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Abstract​: The application of network science to biology has advanced our understanding of the              
metabolism of individual organisms and the organization of ecosystems but has scarcely been             
applied to life at a planetary scale. To characterize planetary-scale biochemistry, we constructed             
biochemical networks using a global database of 28,146 annotated genomes and           
metagenomes, and 8,658 cataloged biochemical reactions. We uncover scaling laws governing           
biochemical diversity and network structure shared across levels of organization from individuals            
to ecosystems, to the biosphere as a whole. Comparing real biochemical networks to random              
chemical networks reveals the observed biological scaling is not solely a product of the              
biochemistry shared across life on Earth. Instead, it emerges due to how the global inventory of                
biochemical reactions is partitioned into individuals. We show the three domains of life are              
topologically distinguishable, with > 80% accuracy in predicting evolutionary domain based on            
biochemical network size and average topology. Taken together our results point to a deeper              
level of organization in biochemical networks than what has been understood so far.  

 

There is increasing interest in whether biology is governed by general principles, not             
tied to its specific chemical instantiation or contingent upon evolutionary history ​1–3​.            
Such principles would be strong candidates for being universal to all life ​4,5​. Universal              
biology, if it exists, would have important implications for our search for life beyond              
Earth ​6–9​, for engineering synthetic life in the lab ​10,11 , and for solving the origin of life                  
12,13​. Systems biology provides promising quantitative tools for uncovering such general           
principles ​14–16​. So far, systems approaches have primarily focused on specific levels of             
organization within biological hierarchies, such as individual organisms ​17,18 or ecological           
communities ​19,20​, and are rarely applied to the biosphere as a whole. But, biology              
exhibits some of its most striking regularities moving up in levels of organization from              
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individuals to ecosystems, and these regularities may only truly manifest at the level of              
ecosystems, and ultimately the biosphere ​21,22​. For example, while individual organismal           
lineages fluctuate through time and space, the functional and metabolic composition of            
ecological communities is dynamically stable ​23,24​. To understand the general principles           
governing biology, we must understand how living systems organize across levels, not            
just within a given level ​25,26​.  

In order to explore regularities within and between levels of organization, we adopt a              
network view of biochemistry ​17,27–29 by constructing biochemical reaction networks from           
genomic and metagenomic data. We show biochemical networks share universal          
organizational properties across levels, characterized by scaling laws determining how          
topology and biochemical diversity change with network size. These scaling relations           
exist ​independent of evolutionary domain or level of organization, applying across the            
nested hierarchy of individuals, ecosystems, and the biosphere. The biochemical          
diversity and network properties driving this scaling behavior are predictive of           
evolutionary domain, indicating the biochemical network structure for each domain is           
distinct even though all three conform to the same scaling behavior. Our results provide              
a first quantitative demonstration the application of network theory at a planetary scale             
can uncover properties existing across different levels of organization within the           
biosphere, and can be predictive of major divisions within a given level (such as              
domains). Taken together these results provide new paths forward for identifying           
universal properties of life.  
 
Our analysis begins with a global database of genomes and metagenomes, sampled            
from across life on Earth. We leverage available existing annotated genomic data            
representing the three domains of life, including genomes of 21,637 bacterial taxa and             
845 archaeal taxa from the Pathosystems Resource Integration Center (PATRIC) ​30​,           
and 77 eukaryotic taxa from the Joint Genome Institute (JGI) ​31​. Our metagenomic data              
includes 5,587 metagenomes from JGI cataloging ecosystem-level biochemical diversity         
across the planet, see Fig. 1.  
 
From this data, we constructed biochemical networks for each individual organism           
(genome) and ecosystem (metagenome) using reaction data cataloged in the Kyoto           
Encyclopedia of Genes and Genomes (KEGG) ​32​. Building on prior work studying            
biosphere-level models of metabolism ​33–35​, we use the database of all 8,658            
enzymatically catalyzed reactions cataloged in KEGG as a proxy for the biochemistry of             
the biosphere as a whole, modeled as a ‘soup of enzymes’ by disregarding the              
boundaries of individual species​19​. Network representations of ecosystem-level and         
biosphere-level biochemistry are `compartment-free’ in that no knowledge of individual          
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species is included. Previous topological analyses of biochemical networks have          
primarily focused on the subset of biochemical reactions associated with metabolism           
28,29​. Since we are interested in properties universal across life, and not just subsets of               
living processes, we instead construct networks inclusive of every known catalyzed           
reaction (regardless of pathway) coded by the respective genome or metagenome,           
provided the reaction is cataloged in KEGG.  
 

 
 
Figure 1: Enzyme diversity of ecosystems across Earth. Shown is the geographical distribution             
of 5,587 ecosystems, colored by the number of different enzyme functional classes (enzyme             
commission (EC) numbers) encoded in sampled metagenomes (from JGI). Despite large           
variances in the enzyme diversity and what enzymes are present in each ecosystem, all              
ecosystems sampled are found to conform to the same scaling behavior for biochemical             
diversity and topology as a function of biochemical network size, see Fig. 3.  
 
