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Abstract LD-score (LDSC) regression disentangles the contribution of polygenic signal, in terms of SNP-based 1

heritability, and population stratification, in terms of a so-called intercept, to GWAS test statistics. Whereas LDSC 2

regression uses summary statistics, methods like Haseman-Elston (HE) regression and genomic-relatedness-matrix 3

(GRM) restricted maximum likelihood infer parameters such as SNP-based heritability from individual-level data 4

directly. Therefore, these two types of methods are typically considered to be profoundly different. Nevertheless, 5

recent work has revealed that LDSC and HE regression yield near-identical SNP-based heritability estimates when 6

confounding stratification is absent. We now extend the equivalence; under the stratification assumed by LDSC 7

regression, we show that the intercept can be estimated from individual-level data by transforming the coefficients 8

of a regression of the phenotype on the leading principal components from the GRM. Using simulations, considering 9

various degrees and forms of population stratification, we find that intercept estimates obtained from individual-level 10

data are nearly equivalent to estimates from LDSC regression (R2 > 99%). An empirical application corroborates 11

these findings. Hence, LDSC regression is not profoundly different from methods using individual-level data; 12

parameters that are identified by LDSC regression are also identified by methods using individual-level data. In 13

addition, our results indicate that, under strong stratification, there is misattribution of stratification to the slope 14

of LDSC regression, inflating estimates of SNP-based heritability from LDSC regression ceteris paribus. Hence, 15

the intercept is not a panacea for population stratification. Consequently, LDSC-regression estimates should be 16

interpreted with caution, especially when the intercept estimate is significantly greater than one. 17
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Equivalence of LD-Score Regression and Individual-Level-Data Methods

Population stratification can confound genome-wide association study (GWAS) summary statistics, as stratification 18

may inflate χ2-test statistics1–4. LD-score (LDSC) regression incorporates a parameter, referred to as the ‘intercept’, 19

that accounts at least partially for confounding stratification in GWAS summary statistics4. By also including 20

linkage-disequilibrium (LD) scores as a regressor, this method is able to disentangle the contribution of stratification 21

and polygenic signal to GWAS test statistics. 22

Stratification can also bias estimates of variance components5 in a linear mixed model (LMM), as admixture 23

affects the inferred genetic relatedness between individuals6,7 and, thereby, the relatedness matrix and its eigenvalues8. 24

By including the leading principal components (PCs) from the genomic-relatedness matrix (GRM; inferred e.g., using 25

GCTA9 or PLINK10,11) as fixed-effect covariates in genomic-relatedness-matrix restricted maximum likelihood (GREML) 26

estimation, one can correct for the confounding effects of stratification on the inferred variance components5. 27

At first glance, LDSC regression and individual-level-data methods seem weakly related; both LDSC regression 28

and GREML estimation can be used to infer SNP-based heritability (h2SNP) and both methods account for LD4,12. 29

In fact, in case population stratification is absent, LDSC and Haseman-Elston (HE) regression13 are essentially 30

equivalent when estimating h2SNP
14. Importantly, HE regression is a simplified form of GREML estimation. The 31

relation between LDSC regression and individual-level data methods, however, seems to break down when considering 32

the intercept in LDSC regression. An equivalent parameter is not reported by methods such as GREML estimation. 33

Nevertheless, as both approaches assume the same data-generating process, we assert that the equivalence can be 34

extended to include the intercept. 35

Estimating the LD-Score-Regression Intercept from Individual-Level Data Directly 36

We ascertain this thesis by studying how the GRM behaves when generalizing the framework for population 37

stratification assumed in LDSC regression4 to multiple discrete subpopulations. Within this framework, we derive 38

an ‘expected’ GRM and an explicit eigendecomposition of this matrix for P = 2 discrete subpopulations, in line with 39

LDSC regression. In this case, the leading PC and phenotype vector can be used to infer the LDSC intercept directly. 40

Specifically, like the LDSC framework, we (i) consider a pooled sample with no close relatives, with n individuals 41

from both subpopulations yielding a pooled sample size N = 2n, (ii) assume the phenotype is standardized, and (iii) 42

assume differences in allele frequencies are shaped by Wright’s F -statistic4,15,16 (FST). We show that this genetic 43

drift induces subtle negative ‘relatedness’ between populations and positive ‘relatedness’ within populations. An 44

individual-level-data estimator of the intercept in this scenario is given by 45

̂intercept = 1 +
d− 1

N
γ̂2, (1)

where d−1
N is an estimate of FST, based on the leading EV (d) of the GRM, and where γ̂ is the estimate of a linear 46
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regression of the standardized phenotype on the leading PC. Formal derivations are reported in Appendix A. In 47

general, the ordinary least squares (OLS) and generalized least squares (GLS) estimator of γ are not identical. 48

However, in this particular model these estimators are equivalent. In addition to OLS and GLS regression, we can 49

estimate the intercept by extending an HE regression13. An overview of the methods is shown in Table 1. For more 50

complex forms of stratification with P subpopulations, we posit that 51

̂intercept ≈ 1 +
P−1∑
i=1

di − 1

N
γ̂2i , (2)

where N is the pooled sample size and where di denotes the i -th leading eigenvalue of the GRM and γ̂i the estimate 52

of a linear regression of the standardized phenotype on the i -th PC. 53

Simulations and Empirical Analyses Using Data Exhibiting Population Structure 54

We assess the accuracy of Equations 1 and 2 by means of two sets of simulations, based on pooled genotype data 55

from the Swedish Twin Registry (STR), the Health and Retirement Study (HRS), and the Rotterdam Study (RS)17. 56

Details on the quality control (QC) of these data are reported in Appendix B. After QC we have N = 17, 544 57

observations (n = 5, 848 from each of the three subsamples) and M = 1, 023, 716 HapMap 3 SNPs18 with minor 58

allele frequency greater than 1%. In addition, we perform empirical analyses, to assess the merits of Equation 2 in 59

real data, where subtle stratification may be at play and where the assumed discrete nature of stratification, with 60

equal sample size per subpopulation, may break down. 61

Figure 1 shows the scatter plot of the leading two principal components of the GRM. There is clear clustering of 62

the STR, HRS, and RS samples. Although the individuals from these studies are not fully separated along the first 63

and second PC, the separation is quite accurate; when classifying the lower-left quadrant as HRS, the upper-left 64

quadrant as RS, and the right half as STR, 92% of the individuals are correctly classified. Regardless of the etiology 65

of this clustering (e.g., differences in true allele frequencies and batch effects), the clustering shows that we have a 66

dataset that closely follows the theoretical assumptions of LDSC regression. 67

In all simulations, we use this genetic data to simulate phenotypes having a (i) polygenic architecture and (ii) 68

difference in phenotypic mean between the different subsamples. We apply GREML (followed by GLS or OLS) 69

to the simulated data, to estimate the intercept and h2SNP from individual-level data, and use LDSC regression to 70

estimate the same parameters using GWAS results from the same samples. We compare resulting estimates. In 71

addition, in each simulation we compute the attenuation ratio19, defined as the LDSC-regression intercept estimate 72

minus one and the average χ2-test statistic across markers (χ2) minus one. For this ratio it holds that 73

attenuation ratio =
̂interceptLDSC − 1

χ2 − 1
≈ s

s+ g
, (3)
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Table 1. Methods for jointly estimating the SNP-based heritability (h2SNP) and the LD-score intercept, the latter
parameter reflecting the amount of confounding stratification present for a phenotype in a given sample.

Method Model Estimated by ĥ2SNP = ̂intercept =

LDSC regression χ2
k = α+ lkβ + ηk WLS ⇒ α̂, β̂ Mβ̂/N α̂

OLS y = xγ + ε OLS ⇒ γ̂ n.a. 1 + d−1
N γ̂2

GREML (+ GLS) y = xγ + ε, where GREML ⇒ σ̂2
A, σ̂

2
E ,

σ̂2
A

σ̂2
A+σ̂2

E

(2-step procedure) ε ∼ N
(
0, σ2

AA + σ2
EIN

)
GLS ⇒ γ̂ 1 + d−1

N γ̂2

EHE regression yiyj = xixjγ + {A}ij σ2
A + {IN}ij σ2

E + ζij OLS ⇒ γ̂, σ̂2
A, σ̂

2
E

σ̂2
A

σ̂2
A+σ̂2

E

1 + d−1
N γ̂2

Notation: χ2
k is the GWAS χ2-test statistic for SNP k = 1, . . . ,M ; M is the total number of SNPs; lk is the LD score (LDSC) of SNP k;

WLS denotes weighted least squares, with the diagonal matrix of weights given by (1 + lkβ̂)
−2 for k = 1, . . . ,M , where β̂ denotes the current

estimate, making this an iterative method; ηk is the residual noise, which is assumed to be independent across SNPs in order to making

estimation of the model feasible; N is the sample size of the GWAS and the individual-level data analyses; x denotes the leading principal

component (PC), from the genomic-relatedness matrix denoted by A, with associated eigenvalue d; IN is an N × N identity matrix; y is the

mean-centered phenotype vector; OLS denotes ordinary least squares; σ2
A denotes additive genetic variance; σ2

E denotes environment variance;

GREML denotes genomic-relatedness-matrix restricted maximum likelihood; GLS denotes generalized least squares; ε is residual noise, assumed

to be independent across individuals in the OLS regression and potentially correlated in the GREML (+ GLS) approach; EHE regression denotes

extended Haseman-Elston regression; {B}ij is the element in row i and column j of matrix B.

