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Abstract 11 

Susceptibility to Clostridium difficile infection is primarily associated with previous exposure to 12 

antibiotics, which compromise the structure and function of the gut bacterial community. Specific 13 

antibiotic classes correlate more strongly with recurrent or persistent C. difficile infection. As 14 

such, we utilized a mouse model of infection to explore the effect of distinct antibiotic classes on 15 

the impact that infection has on community-level transcription and metabolic signatures shortly 16 

following pathogen colonization and how those changes may associate with persistence of C. 17 

difficile. Untargeted metabolomic analysis revealed that C. difficile infection had significantly 18 

larger impacts on the metabolic environment across cefoperazone and streptomycin-pretreated 19 

mice, which become persistently colonized compared to clindamycin-pretreated mice where 20 

infection quickly became undetectable. Through metagenome-enabled metatranscriptomics we 21 

observed that transcripts for genes associated with carbon and energy acquisition were greatly 22 

reduced in infected animals, suggesting those niches were instead occupied by C. difficile. 23 

Furthermore, the largest changes in transcription were seen in the least abundant species 24 

indicating that C. difficile may “attack the loser” in gut environments where sustained infection 25 

occurs more readily. Overall, our results suggest that C. difficile is able to restructure the 26 

nutrient-niche landscape in the gut to promote persistent infection. 27 

Importance 28 

Clostridium difficile has become the most common single cause of hospital-acquired infection 29 

over the last decade in the United States. Colonization resistance to the nosocomial pathogen is 30 

primarily provided by the gut microbiota, which is also involved in clearing the infection as the 31 

community recovers from perturbation. As distinct antibiotics are associated with different risk 32 

levels for CDI, we utilized a mouse model of infection with 3 separate antibiotic pretreatment 33 

regimes to generate alternative gut microbiomes that each allowed for C. difficile colonization 34 

but varied in clearance rate. To assess community-level dynamics, we implemented an 35 
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integrative multi-omic approach that revealed that infection significantly changed many aspects 36 

of the gut community. The degree to which the community changed was inversely correlated 37 

with clearance during the first six days of infection, suggesting that C. difficile differentially 38 

modifies the gut environment to promote persistence. This is the first time metagenome-enabled 39 

metatranscriptomics have been employed to study the behavior of a host-associated microbiota 40 

in response to an infection. Our results allow for a previously unseen understanding of the 41 

ecology associated with C. difficile infection and provides groundwork for identification of 42 

context-specific probiotic therapies. 43 
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Introduction 44 

One of the many beneficial functions provided by the indigenous gut bacterial community is its 45 

ability to protect the host from infection by pathogens (1). This attribute, termed colonization 46 

resistance, is one of the main mechanisms that protect healthy individuals from the 47 

gastrointestinal pathogen Clostridium difficile (2–4). C. difficile infection (CDI) is responsible for 48 

most cases of antibiotic-associated colitis, a toxin-mediated diarrheal disease that has 49 

dramatically increased in prevalence over the last 10 years. There are an estimated 453,000 50 

cases of CDI resulting in 29,000 deaths in the United States annually (5). Antibiotics are a major 51 

risk factor for CDI and are thought to increase susceptibility by disrupting the gut bacterial 52 

community structure; however, it is still unclear what specific changes to the microbiota 53 

contribute to this susceptibility (6, 7). Although most classes of antibiotics have been associated 54 

with initial susceptibility to CDI, fluoroquinolones, clindamycin, and cephalosporins are linked to 55 

increased risk of recurrent or persistent infection (8–10). This raises questions about the groups 56 

of bacteria that are differentially impacted by certain therapies and how these changes effect 57 

duration or severity of the infection. 58 

Associations between the membership and functional capacity of the microbiota as measured 59 

by the metabolic output suggest that antibiotics increase susceptibility by altering the nutrient 60 

milieu in the gut to one that favors C. difficile metabolism (11–13). One hypothesis is that C. 61 

difficile colonization resistance is driven by competition for growth substrates by an intact 62 

community of metabolic specialists. This has been supported by animal model experiments over 63 

the past several decades (14–16). This line of reasoning has been carried through to the 64 

downstream restoration of colonization resistance with the application of fecal microbiota 65 

transplant (FMT). Although an individual’s microbiota may not return to its precise original state 66 

following FMT, it is hypothesized that the functional capacity of the new microbiota is able to 67 

outcompete C. difficile for resources and clear the infection (13, 17). 68 
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Leveraging distinct antibiotic treatment regimens in a murine model of CDI (18), we and others 69 

have shown that C. difficile adapts its physiology to the distinct cecal microbiomes that resulted 70 

from exposure to antibiotics (18, 19). We went on to show that C. difficile appears to adapt 71 

portions of its metabolism to fit alternative nutrient niche landscapes. As the diet of the mice 72 

remained unchanged, changes in the cecal metabolome are likely driven by the intestinal 73 

microbiota. Although it has been established that C. difficile colonizes these communities 74 

effectively, it is unknown whether the differences in the metabolic activity of communities 75 

following antibiotic treatment are impacted by C. difficile colonization or if they correlate with 76 

prolonged infection. Historically, it has been difficult to ascribe specific metabolic contributions to 77 

individual taxa within the microbiota during perturbations, especially within the context of a host. 78 

To address this limited understanding, we employed an integrative untargeted metabolomic and 79 

metagenome-enabled metatransciptomic approach to investigate specific responses to infection 80 

of the gut microbiota in a murine model of CDI. This high-dimensional analysis allowed us to not 81 

only characterize the metabolic output of the community, but to also identify which subgroups of 82 

bacteria were differentially active during mock infection and CDI. Our results supported the 83 

hypothesis that CDI was indeed associated with altered community-level gene transcription and 84 

metabolomic profile of susceptible environments. This effect was significantly more pronounced 85 

in communities where C. difficile was able to maintain colonization. This work highlights the 86 

need for increased appreciation of the differential, combined effects of antibiotics and CDI on 87 

the gut microbiota to develop more successful targeted therapies that eliminate C. difficile 88 

colonization. 89 
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Results 90 

Distinct antibiotic pretreatments are associated with alternative community structures 91 

that are equally susceptible to initial C. difficile colonization, but differ in patterns of 92 

clearance. 93 

We have previously shown that when conventionally-reared SPF mice were pretreated with one 94 

of three different antibiotics (streptomycin, cefoperazone, and clindamycin; Table S1), each 95 

pretreatment was associated with altered patterns of C. difficile virulence factor expression (19). 96 

