
 1 

An analytical framework for understanding regulatory novelty accompanying 

allopolyploidization 

 

 

Guanjing Hu1 and Jonathan F. Wendel1* 

 
1Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 

50011 

 

* Author for Correspondence: Jonathan F. Wendel, Department of Ecology, Evolution, and 

Organismal Biology, Iowa State University, Ames, IA 50011, USA, Tel: 515-294-7172, Fax: 

515-294-1337, E-mail address: jfw@iastate.edu 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/212092doi: bioRxiv preprint 

https://doi.org/10.1101/212092


 2 

Abstract 

Allopolyploidy is a prevalent process in plants, having important physiological, ecological, and 

evolutionary consequences. Massive, genome-wide transcriptomic rewiring in response to 

genomic merger and doubling has been demonstrated in many allopolyploid systems, 

encompassing a diversity of phenomena, including homoeolog expression bias, genome 

dominance, expression-level dominance, and revamping of co-expression networks. Here we 

present an analytical framework to reconcile these patterns of regulatory novelty as governed by 

distinct sets of intra- and inter-subgenome cis-trans relationships. This approach is a novel 

extension of classic allele-specific expression analysis to incorporate and distinguish the separate 

effects of parental regulatory interactions as well as further complications at the allopolyploid 

level. We demonstrated that the cis-trans framework devised not only offers new perspective on 

disentangling genetic from epigenetic and higher-order effects that impact gene expression, but 

also provides the conceptual basis and tools to unify recently presented models for both genome-

wide expression dominance and biased fractionation in allopolyploids. 

Keywords: allopolyploidy, allele-specific expression (ASE), cis and trans, homoeolog 

expression bias, non-additive expression, expression-level dominance 
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Polyploidy, or whole-genome duplication (WGD), is exceptionally common in plants, having 

important physiological, ecological and evolutionary consequences (Stebbins 1940; Levin 1983; 

Ramsey and Schemske 2002; Leitch and Leitch 2008; Van de Peer et al. 2009; Madlung 2013; 

Soltis et al. 2014; Van de Peer et al. 2017; Soltis and Soltis 2016). Two types of polyploidy have 

long been recognized, autopolyploidy, resulting from the multiplication of one progenitor 

chromosome set, and allopolyploidy, involving hybridization and duplication of divergent 

parental genomes, classically from different species (Wendel and Doyle 2005). Allopolyploidy 

in particular is thought to provide avenues for regulatory novelty and hence phenotypic 

innovation, as evidenced by myriad non-additive and non-Mendelian responses, including gene 

loss and silencing (Schnable et al. 2011; Freeling et al. 2012; Liu et al. 2014; Mirzaghaderi and 

Mason 2017; Koh et al. 2010; Szadkowski et al. 2010; Tate et al. 2009; Anssour et al. 2009; 

Buggs et al. 2009; Eilam et al. 2009); activation of transposable elements (Senerchia et al. 2015; 

Parisod et al. 2010; Kawakami et al. 2010); epigenetic modifications (Song et al. 2017; Jackson 

2017; Madlung et al. 2002; Chen 2007; Salmon et al. 2005; Rapp and Wendel 2005; Bottley 

2014; Fulnecek et al. 2009; Kovarik et al. 2008; Yu et al. 2010; Shcherban et al. 2008; Wang et 

al. 2017; Zhao et al. 2011); and massive, genome-wide transcriptomic rewiring. The latter 

encompasses a diversity of phenomena, including biased expression of homoeologs on a genic 

(Yoo and Wendel 2014; Flagel et al. 2008; Akama et al. 2014; Combes et al. 2013; Wang et al. 

2016) or even genomic (“genome dominance”) scale (Edger et al. 2017; Yang et al. 2016; Zhang 

et al. 2015; Flagel and Wendel 2010; Schnable et al. 2011; Garsmeur et al. 2014); the poorly 

understood phenomenon of “expression level dominance” (Rapp et al. 2009; Yoo et al. 2013; 

Grover et al. 2012; Zhang et al. 2016; Akhunova et al. 2010; Liu et al. 2014); and the 

modification of duplicated gene co-expression networks (Gallagher et al. 2016; Hu et al. 2016). 

A hallmark of these phenomena is deviation from vertical transmission of preexisting patterns, or 

the “parental legacy”, inherited from the two progenitors (Buggs et al. 2014). These deviations 

collectively represent regulatory novelty that either accompanied or evolved following genome 

merger and doubling.  

