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 2 

Abstract 30 

 31 

While hybridization between species is increasingly appreciated to be a common occurrence, 32 

little is known about the forces that govern the subsequent evolution of hybrid genomes.  We 33 

considered this question in three independent, naturally-occurring hybrid populations formed 34 

between swordtail fish species Xiphophorus birchmanni and X. malinche. To this end, we built a 35 

fine-scale genetic map and inferred patterns of local ancestry along the genomes of 690 36 

individuals sampled from the three populations. In all three cases, we found hybrid ancestry to be 37 

more common in regions of high recombination and where there is linkage to fewer putative 38 

targets of selection. These same patterns are also apparent in a reanalysis of human-Neanderthal 39 

admixture. Our results lend support to models in which ancestry from the “minor” parental 40 

species persists only where it is rapidly uncoupled from alleles that are deleterious in hybrids, 41 

and show the retention of hybrid ancestry to be at least in part predictable from genomic features. 42 

Our analyses further indicate that in swordtail fish, the dominant source of selection on hybrids 43 

stems from deleterious combinations of epistatically-interacting alleles.  44 
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Main text 45 

 46 

Understanding speciation is central to understanding evolution, but so much about the 47 

process still puzzles us. The foundational work in evolutionary biology envisioned speciation as 48 

an ordered process during which reproductive barriers, once established, prevent gene flow 49 

between species (1). We now realize, however, that speciation is much more dynamic, with 50 

hybridization occurring both during and after the evolution of reproductive barriers and evidence 51 

of past hybridization with close relatives still visible in the genomes of myriad animal and plant 52 

species (2-9). The ubiquity of hybridization raises the question of how species that hybridize 53 

remain genetically and ecologically differentiated.  54 

At least part of the answer is likely that selection filters out deleterious hybrid ancestry 55 

from the genome (1). For instance, in hominins and swordtail fish, individuals are less likely to 56 

carry hybrid ancestry near functionally important elements (6, 10, 11), presumably because it is 57 

especially deleterious in such regions. Aside from these observations, however, little is known 58 

about how admixed genomes evolve—or, in some cases, stabilize—following hybridization. Our 59 

understanding of the evolution of hybrid genomes is complicated by the existence of many 60 

possible modes of selection and by the fact that, in most systems, the location of sites under 61 

selection is unknown. Decades of experimental work have demonstrated that Dobzhansky-62 

Muller incompatibilities (DMIs) are a central mechanism underlying reproductive isolation once 63 

species are formed (12-16), but the importance of DMIs in shaping the evolution of hybrid 64 

genomes remains unknown, as does the role of other modes of selection. Notably, it was recently 65 

pointed out that when there is introgression from a species with a lower effective population size, 66 

hybrids may suffer from increased genetic load (“hybridization load”) due to the introduction of 67 

weakly deleterious alleles (10, 17). Depending on the environment in which hybrids find 68 

themselves, alleles that underlie ecological adaptations in the parental species may also be 69 

deleterious in hybrids (18, 19). Complicating matters yet further, modes of selection on hybrid 70 

ancestry will likely vary from system to system, depending on the extent of genetic divergence 71 

and ecological differentiation between the parental species, as well as long-term differences in 72 

their effective population sizes.  73 

One feature, however, is expected to play a central role in all these models: variation in 74 

recombination rates along the genome (10, 17, 20-22). Theory predicts that selection is more 75 
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likely to weed out hybrid ancestry in regions of low recombination (23-25). Specifically, in 76 

models of DMIs, minor parent ancestry will persist preferentially in regions of higher 77 

recombination because it is more rapidly uncoupled from mutations that are incompatible with 78 

the prevalent (i.e., major parent) genetic background (Fig. 1). Similarly, in models of 79 

hybridization load, all else being equal, shorter linkage blocks will carry fewer weakly 80 

deleterious mutations and therefore be will be less rapidly purged by selection (10, 17; Fig. S1). 81 

Previous studies have reported patterns potentially consistent with these expectations (26, 27), 82 

but without directly investigating ancestry patterns and their relationship with local 83 

recombination rates (28).  84 

 85 

Recombination shapes ancestry in swordtail fish. To test predictions about the role of 86 

recombination in filtering hybrid ancestry, we took advantage of a set of naturally occurring 87 

hybrid populations between two swordtail fish species, Xiphophorus birchmanni and a closely 88 

related species, X. malinche (Fig. 2; Supporting Information 1-3). The two species are ~0.5% 89 

divergent at the nucleotide level and incomplete lineage sorting between the two is relatively rare 90 

