (42.7) -23747 (-118) -22139 (-92) 53 

B. rapa 97 1787 (58) -25740 (-250) -23953 (-179) 4 

C. papaya 540 23820 (65) -72053 (-128) -48233 (-52) 0 

C. rubella 298 6568 (71) -55005 (-170) -48437 (-117) 2 

T. cacao 556 3700 (43) -120984 (-118) -117284 (-124) 95 

TOTAL 1666 37624 (61) -297529 (-145) -259905 (-97) 154 

A. thaliana de novo 598 13623 (42) -167038 (-35) -51177 (-57) N/A 

F
u

n
g

a
l 
s
p

e
c
ie

s
 

E. gossypii 46 0 (0) -4338 (-93) -4338 (-93) N/A 

D. hansenii 13 0 (0) -2080 (-149) -2080 (-149) N/A 

K. lactis 11 0 (0) -1314 (-110) -1314 (-110) N/A 

S. cerevisiae 11 93 (93) -2483 (-191) -2390 (-170) N/A 

Y. lipolytica 23 117 (29) -4186 (-199) -4069 (-163) N/A 

TOTAL 104 210 (42) -14401 (-135) -14191 (-127) N/A 

S. cerevisiae de novo 19 601 (120) -5561 (-347) -4960 (-236) N/A 

 471 

Table 4: Summary of gene model change categories 472 

 Species No. 

changes 

Exon boundary Exon Intron Moved 

start  contraction extension add del add del 

P
la

n
t 

s
p

e
c

ie
s
 

A. thaliana 242 47 23 4 117 5 13 33 

B. rapa 134 11 14 9 56 3 8 33 

C. papaya 928 148 205 95 345 18 42 74 

C. rubella 415 32 32 39 101 1 19 191 

T. cacao 949 117 59 9 624 10 13 117 

TOTAL 2668 355 333 156 1243 37 95 448 

A. thaliana de novo 1344 151 255 49 780 2 10 97 

F
u

n
g

a
l 

s
p

e
c

ie
s
 E. gossypii 46 0 0 0 1 0 0 45 

D. hansenii 13 0 0 0 1 0 0 12 
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K. lactis 11 0 0 0 0 0 0 11 

S. cerevisiae 13 1 0 0 0 1 1 10 

Y. lipolytica 24 0 0 0 4 5 0 15 

TOTAL 107 1 0 0 6 6 1 93 

 S. cerevisiae de novo 20 0 2 0 4 0 2 12 

 473 

Table 5: RNA-seq coverage and junction F-scores 474 

 Species Junction F-score Coverage F-score 

 Better Worse Better Worse 

P
la

n
t 

s
p

e
c
ie

s
 

A. thaliana 94 (87.8%) 13 (12.1%) 109 (91.5%) 10 (8.4%) 

B. rapa 24 (63.1%) 14 (36.8%) 29 (56.8%) 22 (43.1%) 

C. papaya 246 (82.2%) 53 (17.7%) 344 (83.9%) 66 (16.0%) 

C. rubella 90 (89.1%) 11 (10.8%) 186 (91.6%) 17 (8.3%) 

T. cacao 275 (88.9%) 34 (11.0%) 358 (87.3%) 52 (12.6%) 

TOTAL 729 (85.3%) 125 (14.6%) 1026 (86.0%) 167 (13.9%) 

A. thaliana de novo 422 (87.3%) 61 (12.6%) 475 (91.1%) 46 (8.8%) 

F
u

n
g

a
l 
s
p

e
c
ie

s
 

D. hansenii 1 (100.0%) 0 (0%) 4 (66.6%) 2 (33.3%) 

K. lactis 0 (N/A) 0 (N/A) 9 (100.0%) 0 (0%) 

S. cerevisiae 0 (N/A) 0 (N/A) 6 (75.0%) 2 (25.0%) 

Y. lipolytica 2 (28.5%) 5 (71.4%) 11 (64.7%) 6 (35.2%) 

TOTAL 3 (37.5%) 5 (62.5%) 30 (75.0%) 10 (25.0%) 

S. cerevisiae de novo 4 (100%) 0 (0%) 11 (64.7%) 6 (35.2%) 

 475 

Table 6: Subcellular localisation predictions. 476 

 Category No. orthogroups with changed 

localisation predictions 

Entropy score 

Better Same Worse 

P
la

n
t 

s
p

e
c
ie

s
 Public data 55 42 (76.4%) 5 (7.7%) 8 (14.5%) 

A. thaliana de novo 11 9 (81.9%) 0 (0%) 2 (18.2%) 

F
u

n
g a
l 

s
p

e
c
i

e
s
 Public data 7 6 (85.7%) 0 (0%) 1 (14.3%) 
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S. cerevisiae de novo 1 0 (0%) 0 (0%) 1 (100%) 