 

Notwithstanding this progress in our understanding of expression alteration accompanying 

allopolyploidization, there remains a need to develop further an encompassing conceptual 

framework. Here we propose such a framework based on the characterization of regulatory 
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divergence between parental species and subsequent changes at the allopolyploid level. In terms 

of parental divergence, identifying the types of regulatory changes that have evolved between 

diploids has long been a focus of classical allele-specific expression (ASE) analysis (Wittkopp et 

al. 2004). That is, allele-specific expression in F1 hybrids provides a readout of relative cis-

acting activity in a common trans environment, whereas expression differences between parental 

species not attributed to cis-acting divergence are inferred to be caused by trans-acting 

variations. However, how interactions among divergent regulatory alleles affect gene expression 

in natural hybrid and allopolyploid species remain poorly understood, so uncovering the 

interplay between the ever-evolving cis and trans elements is critical for understanding 

phenotypic innovations that emerge following genomic merger and doubling. Here we extend the 

classical ASE model to the polyploid level, by considering the duplicated sets of cis-trans 

relationships initiated by interspecific hybridization. 

 

As illustrated in Figure 1A, we use the cotton (Gossypium L.) allopolyploid system as an 

example, as it is illustrative of many of the model systems used today in studies of polyploidy. 

Allotetraploid (“AD genome”) cottons originated ~1-2 million years ago from a hybridization 

event between two diploid species (“A” and “D”) followed by whole-genome duplication 

(Wendel and Grover 2015; Wendel and Cronn 2003; Wendel et al. 2010). The descendants of the 

parental diploid species remain extant (“A2” and “D5”), from which a synthetic F1 hybrid was 

generated; this has been used to disentangle expression changes due to hybridization from those 

arising later from polyploidy and subsequent evolution (Yoo et al. 2014; Flagel et al. 2008; 

Flagel and Wendel 2010). For the synthetic F1 hybrid and natural tetraploid cottons, the 

expression of each pair of duplicated genes (homoeologs “At” and “Dt”, with “t” denoting 

subgenome) is governed by four sets of cis-trans relationships, including two intra-subgenome 

interactions derived from each of the parental diploids (aa and dd), and two newly formed inter-

subgenome interactions (ad and da).  

 

According to the ASE model (Wittkopp et al. 2004), regulatory divergence acting only in cis 

between the parental diploids will be mirrored as allele-specific expression in the hybrid and 

polyploid (At/Dt = A2/D5, where At, Dt, A2 and D5 refer to expression levels for those genic 

copies; Figure 1B).  Any deviations from the parental divergence (i.e., At/Dt ≠ A2/D5) can be 
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assigned to the influence of trans variation, either acting only in trans (At/Dt = 1, because of the 

common trans environment) or by variants acting both in cis and trans (At/Dt ≠ 1). The latter 

combinatorial effect may also be invisible prior to interspecific hybridization (A2/D5 =1 and 

At/Dt ≠ 1), as cis and trans variants may be compensatory. Such “compensatory” patterns have 

been suggested to result from stabilizing selection in order to maintain conserved gene 

expression during parental divergence (Shi et al. 2012; Tirosh et al. 2009), whereas cross 

interactions between the independently derived genetic variants give rise to immediate 

expression novelty following genomic merger. In comparison with the “cis only” and “trans 

only” effects that have been extensively studied in plant hybrid and allopolyploid systems (Shi et 

al. 2012; Lemmon et al. 2014; Xu et al. 2014; Combes et al. 2015; Chaudhary et al. 2009; 

Springer and Stupar 2007; Bell et al. 2013; He et al. 2016), understanding the molecular basis of 

the combinatorial effects of cis and trans variants has been challenging. For example, did the co-

evolution of cis and trans elements occur in one or both diploid species? How did they evolve 

from their ancestral states? How do “foreign” (those from different genomes or species) and 

“native” (from the same genome or species) interactions differ? Is it possible and/or to what 

extent are “native” and “foreign” interactions preferred? That is, are these relationships 

asymmetrical? The common trans environment shared by both homoeologs has made these 

questions conceptually difficult to investigate. 