(29; Fig. 2A). We focused on three hybrid populations that formed independently between the 91 

two fewer than 100 generations ago (29), likely as a result of human-mediated habitat 92 

disturbance (30). Previous analyses of hybrid zones between these two species, including two of 93 

the three populations analyzed here, suggested that there are on the order of 100 pairs of 94 

unlinked DMIs segregating in hybrids (29, 31), with estimated selection coefficients ~0.03-0.05 95 

(29), and potentially many more linked DMIs, indicating that swordtail hybrids may be 96 

experiencing widespread selection on DMIs.   97 

To infer local ancestry patterns, we generated ~1X low coverage whole genome data for 98 

690 hybrids sampled from the three hybrid populations (Supporting Information 1). We 99 

estimated local ancestry patterns for the 690 hybrids by applying a hidden Markov model (32); 100 

this approach is predicted to have high accuracy for these hybrid populations, given the marker 101 

density and time since mixture (29, 32, 33). Using ancestry calls at 1-1.2 million sites genome 102 

wide, we inferred that two of the hybrid populations derive on average 75-80% of their genomes 103 

from X. birchmanni, whereas individuals in the third population derive on average 72% of their 104 

genomes from X. malinche (Fig. 2; Supporting Information 1; 34). The median homozygous tract 105 

length for the minor parent ranges from 84 kb to 225 kb across the three populations, roughly 106 
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matching expectations for hybrid populations of these ages and mixture proportions (Supporting 107 

Information 4).   108 

To consider the relationship between local ancestry and recombination rates, we inferred 109 

a fine-scale genetic map for X. birchmanni from patterns of linkage disequilibrium (LD) in 110 

unrelated individuals (Table S1; Supporting Information 2, 4-5). Based on our previous work on 111 

recombination in this taxon (35), we had a strong prior expectation that local recombination rates 112 

should be conserved between X. birchmanni and X. malinche (Supporting Information 6). We 113 

also generated crossover maps from hybrids based on inferred switch points between the two 114 

ancestries. Overall the hybrid and parental maps are consistent (Fig. S2), with the correlations 115 

between maps roughly comparable to what would be expected if the maps were in fact identical 116 

(Supporting Information 7).  117 

 In all three hybrid populations of swordtail fish, the probability of carrying ancestry from 118 

the minor parent increases with the local recombination rate (Fig. 3, Table 1). This association 119 

remains irrespective of the choice of scale (Fig. S3) and after thinning the SNP and ancestry 120 

variation data to control for possible differences in the ability to reliably infer recombination 121 

rates or the power to call hybrid ancestry across windows (Supporting Information 4). The 122 

preferential persistence of minor parent ancestry in regions of higher recombination is not 123 

expected under neutrality (Fig. S1) and instead indicates that minor parent ancestry was retained 124 

where it was more likely to have been rapidly uncoupled from the deleterious alleles with which 125 

it was originally linked (Supporting Information 5). This qualitative pattern can be generated 126 

under several models of selection, including selection against DMIs, selection against weakly 127 

deleterious alleles introduced by hybridization, or widespread ecological selection against loci 128 

that derive from the minor parent (Fig. 1, Fig. S1). 129 

In principle, the retention of hybrid ancestry should be most accurately predicted from the 130 

exact number of deleterious alleles to which a minor parent segment was linked since 131 

hybridization occurred. Local recombination rates are one proxy for this (unknown) parameter, 132 

as are the number of coding base pairs nearby. In these data, both factors predict minor parent 133 

ancestry (Fig. S4; Fig. S5; Supporting Information 4), but local recombination is a stronger 134 

predictor and remains a predictor after controlling for the number of coding base pairs (Table 1; 135 

Table S2). These findings are consistent with those obtained in simulations mimicking the data 136 
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structure (Supporting Information 4-5), presumably because the number of coding base pairs 137 

nearby is an extremely noisy proxy. 138 

 139 

The source of selection. Controlling for the recombination rate, local ancestry is positively 140 

correlated between all pairs of hybrid populations, with weaker but significant correlations seen 141 

even between populations with different major parent ancestries (Fig. 4). These findings are 142 

expected from selection on the same underlying loci in independently formed populations 143 