These antibiotics were chosen for not only the ability to to reduce C. difficile colonization 97 

resistance in a mouse model (18), but also for distinct and significant impacts on the structure 98 

and diversity of the cecal microbiota (Fig. 1A) (19). In each antibiotic pretreatment, we observed 99 

equally high levels of C. difficile colonization on the day after infection, however, over the 100 

subsequent 9 days the amount of C. difficile in the feces of clindamycin-pretreated mice were 101 

the only mice to fall below the limit of detection, while mice receiving the other pretreatments 102 

remained highly colonized (p = 0.01; Fig. 1A). We hypothesized that this occurred in the 103 

clindamycin-pretreated mice because the perturbed intestinal community occupied niche space 104 

that overlapped with that of C. difficile. 105 

We chose to focus our remaining experiments on cecal samples collected 18 hours after 106 

infection to the assess behavior of C. difficile directly prior to the reduction in detectable C. 107 

difficile. This end point corresponded with a previous study where C. difficile reached maximum 108 

cecal vegetative cell load with few detectable spores (20). We also elected to examine cecal 109 

content because it was more likely to be a site of active bacterial metabolism compared to stool 110 

and would allow for an assessment of functional differences in the microbiota. At 18 hours after 111 

infection, we found that the communities remained highly differentiated from untreated controls 112 

as measured by 16S rRNA gene sequencing of the V4 region (Fig. 1B). The composition of 113 
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streptomycin-pretreated communities was more variable between cages, but was generally 114 

enriched for members of the Bacteroidetes phylum. Cefoperazone and clindamycin-pretreated 115 

cecal communities were consistently dominated by members of the Lactobacillaceae and 116 

Enterobacteriaceae families, respectively. Despite variation in the community structures, there 117 

were no significant differences in the number of vegetative cells between any antibiotic-118 

pretreatment group (Fig. 1C). All susceptible mice were colonized with ~1x108 vegetative colony 119 

forming units (CFU) per gram of cecal content and untreated mice maintained C. difficile 120 

colonization resistance. We have also previously demonstrated that both C. difficile spore 121 

production and toxin activity differ between these pretreatment regimes (19). As both processes 122 

have been linked to environmental concentrations of specific growth nutrients (21), these results 123 

suggested that despite high initial C. difficile colonization the microbiomes across pretreatments 124 

may vary in available nutrients or profiles of competitors for those niches. 125 

Multiple biological signatures in the bacterial community and metabolome differentiated 126 

cecal microbiomes that remained colonized by C. difficile from those that did not. 127 

Pretreatment with antibiotics not only alters the structure of the resident microbiota, but also has 128 

a dramatic impact on the intestinal metabolome (11–13). To understand the ramifications each 129 

antibiotic had on the cecal metabolomic environment, we performed untargeted metabolomic 130 

analysis on the cecal contents that were also utilized in the 16S rRNA gene sequencing. We 131 

identified a total of 727 distinct metabolites. In combination with our 16S rRNA gene sequencing 132 

results, we first characterized the differences between the microbiomes (i.e. the microbiota, plus 133 

the associated metabolome) of the mock-infected animals to quantify possible drivers of 134 

communities that cleared the infection. To focus our analysis on ascertaining changes in 135 

discrete populations within the microbiota, we generated operational taxonomic units (OTUs) 136 

clustered at 97% similarity. We also removed all C. difficile 16S rRNA gene sequences, which 137 

represented an average of 2.113% sequencing reads across infection groups to eliminate its 138 
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direct impact in downstream calculation. Using these methods we discovered that the Bray-139 

Curtis dissimilarity of both the community structure (p < 0.001) and metabolome (p < 0.001) 140 

were significantly different between cleared and colonized groups during the early stages of 141 

infection (Fig. 2A & 2C). These results supported the hypothesis that the cecal environment 142 

created by clindamycin pretreatment was highly divergent from the other groups, and likely 143 

contributed to the clearance seen in the subsequent days. 144 

To identify the populations and metabolites that were associated with sustained colonization, we 145 

utilized Random Forest machine learning with cross validation to identify the smallest optimal 146 

subset of features that could successfully differentiate microbiomes that clear infection and and 147 

those that remain colonized (22). We identified a model with 5 OTUs that correctly classified all 148 

samples to their corresponding groups (Fig. 2B; Out-of-bag error=0%). Interestingly, these 149 

OTUs were not consistently abundant in antibiotic-pretreated communities. Similarly, when we 150 

used the same approach with the metabolomic data, we identified a model that used 5 151 

metabolites that correctly differentiated the groups (Fig. 2D; Out-of-bag error=0%). Together 152 

these results further supported the hypothesis that the environment of the cecum, even early 153 

during infection, is distinct between groups that clear the infection and those that maintain C. 154 

difficile at high levels. Furthermore, results from machine learning analysis suggest that rare 155 

members of the communities had a disproportionate influence on the clearance patterns 156 

observed between pretreatment regimes and that changes in community structure may be less 157 

consistent than changes in the metatransciptome or metabolome. 158 

Amino-acid metabolism by C. difficile appears important for sustained colonization 159 

across susceptible environments. 160 

C. difficile’s ability to metabolize amino acids via Stickland fermentation may be a critical 161 

nutrient niche that enables it to colonize some perturbed communities (23). We were curious 162 

whether this behavior was conserved across multiple distinct gut environments where C. difficile 163 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 9 

was able to colonize. We assessed the changes between the antibiotic-pretreated, mock-164 

infected microbiomes and those of untreated, C. difficile-resistant animals. Not only were the 165 

relative abundances of Stickland fermentation substrates increased across susceptible 166 

environments, but several secondary bile acids, which have been shown to be negatively 167 

correlated with C. difficile susceptibility were significantly decreased (Fig. S1D; p < 0.001). 168 

Additionally, when we constructed a Random Forest classification model to differentiate the 169 

groups, we identified multiple members of the Clostridia which are capable of metabolizing 170 

amino acids for growth (24). The relative abundances of these populations were significantly 171 

lower in susceptible animals (Fig. S1B; p < 0.001). We also performed a similar analysis to 172 

investigate changes induced by C. difficile colonization itself in these susceptible conditions. 173 

Although CDI alone did not induce significant shifts in the global community structure or 174 

metabolome (Fig. S2 A & C; p = 0.185, 0.065), several features were able to discriminate 175 

infected and uninfected microbiomes with high accuracy. This analysis highlighted numerous 176 

growth substrates that are known for C. difficile in all pretreated mice including 6 Stickland 177 

substrates, 4 of which were proline conjugates, along with arabonate/xlyonate (Fig. S2D). 178 

Furthermore 5-aminovalerate, the most common end product of Stickland fermentation, was 179 

significantly increased during infection in almost all of the metabolomes. Inspection of these 180 

specific metabolites revealed that clindamycin pretreatment was only condition where both the 181 

inputs and outputs of Stickland fermentation were less abundant relative to the untreated mice 182 