 

Therefore, let us consider more specifically how trans regulators of different origins act on their 

cognate and cross-genome targets. For instance, expression of the At homoeolog is determined 

through its own cis elements interacting with both the A- and D- genome trans factors 

(represented by aa+da), while expression in the diploid parent is attributed to only the cis-trans 

relationship native to the A-genome diploid (aa). Thus, the contrast between the homoeolog-

specific expression (At/Dt) and parental expression divergence (A2/D5) can be modeled as: 

!" = log'(
At
Dt
) − log'(

A2
D5
) = log' 0

11 + 31
33 + 13

4 − log' 5
11
33
6 = log' 7

1 + 3111

1 + 13
33

9										[Eq. 1] 

where Hr represents the impact of hybridization on relative homoeolog expression, and is also 

equivalent to the additive inverse of the trans effect (i.e., log'(
@A

BA
) − log'(

@'

BC
)) estimated in 

classic ASE analysis (Figure 1B). This acknowledges that hybridization inherently affects 
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homoeolog-specific expression in trans, dependent on the relative effects of inter- versus intra-

subgenome interactions. Although the foregoing algebraic inference is not substantially different 

from that of classic ASE analysis, the perspective is nonetheless meaningful. Not only is the 

impact of hybridization, Hr, conceptually distinguished from how cis and trans variants 

contribute to parental divergence, but Eq. 1 also presents a method to quantify how inter-

subgenome interactions differentially regulate each homoeolog relative to intra-subgenome 

interactions (da/aa vs. ad/dd). As summarized in Figure 1C, the impact of hybridization varies 

across plant systems, and correlates with the amount of expression divergence between parental 

species. A histogram of significant Hr , as exemplified for cotton (Yoo et al. 2013), is indicative 

of asymmetrical regulation by cross-genome interactions; that is, inter-subgenome interactions 

have a stronger relative effect on At than Dt. This realization focuses attention on inter-

subgenome interactions, which are most relevant to gene expression alteration accompanying 

hybridization per se.  

 

In comparison with the trans action of hybridization per se, how genome doubling alters 

homoeolog gene expression is complicated by multiple issues of scaling and stoichiometry. With 

the increase of DNA content accompanying allopolyploidy, imperfect proportionalities and non-

linear relationships with cellular and nuclear volumes set in motion a cascade of stoichiometric 

imbalances (among, for example, transcriptional machineries and transcription factors), which 

collectively alter gene expression. Because the physiochemical responses of individual 

homoeologs vary from gene to gene, it is not yet possible to systematically predict how 

stoichiometric imbalances triggered by genome merger and doubling will impact regulatory 

interactions. It does appear, however, that the increased range of homoeolog-specific expression 

(when the variance of @A
DEEF

BADEEF
 is larger than @A

GH

BAGH
) is expected, as reported in cotton (Yoo et al. 

2013), wheat (Wang et al. 2016) and rice (Xu et al. 2014; Sun et al. 2017). 

 

In a cis-trans framework, genome doubling can be modeled by contrasting homoeolog-specific 

expression between the corresponding allopolyploid and the F1 hybrid. The impact of genome 

doubling I"  is as follows: 
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I" = log'(
AtJKKL

DtJKKL
) − log'(

AtMN

DtMN
) = log' O

11P + 31Q

33Q + 13Q
R− log' 0

11 + 31
33 + 13

4

= log' O
11P + 31Q

11 + 31
R − log' O

33Q + 13Q

33 + 13
R																	[Eq. 2] 

 

where the cis-trans interactions in allopolyploids are marked with accent as 11P , 31Q , 33Q  and 13Q. 

The same notion applies to the overall effect of allopolyploidization, S": 

 

S" = log'(
AtJKKL

DtJKKL
) − log'(

A2
D5
) = log' O

11P + 31Q

33Q + 13Q
R− log' 5

11
33
6

= log' O
11P + 31Q

11
R − log' O

33Q + 13Q

33
R																	 [Eq. 3] 

 

Thus, the emergence of polyploid-specific patterns (I" ≠ 0 and/or S" ≠ 0) depends on the 

alteration of any or all cis-trans interactions, which in natural allopolyploids will ensue from a 

spectrum of stoichiometric responses, epigenetic remodeling and genetic changes. 

 

How these changes collectively affect regulatory interactions are relevant to several of the 

principal generalizations about gene expression in allopolyploids. For example, under what 

circumstances do these interactions preferentially shift homoeolog expression ratios towards one 

progenitor or the other (e.g. more @A
DEEF

BADEEF
> 1 than @A

DEEF

BADEEF
< 1)? In other words, how might altered 

cis-trans interactions in allopolyploids account for “genome dominance” (Schnable et al. 2011)?  

Similarly, how might this perspective shed light on the observation of preferential or biased 

transcription of one of the two co-resident genomes in an allopolyploid (“unbalanced homoeolog 

expression bias” at the genomic scale (Grover et al. 2012))? 