 477 
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Figure Legends 489 

Figure 1: OMGene workflow 490 

Simplified overview of OMGene workflow. A) Gene regions are extracted from around the gene 491 

model; B) Exonerate is used to cross-align all constituent exons and full open reading frames to 492 

construct basic prototype gene models; C) The exonic regions from these prototype gene models 493 

are sorted into adjacency groups, which are then sequentially optimised using the multipartite choice 494 

function; D) Results are compared against the original gene models to incorporate potentially 495 

overlooked combinations, and filtered under various criteria to produce results. 496 

Figure 2: Gene model change examples from A. thaliana 497 

Examples of individual gene model changes for genes in A. thaliana. A) AT1G01320.1.TAIR10, 498 

orthogroup OG0010924, exon extension, splice acceptor side; B) AT1G76280.3.TAIR10, orthogroup 499 

OG10336, exon contraction, splice acceptor side; C) AT1G22860.1.TAIR10, orthogroup 500 

OG0010738, novel exon introduced; D) AT2G38720.1.TAIR10, orthogroup OG0009331, removed 501 
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exon; E) AT3G01980.3.TAIR10, orthogroup OG0011814, novel intron introduced; F) 502 

AT4G14590.1.TAIR10, orthogroup OG0010029, intron removed; G) AT3G01380.1.TAIR10, 503 

orthogroup OG0012127, moved start codon; G) AT5G11490.2.TAIR10, orthogroup OG0013306, 504 

complex event: exon has been removed and the previous exon boundary has been extended to 505 

include the stop codon. 506 

Figure 3: Number of changed genes per species 507 

Chart showing the number of changes made. A) C. papaya and T. cacao experienced the most 508 

changes in the plant data set. The de novo version of the A. thaliana genome underwent three times 509 

more changes than the publicly available one. B) The number of changes made was significantly 510 

less for the fungi data set. As in the plants, the representative species S. cerevisiae underwent more 511 

changes than the public version. 512 

Figure 4: Mean magnitude of changes made 513 

A) Average magnitudes of each change for plants. B) Average magnitudes for changes made to 514 

fungal genes. 515 

Figure 5: Change type distributions for plant and funal genes 516 

Distribution of types of changes made in the two data sets. A) The most common change in plants 517 

was exon deletion. B) In fungi, the most common change was overwhelmingly a moved start codon. 518 

Figure 6: Example change in subcellular localisation prediction 519 

Example change in subcellular localisation prediction for a gene. Thecc1EG021604t1.CGDv1.1 from 520 

T. cacao has undergone a change in start codon, revealing a signalling peptide at its 5’ end. In this 521 

case, what was previously assumed to be cytosolic has been found to target the secretory pathway, 522 

the same as the other members of the orthogroup (OG0009265). In this case, the Shannon entropy 523 

score for the orthogroup has fallen from 0.72 to 0. 524 
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Figure 7: Multipartite Choice Function 525 

The choice function aims to find optimal variants from a set of protein sequences. A) Sequences are 526 

aligned; B) A consensus alignment is produced: on a column-by-column basis the choice of amino 527 

acid for each sequence that optimises the alignment score for that column is chosen as a 528 

representative; C) A binary representation is produced from the original alignment: for each base in 529 

alignment, a 1 is assigned if the base matches the consensus, and a 0 is assigned if it does not. This 530 

leaves a sequence of vertical binary strings. The aim is to find a single vertical binary string that 531 

agrees with (i.e. is a bitwise subset of) as many as possible of these, and that is also compatible 532 

with the category constraints. The best such string in this case is shown to the right in green. D) The 533 

result.  534 

Figure 8: Adjacency group calculation 535 

Calculation of adjacency groups. A) Amino acid sequences for individual putative exons are strung 536 

together and aligned. B) A graph is formed with vertices formed by gene parts (or exons), and edges 537 

drawn when the overlap between two parts is greater than or equal to two thirds the length of one of 538 

them. C) Cliques are extracted and then ordered lexicographically to form the adjacency groups. 539 

 540 
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Figures 681 

Figure 1: OMGene workflow 682 

 683 

 684 
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Figure 2: Gene model change examples from A. thaliana 685 
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Figure 3: Number of changed genes per species 687 

 688 

Figure 4: Mean magnitude of changes made 689 
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 692 

Figure 5: Change type distributions for plant and funal genes 693 

 694 

Figure 6: Example change in subcellular localisation prediction 695 

 696 

Figure 7: Multipartite Choice Function 697 
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 699 

 700 

Figure 8: Adjacency group calculation 701 
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