Adopting a network representation allows systematic quantification of topological         
properties using graph theory and statistical mechanics ​16,17,36–41​. Using two different           
graph projections, we compare biochemical networks to test whether they are similar or             
different across levels (see Methods for details on network construction). A widely            
implemented framework for assessing commonality across different systems is to look           
at their scaling behavior ​42–47​. If scale-invariant properties are found, it can be suggestive              
of deeper, underlying organizing principles ​3,48,49​, such as when power-law scaling           
emerges at criticality in thermodynamic phase transitions ​50​. We therefore sought to            
determine whether biochemical networks display similar scaling laws governing their          
topology and chemical diversity across levels, indicative of the existence of           
self-organizing principles universal across different biological levels.  
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There are three alternative scenarios to be tested relating network structure across            
individuals, ecosystems and the entire biosphere, each is shown in Fig. 2. In the first,               
biochemistry does not have shared network structure across levels, and different           
scaling behaviors emerge at different levels. In the second scenario, biochemistry has            
shared network structure across levels, but this shared structure can be fully explained             
by the structure of random chemical networks (generated from random collections of            
chemical reactions used by biology). In this case, biochemical networks would be            
statistically indistinguishable from random chemical networks, implying the        
self-organizing principles are solely chemical and not biological in origin. In a third             
scenario, biochemistry has shared structure across levels, which is different from that of             
random chemical networks. We find the third scenario to be consistent with our             
analysis, suggesting the presence of universal organizing principles unique to biology           
that recur across biological levels of organization. 
 
Before proceeding to the details of our results, it is worth noting the well known               
challenges associated with the introduction of statistical artifacts when coarse-graining          
real-world systems to generate graphical representations ​51,52​. For example, bipartite          
network representations of biochemistry (treating reactions and substrates as two          
disjoint sets of nodes) have information that cannot be recovered from unipartite            
representations (which treat only substrates as nodes). The challenge of choosing a            
projection arises because biochemical networks are themselves a multi-layer system          
consisting of enzymes and their catalyzed reactions; enzymes (often abstracted away in            
network representations) control the biological organization we aim to characterize. To           
ensure the regularities we report are reflective of the true underlying organization of             
biochemistry, and are not statistical artifacts introduced by a specific choice in            
coarse-graining, we therefore consider both a unipartite and bipartite projection in our            
analysis ​51​. We also compare catalytic diversity - quantified in terms of the number of               
enzymes and reactions - across levels, which are independent of network           
representation. As we will show, common scaling laws describing biochemical networks           
across levels of organization are consistently observed in each of these different views             
of biochemistry, confirming our results are independent of the type of network            
representation.  
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Figure 2: Three alternative scenarios for how biochemical network structure might be similar or              
dissimilar across levels of organization. For each scenario, illustrative plots show examples of             
scaling behavior of a network property as function of network size, where each data point               
corresponds to the measure for a single instance of a network. In the first (a) biochemistry does                 
not exhibit common network structure across levels, and different properties emerge at different             
levels. In the second (b), biochemistry has a common network structure across all levels, but               
this structure is also shared by random chemical networks. In the final scenario (c), biochemistry               
has shared structure across all levels, which is different from that of random chemical networks.               
Our results are consistent with this third scenario, indicative of universal organizing principles             
recurring across biological levels, which are unique to biology (not shared by random             
chemistry). 
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One remaining consideration once a network representation is adopted is how to            
analyze it. So far, the majority of network analyses applied to biochemistry have             
focused on the ‘scale-free’ structure of metabolic networks ​27,53,54 . For example in a              
seminal paper by Jeong et al. ​27​, it was shown (using a unipartite representation) that               
metabolic networks from all three domains of life exhibit the characteristic power-law            
degree distribution of a scale-free network, with similar scaling exponents for bacteria,            
archaea and eukaryotes. This and other previous work has focused primarily on            
properties ​within single instances of a network (e.g. an individual organism’s           
metabolism). However, as we stated earlier, our interest is in looking at properties             
across networks (e.g. describing biochemical networks at the individual and          
ecosystem-level). We therefore focus on topological measures such as average          
shortest path length, average clustering coefficient and assortativity (degree correlation          
coefficient), which are directly comparable across different networks, allowing us to           
make statements about regularities existing across biochemistry sampled from different          
levels of organization.  

Results 

Shared scaling laws describe biochemical networks and catalytic        
diversity across levels of organization 
 
Organisms can vary widely in their number of genetically encoded reactions, and            
ecosystems generally include more encoded reactions than individuals. We therefore          
compare topological properties relative to the size of biochemical networks as a relevant             
scaling parameter for our analysis. We define network size as the number of molecules              
connected through catalyzed reactions within the largest connected component (LCC)          
for a given biochemical network. We focus analyses on the LCC since some measures              
are not defined on disconnected networks. The LCC includes > 90% of compounds for              
all but the smallest networks in our study, and >97% of compounds for the largest (see                
Methods on ​Topological measures​, Supplementary Fig. S1, and Supplementary Table          
S1). The fact that the LCC is not 100% of the network could be attributable to missing                 
data in the annotation of genomes and metagenomes. We therefore verified our results             
are not sensitive to similar magnitude of missing data by confirming the scaling trends              
reported here are not affected when 10% of nodes are randomly removed (see             
Supplementary Fig. S2).  
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We calculate several frequently implemented topological measures for the LCC for each            
network. We classify properties (e.g. topological or diversity measures) as ​universal           
when they scale in the same way across levels. We identify these cases by properties               
which scale according to the same fit across levels (e.g. network average clustering             
coefficient scales linearly with network size for both individuals and ecosystems, and we             
thus identify this scaling as universal across levels). Shared fit functions across levels             
suggest mechanisms driving the structure of biochemical networks may be independent           
of level of organization; in such a case individuals and ecosystems could both be              
subject to the same general principles acting to architect them. That is, we do not               
require the scaling coefficients to be exactly the same (indicating the tuning of             
mechanisms generating structure in individuals and ecosystems), but we do require the            
same fit to be shared across our data (indicating the possibility of shared generative              
mechanisms) to qualify as universal.  
 