 

One possible insight into the mechanisms underlying these dynamics is offered by Bottani et al. 

(2018), who adapted a kinetics model of transcription factor (TF) binding (Bost and Veitia 2014; 

Chu et al. 2009) to allopolyploidy. They demonstrated that when cross-regulation is involved, 

parental difference in TF affinity rather than concentration is the key driver of differential 

transcription response for homoeologous target genes. Thus, a dominant effect of the parental TF 
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that displays higher affinity presents a quantitative explanation for “gene dominance” 

immediately after allopolyploidy. Next, the authors expanded the simple one-step model of TF 

binding to two sequential reactions – first the establishment of chromatin accessibility, then 

transcription factor binding to the accessible promoter site to activate transcription (Figure 1D). 

This additional epigenetic component thereby provides a testing ground to extend gene-level 

dominance to the genomic/epigenomic scale. For example, for the parental genome with a larger 

euchromatic content, more nonfunctional binding sites are accessible, hence creating a higher 

noise/signal level from the perspective of TF binding. Thus, TF binding affinities and/or 

concentrations are expected to scale with accessible euchromatin content, all else being equal, in 

which case, higher TF binding affinity is a likely outcome. As Bottani et al. (2018) showed, 

when homoeologous TF affinities are proportional to the ratio of euchromatic content, the 

parental genome with larger euchromatic content is destined to display higher transcription 

activities following genomic merger and doubling, hence becoming the “dominant” subgenome 

in allopolyploids.  

 

It is worth nothing that this quantitative model is, to some extent, in line with the prevailing 

explanation for biased homoeolog expression and biased genome fractionation, based on the 

“genomic legacy” of TE contents (Wendel et al. 2018; Steige and Slotte 2016). This explanation 

has been conceptualized in recent years from accumulating literature on chromatin modification, 

TE content, and small RNA biology (Springer et al. 2016; Diez et al. 2014; Zhang et al. 2017; 

Renny-Byfield et al. 2017; Yang et al. 2016). Phrased simply, the different parental states of TE 

load and distribution between sub-genomes lead to differentiated epigenetic control (e.g. small 

RNA populations and preferential recruitment of epigenetic modifiers) for homoeolog 

expression, and as a consequence the homoeolog physically closer to epigenetically silenced TEs 

is more likely to be repressed via localized heterochromatinization, and even lost in the longer 

term (hence, “biased fractionation”; see recent review by Wendel et al. (2018)). 

 

A key difference between the euchromatin/TF model (Bottani et al. 2018) and the TE model 

(Wendel et al. 2018; Steige and Slotte 2016), which also makes them complementary to each 

other, is that the euchromatin/TF model is dependent on a difference in TF affinities and 

euchromatin content that co-evolved in parental genomes, whereas the TE/biased-fractionation 
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model mainly considers differences in chromatin accessibility and gene expression mediated by 

parental TE adjacency (Figure 1D). What the two models share is the requirement of inheritance 

of differentiated parental conditions, one being TF affinity while the other is TE adjacency. By 

analogy to studying the impact of allopolyploidy on homoeolog expression ratios (S"), as defined 

above, the effects of inheritance of these parental states can be tested by, with superscripts 

denoting partitioning of mechanistic effects, S"YZ ≅ 0 for the measure of TF affinity, and S"
\]^ ≅

0 for TE adjacency and/or epigenetic accessibility. In reality, both scenarios are likely to be 

intertwined in natural situations, and may even be in conflict with each other. For example, two 

homoeologs may differ in terms of regulator TF affinity (for whatever reason), but the 

homoeolog with stronger TF binding may still be expressed at a lower level due to a nearby TE 

insertion. On the other hand, two homoeologs that differ in promoter accessibility may still be 

equally expressed, if stronger TF affinity is newly gained for the less accessible homoeolog, or 

the less accessible promoter has gained more functional binding sites since allopolyploidy. 

Obviously, a co-examination of both scenarios is most likely to uncover the determinative 

mechanisms for homoeolog expression divergence.  

 

The foregoing considerations present both a useful cis-trans framework and an experimental 

agenda for disentangling genetic from epigenetic and higher-order effects that impact gene 

expression in hybrids and allopolyploids. Of course, translating this conceptual structure into 

empirical estimates will require more than just expression data, but access to genetic and 

epigenetic regulatory information is now within reach in many systems. For example, a spectrum 

of technologies is available to interrogate transcription factor binding to promoters (Bartlett et al. 