(Supporting Information 8). Whereas both DMIs and hybridization load are predicted to drive 144 

positive correlations in local ancestry across populations regardless of the admixture proportions 145 

(Fig. S6), ecological selection against minor parent ancestry should lead to negative correlations 146 

in local ancestry and is thus inconsistent with the observed patterns (Fig. 4; Supporting 147 

Information 8).  148 

Comparison among the three hybrid populations also provides a means to distinguish 149 

between the remaining two hypotheses. Analyzing genome sequences from X. malinche (5, 29) 150 

and X. birchmanni, we found that X. malinche has had a lower long-term effective population 151 

size than X. birchmanni (Fig. 2; Supporting Information 3), as seen both in the approximately 152 

four-fold lower average heterozygosity in X. malinche (0.03% vs 0.12% per base pair, 153 

respectively) and in estimates of effective population sizes over time from high coverage genome 154 

sequences (Fig. 2, Table S1). Consistent with a lower long-term effective population size, X. 155 

malinche carries significantly more putative deleterious alleles relative to the inferred ancestral 156 

sequence than does X. birchmanni, as measured by the number of derived, non-synonymous 157 

substitutions per haploid genome (a 2.5% excess, p=0.016 based on 1,000 bootstrap resamples; 158 

see Supporting Information 3; 36, 37). Because X. birchmanni and X. malinche source 159 

populations differ in the number of putatively deleterious variants, the three hybrid populations 160 

of swordtail fish provide an informative contrast: whereas DMIs should lead to selection against 161 

minor parent ancestry in all three populations, hybridization load should favor the major parent 162 

in populations 1 and 2 and the minor parent in population 3 (Fig. 2; Fig. 4).  163 

In this regard, the fact that minor parent ancestry also increases with recombination in the 164 

third hybrid population, which derives most of its genome from the parental species that has 165 

lower effective population size (Fig. 2, 3), indicates that hybrid incompatibilities are the 166 

dominant mode of selection shaping ancestry in the genome in these hybrid populations, rather 167 
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than selection against hybridization load (Fig. 4; Fig. S7; Supporting Information 4-5). In 168 

principle, ecological selection favoring the major parent could also produce a positive correlation 169 

between recombination rate and ancestry (though not the positive correlations in ancestry across 170 

populations; Fig. 4). However, this scenario would require two of the hybrid populations to occur 171 

in more birchmanni-like environments and one in a more malinche-like environment, when 172 

available evidence suggests otherwise—notably, all of the hybrid populations are found in 173 

thermal environments that are mismatched to the environment where their major parent is found 174 

(Fig. 2; Supporting Information 5).  175 

Moreover, in all three hybrid populations, minor parent ancestry is unusually low near 176 

previously mapped DMIs between the two parental species (29, 31), a pattern that should not 177 

arise from the approach used to identify DMIs (Supporting Information 5), but is expected from 178 

selection on epistatically-interacting alleles (Fig. 4; Supporting Information 4-5). Taken together, 179 

these lines of evidence indicate that DMIs are the main (though not necessarily sole) source of 180 

selection shaping the retention of hybrid ancestry in these three swordtail fish hybrid populations 181 

(Fig. 4).  182 

 183 

Ancestry also interacts with the local recombination rate in hominins. To evaluate the generality 184 

of the relationship between recombination rate and ancestry seen in swordtails, we considered 185 

the only other case with similar genomic data available: admixture between humans and archaic 186 

hominins. Several studies have reported that the average proportion of Neanderthal ancestry 187 

decreases with the number of closely linked coding base pairs and with a measure of the strength 188 

of purifying selection at linked sites (6, 10, 17, 38), patterns for which both DMIs and 189 

hybridization load (due to the smaller effective population size of Neanderthals, 39) have been 190 

proposed as explanations (6, 10, 17). Reanalyzing the data, we found that the proportion of 191 

Neanderthal ancestry (the minor parental species) decreases in regions of the human genome 192 

with lower recombination rates (Fig. 3D; Table 1; Table S3). This relationship is seen for 193 

different window size choices and with any of three approaches to infer Neanderthal ancestry in 194 

the human genome (Table 1), and is not expected as a result of variation in the power to identify 195 

introgression along the genome (Supporting Information 9). The effect of local recombination 196 

rate on Neanderthal ancestry also persists after accounting for the number of coding base pairs 197 

nearby (Table 1; Supporting Information 9). Interestingly, the relationship between Neanderthal 198 
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ancestry and local recombination rate is especially strong when excluding regions of unusually 199 

high frequency Neanderthal ancestry (e.g. top 1%; Fig. S8), possibly because these regions are 200 

enriched for cases of adaptive introgression (6, 38, 40, 41). Repeating these analyses for 201 