To test whether biology exhibits universal scaling behavior across levels, we first            
determined how topological properties and biochemical diversity vary with size for all            
individuals and ecosystems in our data set. Measured values for the unipartite            
representation and catalytic diversity (enzymes, reactions) are shown in Fig. 3 as a             
function of network size (see Supplementary Fig. S4 for data on bipartite representation             
which exhibits similar consistency across levels). We find individuals and ecosystems           
scale according to the same functional form for each network and diversity measure,             
with similar scaling coefficients (for ​fits and confidence intervals, see Supplementary           
Data S1). Scaling for individuals and ecosystems is therefore universal. ​For some            
measures (assortativity and betweenness) ​the biosphere falls within the 95%          
confidence interval observed for fits of ecosystem level scaling. An exception is            
clustering coefficient, where the biosphere significantly departs from the observed          
ecosystem scaling: this could be be attributable to missing data on global enzymatic             
diversity (which falls slightly below what our scaling laws would predict). ​T​opological            
measures that scale following power-law fits (y = y​0 x​β​, where β=β ​ind for individuals and               
β=β ​eco for ecosystems) include: average betweenness (β ​ind​=-1.1581, β ​eco​=1.136),        
average shortest path length (β ​ind​=-0.117, β ​eco​=-0.084), and number of edges          
(β ​ind​=1.219, β ​eco​=1.243). Both biochemical diversity measures also scale according to          
power-law fits: number of enzyme classes (a proxy for enzymatic diversity) (β ​ind​=1.294,            
β ​eco​=1.838), and number of reactions (β ​ind​=1.229, β ​eco​=1.319). Average clustering         
coefficient scales with a linear fit (y = mx + y​0​, m=m​ind for individuals and m=m​eco for                  
ecosystems) for individuals and ecosystems (m ​ind​=3.77×10​-5​, m ​eco​=3.32×10​-5​). These        
results rule out the possibility scaling laws are level-specific (Fig. 2, row A). The              
observed scaling laws confirm biochemical networks exhibit shared structure across          
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levels of organization, where network properties and diversity are largely determined by            
size as the relevant scaling parameter.  
 

 
 
Figure 3: Common scaling laws describe biochemical networks across levels of organization.            
Scaling of biochemical measures for individuals (left column) and ecosystems (right column)            
shares the same functional form for catalytic properties (such as enzyme and reaction diversity)              
and for topological measures. (A) Shown from top to bottom are number of reactions (​N​R​), and                
number of enzyme classes (​N​EC​). (B) Shown from top to bottom are average shortest path (​<l>​),                
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and average clustering coefficient (​<C>​). All measures are as a function of the size of the                
largest connected component (​N​Compounds​). Ecosystems include metagenomes (red) and the          
biosphere-level network (maroon). Fits for each dataset (solid lines) are shown with 95%             
confidence intervals (dashed lines). For reference, shown in light grey is data for all biochemical               
networks (individuals, ecosystems, biosphere). Additional measures are shown in         
Supplementary Fig. S3, and scaling for bipartite networks is shown in Supplementary Fig. S4.  
 

Real networks exhibit different scaling behavior than random        
chemical networks 
 
The observed universal scaling across individuals and ecosystems could be unique to            
biology, or it could arise due to self-organizing principles of chemistry. If the later is true,                
we should expect random chemical networks to exhibit the same fit functions as real              
biochemical networks do. Testing this requires comparison to random chemical          
networks, which much be generated with an appropriate control to be informative ​55​.             
Since we are interested in the global organization of biochemistry, we constructed            
control random chemical reaction networks (henceforth called random reaction         
networks) by merging randomly sampled reactions from the KEGG database (see           
Methods for details on network construction). This random sampling produces          
ensembles of random chemical networks which globally (over the ensemble) share the            
same chemistry as our biosphere. These networks are composed of biochemical           
reactions, but with no notion of individuals as ‘units’ of selection. Most highly connected              
nodes (participating in many reactions) are common to all three domains, e.g. ATP and              
H ​2​O ​27,56​. Therefore, this uniform sampling procedure yields random control networks           
that tend to include the most common compounds used by life.  
 