Figure 1. Scatter plot of the leading two principal components from the genomic-relatedness matrix of pooled
data from the Health and Retirement Study (in blue), the Swedish Twin Registry (orange), and the Rotterdam
Study (yellow).
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where s reflects inflation due to stratification and g inflation due to signal. Hence, this ratio quantifies the proportion 74

of inflation in GWAS χ2-test statistics, away from one, that can be attributed to stratification. 75

We consider five levels of stratification, explaining from 0% up to 20% of the phenotypic variance. The 76

stratification is shaped by differences in phenotypic mean between the HRS, STR, and RS samples. For each level of 77

stratification we simulate 500 phenotypes. Regarding polygenic architecture, each phenotype follows an infinitesimal 78

model, where each SNP is standardized and where standardized SNPs have effects that are normally distributed 79

and independent draws, with SNP-effect sizes and residual variance such that h2SNP = 50%. The simulation design 80

is discussed in detail in Appendix C. As GREML estimation is computationally expensive, we derive an efficient 81

GREML algorithm in Appendix D. This algorithm can be used when only PCs are included as fixed-effect covariates. 82

In the first set of simulations, we gauge the accuracy of Equation 1 (i.e., for P = 2 subpopulations) by considering 83

only the STR and HRS samples. In the second simulation, we assess the accuracy of our extrapolation in Equation 84

2, by considering the full sample (i.e., P = 3). In the empirical analyses, we also assess the accuracy of Equation 2 85

using human height and body-mass index (BMI) as outcomes. As these phenotypes are first standardized at the 86

study level, we assume there is only subtle stratification at play. Hence, we set P relatively high (i.e., P = 20). In a 87

semi-empirical extension, we introduce artificial stratification by assigning the HRS, STR, and RS samples different 88

phenotypic means, keeping P = 20. In all analyses, we apply LDSC regression and GREML estimation. 89

Finally, we consider an additional set of simulations for the HRS and STR samples, where we compare different 90

sources of stratification and different means to control for it. More specifically, we simulate data where stratification 91

is either shaped by the lead PC as inferred from the GRM or by differences in mean between subsamples, where in 92

both cases stratification explains 20% of the phenotypic variance. For both scenarios, we assess how LDSC behaves 93

when (i) failing to control for stratification in the GWAS, (ii) when controlling for it using a subsample dummy, and 94

(iii) using the lead PC. Similarly, we assess the behavior of GREML when using either the subsample dummy or the 95

lead PC as fixed-effect covariate for estimating the intercept and controlling for stratification when estimating h2SNP. 96

Results for Two Discrete Populations 97

Figure 2 shows intercept and h2SNP estimates from LDSC regression and the GREML for 500 independent runs and 98

for various levels of stratification. Across the runs and levels of stratification, the intercept estimates are of the same 99

scale and highly correlated (R2 = 99.89%). For h2SNP the results diverge; the estimates across runs and levels of 100

stratification are weakly correlated (R2 = 18.17%). However, more importantly, as can be seen in Panel A of Table 101

2, there is a strong increase in h2SNP estimates from LDSC regression as the amount of stratification increases. For 102

the design with no stratification, the average h2SNP estimate of LDSC regression is ∼ 51% whereas in the design with 103

the highest amount of stratification, the average estimate is ∼ 94%. Hence, in relative terms, the LDSC-regression 104

h2SNP estimate under strong stratification is ∼ 84% higher than the estimate under no stratification, while in both 105
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Table 2. Mean of estimates of SNP-based heritability (h2SNP), intercept, and the attenuation ratio, across 500
runs and corresponding standard errors (s.e.), for GREML estimation and LDSC regression, for various levels of
stratification, for pooled data from P = 2 subpopulations (i.e., STR and HRS; Panel A) and P = 3 subpopulations
(i.e., STR, HRS, and RS; Panel B).

Panel A: P = 2

Stratification:
Method None Light Moderate Substantial Strong

Mean h2SNP ( s.e. )

LDSC 50.65% ( 0.35% ) 53.58% ( 0.39% ) 62.57% ( 0.48% ) 76.65% ( 0.58% ) 94.28% ( 0.66% )
GREML 50.28% ( 0.13% ) 50.51% ( 0.13% ) 51.19% ( 0.13% ) 52.28% ( 0.13% ) 53.72% ( 0.13% )

Mean intercept ( s.e. )

LDSC 1.011 ( 0.001 ) 1.149 ( 0.003 ) 1.543 ( 0.005 ) 2.128 ( 0.006 ) 2.825 ( 0.007 )
GREML 1.007 ( 0.000 ) 1.152 ( 0.003 ) 1.566 ( 0.005 ) 2.183 ( 0.007 ) 2.918 ( 0.008 )

Mean attenuation ratio ( s.e. )

LDSC 0.086 ( 0.006 ) 0.531 ( 0.005 ) 0.790 ( 0.002 ) 0.867 ( 0.001 ) 0.896 ( 0.001 )

Panel B: P = 3

Stratification:
Method None Light Moderate Substantial Strong

Mean h2SNP ( s.e. )

LDSC 50.59% ( 0.24% ) 51.69% ( 0.27% ) 54.63% ( 0.39% ) 59.02% ( 0.60% ) 64.35% ( 0.87% )
GREML 49.99% ( 0.08% ) 50.52% ( 0.08% ) 52.01% ( 0.09% ) 54.26% ( 0.11% ) 57.00% ( 0.15% )

Mean intercept ( s.e. )

LDSC 1.012 ( 0.001 ) 1.122 ( 0.003 ) 1.427 ( 0.008 ) 1.878 ( 0.016 ) 2.413 ( 0.025 )
GREML 1.008 ( 0.000 ) 1.117 ( 0.003 ) 1.417 ( 0.009 ) 1.862 ( 0.019 ) 2.390 ( 0.030 )

Mean attenuation ratio ( s.e. )

LDSC 0.064 ( 0.004 ) 0.388 ( 0.006 ) 0.670 ( 0.004 ) 0.797 ( 0.003 ) 0.858 ( 0.001 )

instances in truth h2SNP = 50%. Although with GREML estimation, controlling for the first PC (inferred empirically 106

from the GRM), we also see an increase with the amount of stratification, this increase is far smaller; under no 107

stratification the average estimate is ∼ 50%, while for the highest amount of stratification the estimate is ∼ 54%. 108

As the LDSC-regression framework assumes allele-frequency differences, when standardized by pooled frequency, 109

are homoskedastic random draws with mean zero and a variance equal to FST, we investigate whether the allele- 110

frequency differences satisfy this assumption. Figure 3 shows a histogram of these differences, when setting the 111

coding allele randomly. The mean of differences is −1.13× 10−5 and the variance is 9.2× 10−4, which is close to FST 112

as estimated from the leading eigenvalue (d1), viz., FST = N−1 (d1 − 1) = 9.8× 10−4. Moreover, these differences 113

seem normally distributed. Nevertheless, the Jarque-Bera test for normality20 rejects the null, with a test statistic 114

of 318. Hence, these differences are statistically non-normally distributed. However, when excluding the 49 SNPs 115

with allele-frequency differences that are more than five standard deviations away from the mean (leaving 1,023,667 116
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Figure 2. Scatter plots of estimates of the LD-score-regression intercept (Panel A) and SNP-based heritability
(h2SNP; Panel B) across 500 runs and various levels of stratification based on data from P = 2 subpopulations.
x -axis: LD-score regression estimates. y-axis: GREML estimates. In the GREML approach, the leading principal
component is used as fixed-effect covariate, and the estimate of that fixed effect (γ̂) is cast to an intercept estimate
using Equation 1. Gray dots: no stratification; red dots: light stratification; blue dots: moderate stratification;
yellow dots: substantial stratification; green dots: strong stratification.
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Figure 3. Histogram of standardized allele-frequency differences between the HRS and STR samples.