Denisovan ancestry, for which there is lower power to identify ancestry tracts, there is a much 202 

weaker but consistent trend (Table 1; Supporting Information 9).  203 

As in swordtails, the persistence of Neanderthal ancestry in regions of higher 204 

recombination is not expected under neutrality (Fig. S1) but could be generated by selection 205 

against DMIs, weakly deleterious alleles introduced by Neanderthals (6, 10, 17, 38), or 206 

widespread ecological selection against Neanderthal ancestry (Fig. 1, Fig. S1). Unlike in the case 207 

of swordtails, however, these causes cannot be distinguished based on these data alone (6, 10, 17, 208 

38, 42). Moreover, the conclusion about the source of selection reached for swordtail fish need 209 

not hold for hominins, in particular because modern humans and Neanderthals (Denisovans) 210 

were less diverged when they are thought to have interbred, and thus may have accumulated 211 

many fewer DMIs (43, 44). 212 

 213 

The predictability of hybrid ancestry. Hybrid ancestry is predicted by the local recombination 214 

rate across three replicate admixture events between the same species pair in swordtail fish, as 215 

well as in two cases of admixture in hominins. In swordtail fish hybrids, several lines of evidence 216 

indicate that selection against hybrid incompatibilities is the dominant force shaping minor 217 

parent ancestry in the genome. In hominins, the source of selection remains unclear. Regardless 218 

of the precise mechanisms of selection on hybrids, the generality of these patterns reveals the 219 

retention of hybrid ancestry to be at least in part predictable from genomic features.   220 

The relationship of minor parent ancestry to local recombination thus provides a useful 221 

tool for predicting where in the genome we might expect hybrid ancestry to persist preferentially. 222 

In particular, in hominins, meiotic recombination events are directed to the genome by binding of 223 

the PRDM9 gene, whereas in swordtail fish, they are not and instead are concentrated around 224 

CpG islands and other promoter-like features (35; Supporting Information 5-6). Accordingly, we 225 

found that in swordtail fish, minor parent ancestry is higher around CpG islands and transcription 226 

start sites whereas in humans, it is not (Fig. 5; Supporting Information 5).  In other words, the 227 

mechanism by which recombination is directed to the genome shapes the retention of hybrid 228 

ancestry.  229 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/212407doi: bioRxiv preprint 

https://doi.org/10.1101/212407


 9 

One implication is that the reliance on PRDM9 to direct recombination may not only 230 

impact reproductive isolation between species directly (as in mice, 45), but also indirectly. For 231 

example, if DMIs tend to occur between neighboring genes (46), hybrids between species with 232 

PRDM9-independent recombination may experience greater negative selection than species that 233 

use PRDM9, because recombination events are more likely to uncouple negatively-interacting 234 

alleles. On the other hand, in species with PRDM9-independent recombination, genic regions 235 

have higher recombination rates and thus may be more likely to be uncoupled from a deleterious 236 

background, potentially providing more opportunities for adaptive introgression.  As genomic 237 

data accumulates for hybridizing species across the tree of life (47-53), the importance of 238 

recombination mechanisms for the fate of hybrids can soon be systematically evaluated.  239 

 240 
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Figures 251 

 252 

253 
  254 
Figure 1. Predicted relationship between minor parent ancestry and recombination rates in 255 
the presence of hybrid incompatibilities. (A) In the presence of hybrid incompatibilities, the 256 
local recombination rate influences the rate at which neutral regions will be uncoupled from 257 
nearby hybrid incompatibility loci; as a result, more minor parent ancestry should be retained in 258 
regions of high recombination. (B) This prediction is borne out in simulations. Shown here are 259 
simulation results with two pairs of randomly placed hybrid incompatibilities per chromosome 260 
and s=0.1, plausible parameters for Xiphophorus species (29, Supporting Information 5). In these 261 
simulations, 250 individuals were sampled at generation 70 and ancestry along 25 Mb 262 
chromosomes was summarized in 50 kb windows. Shown here is a replicate selected at random, 263 
with the number of simulated chromosomes chosen to mimic the amount of data used in our 264 
analyses; 74% of simulations had a significantly positive relationship between minor parent 265 
ancestry and recombination rate at the 5% level. Red points and whiskers indicate the mean 266 
minor parent ancestry with two standard errors of the mean determined by bootstrapping 267 
windows; gray points show raw data. Note that the y-axis range is truncated.   268 
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 269 