(Fig. S3). These results strongly support Stickland fermentation as a primary nutritional strategy 183 

of C. difficile early in infection. Moreover, these data suggest that the degree to which the 184 

environment of the intestine is altered by infection may be linked to the ability of the pathogen to 185 

remain colonized. 186 
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Infection corresponded with larger shifts in the metatranscriptomes of communities that 187 

allowed sustained C. difficile colonization. 188 

Despite the strong associations between bacterial community structure and the metabolome 189 

with colonization resistance, it was difficult to associate specific populations with changes in 190 

those metabolites that were associated with the duration of infection. To gain a more specific 191 

understanding of how the microbiota or C. difficile shaped the metabolic environment, we 192 

employed parallel metagenomic and metatranscriptomic shotgun sequencing of the samples 193 

collected from the cecal content of the mice used in the previous analyses. To achieve usable 194 

concentrations of bacterial mRNA after rRNA depletion, we had to pool the samples within each 195 

treatment and infection group. To establish confidence in the results of a pooled analysis, we 196 

calculated within-group sample variance among replicates using CFU, OTU relative abundance, 197 

and metabolomic relative abundance data (Table S3). These analyses revealed low levels of 198 

variance within control and experimental groups. Following sequencing, metagenomic reads 199 

from mock-infected cecal communities were assembled de novo into contigs and putative genes 200 

were identified resulting in 234,868 (streptomycin), 83,534 (cefoperazone), and 35,681 201 

(clindamycin) open reading frames in each metagenome. Of these putative genes, 28.5% could 202 

be annotated to a known function based on the KEGG database, and many of these 203 

annotations were homologs to genes in species that were found in our dataset. Streptomycin 204 

pretreatment resulted in a significantly more diverse community than other groups based on 205 

16S rRNA gene sequence data, so a more diverse metagenome was expected (Table S1). 206 

Supporting this prediction, 2408 unique functionally annotated genes were detected in the 207 

streptomycin pretreatment metagenome, at least 1163 more genes than were found in either the 208 

cefoperazone or clindamycin metagenomes (Fig. S4A-D). Metagenome-enabled mapping of the 209 

metatranscriptomic reads revealed that we were able to obtain informative depths of sequencing 210 

from across the metagenomic libraries (Fig. S4E-F). As expected, genes with any detectable 211 

transcript in any metatranscriptome were a subset of their corresponding metagenome. 212 
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Metatranscriptomic read abundances were normalized to corresponding metagenomic coverage 213 

per gene to normalize for the abundance of the contributing bacterial taxa. This step was 214 

followed by a final subsampling of reads from each conditions to control for uneven sequencing 215 

effort and to identify genes with the largest changes in transcription relative to uninfected 216 

animals. 217 

We hypothesized that the degree of change in the metatranscriptome corresponding with C. 218 

difficile colonization would reflect the shifts seen at in the metabolome. As disparate bacterial 219 

taxa possess vastly different metabolic capabilities and the antibiotic pretreatments induced 220 

distinct species profiles in each community, we tested our hypothesis by delineating the 221 

transcriptomic contributions of separate bacterial taxa within each metatranscriptome. Since 222 

many genes lack a specific functional annotation in KEGG but retain general taxonomic 223 

information, we continued the analysis at the genus level of classification for all genes 224 

contributed to each metagenome. Using this approach, we directly compared the normalized 225 

transcript abundances for each gene between infected and uninfected states for each antibiotic 226 

pretreatment and calculated the Spearman correlation to identify distinct patterns of 227 

transcription (Fig. 3). This resulted in 2473 genes that had an average distance of 2.545 units of 228 

deviation (UD) associated with streptomycin-pretreatment, 2930 genes at an average distance 229 

of 3.854 UD with cefoperazone-pretreatment, and only 727 genes at an average distance of 230 

2.414 UD with clindamycin-pretreatment. Overall, the clindamycin pretreatment was associated 231 

with the fewest transcription outliers between uninfected and infection conditions compared with 232 

those of the other antibiotic groups. This suggested that the degree to which the 233 

metatranscriptome was altered by infection corresponded to prolonged colonization. 234 

This analysis also revealed that outlier genes originated in underrepresented genera. In 235 

streptomycin-pretreated mice, 937 genes belonging to Lactobacillus that higher transcription 236 

during C. difficile infection; Lactobacillus accounted for 0.42% of the 16S rRNA gene sequences 237 
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(Fig. 3A). In cefoperazone-pretreated mice, 2290 genes belonging to Bacteroides had lower 238 

transcription during C. difficile infection; Bacteroides accounted for 1.49% of the 16S rRNA gene 239 

sequences (Fig. 3B). A consistent trend in streptomycin and cefoperazone-pretreated mice was 240 

an overrepresentation of highly transcribed genes from genera belonging to Bacteroidetes 241 

during mock infection. The metatransciptomes among mice from both of these pretreatment 242 

conditions poorly correlated between mock and infected conditions, indicating a high degree of 243 

change induced by C. difficile colonization (R = 0.334 & R = 0.031). In clindamycin-pretreated 244 

mice the largest difference in transcription was for 510 Lactobacillus genes with increased 245 

transcription during CDI; Lactobacillus accounted for 2.7% of the 16S rRNA gene sequences 246 

(Fig. 3C). Infected and uninfected metatranscriptomes from mice pretreated with clindamycin 247 

were more strongly correlated with each other than either of the other pretreatments (R = 248 

0.864). This suggests that although C. difficile altered the streptomycin and cefoperazone-249 

pretreated communities in which it was able to remain stably colonized, it had minimal impact on 250 

the clindamycin-pretreated community in which it was not able to remain colonized. 251 

Largest changes in metatranscriptomes in response to infection were concentrated in 252 

the minority taxa of each pretreatment group. 253 

To explore the observation that rare taxa were responsible for the largest differences in 254 

transcription in response to infection, we tabulated the absolute difference between mock and 255 

C. difficile infected transcriptomes for each genus in each antibiotic pretreatment. We further 256 

normalized these values for the number of genes detected in each genus to adjust for genera 257 

that were more successfully assembled or annotated and we eliminated genera where less than 258 

50 genes were detected in the metatranscriptome. Taxa were then stratified into categories 259 

based on their relative abundance in each community from 16S rRNA gene sequencing (Fig. 4). 260 

This revealed that most change occurred among the rare genera and that the degree of change 261 

was inversely correlated with sustained colonization. To this point, minority metatranscriptomic 262 
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absolute differences were significantly reduced in clindamycin pretreatment (p < 0.001). 263 