-0.4 -0.2 0 0.2 0.4

Standardized allele frequency differences between HRS and STR

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
ou

nt

104

Figure 4. Scatter plot of the average LD score per LD-score percentile and the cross-run average χ2-test statistic
per LD-score percentile. Gray dots: no stratification; red dots: light stratification; blue dots: moderate stratification;
yellow dots: substantial stratification; green dots: strong stratification. Solid lines: fitted lines from a simple
regression of mean test statistics on mean LD scores; dashed lines: predicted lines from LD-score-regression theory.
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SNPs), the test statistic drops to 1.08 and, hence, becomes insignificant. Therefore, except for a smattering of 117

outliers, these standardized allele-frequency differences are close to normally distributed, and have a variance in line 118

with our eigenvalue-based estimator of FST. 119

As least-squares techniques, such as LDSC regression, are sensitive to outliers – as an additional check – we 120

inspect the average LD-score per LD-score percentile and plots these against the average GWAS χ2-test statistics, 121

across SNPs in these LD-score percentiles and across runs. Figure 4 shows the resulting scatter plot together with 122

(i) simple-regression lines of the test statistics as explained by LD scores and (ii) lines predicted by theory, using the 123

HRS-STR-specific estimate of FST (i.e., F̂ST = 9.8× 10−4). For the two lowest levels of stratification, we observe 124

a strong agreement between predictions from theory and the fitted line based on average scores and statistics. 125

However, for higher levels of stratification, we observe that the intercept is lower and the slope is higher than what 126

the LDSC-regression theory predicts. In fact, according to theory, the slope should be independent from the amount 127

of stratification. Yet, the slope of the fitted line under the highest amount of stratification is 74% higher than the 128

slope under no stratification. This disparity lies reasonably close to the aforementioned inflation of ∼ 84% in h2SNP 129

estimates from LDSC regression. 130

Results for Three Discrete Populations 131

Figure 5 shows GREML and LDSC-regression estimates of the intercept and h2SNP across the various runs and levels 132

of stratification, for the simulations using three subpopulations. As with two populations, the intercept estimates 133

are of the same scale and highly correlated (R2 = 99.15%). 134

The reason why two slightly diverging clouds appear in the scatter plot is merely an artefact of the simulation. 135

In the P = 2 case, one of the two subsamples gets assigned a positive mean whereas the other subsample gets 136

assigned a negative mean (of the same magnitude as the positive mean). For comparability, in each run of the P = 3 137

case, each subsample gets assigned either the positive mean, the negative mean, or a zero mean. In runs where 138

the two subsamples with the least genetic drift between them get assigned the negative and positive mean, this 139

effectively leads to a smaller amount of stratification than intended a priori by simulation design. Nevertheless, 140

under this scenario both LDSC and GREML intercept estimates are decreased, thereby, showing even more strongly 141

that these two estimators are close to equivalent. It is important to point out though that in this particular case, 142

GREML intercept estimates are on average a bit lower than the LDSC estimates. A likely explanation is that second 143

PC becomes more important in estimating the intercept in this case. As Equation 2 is merely an extrapolation of 144

Equation 1, the weight assigned to the squared coefficient for the second PC may therefore be underestimated. 145

The assertion of an underestimated weight for the second PC is supported by an additional regression of the 146

LDSC-regression intercept estimates on γ̂21 and γ̂22 (i.e., the squared coefficients from the regressions of phenotypes 147

on the leading two PCs). Figure 6 shows a scatter plot of the LDSC-regression estimates and a linear combination 148
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Figure 5. Scatter plots of estimates of the LD-score-regression intercept (Panel A) and SNP-based heritability
(h2SNP; Panel B) across 500 runs and various levels of stratification based on data from P = 3 subpopulations.
x -axis: LD-score regression estimates. y-axis: GREML estimates. In the GREML approach the two leading
principal components are used as fixed-effect covariates, and the estimates of those effects (γ̂1, γ̂2) are cast to an
intercept estimate using Equation 2. Gray dots: no stratification; red dots: light stratification; blue dots: moderate
stratification; yellow dots: substantial stratification; green dots: strong stratification.
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Equivalence of LD-Score Regression and Individual-Level-Data Methods

Figure 6. Scatter plot of estimates of the LD-score-regression intercept based on data from P = 3 subpopulations.
x -axis: LD-score regression estimates. y-axis: a linear combination of squared coefficients of regressing the
phenotypes on the leading two principal components and a vector of ones, with weights set by regressing the
LDSC-intercept estimates on these squared coefficients and the vector of ones. Gray dots: no stratification; red dots:
light stratification; blue dots: moderate stratification; yellow dots: substantial stratification; green dots: strong
stratification.
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of γ̂21 and γ̂22 , with weights based on this additional regression. The subtle divergence between estimates is now gone, 149

and the R2 is up to 99.82%. Inspection of the weights reveals that Equation 2 indeed significantly underestimates 150

the weight that ought to be given to the second PC; whereas Equation 2 sets the weight at 3.0× 10−4, the optimal 151

weight to retrieve the LDSC-regression intercept estimate as accurately as possible is 4.0× 10−4 (s.e. = 2.7× 10−6). 152

Finally, we observe that the h2SNP estimates from both methods are inflated with increasing amounts of 153

stratification, and also that this bias seems to affect LDSC estimates more strongly than GREML estimates. Yet, 154

this difference is less pronounced than what we observed in case P = 2. Including more PCs as control variables does 155

not improve the situation; when including the five leading PCs of the GRM as fixed-effect control variables, under 156

the highest level of stratification, the mean h2SNP estimate from GREML estimation is still ∼ 57%. Consequently, 157

it seems that, even though in our simulations GREML h2SNP estimates are consistently less upwards biased than 158

LDSC estimates, the additional bias of LDSC regression compared to GREML estimation is abated somewhat as 159

the type of stratification becomes more complex. 160

Empirical Results for Multiple Populations 161

We now consider two real phenotypes, viz., human height and body-mass index (BMI). Details on the QC are 162

reported in Appendix B. As these phenotypes have been standardized at the study level (i.e., standardized to mean 163
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Table 3. Intercept and SNP-based heritability (h2SNP) estimates from LD-score regression and GREML, using
height and body-mass index (BMI), both standardized per subsample, and height and BMI, standardized per
subsample and with artificial stratification added per subsample.

Phenotype Intercept h2SNP

LDSC GREML* LDSC GREML**

Height*** 1.03 1.05 47.7% 40.3%
Height + stratification**** 2.26 2.35 65.7% 41.1%
BMI*** 1.02 1.01 12.5% 19.4%
BMI + stratification**** 2.02 2.08 35.1% 21.2%

* Intercept estimate based on 20 leading PCs and eigenvalues using Equation 2

** h2
SNP estimate obtained when controlling for 20 leading PCs

*** Standardized phenotypes per subsample

**** Phenotypic means adjusted to −0.5 in HRS and +0.5 in STR (RS: unchanged)

zero and unit variance in the STR, HRS, and RS samples separately before pooling data), the most important source 164

of stratification has been eliminated. Consequently, we have clean traits for which we expect little stratification along 165

the lead PCs. Hence, as the remaining stratification is likely to be of a higher order, we set P = 20. We study these 166

phenotypes using LDSC regression and GREML estimation. In addition, we also perform semi-empirical analyses, 167

in which we assign a phenotypic mean of +0.5 to the HRS samples, −0.5 to the STR samples, and preserving the 168

zero mean in the RS samples. In doing so, we introduce artificial stratification. 169

Table 3 shows estimates of the intercept and h2SNP from both methods and both phenotypes, without additional 170

stratification, and the two phenotypes, with added stratification. The intercept estimates from both methods are 171

similar and – as expected – increase as stratification is added to the phenotypes. As sample sizes per subsample differ 172

(e.g., for height we have 5,847 samples in HRS and only 4,328 in STR), these findings imply that Equations 1 and 2 173

are robust when sample sizes are not completely equal across subsamples. Furthermore, as the baseline phenotypes 174

are real outcomes, subtle stratification may be at play (i.e., P may be large); if this is true, that would imply 175

Equation 2 approximates the LD-score regression intercept quite well even when P is fairly large. In addition, the 176

GREML h2SNP estimates seem credible; h2SNP ∼ 40% for height and ∼ 19% for BMI. LDSC estimates are relatively 177

similar. However, when introducing the additional stratification – in line with the simulation results for P = 2 – 178

the LDSC h2SNP estimates increase considerably for both traits, whilst GREML h2SNP estimates remain relatively 179

unperturbed. Hence, these findings provide further support of the notation that under strong stratification, some of 180

the stratification may get absorbed by the slope of the χ2 statistics versus the LD scores. 181

Results for Different Sources of Stratification and Controls 182

Intercept and h2SNP estimates from LDSC regression and GREML obtained using simulated phenotypes, under 183

different sources of stratification and various controls for that stratification, are reported in Table 4. The data- 184

generating process is identical to previous simulations for two discrete populations under strong stratification, except 185
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Table 4. Average SNP-based heritability (h2SNP) and intercept estimates across 500 runs and corresponding
standard errors (s.e.), for GREML estimation and LDSC regression in HRS and STR data (i.e., P = 2) under strong
stratification, shaped by either (i) sample dummies or (ii) the empirically inferred lead PC, and either controlled for
by (i) the aformentioned dummies, (ii) the lead PC, or (iii) not controlled for at all.

Method Control* h2SNP estimates (s.e.) Intercept estimates (s.e.)