 270 
Figure 2. Hybridization between sister species X. birchmanni and X. malinche. (A) 271 
Maximum likelihood trees produced by RAxML (54) for 1,000 alignments of randomly selected 272 
10 kb regions. Dxy refers to the average nucleotide divergence between X. birchmanni and X. 273 
malinche. Outgroup genome sequences were obtained from previous work (55, 56). (B) 274 
Locations of the three hybrid populations on which we focused, all sampled from different river 275 
systems in Hidalgo, Mexico; listed in blue are elevations of the sampled hybrid populations and 276 
typical elevations for the parental populations. (C) Inferred ancestry proportions of individuals 277 
from each of the three hybrid populations (see Methods for details). (D) Loess fit to effective 278 
population size estimates inferred by MSMC from one X. malinche genome and each of the 20 X. 279 
birchmanni genomes collected for this study, assuming a mutation rate of 3.5 x 10-9 (57; see 280 
Supporting Information 3). The time interval overlapping with zero is not plotted.   281 
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 282 

 283 
Figure 3. Minor parent ancestry is significantly decreased in regions of low recombination, 284 
in swordtail fish and humans. (A-C) Minor parent ancestry is rarest in regions of the swordtail 285 
genome with the lowest recombination rates. (D) Neanderthal ancestry is likewise rarest in 286 
regions of the human genome with the lowest recombination rates. Removing windows of 287 
particularly high Neanderthal ancestry, which may have experienced adaptive introgression, 288 
further strengthens this relationship (Fig. S8). Data are summarized in 50 kb windows in 289 
swordtail analyses and 250 kb windows in analysis of human data; results are similar for a range 290 
of window sizes (summarized in Table 1). Quantile binning is for visual representation only; all 291 
statistical tests reported in Table 1 were performed on the unbinned data. Red points and 292 
whiskers indicate the mean minor parent ancestry and two standard errors of the mean, obtained 293 
by bootstrapping windows; gray points show raw data. Note that the y-axis is truncated in all 294 
panels.   295 
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 296 

 297 
Figure 4. Evidence for DMIs as the major source of selection on hybrids. (A) Local ancestry 298 
is strongly and significantly correlated between independently formed swordtail hybrid 299 
populations with similar mixture proportions (using 0.1 cM windows; Supporting Information 8). 300 
(B) Local ancestry is also correlated between swordtail hybrid populations with distinct major 301 
parent ancestry, but the relationship is weaker. Similar results for cross-population correlations in 302 
ancestry are observed when controlling for the number of coding base pairs in a window using a 303 
partial correlation analysis (when comparing population 1 and 2, ρ = 0.19, p=10-46; in turn, ρ 304 
0.04-0.08, p<0.005 for populations 1 and 2 versus population 3). Points show the mean ancestry 305 
and whiskers indicate two standard errors of the mean. (C) Predictions for different modes of 306 
selection on hybrids. Predictions met in the data are shown with a check and not met with a red 307 
cross. See text for details. (D) Average minor parent ancestry is unusually depleted in 50 kb 308 
windows containing previously mapped, unlinked DMIs (red points, from 31) compared to 1,000 309 
null datasets generated by randomly sampling the same number of windows from the 310 
background (blue distribution). Simulations suggest that observed ancestry departures at DMIs 311 
are not expected as a result of ascertainment (Supporting Information 5). 312 
  313 
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 314 