We performed the same analyses on the random reaction networks as real biochemical             
networks. We observe random reaction networks do not scale according to the same             
functional form as biochemical networks for many network and diversity measures (Fig.            
4). The fits for average clustering coefficient of random reaction networks favor a             
power-law function, compared to the linear function favored by the biochemical           
networks. Fits for assortativity favor a linear function for random reaction networks,            
whereas the assortativity of the biochemical networks was found to not scale with size              
(Supplementary Data S1). That is, the topology of random reaction networks scales with             
network size in a manner that is entirely distinct from that of real biochemistry, even               
though the two network ensembles (random and biological) share the same global set             
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of chemical reactions. In addition to these qualitative differences in scaling behavior we             
also observed statistically significant quantitative differences in the random chemical          
networks: scaling relationships for randomly sampled biochemical networks do not          
overlap with real biological individuals in many cases. ​T​opological measures in random            
chemical networks which scale according to power-law fits (y = y​0 x​β​, β=β ​ran for random                
reaction networks) include: average clustering coefficient (β ​ran​=0.6401), average        
betweenness (β ​ran​=-1.0595), average shortest path length (β ​ran​=-0.0543), and number of          
edges (β ​ran​=1.2459). Both biochemical diversity measures also scale according to          
power-law fits: number of enzyme classes (β ​ran​=1.10156), and number of reactions           
(β ​ran​=1.3590). Assortativity scales with a linear fit (y = mx + y​0​; m ​ran​=-4.5255). The              
differences in scaling behavior indicate the real and random biochemical networks           
represent different universality classes. We conclude the organizational properties of          
random chemical networks, and in particular the existence of shared biochemistry           
across all organisms on Earth, cannot alone explain the scaling laws observed for reach              
biochemical networks.  
 

 
Figure 4: Scaling laws distinguish biochemical networks from random networks across levels of              
organization. Catalytic diversity scaling (left column) and topological scaling (right column) for            
merged networks composed of randomly sampled reactions cataloged in KEGG (orange, right            
column). Measure and fit descriptions match those described in Fig. 3. For reference, all real               
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biochemical network data from Fig. 3 is shown in light grey. Additional measures are shown in                
Supplementary Fig. S5, and scaling for bipartite networks shown in Supplementary Fig. S6.  
 

Scaling-laws represent shared constraints re-emerging across      
levels 
Our results establish biochemistry exhibits universal scaling behavior across levels of           
organization not explainable by shared biochemistry across life alone. A natural next            
question is whether ecosystems inherit their properties from individuals, or whether they            
instead exhibit similar structure due to similar constraints re-emerging at different levels.            
To address this, we next sought to determine whether or not scaling behavior for              
individuals is statistically distinguishable from ecosystems. We assumed as a null           
hypothesis scaling relationships consistent across levels of organization and performed          
a permutation test​57​, using the scaling coefficient as the test statistic (see            
Supplementary methods on ​Fitting network measure scaling and permutation tests​). We           
find scaling relationships are not distinguishable for individuals and ecosystems when           
analyzing average node betweenness and average shortest path length (Fig. 5 and            
Supplementary Table 3). However, scaling coefficients are distinguishable for number of           
reactions, number of edges, number of enzyme classes, and mean clustering           
coefficient, with p-values < 10 ​-5 in most cases. Confidence intervals on scaling            
coefficients for ecosystem topology are narrower than for individuals, indicating          
ecosystem scaling is more tightly constrained. Although biochemical networks for          
individuals and ecosystems share similar scaling behavior, they are not drawn from the             
same distributions; allowing the possibility shared constraints operate at each level           
separately.  
 
We next generated simulated ecosystem-level networks by merging randomly sampled          
genome networks from each domain individually and from all three domains together            
(see Supplementary Materials and Methods for details on network construction). This           
allows us to determine how scaling behavior could be the same or different for an               
archaeasphere (archaea alone), bacteriasphere (bacteria alone), eukaryasphere       
(eukarya alone), or artificial ecosystems (all three domains) (Fig. 6). We find the             
functional form of scaling relationships are the same for real ecosystems and randomly             
merged organismal networks (hereafter called random genome networks). This is          
somewhat surprising given it is not in general true randomly selected subnetworks of a              
network have the same structure as the original network ​58 (e.g., individuals as             
subnetworks of ecosystems do not necessarily have to share the same structure). 
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Figure 5: Scaling laws for individuals and ecosystems are statistically distinguishable for some             
network and catalytic diversity measures. Shown are the results of a permutation test to              
determine whether properties of biochemical networks constructed from individual genomes          
scale differently than those constructed from metagenomes (ecosystems). For each network           
measure the test statistic is shown as a vertical dashed line, while the null distribution is shown                 
as a solid line (see Methods on ​Fitting network measure scaling and permutation tests for more                
details). Blue squares indicate scaling behavior is indistinguishable between levels of           
organization, while green squares show measures which can distinguish scaling of individuals            
from that of ecosystems.  
 
One explanation for shared structure of random genome networks and real ecosystems            
is the common chemistry shared across all life. But we have already ruled this out as                
the explanation for the observed scaling in real ecosystems in the previous section.             
Combining these results with those of the previous section therefore indicates the            
existence of individuals, as specific partitions of the biosphere-level network shaped by            
selection, are sufficient for networks of all sizes (from small individuals to large             
ecosystems) to exhibit the scaling behavior observed in real living systems. Whether            
biological individuals are ​necessary​, as opposed to being simply ​sufficient for recovering            
the observed scaling remains an open question. 
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Figure 6: Scaling laws for random genome networks generated by merging biochemical            
networks of randomly sampled individuals from the three domains of life. Shown are catalytic              
diversity scaling (left column) and topological scaling (right column). Measure and fit            
descriptions match those described in Fig. 3. Merged networks composed of individuals include             
bacteria only (light blue), archaea only (dark blue), eukarya only (blue-green), and all domains              
combined (purple). For reference, all real biological networks from Fig. 3 are shown in light grey.                
Additional measures are shown in Supplementary Fig. S5, and scaling for bipartite networks             
shown in Supplementary Fig. S6. We find ecosystem-level biochemical networks and random            
genome networks scale with the same fit, but are statistically distinguishable for most measures. 