Stratification shaped by Stratification shaped by
sample dummy** lead PC sample dummy** lead PC

LDSC none 94.28% ( 0.66% ) 168.58% ( 0.74% ) 2.825 ( 0.007 ) 3.006 ( 0.007 )
LDSC sample dummy 50.48% ( 0.35% ) 63.81% ( 0.38% ) 1.007 ( 0.001 ) 1.073 ( 0.001 )
LDSC lead PC 50.34% ( 0.35% ) 50.50% ( 0.35% ) 1.035 ( 0.001 ) 1.006 ( 0.001 )
GREML sample dummy 50.29% ( 0.13% ) 58.59% ( 0.12% ) 3.293 ( 0.006 ) 1.554 ( 0.004 )
GREML lead PC 53.72% ( 0.13% ) 50.28% ( 0.13% ) 2.918 ( 0.008 ) 3.293 ( 0.008 )

* Control for LDSC: covariate in the GWAS prior to LDSC regression; control for GREML: fixed-effect covariate in GREML estimation

** Stratification shaped by sample dummies (i.e., HRS and STR dummies) is equivalent to assigning differences in mean between samples

for one addition; here, we consider two sources of stratification, viz., (i) differences in phenotypic mean between 186

the HRS and STR samples and (ii) differences in the phenotype shaped by the lead PC from the GRM. The first 187

approach is, statistically speaking, equivalent to a sample dummy shaping phenotypic differences in mean. 188

In terms of controls, we apply LDSC regression to three different sets of GWAS results, viz., (i) with no controls in 189

the GWAS, to further assert whether LDSC regression is able to deal with different forms of population stratification, 190

(ii) controlling for the aforementioned sample dummy, (iii) controlling for the lead PC. For GREML estimation, 191

we use (i) the sample dummy (scaled to unit length and mean zero) to control for stratification and estimate the 192

intercept, and (ii) the lead PC to control for stratification and estimate the intercept. 193

Importantly, the squared correlation of the sample dummy and the lead PC is 83.75%. This high correlation 194

implies that, in cases where the control for stratification – provided a control is present – differs from the source, 195

only some residual stratification is left. For GREML, the inflation in h2SNP estimates is symmetric when there is 196

residual stratification. That is, when either the sample dummy shapes stratification and the lead PC is used as 197

control or vice versa, h2SNP estimates are biased upwards significantly. 198

For LDSC regression the results are more complex. First, we observe – as before – that LDSC regression yields 199

highly inflated h2SNP estimates when there is strong stratification in the GWAS results (i.e., when the stratification 200

is not controlled for in the GWAS stage), regardless of whether that stratification is shaped by the sample dummy 201

or the lead PC. However, when we attempt to correct for the stratification in the GWAS by an imperfect control, 202

an asymmetry arises. More specifically, when the stratification is shaped by the empirically inferred lead PC, but 203

controlled for using the sample dummy, LDSC regression is not fully able to accommodate the residual stratification; 204

the average h2SNP estimate across 500 runs of simulations then equals ∼ 63.8% (s.e. = 0.4%). On the other hand, 205

when the stratification is shaped by differences in mean between the HRS and STR samples (i.e., the sample 206

dummy), yet is controlled for in the GWAS using the lead PC, LDSC regression seems able to address the residual 207
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stratification; the average h2SNP estimate across 500 runs then equals ∼ 50.3% (s.e. = 0.4%). 208

From a theoretical perspective this asymmetry is not surprising; LDSC regression assumes two discrete populations 209

with differences in mean (i.e., a population dummy shaping the stratification) and the lead PC just tends to correlate 210

highly with such a dummy variable. Therefore, when the stratification is shaped by such a dummy, the lead PC will 211

take out most of the stratification, yet some stratification will be left. However, that residual is still shaped by the 212

population dummy—the type of stratification that LDSC regression is built to address. Hence, LDSC regression 213

picks up that residuals and effectively ‘controls’ for it. Conversely, when stratification is shaped by the lead PC, but 214

controlled for using the population dummy in the GWAS, the residual is effectively outside the scope of what LDSC 215

regression can deal with, thereby, inflating h2SNP estimates even when that residual is relatively small. 216

Interpretation of the LD-Score-Regression Intercept Estimated Using Individual-Level Data 217

Based on the broad set of simulations and empirical analyses, we conclude that the LDSC-regression intercept 218

can be approximated with high precision by a weighted sum of squared regression coefficient of the standardized 219

phenotype on the leading PCs from the GRM. These weights increase with the corresponding eigenvalues, which in 220

turn increase with the amount of genetic drift. The squared regression coefficients from the PCs can be written as 221

the product of sample size and the R2 of that PC with respect to the phenotype. Although a regression of the LDSC 222

estimates on these squared coefficients reveals that the weights given to these squared coefficients, in Equation 2, 223

are slightly off-target for higher-order stratification (i.e., not residing in the leading PC), the approximation is still 224

fairly accurate. This assertion is corroborated by our empirical results. 225

These finding indicate that in individual-level data, the intercept is simply an increasing function of (i) the 226

amount of drift in allele frequencies across subpoulations, (ii) the proportion of phenotypic variance explained by 227

stratification, as tagged by the leading PCs, and (iii) sample size. These aspects are all in line with what one 228

can expect intuitively based on the LDSC-regression derivations, where the intercept is also a linearly increasing 229

function of sample size, genetic drift as shaped by FST, and the squared difference in phenotypic mean across two 230

subpopulations. 231

Implications of Inflated SNP-Based Heritability Estimates 232

This study follows the data-generating process assumed in the original LDSC-regression derivations closely; we 233

simulate standardized phenotypes using an infinitesimal model with standardized SNPs having homoskedastic effects, 234

with fixed cross-population differences in phenotypic mean, and drift in line with assumptions of LDSC regression4. 235

Despite these efforts, under considerable stratification, we observe an intercept below expectation and a slope 236

above expectation. There is no dimension along which our simulations strongly differ from the assumptions in the 237

derivations of LDSC regression4. Consequently, LDSC estimates exhibit unexpected properties in extreme scenarios. 238

More specifically, h2SNP is significantly overestimated even under an intercept estimate as low as 1.122 (Table 2; 239
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under P = 3 and light stratification). Importantly, the corresponding attenuation ratio19, defined as the estimated 240

intercept minus one and the average χ2-test statistic minus one, has a mean of 0.388 across runs, indicating that 241

∼ 39% of the inflation in test statistics can be attributed to stratification in this simulation design. This result 242

implies that, even under our ‘light stratification’ design in three discrete samples, the GWAS test statistics are 243

already distorted considerably by stratification. Hence, as much of the inflation in test statistics can be attributed to 244

stratification, it is not entirely surprising that estimation of h2SNP goes awry. However, in spite of this considerable 245

ratio, our findings do imply that LDSC-regression estimates should be interpreted with caution, at the very least, 246

when the intercept is significantly different from one. 247

Although we consider substantial differences in phenotypic mean and, therefore, intercepts significantly larger 248

than one, a more reasonable scenario may be conceived where similar dynamics play a role, viz., in very large 249

samples, where even a subtle difference in phenotypic mean across subpopulations can result in a large intercept, as 250

the intercept is an increasing function of sample size. Our results suggest that under such a scenario, the intercept 251

may get underestimated and the slope overestimated, inflating h2SNP estimates. Hence, further research on the 252

asymptotic properties of LDSC regression is warranted. 253

In light of our findings, we agree with the assertion by Bulik-Sullivan et al. (2015) that “whenever possible, it is 254

preferable to obtain all relevant genotype data and correct for confounding biases directly; post-hoc correction of test 255

statistics is no substitute for diligent quality control”4. LDSC regression is not a panacea for population stratification; 256

it can only deal with a narrowly defined and limited amount of confounding stratification. However, provided 257

population stratification is carefully controlled for in the GWAS stage, LDSC regression remains an informative tool 258

for inferring the amount of residual stratification permeating GWAS summary statistics post hoc. 259
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Appendices 260

A Derivations Estimator for Individual-Level Data 261

We first recapitulate the stratification assumed in the derivations of LDSC regression4 and generalize to P discrete 262

populations. Based thereon, we derive an unconditional expected GRM. By assuming that the average magnitude 263

of the drift away from pooled allele frequencies is the same across the populations (which holds by definition in 264

the two-populations-based theory underpinning LDSC regression), we can derive a closed-form expression of the 265

eigendecomposition of the expected GRM. We show that all eigenvalues – except the leading P = 1 eigenvalues – 266

are decreased by the same small amount due to stratification, whereas, the leading P = 1 eigenvalues are increasing 267

functions of sample size as a result of drift. For P = 2, we derive an explicit transformation of the estimated 268

association between the first PC and the phenotype, providing an estimate of the LD-score regression intercept. 269

A.1 Genetic Drift in LD-Score Regression 270

In the derivations of LDSC regression4, stratification is conceptualized as a GWAS sample consisting of individuals 271

drawn from two independent populations, with different allele frequencies due to drift and different phenotypic 272

means. Using modified notation, the following is assumed: 273

y = Xβ + s + ε,

ε ∼ N
(
0, σ2

EIN
)
,

β ∼ N
(
0,

σ2
A

M IM

)
,

{s}i =


σs

2 , i ∈ P1,

−σs

2 , i ∈ P2,

(4)

where P1 and P2 denote the sets of individuals drawn from Populations 1 and 2 respectively, where |P1| = |P2| = n; 274

there are n individuals drawn from both populations, yielding N = 2n observations in total. Parameter a, found in 275