 315 
Figure 5. The mechanism by which recombination is directed to the genome shapes the 316 
genomic location of minor parent ancestry. (A) Neanderthal ancestry in the human genome is 317 
not significantly elevated in 50 kb windows that overlap with CpG islands (CGIs), when 318 
compared to windows that do not overlap CGIs but have similar GC base pair composition (the 319 
fold difference is 0.95, p=0.91). Points show the mean of each group and whiskers indicate one 320 
standard error of the mean obtained by 1,000 joint bootstraps resampling the data. (A) In 321 
contrast, in all three swordtail fish populations, minor parent ancestry is significantly elevated in 322 
windows that overlap CGIs compared to windows that do not but have similar GC base pair 323 
composition (in population 1, the fold-difference is 1.09, p<0.005; in population 2, the fold-324 
difference is 1.09, p<0.005; and in population 3 the fold-difference is 1.02, p<0.005). See 325 
Supporting Information 5 for details. (B) Simulations of incompatibility selection in swordtails 326 
predict high minor parent ancestry near CGIs (Supporting Information 5). (C) This prediction is 327 
met for all three hybrid populations. In B and C, gray lines show results of 500 replicate 328 
simulations obtained by bootstrapping 5 kb windows and re-calculating the relationship between 329 
distance to the nearest CGI and minor parent ancestry; colored lines indicate the mean of all 330 
replicates in sliding 5 kb windows. The number of simulated chromosomes shown in B was 331 
chosen to mimic the amount of data used in our analyses, and is one replicate chosen at random. 332 
 333 
  334 
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Table 1.  Relationship between minor parent ancestry and recombination rate. Results for 335 
Spearman’s correlations between minor parent ancestry and recombination rate at several scales, 336 
in three swordtail fish hybrid populations and for archaic hominin ancestry in the human 337 
genome. Also shown are partial correlation results, controlling for the number of coding base 338 
pairs. Because different filtering approaches were applied to the archaic hominin ancestry 339 
datasets in the original studies, results reported here are based on windows included in all 340 
datasets. P-values are obtained after thinning windows, to minimize correlations among nearby 341 
windows (see Supporting Information 4). Additional information and analyses can be found in 342 
Supporting Information 4 and Supporting Information 9. 343 

 
Population 

 

Spearman’s correlation 
between minor ancestry and rate 

 

 

Spearman’s partial correlation 
between minor ancestry and rate 

including coding base pairs 
 

 50 kb  250 kb  500 kb  50 kb  250 kb  500 kb  
Swordtail population 1 

 
 

ρ = 0.14 
p = 10-10 

ρ = 0.15 
p = 10-8 

ρ = 0.18 
p = 10-10 

ρ = 0.15 
p = 10-11 

ρ = 0.16 
p = 10-8 

ρ = 0.18 
p = 10-10 

Swordtail population 2 
 
 

ρ = 0.1 
p = 10-4 

ρ = 0.10 
p = 10-4 

ρ = 0.08 
p = 0.007 

ρ = 0.1 
p = 10-4 

ρ = 0.11 
p = 10-4 

ρ = 0.08 
p = 0.008 

Swordtail population 3 
 
 

ρ = 0.11 
p = 10-6 

ρ = 0.11 
p = 10-4 

ρ = 0.12 
p = 10-5 

ρ = 0.11 
p = 10-6 

ρ = 0.11 
p = 10-4 

ρ = 0.11 
p = 10-4 

Neanderthal ancestry in 
humans  

(diCal-admix) 

ρ = 0.08 
p = 10-14 

ρ = 0.17 
p = 10-35 

ρ = 0.19 
p = 10-42 

ρ = 0.08 
p = 10-13 

ρ = 0.17 
p = 10-34 

ρ = 0.19 
p = 10-43 

Neanderthal ancestry in 
humans  

(Sankararaman et al. 2014) 

ρ = 0.06 
p = 10-8 

ρ = 0.15 
p = 10-26 

ρ = 0.16 
p = 10-34 

ρ = 0.06 
p = 10-8 

ρ = 0.14 
p = 10-25 

ρ = 0.17 
p = 10-34 

Neanderthal ancestry in 
humans 

(Skov et al. 2017) 

ρ = 0.07 
p = 10-10 

ρ = 0.14 
p = 10-24 

ρ = 0.15 
p = 10-30 

ρ = 0.07 
p = 10-9 

ρ = 0.14 
p = 10-24 

ρ = 0.16 
p = 10-30 

Denisovan ancestry in humans 
(Sankararaman et al. 2016) 

ρ = 0.02 
p = 0.06 

ρ = 0.05 
p = 10-4 

ρ = 0.07 
p = 10-6 

ρ = 0.02 
p = 0.07 

ρ = 0.05 
p = 10-4 

ρ = 0.07 
p = 10-6 
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