 
 
We find scaling exponents and coefficients are similar for real ecosystems and random             
genome networks. However, we also checked whether they are statistically          
distinguishable, using the same permutation tests as before, and find they are for most              
measures (see Supplementary Table S2). Random genome networks and real          
ecosystems exhibit exponents distinguishing their scaling coefficients for most         
topological measures and for number of enzymes with p-values < 10 ​-5​. Scaling of             
betweenness is indistinguishable between the two datasets. These results indicate          
random genome networks differ from real ecosystems in many of the same ways             
individuals do. However, scaling of assortativity does distinguish random genome          
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networks from real ecosystems, whereas it does not distinguish individuals from           
ecosystems. Taken on the whole, these results suggest scaling behavior for           
ecosystems arises due to selection on network architecture existing at the level of             
ecosystems, and is not solely an emergent property due to merging individual-level            
networks.  

Network structure predicts evolutionary domain 

Any general organizing principles in biology must be consistent with the variation            
responsible for the diversity of life we are already familiar with. Since the three domains               
of life represent the most significant evolutionary division in the history of life ​59​, we               
therefore tested whether or not network structure can distinguish individuals sampled           
from the three domains (see Methods on ​Predicting evolutionary domain from topology​).            
To approach this question, we first investigated compounds shared across all domains            
to determine which compounds are distinct to each domain and which are universal to              
all three. We identified the contributions of each domain to the biosphere as a whole by                
comparing compounds at the biosphere-level to those across the networks of           
individuals, identified by evolutionary domain. We do so by identifying which compounds            
are unique to each domain and which are shared across all three domains, determined              
from annotated data in the 22,559 genomes in our dataset. At the biosphere-level,             
0.44% of compounds are unique to archaea, 3.14% are unique to bacteria, and 17.08%              
are unique to eukarya, reaffirming each domain represents significantly different          
metabolic strategies and genetic architectures, as is well established by earlier work            
(Hug et al. 2016). However, it is also well established all life on Earth shares a common                 
set of core-biochemistry ​60​: a higher percentage of compounds, constituting 37.23% of            
the biosphere-level network, are shared across all three domains in our dataset (Fig. 7),              
including hubs such as ATP, and H ​2​O as mentioned previously. Since many more             
chemical compounds are shared across all three domains than are unique to each, one              
might a priori expect the organization of these compounds into biochemical networks to             
not​ be predictive of domain. 
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Figure 7: A biosphere-level chemical reaction network, constructed from the union of all 22,559              
genomic networks in our study. Each panel shows the same biosphere-level network where             
nodes are white and edges are grey. Node size indicates its degree within the network. Colors                
indicate biochemical compounds used in (a) all three domains of life (yellow), (b) in archaea               
only (pink), (c) in eukarya only (green) and (d) in bacteria only (blue). Although many more                
chemical compounds are shared across all three domains than are unique to each, the              
organization of these compounds into biochemical networks is distinct for each domain (see Fig.              
8). 
 
 
We find the opposite to be true: despite a large fraction of shared biochemical              
compounds, the organization of those compounds into networks is distinct for each            
domain. We find in most cases average topology normalized to size can reliably predict              
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evolutionary domain (Fig. 8). In many cases prediction accuracy is > 80%, when only a               
single topological measure is used. By contrast, topology or size alone provides            
significantly less accurate predictions. This demonstrates biochemical network structure         
can be predictive of the taxonomic diversity of individuals. Combined with our other             
results this suggests the same biochemical network properties (topology and catalytic           
diversity) driving regularity ​across levels of organization can also be predictive of major             
evolutionary divisions ​within a given level, providing evidence the global organization of            
biochemistry is indeed consistent with a signature of selection.  
 

 
 
Figure 8: Catalytic diversity and biochemical network topology can predict evolutionary domain.            
Shown is the estimated prediction accuracy (y-axes) for each measure and each domain. The              
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colors of each bar indicate prediction accuracy of a given measure for a particular domain: red                
is comparable to random guessing (y<=33% accuracy); yellow is better than random but not              
completely predictive (33%<y<=67%); green is predictive of domain (67%<y). The horizontal           
line indicates 80% prediction accuracy.  
 

Discussion 
 
Our analyses reveal biochemical networks display common scaling laws governing their           
topology and biochemical diversity, which are independent of the level of organization            
they are sampled from and not explained by the structure of random chemical networks.              
We were also able to confirm the same regularities occurring across levels of             
organization within the the biosphere can be predictive of evolutionarily divisions within            
a level, using the three domains as an exemplar. Collectively, our results indicate a              
deeper level of organization in biochemical networks than what is understood so far,             
providing a new framework for understanding the planetary-scale organization of          
biochemistry and how selection structures nested hierarchies.  
 