Additionally, the proportion of taxa in the lowest relative abundance bracket was similar across 264 

pretreatment groups (~88.9%). As a corollary, we predicted that the majority of unique genes or 265 

metabolic potential was held within this minority, and when following quantification this proved to 266 

be the case (Table S4). As a consequence, the downstream impacts on functionality may affect 267 

a disproportionately large effect on the overall environment of the intestine as a function of its 268 

collective metabolism. 269 

Altered transcription within minority taxa favors reduced nutrient competition with C. 270 

difficile in communities that permitted sustained colonization. 271 

Based on our metabolomic and metatranscriptomic results, we hypothesized that pathways with 272 

the greatest differences between mock and C. difficile-infected mice would be related to 273 

catabolism of metabolites that C. difficile could use for for growth. To assess these changes, we 274 

identified those annotated transcripts that were associated with genera that represented less 275 

than 0.1% of the community as measured with our 16S rRNA gene sequence data (Fig. 5). This 276 

resulted in the identification of 585 genes that were differentially transcribed between 277 

clindamycin-pretreated mice and the streptomycin and cefoperazone-pretreated mice. From this 278 

group of genes we filtered the collection to identify those genes that were unique to either the 279 

clindamycin-pretreated mice or the streptomycin and cefoperazone-pretreated mice. Finally, we 280 

limited our analysis to those genes that were meaningfully different between the mock and C. 281 

difficile-infected groups in each antibiotic pretreatment group. This resulted in 34 genes from 11 282 

pathways. These genes and pathways were primarily involved in simple carbohydrate-283 

containing molecule acquisition/utilization (Fig. 5). Interestingly, many of these genes had 284 

decreased transcription during infection compared to mock-infected controls. At the pathway-285 

level, many genes associated with galactose and amino sugar acquisition (both C. difficile 286 

growth substrates) were reduced during infection in both streptomycin and cefoperazone-287 
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pretreated mice. Conversely, pathways uniquely associated with clindamycin-pretreated 288 

communities were related to the metabolism of a diverse array of carbon sources, which may 289 

indicate ineffective competition by C. difficile with this community for any particular growth 290 

substrate. Our results indeed suggest that C. difficile colonization induces a shift transcriptional 291 

activity for a minority subset of species, possibly in an effort to segregate a desired nutrient 292 

niche, prior to the introduction of the hallmark disease phenotypes associated with CDI. 293 
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Discussion 294 

Our results demonstrate that distinct intestinal ecosystems are differentially impacted by C. 295 

difficile colonization and that these changes to community metabolism could have implications 296 

for the ability of the pathogen to persist in those environments. Furthermore, our mutli-omics 297 

approach demonstrated that C. difficile manipulated the niche landscape of the intestinal tract. 298 

Instances of active nutrient niche restructuring in the gut have been documented previously for 299 

prominent symbiotic bacterial species in gnotobiotic mice (25), but not in a conventionally-300 

reared animal model of infection following antibiotic pretreatment. Interestingly, the taxonomic 301 

groups that produced the transcripts that were most altered by C. difficile colonization were rare 302 

in their cecal community. Previous studies have found that rare taxonomic groups, even those 303 

at a low abundance as a result of a spontaneous perturbation, may have disproportionate 304 

effects on the metabolome of the rest of the community (26). For example, in temperate lakes 305 

conditionally rare microbes were found to be far more metabolically active than highly abundant 306 

taxa (27). These examples of response to perturbations are interesting models for thinking 307 

about the dynamics of bacterial populations recovering from an antibiotic perturbation. As such, 308 

C. difficile may compete with these organisms to ultimately affect greater change to the entire 309 

ecosystem and open a long-lasting nutrient niche. While this hypothesis requires further 310 

exploration, it provides an ecological framework to study the interactions between C. difficile and 311 

members of susceptible communities. 312 

This study is one of the first in vivo observations that a medically relevant bacterial pathogen 313 

may alter the metabolic activity of a host-associated community to promote its own colonization. 314 

This is also the first application of metatranscriptomic analysis of the gut microbiota in vivo and 315 

in response to a pathogen. Other groups have identified potential metabolite markers of C. 316 

difficile infection in patient feces (28), but they were not able to identify associations with 317 

changes in community metabolism that were afforded to us by our paired metabolomic and 318 
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metatranscriptomic analyses. In a recent study, a tick-vectored bacterial pathogen altered the 319 

ability of the resident microbiota of the tick by interrupting proper biofilm formation and allowing 320 

lasting colonization (29). It was also recently found that bacterial metabolic generalists may be 321 

more likely to actively antagonize the growth of other species in an environment that they are 322 

colonizing (30). We previously showed that C. difficile has a wide nutrient niche-space in vivo 323 

and most likely utilizes its role as a metabolic generalist to colonize diverse gut microbiomes 324 

(19). The ability to simultaneously antagonize the metabolism of surrounding populations in 325 

cecal environments that support persistence would explain the more significant shifts in those 326 

metatranscriptome. While we acknowledge that this study may not elucidate the specific 327 

mechanism by which this interaction occurs, the combined systems analysis strengthens each 328 

individual level of observation. When the results from these approaches are combined reveals a 329 

clearer understanding of C. difficile-related microbial ecology. This research lays the 330 

groundwork for a more rationale consideration of the metabolic functionalities of bacterial taxa to 331 

consider when attempting to rebuild C. difficile colonization resistance across differentially 332 

perturbed gut environments. 333 

In spite of consistent results across the different methods we used in this study, several 334 

limitations should be noted. First, as with all transcriptomic studies, the relative level of mRNA 335 

detected for a given gene does not necessarily reflect the amount of functional protein made by 336 

a cell or the post-translational modifications that are required to activate the enzymes. 337 

Additionally, due to the low relative abundance of C. difficile in these communities, it was 338 

necessary for us to pool samples to generate a large number of reads from each group rather 339 

than sampling multiple replicates within each group. Greater transcript read abundance per 340 

gene allowed for improved survey for the activity of lowly abundant species as well as greater 341 

confidence in genes found to be highly transcribed. Although the lack of animal-based 342 

replication for the metatranscriptomic data does potentially limit the ability to generalize our 343 
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results, this approach has been successfully utilized by numerous groups in the past to 344 

accurately characterize transcriptionally activity across communities of bacteria (19, 31–33). 345 

Furthermore, the metatranscriptomic data were supported by the 16S rRNA gene sequence and 346 

metabolomic data which were collected from individual animals. With respect to the 347 

metabolomic data, alternative interpretations of the data also exist. For example, we assumed 348 

that metabolites, which did not change in concentration between uninfected and infected 349 

conditions were not impacted by C. difficile colonization. However, it is possible that the 350 

metabolism of C. difficile itself simply substituted for a function that was already present in the 351 

uninfected community. The insights gathered from the metatranscriptomic data suggests that 352 

this was unlikely. By leveraging multiple methods to test our hypotheses we were able to 353 

mediate the weaknesses of any individual method and present a more unified description of the 354 

system than any of the methods on their own. 355 

Our study supports the hypothesis that the gut microbiota of healthy individuals maintains 356 

colonization resistance to C. difficile by outcompeting the pathogen for preferred nutrient niche 357 

space. Ultimately, our results suggest that each susceptible and subsequently infected 358 

microbiome may be unique and require specific microbes or functionalities to restore 359 

colonization resistance against C. difficile in that specific context. Conversely, colonization 360 

resistance against C. difficile may be the result of contributions by distinct sub-communities of 361 

bacteria across each unique resistant gut community. Several studies have attempted to identify 362 

single bacterial species or consortia that are able to achieve colonization resistance; however, 363 

these efforts have only resulted in partially resistance (34–37). Considering the structure and 364 

function of the microbiome is intimately connected to colonization resistance against the C. 365 

difficile, it has become imperative to understand the ecological factors that allow some gut 366 

environments to be persistently colonized while others are not. This research lays the 367 

groundwork for future studies to assess context dependent restoration of C. difficile colonization 368 
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resistance and what factors are able to interfere with the ability of C. difficile to modify gut 369 

ecology to promote clearance. 370 
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Materials and Methods 371 