2017; Jin et al. 2017; Landt et al. 2012; Weirauch et al. 2014), and similarly, a range of 

chromatin assays (Lane et al. 2014; Celniker et al. 2009; Lu et al. 2017; Jiang 2015; Zentner and 

Henikoff 2012) are now practical that permit the assessment of the relative accessibility of 

homoeologs and orthologs to the transcriptional machinery; one was recently applied in maize to 

connect chromatin states with biased fractionation following ancient polyploid event (Renny-

Byfield et al. 2017). It is the joint application of these technologies with expression data, using 

the conceptual partitioning described here, which will facilitate new understanding of duplicate 

gene behavior in hybrids and polyploids.  
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In addition to homoeolog-specific expression patterns of expression bias and genome dominance, 

several key phenomena that characterize novel patterns of aggregated homoeolog expression 

have also been extensively studied, such as additive and non-additive expression, expression-

level dominance, and transgressive expression, as reviewed (Yoo et al. 2014). Interpreting these 

patterns across systems remains an issue due to terminological inconsistency (Grover et al. 

2012), among other factors. Perhaps more germane is the point that conceptual relationships 

among these different phenomena are not well understood, thereby impeding the synthesis 

required to uncover the underpinnings of duplicate gene expression evolution. The approach 

outlined here may facilitate such an understanding, by focusing attention on the interplay 

between genomic legacy features such as TE adjacency and chromatin state, biophysical 

interactions such as TF binding efficiency, and how these ancestral as well as newly formed cis-

trans relationships govern expression evolution accompanying genome merger and doubling. As 

examples, we highlight two broad questions for which our conceptual framework may find 

utility: 

 

(1) To what extent do homoeolog expression bias and non-additivity reflect novel, 

cis/trans interactions? Homoeolog expression bias is when one of two duplicated genes 

(homoeologs) is expressed more than the other; that is, log' 5
@A

BA
6 ≠ 0. As modeled in 

Figure 1A, four sets of inter- and intra-subgenome interactions are involved, and even the 

parental sets may have been altered following genomic merger and doubling (i.e., 

log' 5
__P`a_Q

aaQ`_aQ
6 ≠ 0). The amount of homoeolog expression bias that resembles parental 

divergence is relatively consistent among plant species (under 20%), whereas the amount 

of expression bias attributed to cross-genome interactions and other types of alterations is 

more variable (1.4%-37.8%); these estimates were extracted from studies of widely 

diverged plants - arabidopsis (Shi et al. 2012), cotton (Yoo et al. 2013), maize (Lemmon 

et al. 2014), rice (Xu et al. 2014) and coffee (Combes et al. 2015). Similarly, to test for 

expression additivity, it is common to compare total expression for a pair of homoeologs 

(T = At + Dt) to the average of parental expression values (M =	@'`BC
'

). Because current 

methods like RNA-seq rely on per-transcriptome normalization to compare expression 

level across samples, there is an underlying assumption of equal transcriptome size 
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(Visger et al. 2017); this, however, likely is not true in most cases (Coate and Doyle 

2010) due to the multiple stoichiometric and volumetric cascades that affect gene 

expression following hybridization and doubling. As shown in Figure 1E, additive 

expression patterns are determined by the equal total inter- and intra- effects, which has 

no direct equivalence with any ASE category (Figure 1B). Non-additive expression 

patterns, including expression-level dominance and transgressive expression levels, arise 

from all four sets of regulatory interactions, these reflecting complex non-linear 

biochemical and biophysical interactions. This may help explain the large variation in 

non-additive expression patterns, ranging from less than 1% to 7% in different 

allohexaploid wheat species (Chelaifa et al. 2013; Chague et al. 2010), from 23 to 61% 

among variable cotton tissues (Rambani et al. 2014; Flagel and Wendel 2010; Yoo et al. 

2013), and from 42% to 60% under two temperature conditions in coffee (Bardil et al. 

2011). Teasing apart the mechanistic basis of these novel cis/trans interactions poses an 

interesting research challenge for future studies. 