Equation 2.14 of the Supplementary Note by Bulik-Sullivan et al. (2015)4, is approximately equal to σ2
s (i.e., the 276

squared difference in the phenotypic mean of the subpopulations). X denotes an N ×M matrix of M standardized 277

SNPs, with random effects in vector β. In line with preceding work9, another assumption is that effects of 278

standardized SNPs, β, are independent draws from a normal homoskedastic distribution. In addition, it is assumed 279

that the effects in β are constant across the two populations. Vector ε denotes the environmental effects. Finally, σ2
A 280

denotes the additive genetic variance and σ2
E the environment variance, and consequently h2SNP = σ2

A(σ2
A + σ2

E)−1. 281

Let f1 and f2 denote the allele frequency for a given SNP in Populations 1 and 2, and f = (f1 + f2)/2 the 282

average allele frequency across the two populations. For now, assume that all distributions, expectations, and 283
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variances, are conditional on f1, f2, and, thereby, on f . The additively-coded genotype for individual i (denoted by 284

gi ∈ {0, 1, 2}) then satisfies the following properties 285

gi | i ∈ Pj ∼ Binom (2, fj) for j = 1, 2.

Therefore, 286

E [gi | i ∈ Pj ] = 2fj and Var (gi | i ∈ Pj) = 2fj(1− fj) for j = 1, 2.

Moreover, as indicated, individuals are sampled from the two populations with equal chance. Hence, gi is a draw 287

from a mixture distribution with mean E [gi] = 2f and variance 288

Var (gi) = E [Var (gi | i ∈ P)] + Var (E [gi | i ∈ P])

= f1(1− f1) + f2(1− f2) +
1

2

(
2f1 − 2f

)2
+

1

2

(
2f2 − 2f

)2
= f1 + f2 − 2f1f2.

Genotypes are standardized, such that the standardized genotype of individual i (denoted by xi) is given by 289

E [xi] = 0 and Var (xi) = 1.

Therefore, LDSC regression4 implicitly assumes that 290

xi =
gi − 2f√

f1 + f2 − 2f1f2
,

where 2f and f1 + f2 − 2f1f2 are the theoretical expectation and variance respectively, of a random variable that is 291

drawn from the aforementioned mixture distribution. In this case, we have that 292

E [xi | i ∈ P1] = −E [xi | i ∈ P2] =
2(f1 − f)√

f1 + f2 − 2f1f2
.

Conditioning on the pooled frequency f , LDSC regression implicitly assumes 293

2(f1 − f)√
f1 + f2 − 2f1f2

|f ∼ N (0, FST) ,

where FST denotes Wright’s F -statistic15, measuring the amount of genetic drift across populations. The larger FST 294

the larger, on average, the allele frequency differences across populations will be. Provided allele frequencies do not 295

vary too much across the populations, 2f(1−f) ≈ f1 +f2−2f1f2. For instance, when the cross-population difference 296
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in allele frequency is 10% and the pooled frequency is 50%, we have that 2f(1−f) = 0.5 and f1 +f2−2f1f2 = 0.505. 297

Thus, even at a substantial allele frequency difference, the relative difference between the true variance, given by 298

f1 + f2 − 2f1f2, and the variance inferred by 2f(1− f) is only 1%. Therefore, we make a slight amendment, and 299

assume that 300

2(f1 − f)√
2f(1− f)

|f ∼ N (0, FST) .

This change greatly simplifies the closed-form solution of the GRM. More precisely, the GRM (e.g., constructed 301

using GCTA9) is constructed assuming each SNP is binomially distributed (i.e., in Hardy-Weinberg equilibrium; 302

HWE). Therefore, each SNP is standardized according to its pooled – potentially admixed – allele frequency (f) 303

assuming HWE (i.e., in addition to correcting for the expected value of the raw genotype, given by 2f , the raw 304

genotypes are also divided by
√

2f(1− f)). By replacing f1 + f2 − 2f1f2 by 2f(1− f) in the preceding expression, 305

when deriving the unconditional expectation of the GRM, the denominator in the left-hand-side of this expression 306

and the standardizing coefficient of the SNP, when constructing the GRM, cancel each other out. 307

The distribution of the difference in allele frequency between the first population and the pooled frequency, can 308

now be written as 309

2r | f ∼ N
(
0, 2f(1− f)FST

)
, where r = f1 − f. (5)

Hence, E
[
r
∣∣ f] = 0 and 310

E
[
r2
∣∣ f] = Var (r) =

1

2
f(1− f)FST. (6)

This expected squared difference between the population-specific and the pooled allele-frequency is in line the 311

updated Nei estimator of FST
16,21. In the derivation of LDSC regression, when discussing the distribution of the 312

standardized difference in allele frequency, the same literature is pointed to. Moreover, the preceding expression 313

aligns with an expression that is referred to as the “most common explicit computational formula” for FST
22. 314

This expression explicitly accounts for the loss of one degree of freedom across populations, when considering 315

deviations from the pooled allele frequency. We should point here that in later work the loss of this degree of 316

freedom is ignored23, which would correspond to 317

E
[
r2
∣∣ f] = f(1− f)FST,

This approach is adopted – for instance – in related work24. Rather than commenting on whether one should 318
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account for the lost degree of freedom or not, our focus should be to keep as close as possible to the LDSC-regression 319

approach4. Therefore, we assume that the variance of r is as given in Equation 6. Although we make the implicit 320

distribution of r | f – assumed in the derivations of LDSC regression4 – explicit, without loss of comparability of our 321

methods, further derivations show that we need to make no assumptions about the type distribution of r | f ; the 322

only thing we need to impose is the condition that its expectation is zero and the variance as shown in Equation 6. 323

A.2 Drift and Stratification in More than Two Populations 324

Letting f denote a P × 1 vector of allele frequencies in P populations, Equation 5 can be generalized as 325

1√
2f(1− f)

2r | f ∼ N (0,F) , where r = f− fιP , (7)

where ιP is P -dimensional column vector of ones, and where F is P ×P matrix of F -statistics, for which the diagonal 326

elements indicate the amount of drift away from f for each population and the off-diagonal elements indicate the 327

extent to which different populations covary in their drift away from f . In LDSC regression we have P = 2 and 328

F =

 FST −FST

−FST FST

 .

Without loss of generality, we can order the phenotype vector, y, according to the populations from which the 329

individuals are drawn. As indicated, we consider SNPs that are standardized according to cross-population allele 330

frequencies. That is, for individual i and SNP k, the standardized genotype is given by 331

{X}ik = xik =
gik − 2fk√
2fk

(
1− fk

) ,
where gip ∈ {0, 1, 2} is the additively-coded genotype. Generalizing Equation 4 to P populations, and rewriting it in 332

terms of variance components, the GRM, and a vector of phenotypic means per populations, we have: 333

y ∼ N
(
µ, σ2

AA + σ2
EIN

)
and µ =


µ1

...

µP

⊗ ιn,

where A = M−1XX> denotes the N ×N GRM in the admixed sample, estimated from M markers, and IN the 334

identity matrix of appropriate dimensions, where N = nP . In the original LD-score regression framework, we have 335

that µ1 = 2−1σs and µ2 = −2−1σs. 336
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A.3 Expected GRM and Eigendecomposition under Drift 337

We now consider the expectation of the GRM. We first derive the elements of the expected GRM based on a single 338

SNP, conditional on the pooled and within-population allele frequencies (i.e., f, f1, and f2), for n = 2, and omitting 339

subscripts for the index of the SNP. By applying the law of iterated expectations to each element, we obtain the 340

expected GRM independent of allele frequencies. Using this allele-frequency-independent expected GRM, we can 341

generalize to an N -by-N GRM with n > 2 individuals from P populations. 342

As indicated, each SNP is standardized under the assumption of HWE. That is, the standardized genotype of 343

individual i for a given SNP with pooled allele frequency f , is given by 344

xi =
gi − 2f√
2f(1− f)

.