Animal care and antibiotic administration. 372 

Briefly, approximately equal numbers of male and female conventionally-reared six-to-eight 373 

week-old C57BL/6 mice were randomly assigned to each experimental group (genders were 374 

housed separately). Nine mice were used in each experimental and control group. They were 375 

administered one of three antibiotics; cefoperazone, streptomycin, or clindamycin before oral C. 376 

difficile infection (Table S1). A detailed description of these animal models was outlined 377 

previously (19). A similar experimental design was implemented for gnotobiotic mice and was 378 

performed with the University of Michigan Germfree Mouse Center as described previously (19). 379 

All animal protocols were approved by the University Committee on Use and Care of Animals at 380 

the University of Michigan and carried out in accordance with the approved guidelines from the 381 

Office of Laboratory Animal Welfare (OLAW), United States Department of Agriculture (USDA) 382 

registration, and the Association for Assessment and Accreditation of Laboratory Animal Care 383 

(AAALAC). The protocol license Institutional Animal Care and Use Committee (IACUC) number 384 

for all described experiments is PRO00006983. 385 

C. difficile infection and necropsy 386 

On the day of challenge, 1x103 C. difficile spores were administered to mice via oral gavage in 387 

phosphate-buffered saline (PBS) vehicle. Mock-infected animals were given an oral gavage of 388 

100 ul PBS at the same time as those mice administered C. difficile spores. 18 hours following 389 

infection, mice were euthanized by CO2 asphyxiation and necropsied to obtain the cecal 390 

contents. Aliquots were immediately flash frozen for later DNA extraction and toxin titer analysis. 391 

A third aliquot was transferred to an anaerobic chamber for quantification of C. difficile 392 

abundance. The remaining content in the ceca was mixed in a stainless steel mortar housed in 393 

a dry ice and ethanol bath. Cecal contents from all mice within each pretreatment group were 394 
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pooled into the mortar prior to grinding to a fine powder. The ground content was then stored at 395 

-80°C for subsequent RNA extraction. For 10-day colonization studies, fresh stool was collected 396 

from infected mice each day beginning on the day of infection. Mice were monitored for overt 397 

signs of disease and were euthanized after the final stool collection. 398 

C. difficile cultivation and quantification 399 

Cecal samples were weighed and serially diluted under anaerobic conditions with anaerobic 400 

PBS. Differential plating was performed to quantify C. difficile vegetative cells by plating diluted 401 

samples on CCFAE plates (fructose agar plus cycloserine, cefoxitin, and erythromycin) at 37°C 402 

for 24 hours under anaerobic conditions (38). Quantification of total C. difficile CFU for the 10-403 

day colonization experiments was performed from stool using TCCFAE to measure total C. 404 

difficile load in these animals over time. 405 

DNA/RNA extraction and sequencing library preparation 406 

DNA for shotgun metagenomic and 16S rRNA gene sequencing was extracted from 407 

approximately 50 mg of cecal content from each mouse using the PowerSoil-htp 96 Well Soil 408 

DNA isolation kit (MO BIO Laboratories) and an epMotion 5075 automated pipetting system 409 

(Eppendorf). The V4 region of the bacterial 16S rRNA gene was amplified using custom 410 

barcoded primers (39). Equal molar ratios of raw isolated DNA within each treatment group 411 

were then pooled and ~2.5 ng of material was used to generate shotgun libraries with a 412 

modified 10-cycle Nextera XT genomic library construction protocol (Illumina). This was done to 413 

mimic the pooling strategy necessary for metatranscriptomic library preparation. Final libraries 414 

were pooled at equal molar ratios and stored at -20°C. For RNA extraction, a more detailed 415 

description of the procedure can be found in (19). Briefly, immediately before RNA extraction, 3 416 

ml of lysis buffer (2% SDS, 16 mM EDTA and 200 mM NaCl) contained in a 50 ml 417 

polypropylene conical tube was heated for 5 minutes in a boiling water bath (40). The hot lysis 418 
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buffer was added to the frozen and ground cecal content. The mixture was boiled with periodic 419 

vortexing for another 5 minutes. After boiling, an equal volume of 37°C acid phenol/chloroform 420 

was added to the cecal content lysate and incubated at 37°C for 10 minutes with periodic 421 

vortexing. The mixture was the centrifuged at 2,500 x g at 4°C for 15 minutes. The aqueous 422 

phase was then transferred to a sterile tube and an equal volume of acid phenol/chloroform was 423 

added. This mixture was vortexed and centrifuged at 2,500 x g at 4°C for 5 minutes. The 424 

process was repeated until aqueous phase was clear. The last extraction was performed with 425 

chloroform/isoamyl alcohol to remove acid phenol. An equal volume of isopropanol was added 426 

and the extracted nucleic acid was incubated overnight at -20°C. The following day the sample 427 

was centrifuged at 12000 x g at 4°C for 45 minutes. The pellet was washed with 0°C 100% 428 

ethanol and resuspended in 200 ul of RNase-free water. Following the manufacturer’s protocol, 429 

samples were then treated with 2 ul of Turbo DNase for 30 minutes at 37°C. RNA samples were 430 

retrieved using the Zymo Quick-RNA MiniPrep according the manufacturer’s protocol. The Ribo-431 

Zero Gold rRNA Removal Kit (Epidemiology) was then used to deplete prokaryotic and 432 

eukaryotic rRNA from the samples according the manufacturer’s protocol (Illumina). Stranded 433 

RNA-Seq libraries were made constructed with the TruSeq Total RNA Library Preparation Kit 434 

v2, both using the manufacturer’s protocol. Completed libraries were stored at -20°C until time 435 

of sequencing. 436 

High-throughput sequencing and raw read curation 437 

Sequencing of 16S rRNA gene amplicon libraries was performed using an Illumina MiSeq 438 

sequencer as described previously (39). The 16S rRNA gene sequences were curated using the 439 

mothur software package (v1.36) and OTU-based analysis was performed as described in (19). 440 