 

(2) How is the direction of expression level dominance determined by cis and trans 

regulation? It has been suggested that expression-level dominance toward one parent is 

mainly caused by up- or down-regulation of the homoeolog of the “less dominant” parent 

(Shi et al. 2012; Yoo et al. 2013; Cox et al. 2014; Combes et al. 2015). Taking the A-

dominant expression pattern as an example (Figure 1E, see “A-dominant” row), the joint 

effect of inter- and intra- interactions approximates the effect of equal number of intra A-

genome regulation; if up- or down- regulation is mainly observed for the Dt homoeolog 

to approach the A-like expression (i.e., dd + ad = 2aa), the intra- and inter- effects of At 

are equal to each other (i.e., da = aa). This implies that the At expression is mainly 

determined by its cis element regardless of the origin of trans factors, while at the same 

time the Dt expression is under strong influence of the At trans factors. Thus, expression 

level dominance is likely to be associated with divergent trans factors between diploid 

progenitors, and the progenitor with stronger, more influential trans factors will become 

dominant with respect to total gene expression. In this context, it will be interesting to 

explore whether candidate trans factors such as TFs are differentiated between 

homoeologs in terms of concentrations and affinities. It will also be interesting to 
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evaluate whether the strong cis effect of the dominant homoeolog is caused by sequence 

variation of binding motifs or by a more accessible chromatin formation. Because inter-

subgenome interactions can up- or down- regulate target homoeologs, the direction of 

expression level dominance appears not to be associated with the direction of homoeolog 

bias; it will be interesting to parse the underlying mechanisms of this distinction. 

 

Beyond the gene-centric characterization of expression changes, another relevant and pressing 

question concerns how gene-to-gene networks are reshaped by genomic merger and doubling, in 

terms of the genome-wide collection of inter- and intra- subgenome interactions? As recently 

reviewed by Gallagher et al. (2016), co-expression network analysis in polyploids not only has 

the potential to facilitate a better understanding of the complex ‘omics’ underpinnings of 

phenotypic and ecological traits, but also may provide novel insight into the interaction among 

duplicated genes and genomes. Given that previous work in allopolyploids (e.g. wheat (Pfeifer et 

al. 2014) and cotton (Hu et al. 2016)) are mainly based on aggregated co-expression relationships 

of homoeologs, one future direction is to generate networks considering homoeolog expression 

separately, thereby allowing the direct evaluation of topological dynamics in terms of gain and 

loss of intra- and inter-subgenome relationships (Conant 2010; Conant and Wolfe 2008; Conant 

and Wolfe 2006). Although co-expression relationships do not necessarily represent physical 

interactions between cis and trans regulatory elements, the gene-to-gene interconnections that 

are inferred based on the “guilt-by-association” principle provide an alternative, and parallel 

approach to estimate the impact of genomic merger and doubling, under the same analytic 

framework as proposed. Future analyses of gene networks could include integration with 

parental cis-trans divergence, novel cross-genome interactions, and various expression-level 

phenomena, together with other epigenetic and physiochemical datasets.  

 

In conclusion, the opportunity to advance our understanding of transcriptome dynamics in 

hybrids and allopolyploids is being enabled by the maturation of multiple “omics” technologies 

and conceptual advances, the latter including a focus on the mechanistic underpinnings of 

intergenomic cis-trans interactions, as explicated here. It is likely that these perspectives and 

approaches will yield new insight into the origin of physiological and phenotypic responses to 

hybridization and polyploidy, and thereby to the evolutionary process in general. 
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Figure 1. A proposed analytical framework for understanding regulatory novelty accompanying 

hybridization and allopolyploidy, using the cotton (Gossypium L.) allopolyploid system as an 

example.  

(A) Between the parental diploid species G. arboreum (A2) and G. raimondii (D5), differential 

gene expression and/or chromatin accessibility are determined by the divergence of 

corresponding intra-genome cis-trans interactions aa and dd, respectively. Following genomic 

merger and doubling, the At and Dt homoeolog divergence is governed by two more sets of 

newly formed inter-subgenome interactions ad and da (first letter indicates trans origin, and 

second letter indicates cis origin). In natural allopolyploids, stoichiometric changes and sequence 

evolution (e.g. TE insertion and point mutation) may further alter cis-trans interactions to 

become 11P , 31Q , 33Q  and 13Q .  

(B) A schematic diagram of classic allele-specific expression analysis (ASE), with 

interpretations based on relative inter- versus intra- cis-trans interactions noted in blue boxes. 

(C) Percentages of parental divergence, homoeolog expression bias and hybridization impact 

(Hr) in various plant systems. The histogram of significant Hr is shown for cotton. 

(D) According to a two-step kinetic model of gene transcription, two hypotheses of “genome 

dominance”, the euchromatin/TF model (Bottani et al. 2018) and the TE model (Wendel et al. 

2018; Steige and Slotte 2016), are complementary to each other. These provide a conceptual 

framework for revealing the mechanisms that underlie novel cis-trans interactions. 

(E) Understanding non-additive expression patterns as regulated by cis-trans interactions. 
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