First note that, for i ∈ Pj 345

E [xi | i ∈ Pj ] = E
[
E
[
E
[
xi
∣∣ fj , f , i ∈ Pj] ∣∣ f, i ∈ Pj] ∣∣ i ∈ Pj]

= E

E
 2rj√

2f(1− f)

∣∣∣∣∣∣ f, i ∈ Pj
 ∣∣∣∣∣∣ i ∈ Pj

 = E [0 | i ∈ Pj ] = 0,

where rj is the j -th element of r. Now, the expected relatedness of individual i ∈ Pj with itself, is given by 346

E
[
x2i
∣∣ i ∈ Pj] = E

[
E
[
E
[
x2i
∣∣ fj , f , i ∈ Pj] ∣∣ f, i ∈ Pj] ∣∣ i ∈ Pj] (8)

= E

[
E

[
E

[
g2i − 4gif + 4f

2

2f
(
1− f

) ∣∣∣∣∣ fj , f , i ∈ Pj
] ∣∣∣∣∣ f, i ∈ Pj

] ∣∣∣∣∣ i ∈ Pj
]

(9)

= E

[
E

[
2fj + 2f2j − 8fjf + 4f

2

2f
(
1− f

) ∣∣∣∣∣ f, i ∈ Pj
] ∣∣∣∣∣ i ∈ Pj

]
(10)

= E

[
1

2f
(
1− f

) (2E
[
fj
∣∣ f]+ 2E

[
f2j
∣∣ f]− 8fE

[
fj
∣∣ f]+ 4f

2
) ∣∣∣∣∣ i ∈ Pj

]
(11)

= E

[
1

2f
(
1− f

) (2f + 2E
[
f2j
∣∣ f]− 4f

2
) ∣∣∣∣∣ i ∈ Pj

]
(12)

= E

1 +
1

2
Var

 2fj√
2f
(
1− f

)
∣∣∣∣∣∣ f
 ∣∣∣∣∣∣ i ∈ Pj

 = 1 +
1

2
Fjj , (13)

where Fjh is element {j, h} of F. Similarly, for individuals i 6= l from Populations j and h, we have 347

E [xixl | i ∈ Pj , l ∈ Ph] = Fjh. (14)
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Hence, the expected GRM with n observations per population, sorting individuals by population index, is 348

E [A] = F⊗ 1n + D⊗ In, where D = diag

(
1− 1

2
F11, . . . , 1−

1

2
FPP

)

and where 1n is n× n matrix of ones and ⊗ denotes the Kronecker product. 349

Assuming Fjj = F0 ≥ 0 for j = 1, . . . , P (i.e., the magnitude of drift away from the pooled frequency is equal 350

across populations; an assumption which holds by definition when P = 2), the diagonal elements of F are equal. 351

Under this assumption, we have 352

E [A] = F⊗ 1n +

(
1− 1

2
F

)
⊗ IN . (15)

Letting the eigendecompositions of the matrix of F -statistics and ones be given by 353

F = PΦP> and ιnι
>
n = QΘQ>,

then 354

E [A] = (P⊗Q)

(
Φ⊗Θ +

(
1− 1

2
F0

)
IN

)(
P> ⊗Q>

)
.

By construction
(
Φ⊗Θ +

(
1− 1

2F0

)
IN
)

is a diagonal matrix and (P⊗Q) is an orthonormal matrix. Hence, 355(
Φ⊗Θ +

(
1− 1

2F0

)
IN
)

is a diagonal matrix containing the eigenvalues of E [A]. Inspection of Θ reveals that 356

Θ = diag (n, 0, . . . , 0) . (16)

As F is a covariance matrix its eigenvalues are non-negative. The eigenvalues of the expected GRM, in descending 357

order, are now given by 358

di =

 nφi + 1− 1
2F0 for i = 1, . . . , P

1− 1
2F0 for i = P + 1, . . . , nP

(17)

In case P is small and f is the empirical midpoint of frequencies in the two populations, matrix F is unlikely to 359

have full rank. For instance, in case P = 2, we have that F11 = F22 = F0 = FST and F12 = −FST, in which case 360

φ1 = 2FST and φ2 = 0, and thereby d1 = 1 + (N − 1
2 )FST and di = d0 for i = 2, . . . , N , where d0 = 1− 1

2FST and 361

N = 2n. 362

Focussing on the case where P = 2, the first eigenvalue of the expected GRM is affected by the product of 363
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the total sample size and Wright’s F -statistics. Even for fairly small values of F ST, this quantity grows large 364

with increasing sample sizes. The remaining eigenvalues, however, are not affected by sample size; each remaining 365

eigenvalue is merely decreased by 1
2FST. Values of FST are usually small (e.g., it is suggested that FST ≈ 0.01 for 366

populations on the same continent4). Under this approximation, all remaining eigenvalues would be approximately 367

equal to one. 368

A.4 Least-Squares-Based Estimator of the Intercept 369

The log-likelihood function of GREML estimation9, ignoring the constant and including the leading PCs as fixed-effect 370

covariates, is given by 371

l = −1

2

(
log |V|+ log

∣∣∣C>V−1C
∣∣∣+ y>Ry

)
,

where C is the matrix of fixed-effects covariates, V is the phenotypic covariance matrix, and where 372

R = V−1 −V−1C
(
C>V−1C

)−1
C>V−1 = V−

1
2 MV−

1
2 ,

where M is an idempotent matrix, projecting onto the null space of C̃ = V−
1
2 C, defined as M = I−C̃

(
C̃
>

C̃
)−1

C̃
>

. 373

In our case C is merely a vector, defined as the first PC from the GRM. Hence, we switch to lower-case notation c, 374

and replace c by its theoretical expression, which is given by the Kronecker product of the first column of P and of 375

Q. That is, 376

c =

 1√
2
{Q}· 1

− 1√
2
{Q}· 1

 ,

where {Q}· 1 denotes the first column of Q. Bearing in mind that matrix ιnι
>
n has rank one, its first eigenvalue 377

and eigenvector are sufficient for reconstructing ιnι
>
n . This observations implies that 378

c =

 1√
N
ιn

− 1√
N
ιn

 , (18)

Rewriting the original model in Equation 4, we have 379

y ∼ N

σs
2

 1

−1

⊗ ιn,V
 ,
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where V = σ2
AA + σ2

EIN . Replacing A by its expectation under stratification, V can be rewritten as

V = (P⊗Q) Λ
(
P> ⊗Q>

)
, where Λ = diag (λ1, λ0, . . . , λ0) , λ1 = σ2

Ad1 + σ2
E , and λ0 = σ2

Ad0 + σ2
E ,

with d1 and d0 as defined in Appendix A, where the d1 increases with sample size as a result of drift, while 380

d0 ≈ 1 provided FST is small. Now Va = (P⊗Q) Λa
(
P> ⊗Q>

)
, where the Λa can be obtained by raising 381

the diagonal entries of Λ to the power a. Hence, V−
1
2 c = (P⊗Q)

(√
λ−11 , 0, . . . , 0

)>
, c>V−1c = λ−11 , and 382

log
∣∣c>V−1c

∣∣ = −log (λ1). Based on these expressions, we can show that 383

M = (P⊗Q)



0 0 · · · 0

0 1
...

...
. . .

0 · · · 1


(
P> ⊗Q>

)
and (19)

log |V| =
N∑
i=1

log ({Λ}ii) = log (λ1) + (N − 1) log (λ0) . (20)

Consequently, we can now write the log-likelihood as follows 384

l = −1

2

(
(N − 1) log (λ0) + z>Mz

)
, where (21)

z = V−
1
2 y ∼ N (µz, I) and µz =

σs
2

(P⊗Q)



√
Nλ−11

0

...

0


. (22)

Exploiting the fact that M is idempotent, we have that 385

y>Ry = z>Mz = v>v, where v = Mz ∼ N (0,M) as Mµz = 0. (23)

Hence, by including the first PC as fixed-effect covariate, the population-dependent mean is eliminated from 386

the likelihood. Moreover, the term y>Ry ∼ χ2(tr (M)), where tr (M) = N − 1. By rewriting M in terms of 387

individual PCs, rather than a Kronecker product, we can show that M = P(1)P(1)
>, where P(1) denotes the 388

matrix of all eigenvectors from the expected GRM except the first. In the last expression for the log-likelihood, the 389

leading eigenvalue has also been eliminated from the combined term log |V|+ log
∣∣∣C>V−1C

∣∣∣ = (N − 1) log (λ0). 390

Consequently, the GREML log-likelihood obtained by including the first PC from the GRM as fixed-effect covariate, 391
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is independent of the first eigenvalue and first eigenvector of the GRM. Since the effect of stratification on the first 392

eigenvalue is of the order NFST, whilst the effect on other eigenvalues is only of the order FST, it is obvious that 393

this approach will remove the vast majority of any potential bias incurred due to stratification. Hence, we posit 394

that – under the same data-generating process assumed in the derivation of LDSC regression – GREML estimation 395

including the first PC as fixed-effect covariate will be approximately unbiased, provided FST is small. 396

We will now study the expected value of the fixed-effect estimate of the first PC using generalized least squares 397

(GLS) and ordinary least squares (OLS), and study its relation with the LD-score regression intercept. The GLS (or 398

REML fixed-effects) estimator is given by 399

γ̂GLS =
(
c>V̂

−1
c
)−1

c>V̂
−1

y (24)

=
(
c>V̂

−1
c
)−1

c>V̂
−1
µy +

(
c>V̂

−1
c
)−1

c>V̂
−1
ε, where (25)

ε ∼ N (0,V) , (26)

where V̂ denotes the estimate of the true covariance matrix V, based on estimates σ̂2
A and σ̂2

E of the true variance 400

components σ2
A and σ2

E of the model. Now, 401

E [γ̂GLS ] =
(
c>V̂

−1
c
)−1

c>V̂
−1
µy (27)