Genus-level classification-based analysis of 16S rRNA gene sequence data was accomplished 441 

using the phylotype workflow in mothur and the full SILVA bacterial taxonomy (release 132). 442 

Shotgun metagenomic sequencing was performed in 2 phases. Libraries from mock-infected 443 
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communities, which were also to be utilized for de novo contig assembly, were sequenced using 444 

an Illumina HiSeq 2500 on 2x250 paired-end settings and was repeated across 2 lanes to 445 

normalize for inter-run variation. C. difficile-infected metagenomic libraries were sequenced with 446 

an Illumina NextSeq 300 with 2x150 settings across 2 runs to also normalize for inter-run 447 

variation. These efforts resulted in an average of 280,000,000 paired raw reads per sample. 448 

Metatranscriptomic sequencing was performed on an Illumina HiSeq 2500 with 2x50 settings 449 

and was repeated across 4 lanes for normalization and to normalize for technical variation 450 

between lans and to obtain necessary coverage (32). This gave an average of 380 million raw 451 

cDNA reads per library. Both metagenomic and metatranscriptomic sequencing was performed 452 

at the University of Michigan Sequencing Core. Raw sequence read curation for both 453 

metagenomic and metatranscriptomic datasets was performed in a two step process. Residual 454 

5’ and 3’ Illumina adapter sequences were trimmed using CutAdapt (41) on a per library basis. 455 

Reads were quality trimmed using Sickle (42) with a quality cutoff of Q30. This resulted in 456 

approximately 270 million reads per library (both paired and orphaned) for both metagenomic 457 

and metatranscriptomic sequencing. Actual read abundances for individual metagenomic and 458 

metatranscriptomic sequencing efforts can be found in Table S4. 459 

Metagenomic contig assembly and gene annotation 460 

Metagenomic contigs were assembled using Megahit (43) with the following settings: minimum 461 

kmer size of 87, maximum kmer size of 127, and a kmer step size of 10. Prodigal was utilized to 462 

to identify putative gene sequences, and were screened for a minimum length of 250 463 

nucleotides. These sequences were translated to amino acids and the predicted peptides were 464 

annotated based on the KEGG protein database (44) using Diamond implementation of 465 

BLASTp (45). Peptide-level gene annotations were assigned to the corresponding nucleotide 466 

sequence, and genes failing to find a match in KEGG were preserved as unannotated genes. 467 
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Final nucleotide FASTA files with KEGG annotations were then utilized in the construction of 468 

Bowtie2 mapping databases from downstream analyses (46). 469 

DNA/cDNA read mapping and normalization 470 

Mapping of DNA and cDNA reads to the assemblies was accomplished using Bowtie2 and the 471 

default stringent settings (46). Optical and PCR duplicates were then removed using Picard 472 

MarkDuplicates (http://broadinstitute.github.io/picard/). The remaining mappings were converted 473 

to idxstats format using Samtools (47) and the read counts per gene were tabulated. Discordant 474 

pair mappings were discarded and counts were then normalized to read length and gene length 475 

to give a per base report of gene coverage. Transcript abundance was then normalized to gene 476 

abundance to yield overall level of transcription for each gene. Reads contributed by C. difficile 477 

were removed from analysis using Bowtie2 against the C. difficile str. 630 genome with settings 478 

allowing for up to 2 mismatches.X 479 

Quantification of in vivo metabolite relative concentrations 480 

Metabolomic analysis was performed by Metabolon (Durham, NC), for a detailed description of 481 

the procedure refer to (19). Briefly, all methods utilized a Waters ACQUITY ultra-performance 482 

liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate 483 

mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and 484 

Orbitrap mass analyzer at 35,000 mass resolution. Samples were dried then reconstituted in 485 

solvents compatible to each of the four methods. The first, in acidic positive conditions using a 486 

C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 um) using water and methanol, 487 

containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). The second 488 

method was identical to the first but was chromatographically optimized for more hydrophobic 489 

compounds. The third approach utilized a basic negative ion optimized conditions using a 490 

separate dedicated C18 column. Basic extracts were gradient eluted from the column using 491 
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methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. Samples were then 492 

analyzed via negative ionization following elution from a hydrophilic interaction chromatography 493 

column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 um) using a gradient consisting of water 494 

and acetonitrile with 10 mM Ammonium Formate, pH 10.8. The MS analysis alternated between 495 

MS and data-dependent MS n scans using dynamic exclusion. The scan range varied slighted 496 

between methods but covered 70-1000 m/z. Library matches for each compound were checked 497 

for each sample and corrected if necessary. 498 

Statistical methods 499 

All statistical analyses were performed using R (v.3.2.0) and the vegan package (48). Significant 500 

differences of inverse Simpson diversity, CFU, toxin titer, and metabolite concentrations were 501 

determined by Wilcoxon signed-rank test with Benjamini-Hochberg correction using a study-502 

wide Type I error rate of 0.05. Undetectable points used half the limit of detection for CFU and 503 

toxin statistical calculations. Dynamic time warping was performed with the dtw package in R 504 

(49). Random forest was performed using the AUCRF implementation (22) as well as the 505 

standard package (50) in R. Distances of outlier points from center line during 506 

metatranscriptomic comparisons was accomplished using 2-dimensional linear geometry. 507 

Data Availability 508 

Pooled and quality trimmed C. difficile-infected metatranscriptomes (SRA; PRJNA354635) and 509 

16S rRNA gene amplicon read data (SRA; PRJNA383577) from infection experiments are 510 

available through the NCBI Sequence Read Archive. Metagenomic reads and mock-infected 511 

metatranscriptomic reads can be found also on the SRA (PRJNA415307). Data processing 512 

steps beginning with raw sequence data to the final manuscript are hosted at 513 

https://github.com/SchlossLab/Jenior_Metatranscriptomics_mSphere_2018.X 514 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 2

Acknowledgments 515 

The authors would like to acknowledge Charles Koumpouras for assistance with DNA 516 

extractions and metabolomic sample preparation. We would also like to acknowledge members 517 

of the University of Michigan Germfree Mouse Center, University of Michigan Sequencing Core, 518 

and Metabolon for their assistance in experimental design, execution, and data collection. 519 

Author Contributions 520 

M.L.J. conceived, designed and performed experiments, analyzed data, and drafted the 521 

manuscript. J.L.L. performed experiments, analyzed data, and contributed to the manuscript. 522 

V.B.Y. contributed to the manuscript. P.D.S. interpreted data and contributed the manuscript. 523 

The authors declare no conflicts of interest. 524 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 2