A key implication of our analysis is the importance of hierarchical levels and selectable              
units in shaping the universal scaling laws observed across biochemical networks.           
Scaling laws often emerge in systems where universal mechanisms operate across           
different scales, yielding the same effective behavior independent the specific details of            
the system. It is in this sense scaling laws can uncover universal properties, motivating              
their widespread use in physics and increasing application to biology ​42,46,48,61–64​. Here            
we have shown the relevant scaling parameter for biochemical organization is the            
number of biochemical compounds (in a network representation this is the size of the              
network). Individuals, ecosystems and the biosphere obey much the same scaling           
behavior for biochemical network structure, indicating the same universal mechanisms          
could operate across all three levels of organization. In physics, this kind of universality              
usually implies there is no preferred scale or basic unit. However, in the biological              
example uncovered here, the presence of specific scaling relations observed in real            
biochemical networks can be explained by biological individuals as a basic ‘units’. That             
is, somewhat paradoxically individuals seem to be sufficient for biology to exhibit the             
observed scaling behavior across levels. Random chemical networks, even if they share            
the same global biochemistry as our biosphere, exhibit different scaling behavior,           
perhaps reflective of differences in the universality classes of biochemical networks and            
random chemical networks.  
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Future work should explore the connections between the scaling relationships reported           
here and other work characterizing scaling behavior across living processes. For           
example, our results indicate ecosystems are more tightly constrained than individuals,           
better displaying the regularities of biochemical network architecture. However,         
projecting ecosystem-level scaling to the biosphere as a whole does not recover the             
observed network properties for the biosphere-level network. Recently, scaling laws          
describing microbial diversity were used to predict Earth’s global microbial diversity, and            
in particular to highlight how much diversity remains undiscovered ​44​. It could be an              
analogous case here, where scaling relations predict missing enzymatic diversity in the            
biosphere. Furthermore, one area of intensive investigation is allometric scaling          
relations​44,61,64​, including how shifts in metabolic scaling could be indicative of major            
transitions in evolutionary hierarchies ​42​. Allometric scaling laws are derived by viewing            
living systems as localized physical ​objects with energy and power constraints. Here,            
scaling emerges due to an orthogonal view of living systems as distributed ​processes             
transforming matter within the space of chemical reactions. The connection between           
these different aspects of scaling in living organization remain to be elucidated.  
 
A final implication of our work are the consequences for our understanding of the origin               
of life, before the emergence of species. The existence of common network structure             
across all scales and levels of biochemical organization suggests a logic to the             
planetary-scale organization of biochemistry​65​, which - if truly universal - would have            
been operative at the origin of life. An important test of this hypothesis will be to                
determine whether the same global network structure, characterized by the same           
scaling laws, described Earth’s biosphere throughout its evolutionary history. If this is            
indeed the case, the emergence of individuals (as selectable units) would have played             
an important role in mediating a transition in the organization of Earth’s chemical             
reaction networks. Even if we could assume the same planetary-scale chemistry for a             
lifeless world, we should expect to see dramatically different scaling for a hierarchically             
organized biosphere of nested evolutionary units ​66,67​. An important question for future            
work is identifying the planetary-drivers of Earth’s biosphere-level biochemical network          
structure and how this has structured living systems across nested levels over            
geological timescales. This will require characterizing the organization of         
planetary-scale biochemistry, as developed here, within the broader context of studying           
a planet’s geologic and atmospheric evolution. It remains an open question as to what              
will ultimately explain the universal structure of Earth’s biochemical networks, or           
whether we should expect all life to exhibit similar scaling behavior, even on other              
worlds.  
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Methods and Materials  
Obtaining genomic and metagenomic information 

Genomes (PATRIC)  
Archaea and bacteria genomic datasets were obtained from PATRIC​30​. Enzyme          
commision (EC) numbers were obtained from “ec_number” column in the pathway data            
of each taxon. Eukarya genomic datasets were obtained from the Joint Genome            
Institute’s (JGI) integrated microbial genomes database and comparative analysis         
system (IMG/M)​31​. All eukarya data used in this study was sequenced at JGI. All EC               
numbers used to construct eukarya biochemical networks were obtained from the list of             
total enzymes associated with each eukaryote. EC numbers were used in conjunction            
with KEGG enzyme and reaction data in order to build biochemical networks for each              
taxon. 

Metagenomes (JGI)  
Metagenomic data was obtained from JGI IMG/M(Markowitz et al. 2012). All           
metagenomic data used in this study was sequenced at JGI. All EC numbers used to               
construct metagenomic biochemical networks were obtained from the list of total           
enzymes associated with each metagenome. These EC numbers were used in           
conjunction with KEGG enzyme and reaction data in order to build biochemical            
networks for each metagenome. 

Biosphere 
To create the biosphere network, we included all 8,658 enzymatically catalyzed           
reactions in KEGG.  

Network Construction 
 
In this study, we construct three different types of biochemical reaction networks:            
biological networks, random genome networks and random reaction networks. These          
biochemical reaction networks consist of chemical compounds that are involved in           
biochemical reactions: two chemical compounds are connected to each other when one            
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is a reactant and the other is a product of the same biochemical reaction. The process                
to encode a biochemical reaction as the network representation can be described with             
the diagram below as follows:  
 

(a) Catalyzed Reaction  (b) Bipartite Network (c)  Unipartite Network 

 

 

  
 
(a) Suppose that a chemical reaction R catalyzed by an enzyme E is given, which               
transforms chemical compounds C1 and C2 to C3 and C4. (b) The reaction, R, can be                
described in a reaction diagram, or a directed bipartite network representation, where            
the reactants C1 and C2 are connected to the reaction node and the products C3 and                
C4 are connected as products from the same reaction. In principle, this biochemical             
reaction, R, can happen in opposite direction depending on the environment. Therefore,            
in bipartite network representation, the edges connecting chemical compounds and the           
reactions are considered as bidirected, which is equivalent to undirected for our            
analysis. (c) The unipartite network representation of the reaction, R, ​shows how the             
reaction information is embedded in the network. In the unipartite network           
representation, nodes are substrates and a reactant is connected directly to a product if              
they are connected to the same reaction in the corresponding reaction diagram.  
 