Substituting expressions found before, we have that 402

E [γ̂GLS ] =

(
σ̂2
A

(
1 + FST

(
N − 1

2

))
+ σ̂2

E

)
c>V̂

−1
µy, where (28)

c>V̂
−1
µy =

σs

2

√
N

σ̂2
A

(
1 + FST

(
N − 1

2

))
+ σ̂2

E

. (29)

Therefore, 403

E [γ̂GLS ] =
σs
2

√
N, (30)

where N = 2n denotes the total sample size. Owing to the unit length of the PCs, the OLS estimator is given 404

by γ̂OLS = c>y. We show in Appendix D, that, in this particular model, γ̂OLS = γ̂GLS . Hence, regressing the 405

phenotype on the first PC using OLS is just as efficient as using GLS in this particular instance. Hence, we omit 406

the OLS and GLS subscript from this point on. Using the fact that E [γ̂] = σs

2

√
N , we have that 407

1 + FSTE [γ̂]
2

= 1 +
σ2
s

4
FSTN ≈ 1 +

a

4
FSTN = αLD, (31)
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where a ≈ σ2
s is the squared difference in phenotypic mean between the two subpopulations, and where αLD denotes 408

the theoretical LD-score-regression intercept, given a, FST, and N . This theoretical expression is based directly on 409

Equation 2.14 in Section 2 of the Supplementary Note to the LDSC-regression derivations4, taking into account 410

an error in Equation 2.11 (in which the right-hand side should be equal to 1
2fσs) and the knock-on effects of a 411

correction for this mistake. Using the fact that the first eigenvalue of the GRM is loosely expected to be given by 412

d1 = 1 + FST

(
N − 1

2

)
, it follows that (32)

F̂ST =
d1 − 1

N − 1
2

≈ d1 − 1

N
, (33)

where the (notationally neater) approximation of N − 0.5 by N hardly affects the estimate of F̂ST; when N is as 413

low as 100, the approximation on the right-hand side is only 0.5% lower than the initial expression. When, more 414

realistically, N > 10k, the approximation of F̂ST by N−1(d1 − 1) is only 0.005% lower than (N − 0.5)−1(d1 − 1). 415

Combining terms, our individual-level-data-based estimator of the LDSC-regression intercept is given by 416

α̂ = 1 +
d1 − 1

N
γ̂2, (34)

where d1 denotes the first eigenvalue from the GRM, γ̂ the estimate of the regression of the phenotype on the first 417

PC from the GRM, and N the total sample size. Importantly, we tacitly assume the phenotype to be standardized 418

to have mean zero and unit variance. Of course, γ̂2 is not an unbiased estimator of E [γ̂]
2
. However, an unbiased 419

estimate of E [γ̂]
2

hinges on knowing the true variance components. Nevertheless, we would like to point out that 420

Var (γ̂) = E
[
γ̂2
]
− E [γ̂]

2
.

Hence, in our approximation, where the squared expectation of the estimator is replaced by the squared estimate, 421

this squared estimate has the following expectation 422

E
[
γ̂2
]

= E [γ̂]
2

+ Var (γ̂) =
σ2
s

4
N +

(
σ2
A + σ2

E

) N large
≈ σ2

s

4
N,

where, for derivational ease, Var (γ̂) is set equal to the variance of the OLS estimator, which in turn equals
(
σ2
A + σ2

E

)
423

(i.e., the phenotypic variance after subtracting the variance accounted for by the leading PC). As the phenotype is 424

standardized, σ2
A + σ2

E +
σ2
s

4 = 1. Hence, σ2
A + σ2

E ≤ 1. Consequently, provided the sample is sufficiently large, γ̂2 is 425

an acceptable estimator of
σ2
s

4 N . 426
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Writing the linear mixed model as follows 427

y = cγ + ε, where (35)

ε ∼ N
(
0, σ2

AA + σ2
EIN

)
, (36)

where c denotes the leading principal components, we can see both the OLS and GLS estimator aim to estimate γ, 428

and from this draw inferences about the LD-score regression intercept. OLS ignores the structure of the covariance 429

matrix of ε, where GLS assumes σA and σ2
E – or estimates thereof – are given. As it is possible to write down 430

a linear regression function for the expectation of pairwise phenotypic products between individuals (i.e., yiyj 431

for i = 1, . . . , N and j = 1, . . . , N), in this mixed model with one fixed-effect regressor, an extended version of a 432

Haseman-Elston regression can also be applied; the extension here being that pairwise products of loadings on the 433

first PC between individuals then need to be included as regressor (i.e., cicj). The estimated effect of cicj , also 434

denoted by γ̂, can then be cast to an intercept estimate using Equation 34. 435

B Quality Control 436

The pooled genotype data, which is used as basis for the simulation study (discussed in Appendix C), is described in 437

detail in the Supporting Information of existing work17. Summarizing, the Swedish Twin Registry (STR) samples 438

have been genotyped using the HumanOmniExpress 12 v1 array, the Health and Retirement Study (HRS) samples 439

using the Infinium Omni 2.5 array, and the Rotterdam Study (RS) samples using Illumina HumanHap 550K array. 440

The STR and RS samples have been imputed MaCH/Minimac and HRS samples using IMPUTE2. Hence, there are 441

both differences in the genotyping array and in the imputation procedure. The three studies have been imputed 442

using the 1000 Genomes reference panel25. 443

Regarding quality control (QC) prior to creating this pooled dataset, in the imputed samples only HapMap 3 444

SNPs18 are selected. Genotypes are hard-called by rounding the dosages. Only high-quality SNPs are selected (e.g., 445

low missingness, high imputation quality). For full details see the first QC stage in Supporting Information, S1 446

Data, of the work by De Vlaming et al. (2016)17. For the purposes of our simulation we apply additional QC. The 447

pooled dataset comprises 8,652 individuals of North-West European ancestry from the HRS and an additional 9,617 448

individuals from the STR. There are 1,062,589 SNPs prior to additional QC. 449

The additional QC steps we apply are as follows: 450

1. We exclude the 26 regions reported in Table 5. This list is based on regions known to harbor inversions26 and 451

is supplemented with additional regions found using InvFEST27. Excluding such large inversions is important, 452

as these regions induce long-range LD and would, therefore, strongly affect leading principal components from 453
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Table 5. Regions in the human genome excluded, with basepair positions according human-genome build 37.

Chromo- Basepair Position
some Start End

1 48,287,980 52,287,979
2 86,088,342 101,041,482
2 134,666,268 138,166,268
2 183,174,494 190,174,494
3 47,524,996 50,024,996
3 83,417,310 96,017,310
5 44,464,243 50,464,243
5 97,972,100 100,472,101
5 128,972,101 131,972,101
5 135,472,101 138,472,101
6 25,392,021 33,392,022
6 56,892,041 63,942,041
6 139,958,307 142,458,307
7 55,225,791 66,555,850
8 7,962,590 11,962,591
8 42,880,843 49,837,447
8 111,930,824 114,930,824

10 36,959,994 43,679,994
11 46,043,424 57,243,424
11 87,860,352 90,860,352
12 33,108,733 41,713,733
12 111,037,280 113,537,280
17 31,799,963 33,389,579
17 40,928,985 42,139,672
20 32,536,339 35,066,586

Table 6. Sample size for phenotypes height and body-mass index (BMI) per study after QC.

Study Phenotype

Height BMI

HRS 5,847 5,845
RS 5,737 5,732
STR 4,382 4,382

Total 15,966 15,959
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genetic data if not removed. 454

2. We exclude SNPs with 455

� any missingness, 456

� a minor allele frequency below 1%, and/or 457

� a Hardy-Weinberg-Equilibrium-test p-value below 10−6. 458

3. We apply a relatedness cut-off of 0.025 using PLINK. 459

4. As the three studies differ in sample size, we select the largest possible random subsample per study, such 460

that the sample size is equal for each of the three subsamples in the pooled data. 461

5. We again exclude SNPs with a minor allele frequency below 1%, and/or a Hardy-Weinberg-Equilibrium-test 462

p-value below 10−6. 463

6. We exclude SNPs that are not available for the European-ancestry samples in the 1000Genomes, Phase 3 ref- 464

erence panel28, as available at https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_ 465

plinkfiles.tgz (accessed on July 26, 2017). 466

7. For the empirical analyses only: we exclude individuals for whom the phenotype of interest is not available. 467

After QC we have 17,544 observations for our simulation study, of which 5,848 from each of the three underlying 468

studies (i.e., the STR, HRS, and RS). For each observation we have 1,023,716 SNPs meeting our QC criteria. 469

In the empirical exercise we consider human height and body-mass index (BMI). For details on the construction 470

and QC of these phenotypes we refer to earlier work17. Summarizing, these phenotypes have been aggregated across 471

available measurements (when available), corrected for non-linear birth-year effects and sex, standardized to have 472

mean zero and unit variance in each of the three subsamples separately, and pooled across studies thereafter, yielding 473