References 525 

1. Vollaard, E. J., and H. A. L. Clasener. 1994. Colonization resistance. U.S. Patent 3. 526 

2. Freter, R. 1955. The Fatal Enteric Cholera Infection in the Guinea Pig, Achieved by Inhibition 527 

of Normal Enteric Flora. The Journal of Infectious Diseases 97:57–65. 528 

3. Fekety, R., J. Silva, R. Toshniwal, M. Allo, J. Armstrong, R. Browne, J. Ebright, and G. 529 

Rifkin. 1979. Antibiotic-associated colitis: Effects of antibiotics on clostridium difficile and the 530 

disease in hamsters. Reviews of Infectious Diseases 1:386–397. 531 

4. Britton, R. A., and V. B. Young. 2012. Interaction between the intestinal microbiota and host 532 

in Clostridium difficile colonization resistance. Trends in microbiology 20:313–9. 533 

5. Lessa, F. C., Y. Mu, W. M. Bamberg, Z. G. Beldavs, G. K. Dumyati, J. R. Dunn, M. M. 534 

Farley, S. M. Holzbauer, J. I. Meek, E. C. Phipps, L. E. Wilson, L. G. Winston, J. A. Cohen, 535 

B. M. Limbago, S. K. Fridkin, D. N. Gerding, and L. C. McDonald. 2015. Burden of 536 

Clostridium difficile Infection in the United States. New England Journal of Medicine 372:825–537 

834. 538 

6. Antonopoulos, D. A., S. M. Huse, H. G. Morrison, T. M. Schmidt, M. L. Sogin, and V. B. 539 

Young. 2009. Reproducible community dynamics of the gastrointestinal microbiota following 540 

antibiotic perturbation. Infection and Immunity 77:2367–2375. 541 

7. Buffie, C. G., I. Jarchum, M. Equinda, L. Lipuma, A. Gobourne, A. Viale, C. Ubeda, J. 542 

Xavier, and E. G. Pamer. 2012. Profound alterations of intestinal microbiota following a single 543 

dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. 544 

Infection and Immunity 80:62–73. 545 

8. Thomas, C., M. Stevenson, and T. V. Riley. 2003. Antibiotics and hospital-acquired 546 

Clostridium difficile-associated diarrhoea: A systematic review 51:1339–1350. 547 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 2

9. Brown, K. A., N. Khanafer, N. Daneman, and D. N. Fisman. 2013. Meta-analysis of 548 

antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrobial 549 

Agents and Chemotherapy 57:2326–2332. 550 

10. Bignardi, G. 1998. Risk factors for Clostridium difficile infection. Journal of Hospital 551 

Infection 40:1–15. 552 

11. Antunes, L. C. M., J. Han, R. B. R. Ferreira, P. Loli, C. H. Borchers, and B. B. Finlay. 553 

2011. Effect of antibiotic treatment on the intestinal metabolome. Antimicrobial Agents and 554 

Chemotherapy 55:1494–1503. 555 

12. Jump, R. L. P., A. Polinkovsky, K. Hurless, B. Sitzlar, K. Eckart, M. Tomas, A. 556 

Deshpande, M. M. Nerandzic, and C. J. Donskey. 2014. Metabolomics analysis identifies 557 

intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice. 558 

PLoS ONE 9. 559 

13. Theriot, C. M., M. J. Koenigsknecht, P. E. Carlson, G. E. Hatton, A. M. Nelson, B. Li, G. 560 

B. Huffnagle, J. Z Li, and V. B. Young. 2014. Antibiotic-induced shifts in the mouse gut 561 

microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nature 562 

communications 5:3114. 563 

14. Wilson, K. H., and F. Perini. 1988. Role of competition for nutrients in suppression of 564 

Clostridium difficile by the colonic microflora. Infection and Immunity 56:2610–2614. 565 

15. Sambol, S. P., M. M. Merrigan, J. K. Tang, S. Johnson, and D. N. Gerding. 2002. 566 

Colonization for the Prevention of Clostridium difficile Disease in Hamsters. The Journal of 567 

infectious diseases 186:14–16. 568 

16. Perez-Cobas, A. E., A. Artacho, S. J. Ott, A. Moya, M. J. Gosalbes, and A. Latorre. 569 

2014. Structural and functional changes in the gut microbiota associated to Clostridium difficile 570 

infection. Frontiers in Microbiology 5. 571 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 2

17. Zaura, E., B. W. Brandt, M. J. T. de Mattos, M. J. Buijs, M. P. M. Caspers, M. U. Rashid, 572 

A. Weintraub, C. E. Nord, A. Savell, Y. Hu, A. R. Coates, M. Hubank, D. A. Spratt, M. 573 

Wilson, B. J. F. Keijser, and W. Crielaard. 2015. Same Exposure but two radically different 574 

responses to antibiotics: Resilience of the salivary microbiome versus long-term microbial shifts 575 

in feces. mBio 6. 576 

18. Schubert, A. M., H. Sinani, and P. D. Schloss. 2015. Antibiotic-induced alterations of the 577 

murine gut microbiota and subsequent effects on colonization resistance against Clostridium 578 

difficile. mBio 6. 579 

19. Jenior, M. L., J. L. Leslie, V. B. Young, and P. D. Schloss. 2017. Clostridium difficile 580 

colonizes alternative nutrient niches during infection across distinct murine gut microbiomes. 581 

mSystems. American Society for Microbiology Journals 2. 582 

20. Koenigsknecht, M. J., C. M. Theriot, I. L. Bergin, C. A. Schumacher, P. D. Schloss, and 583 

V. B. Young. 2015. Dynamics and establishment of Clostridium difficile infection in the murine 584 

gastrointestinal tract. Infection and Immunity 83:934–941. 585 

21. Bouillaut, L., T. Dubois, A. L. Sonenshein, and B. Dupuy. 2015. Integration of 586 

metabolism and virulence in Clostridium difficile. Research in Microbiology 166:375–383. 587 

22. Calle, M. L., V. Urrea, A. L. Boulesteix, and N. Malats. 2011. AUC-RF: A new strategy for 588 

genomic profiling with random forest. Human Heredity 72:121–132. 589 

23. Fletcher, J. R., S. Erwin, C. Lanzas, and C. M. Theriot. 2018. Shifts in the Gut 590 

Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a 591 

Mouse Model. mSphere 3(2). 592 

24. Dai, Z., Z. Wu, S. Hang, W. Zhu, and G. Wu. 2015. Amino acid metabolism in intestinal 593 

bacteria and its potential implications for mammalian reproduction. Molecular human 594 

reproduction 21:389–409. 595 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 2

25. Mahowald, M. A., F. E. Rey, H. Seedorf, P. J. Turnbaugh, R. S. Fulton, A. Wollam, N. 596 

Shah, C. Wang, V. Magrini, R. K. Wilson, B. L. Cantarel, P. M. Coutinho, B. Henrissat, L. 597 