Regardless of the types of networks, all chemical network representations in this paper             
follow the same methods. Therefore, the distinctions between different types of           
biochemical reaction networks come from how we select reactions to be included in             
each network, which is described below. Note that all edges in the networks in this               
paper are represented as undirected and unweighted since our interests lie on the             
presence or absence of particular reactions in given networks and, in principle, all             
biochemical reactions can happen in both directions depending on the environment. 

Biological Networks  
For each biological network, we include all catalyzed biochemical reactions annotated in            
each genome or metagenome. More specifically, we consider three different levels of            
organization: individual organisms, ecosystems and the biosphere. For the construction          
of individual networks, we utilize the genome data of 21,637 bacterial taxa and 845              
archaeal taxa from the Pathosystems Resource Integration Center (PATRIC) ​30​, as well           
as 77 eukaryotic taxa from the Joint Genome Institute (JGI)​31​. From this data, we obtain               
the set of classes of enzymes for each genome. All reactions catalyzed by this set of                
enzymes and present in the ​Kyoto Encyclopedia of Genes and Genomes (KEGG)​32            
database are included in the network representation of the corresponding genome.           
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Similarly, for the network representation of each of the 5587 ecosystems from JGI, we              
include all reactions catalyzed by the ecosystem’s coded enzymes, provided they are            
catalogued in the KEGG dataset. ​Finally, for the biosphere network, we include all 8,658              
enzymatically catalyzed reactions in KEGG.  

Random Genome Networks 
To construct a random genome network, we sample individual networks uniformly at            
random from the set of all individual organisms in our data set and merge them into one                 
random genome network. When a set of multiple individual networks are merged, every             
node and edge present in any individual network are added to the resulting network with               
equal weight regardless of how many individual networks include them. We built 4 types              
of random genome networks with individual networks sampled from only archaea, only            
bacteria, only eukarya and from integration of all the three domains. In total, we              
generated 2,000 random genome networks from 730 individual archaea networks,          
2,000 from 21,213 individual bacteria networks, 770 from 77 individual eukarya           
networks, and 4770 from merging all individual networks in the three domains.  

Random Reaction Networks 
In this paper, random reaction networks are generated by merging randomly sampled            
reactions from all biochemical reactions from KEGG data regardless of whether a            
known enzyme is cataloged for the reaction. We note 31.46% of chemical compounds             
in the biosphere network are not included in the genomic data in our study, therefore               
our construction uniformly sampling the entire KEGG database, the random reaction           
networks can include enzymatically catalyzed reactions not included in our genomic           
data. Nonetheless our sampling procedure is biased to generate networks with similar            
biochemistry to that of the genomic networks, due to reasons explained in the main text               
(compounds common to all three domains tend to be highly connected (participate in             
many reactions) such that a uniform sampling procedure yields random networks biased            
to include the most common compounds used by life). Most biological networks for real              
individual organisms and ecosystems contain 200 - 5000 reactions. Hence, to build            
similar size of random reaction networks to real individual organisms and ecosystems,            
we selected the total number of reactions in each network from the range between 200               
and 5000, sampling for each size the appropriate number of reactions from KEGG data              
uniformly and at random. Merging these into networks, we constructed 5,000 random            
reaction networks in total.  

Topological Measures  
To characterize the topology of biochemical networks, we utilized some of the most             
frequently used topological measures. The detailed descriptions about these topological          
measures can be found in ​37​. Below, we briefly review these measures and related             
terms. For computing each measure, we used functions provided by Python software            
package, NetworkX ​68​. The topological measures implemented in this paper include          
average degree, average clustering coefficient, average shortest path length,         
assortativity (degree correlation coefficient), and node betweenness.  
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We calculate all network measures on the largest connected component (LCC) of each             
network, for the following reasons: 1. Several network measures only make sense to             
calculate on connected components (e.g. average shortest path), focusing on the LCC            
therefore permits all network measures implemented in our study to be calculated for all              
networks; 2. The largest connected components have the vast majority of nodes (>90%)             
for the vast majority of networks in each dataset (the only exception is the random               
reaction networks, of which only ~76% have a largest connected component with at             
least 90% of a network’s nodes). ​See Table S1 ​and Fig. S1 ​for distribution of sizes of                 
the LCC by dataset. 

Degree 
The degree of a node , is the total number of connections between and rest of      i  ki          i     
the network. The average degree in this paper is average of for all nodes in     < k >        ki     
LCC of a given network.  