N = 26, 448 for height and N = 26, 438 for BMI. After these QC steps, the phenotypes are merged with genetic 474

dataset, leaving N = 15, 966 for height and N = 15, 959 observations for BMI. No further standardization is applied 475

after merging the phenotype and genotype data. In these empirical analyses, we have unequal sample sizes per study 476

per phenotype. Final sample sizes per phenotype per study are reported in Table 6. As the sample sizes differ quite 477

substantially, the empirical exercise tests indirectly whether a violation of the equal-sample-size per subpopulations 478

affects the relation between the LD-score-regression intercept and our individual-level-data estimator. 479

For the construction of LD-scores, we used the binary PLINK files available at the website of LD-score regression4, 480

for the European-ancestry samples in the 1000Genomes, Phase III reference panel28, as available at https: 481

//data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_plinkfiles.tgz (accessed on July 26, 2017). 482
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LD-scores are constructed per chromosome with a one-centimorgan window using LD-score regression4, based only 483

on the subset of SNPs available at the end of the QC procedure for the pooled HRS-STR-RS dataset. 484

C Simulation Study and Empirical Analyses 485

C.1 Two Populations 486

We use the pooled imputed genotype data from the HRS and STR, obtained after the quality control procedure, 487

discussed in Appendix B. Based on this dataset we simulate phenotypes by means of an infinitesimal model, for 488

various degrees of population stratification. More specifically, let r = 1, . . . , 500 denote the index of the runs, 489

α = {0, 0.25, 0.5, 0.75, 1} the set of stratification levels (index by l = 1, . . . , 5), and PHRS (resp. PSTR) the set of 490

HRS (STR) individuals. We simulate the phenotype for individual i in run r for stratification level l as follows: 491

yirl =


αl

2 + x>i βr + εir if i ∈ PHRS

−αl

2 + x>i βr + εir if i ∈ PSTR, where
(37)

βr ∼ N
(

0,
h2SNP

M
IM

)
and εir ∼ N

(
0, 1− h2SNP

)
, (38)

where αl denotes the l-th element of set α and h2SNP denotes the SNP-based heritability. All random draws in vectors 492

βr and scalars εir are independent from each other. Scalar M denotes the number of SNPs, and xi denotes the 493

M ×1 vector of genotypes for individual i, standardized at the level of the pooled sample (assuming Hardy-Weinberg 494

equilibrium holds). The standardized genotype of individual i for SNP k (denoted by xik) is defined as 495

xik =
gik − 2f̂k√
2f̂k(1− f̂k)

,

where f̂k is the coded-allele frequency across the two samples. Effectively, the object containing the phenotypes is a 496

three dimensional array, of size 11, 696× 500× 5. Under this data-generating process, the unconditional phenotypic 497

variance (i.e., when it is not known to which population a given observation belongs) is given by 498

Var (yilr) ≈ 1 +
α2
l

4
, (39)

where the last term is the variance accounted for by stratification. Hence, the proportion of phenotypic variance 499

explained by stratification, set at level αl, is given by pl = α2
l (4 + α2

l )
−1. 500
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C.2 Three Populations 501

In the two-population design, we assigned one population a phenotypic mean of +µl and the other a phenotypic 502

mean of −µl, where µl = αl/2. This amount of stratification explains proportion pl = α2
l (4+α2

l )
−1 of the phenotypic 503

variance. To keep the framework consistent, in the three-population design, in each run we assign one randomly 504

selected population a mean of +µ∗l , another randomly selected population a mean of −µ∗l , and the remaining 505

population a mean of zero, where µ∗l = γl/2. In this scenario, proportion 506

p∗l =
2µ∗l

2

3 + 2µ∗l
2 =

γ2l
6 + γ2l

of the phenotypic variance is explained by µ∗l . As we aim to have stratification explaining the same amount of 507

phenotypic variance in both simulation designs, we require 508

pl = p∗l ⇔ γl = αl
√

3/2,

with αl as set in the design for two populations. Consequently, we simulate data for three populations as follows: 509

yirl =


αl

2

√
3/2 + x>i βr + εir if i ∈ high-mean sample in run r

x>i βr + εir if i ∈ medium-mean sample in run r

−αl

2

√
3/2 + x>i βr + εir if i ∈ low-mean sample in run r, where

(40)

βr ∼ N
(

0,
h2SNP

M
IM

)
and εir ∼ N

(
0, 1− h2SNP

)
, (41)

where all notation is the same as for two populations. In each run, the STR, HRS, and RS sample are randomly 510

assigned to either have the low, medium, or high phenotypic mean. The object containing the phenotypes is a three 511

dimensional array for the three-population simulation, of size 17, 544× 500× 5. 512

C.3 Empirical Analyses 513

In the empirical work, in the case additional stratification is added, the phenotype (e.g., height) for individual i 514

(denoted by yi) is adjusted as follows: 515

y∗i =


yi + 0.5 if i ∈ PSTR

yi if i ∈ PRS

yi − 0.5 if i ∈ PHRS

In the baseline analyses, yi is used as phenotype, whereas in the design with additional stratification, y∗i is used. 516
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D Fast GREML with Principal Components as Only Covariates 517

In case GREML estimation is used when only a subset of PCs is included as fixed-effects covariates, the computational 518

complexity of REML can be reduced strongly. Following the origingal GREML model9, we have that 519

y ∼ N (Cβ,V) , where V = σ2
AA + σ2

EIN , (42)

where C denotes the set of K leading principal components, from the N -by-N GRM A with eigendecomposition 520

A = PΦP> (i.e., C consists of the first K columns of P). Changing notation slightly, we consider the following 521

expressions for the log-likelihood, gradient, and average information (AI) matrix, in line with standard GREML9: 522

log l
(
σ2
A, σ

2
E

)
= − 1

2

(
log |V|+ log

∣∣∣C>V−1C
∣∣∣+ y>My

)
+ constant,

g =

 ∂log l
∂σ2

A

∂log l
∂σ2

E

 = − 1
2

 tr (MA)− y>MAMy

tr (M)− y>MMy

 , and I = 1
2

 y>MAMAMy y>MAMMy

y>MMAMy y>MMMy

 , where

M = V−1 −V−1C
(
C>V−1C

)−1
C>V−1.

Using properties of the eigendecomposition, we have that 523

V = PΛP>, where Λ = σ2
AΦ + σ2

EIN . (43)

Importantly, Λ is a diagonal matrix and is therefore easily inverted. Further use of properties of eigendecompositions, 524

and the fact that C is merely a subset of the columns of P, it follows that
(
C>V−1C

)−1
= Λ1,...,K , where Λ1,...,K 525

is a diagonal submatrix of Λ, containing the K largest values of Λ. Hence, 526

M = P

 0 0

0 Λ−1K+1,...,N

P>. (44)

Defining ỹ = P>y, we can now rewrite the log-likelihood, gradient, and AI matrix as follows 527

log l
(
σ2
A, σ

2
E

)
= − 1

2

∑N
i=K+1

(
log
(
σ2
Aφi + σ2

E

)
+

ỹ2i
σ2
Aφi+σ2

E

)
,

g = − 1
2

∑N
i=K+1

 φi

σ2
Aφi+σ2

E
− ỹ2i φi

(σ2
Aφi+σ2

E)
2

1
σ2
Aφi+σ2

E
− ỹ2i

(σ2
Aφi+σ2

E)
2

 , and I = 1
2

∑N
i=K+1

 ỹ2i φ
2
i

(σ2
Aφi+σ2

E)
3

ỹ2i φi

(σ2
Aφi+σ2

E)
3

ỹ2i φi

(σ2
Aφi+σ2

E)
3

ỹ2i

(σ2
Aφi+σ2

E)
3

 ,
(45)

where φi denotes the i-th leading eigenvalue from the GRM and ỹi denotes the i-th element of ỹ. Noticing (i) that 528

ỹ consists only of N elements, which do not change over iterations, (ii) the same holds for the eigenvalues φi, and 529
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(iii) the log-likelihood, gradient, and AI matrix are computationally easy functions of the variance components, 530

the eigenvalues, and ỹi, it readily follows that AI-REML estimation (e.g., optimized using Newton’s method) is 531

computationally easy. In this specific model, the generalized least squares estimator is given by 532

β̂GLS =
(
C>V−1C

)−1
C>V−1y = ỹ1,...,K = C>y = β̂OLS , (46)

where ỹ1,...,K denotes the column vector containing the first K elements of ỹ. 533

In our simulation study with three subsamples we perform 2,500 separate REML analyses (i.e., 5 levels of 534

stratification with 500 runs per level), with N ≈ 18k in each analysis. Exploiting the fact that the same GRM 535

is used in all analyses and using our efficient algorithm, we carry out these GREML analyses in less than three 536

minutes on a machine with 64GB RAM and 24 cores with a clock rate of 2.4GHz. Importantly, far less than the 537

available 64GB RAM is used in these analyses. 538
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Web Resources

LDSC4: github.com/bulik/ldsc

GCTA9: cnsgenomics.com/software/gcta/

PLINK10,11: www.cog-genomics.org/plink2
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