Clustering coefficient 
The local clustering coefficient for a node , measures the local density of edges in       i  C i         
a network by considering the number of connected pairs of neighbors of . Hence, is            i   C i   
defined as, 
 

 C i = 2Li
k (k −1)i i 

 
 

where is the degree of node and is the number of connections between ki       i   Li        
neighbors of . The large values of indicates the highly interconnected  i      C i      
neighborhood of . is measured by using a Networkx method ​clustering(..) and ​we  i  C i            
computed , the average of ,  over all nodes in LCC of each network.< C  > C i   

Shortest path length 
The shortest path length, between a given pair of two nodes and is defined as    lij         i   j     
the minimum number of edges connecting the two nodes in a given network. is             lij   
measured by using a Networkx method ​shortest_path_length(..)​. ​We calculated the          
average shortest path length, > by averaging for every pair of nodes in LCC of a    < l    lij           
given network.  

Assortativity (degree correlation coefficient)  
Assortativity measures the tendency of two nodes with similar properties to be            
connected in a given network. The assortativity coefficient proposed by Newman​69 is            
formulated as follows: 

 r =  σ  σa b

xy(e − a b )∑
 

xy
 xy x y
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where is defined as the fraction of edges between a node with value and one with exy             x     
value for a given node attribute, and ​and ​are the fraction of edges coming into y        ax   by         
and going out from nodes of value ​and respectively. and are the standard       x   y   σa   σb     
deviations of the distributions of ​and . When the considered attribute of nodes is     ax   by         
their degree, the assortativity becomes the degree correlation coefficient, the correlation           
between the degrees of nodes on either side of an edge. Hence, for undirected              
networks in our study, and . If , the network is assortative,    bax =  y     σ  σσa b =   

2    0r <       
i.e. nodes with similar degree tend to be connected to each other. If , ​the network              0r >     
is disassortative, i.e. nodes in it tend to be paired to other nodes with different degrees.                
For an arbitrary network, . ​T​o measure the assortativity , ​we used a    − 1 ≤ r ≤ 1        r     
Networkx method ​degree_assortativity_coefficient(..)​.  

Betweenness 
Betweenness centrality of a node,  is defined as ​70​,Bi   
 

Bi =  ∑
 

s, t ∈ V
σ(s, t)

σ(s, t | i)  

 
where is the set of all nodes in a network, and and denote the number V           (s, )σ t  (s,  |i)σ t    
of all shortest paths from to , and the number of the shortest paths through a given     s   t            
node , respectively. Replacing with for an edge , one can also i    (s,  |i)σ t  (s,  |e) σ t    e     
formulate the edge betweenness. measures degree of importance of for the    Bi      i    
interactions between subsets of a given network. To compute , Networkx methods         Bi    
betweenness_centrality(..) is implemented and is average of over every    < B >     Bi    
node in LCC of a given network.  
 

Fitting network measure scaling and permutation tests 
 
For each network measure, a scaling relationship was fit as a function of the size of the                 
largest connected component (LCC) of the network. For each measure, three different            
models were tested, a power law of the form y = y​0 x​β​, a linear relationship of the form y                    
= βx + y​0​, and a quadratic function of the form y = β ​1​x + β ​2​x​2 + y​0​, for both the                     
assortativity measures, the preferred fit was also compared to a constant y = β. The               
preferred model was chosen as the one which minimized cross validation errors,            
according to 10-fold cross validation, across the entire data set.  
 
Once a model was chosen, a simulated permutation test was performed to determine             
whether the scaling relationship for a given attribute was the same for ecosystems and              
individuals or if it was distinct ​57​. We took as the null hypothesis the scaling relationship                
across different levels of organization are constant, and used the fitted scaling            
parameters (for individuals and ecosystems) as the test statistic. We used fitted            
1,000,000 resamples of the complete dataset to estimate the likelihood of the fit for              
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individuals (or ecosystems) to have been drawn randomly from the complete dataset.            
We performed this test for both the ecosystem and individuals, if there was a difference               
in the estimated likelihoods we took the greater of the two. These likelihoods are the               
(two-sided) p values reported in ​Table S2 ​. The same procedure was followed to             
determine the distinguishability of ecosystem networks with the randomized controls          
(random genome networks, and random reaction networks). Random reaction networks          
were distinguishable from ecosystems networks for all measures, with p values = 10​-6​. 
 
To estimate the true scaling parameters, and 95% confidence intervals a bootstrap            
sample of 100,000 was used for each network attribute ​57​. If the permutation test              
allowed us to reject the hypothesis of a constant scaling relationship across individuals             
and ecosystems to a confidence greater than 0.01, the scaling parameters were            
estimated separately for the individuals and ecosystems, otherwise the complete          
dataset was fit. The scaling parameters (and confidence intervals) for distinct domains            
were also estimated using a bootstrap of 100,000 samples.  
 
For scaling fits and confidence intervals see ​Table S2​. 

Predicting evolutionary domain from topology 
 
To demonstrate topological features of genomes from different domains are distinct,           
multinomial regression was used. Specifically, we implemented models where the          
domain of the network was the response class and a single topological feature,             
normalized by the size of the largest connected component (LCC) of the network was              
the dependent variable. We found topological features of networks alone were often not             
predictive of the domain but the ratio of the topological properties to the size of the                
network provided a more accurate prediction. Prior to the regression these normalized            
topological measures were scaled and centered ​57​. The regression was implemented in            
base R using the ​glm(..), function. In order to control for over fitting the training data                
was composed of an equal number of samples from each domain. In particular only 35               
networks of each domain were sampled and the model was tested on the remaining              
data. This process was repeated 100 times and the average model error is reported in               
the ​main text figure 8​. 
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