W. Crock, A. Russell, N. C. Verberkmoes, R. L. Hettich, and J. I. Gordon. 2009. 598 

Characterizing a model human gut microbiota composed of members of its two dominant 599 

bacterial phyla. Proceedings of the National Academy of Sciences 106:5859–5864. 600 

26. Jousset, A., C. Bienhold, A. Chatzinotas, L. Gallien, A. Gobet, V. Kurm, K. Küsel, M. C. 601 

Rillig, D. W. Rivett, J. F. Salles, M. G. A. van der Heijden, N. H. Youssef, X. Zhang, Z. Wei, 602 

and W. H. G. Hol. 2017. Where less may be more: how the rare biosphere pulls ecosystems 603 

strings. The ISME Journal. 604 

27. Shade, A., S. E. Jones, J. Gregory Caporaso, J. Handelsman, R. Knight, N. Fierer, and 605 

J. A. Gilbert. 2014. Conditionally rare taxa disproportionately contribute to temporal changes in 606 

microbial diversity. mBio 5. 607 

28. Rojo, D., M. J. Gosalbes, R. Ferrari, A. E. Pérez-Cobas, E. Hernández, R. Oltra, J. 608 

Buesa, A. Latorre, C. Barbas, M. Ferrer, and A. Moya. 2015. Clostridium difficile 609 

heterogeneously impacts intestinal community architecture but drives stable metabolome 610 

responses. The ISME Journal 9:2206–2220. 611 

29. Abraham, N. M., L. Liu, B. L. Jutras, A. K. Yadav, S. Narasimhan, V. Gopalakrishnan, J. 612 

M. Ansari, K. K. Jefferson, F. Cava, C. Jacobs-Wagner, and E. Fikrig. 2017. Pathogen-613 

mediated manipulation of arthropod microbiota to promote infection. Proceedings of the National 614 

Academy of Sciences 201613422. 615 

30. Russel, J., H. Roder, J. Madsen, M. Burmell, and S. Soresen. 2017. Antagonism 616 

correlates with metabolic similarity in diverse bacteria. PNAS. 617 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 3

31. Sheik, C. S., S. Jain, and G. J. Dick. 2014. Metabolic flexibility of enigmatic SAR324 618 

revealed through metagenomics and metatranscriptomics. Environmental Microbiology 16:304–619 

317. 620 

32. Franzosa, E. A., X. C. Morgan, N. Segata, L. Waldron, J. Reyes, A. M. Earl, G. 621 

Giannoukos, M. R. Boylan, D. Ciulla, D. Gevers, J. Izard, W. S. Garrett, A. T. Chan, and C. 622 

Huttenhower. 2014. Relating the metatranscriptome and metagenome of the human gut. 623 

Proceedings of the National Academy of Sciences 111:E2329–E2338. 624 

33. Jorth, P., K. H. Turner, P. Gumus, N. Nizam, N. Buduneli, and M. Whiteley. 2014. 625 

Metatranscriptomics of the human oral microbiome during health and disease. mBio 5. 626 

34. Reeves, A. E., M. J. Koenigsknecht, I. L. Bergin, and V. B. Young. 2012. Suppression of 627 

Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine 628 

isolate from the family Lachnospiraceae. Infection and Immunity 80:3786–3794. 629 

35. Lawley, T. D., S. Clare, A. W. Walker, M. D. Stares, T. R. Connor, C. Raisen, D. 630 

Goulding, R. Rad, F. Schreiber, C. Brandt, L. J. Deakin, D. J. Pickard, S. H. Duncan, H. J. 631 

Flint, T. G. Clark, J. Parkhill, and G. Dougan. 2012. Targeted Restoration of the Intestinal 632 

Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile 633 

Disease in Mice. PLoS Pathogens 8. 634 

36. Petrof, E. O., G. B. Gloor, S. J. Vanner, S. J. Weese, D. Carter, M. C. Daigneault, E. M. 635 

Brown, K. Schroeter, and E. Allen-Vercoe. 2013. Stool substitute transplant therapy for the 636 

eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1:3. 637 

37. Buffie, C. G., V. Bucci, R. R. Stein, P. T. McKenney, L. Ling, A. Gobourne, D. No, H. 638 

Liu, M. Kinnebrew, A. Viale, E. Littmann, M. R. M. van den Brink, R. R. Jenq, Y. Taur, C. 639 

Sander, J. R. Cross, N. C. Toussaint, J. B. Xavier, and E. G. Pamer. 2014. Precision 640 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 3

microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 641 

517:205–208. 642 

38. Wilson, K. H., M. J. Kennedy, and F. R. Fekety. 1982. Use of sodium taurocholate to 643 

enhance spore recovery on a medium selective for Clostridium difficile. Journal of Clinical 644 

Microbiology 15:443–446. 645 

39. Kozich, J., S. Westcott, N. Baxter, S. Highlander, and P. Schloss. 2013. 16S Sequencing 646 

with the Illumina MiSeq Personal Sequencer. University of Michigan Health System SOP 3.1:1–647 

16. 648 

40. Lopez-Medina, E., M. M. Neubauer, G. B. Pier, and A. Y. Koh. 2011. RNA isolation of 649 

Pseudomonas aeruginosa colonizing the murine gastrointestinal tract. Journal of visualized 650 

experiments : JoVE 6–9. 651 

41. Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing 652 

reads. EMBnet 17:10. 653 

42. Joshi, N., and J. Fass. 2011. Sickle: A sliding-window, adaptive, quality-based trimming 654 

tool for FastQ files (Version 1.33) [Software]. Available at https://github.com/najoshi/sickle. 655 

2011. 656 

43. Li, D., C. M. Liu, R. Luo, K. Sadakane, and T. W. Lam. 2014. MEGAHIT: An ultra-fast 657 

single-node solution for large and complex metagenomics assembly via succinct de Bruijn 658 

graph. Bioinformatics 31:1674–1676. 659 

44. Ogata, H., S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. 1999. KEGG: 660 

Kyoto encyclopedia of genes and genomes. U.S. Patent 1. 661 

45. Buchfink, B., C. Xie, and D. H. Huson. 2015. Fast and sensitive protein alignment using 662 

DIAMOND. Nature methods 12:59–60. 663 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 3

46. Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. 664 

Nature methods 9:357–9. 665 

47. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. 666 

Abecasis, and R. Durbin. 2009. The Sequence Alignment/Map format and SAMtools. 667 

Bioinformatics 25:2078–2079. 668 

48. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. 669 

Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. 670 

Wagner. 2018. vegan: Community Ecology Package. 671 

49. Giorgino, T. 2009. Computing and Visualizing Dynamic Time Warping Alignments in R : 672 

The dtw Package. Journal of Statistical Software 31:1–24. 673 

50. Breiman, L. 2001. Random forests. Machine Learning 45:5–32. 674 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2018. ; https://doi.org/10.1101/211516doi: bioRxiv preprint 

https://doi.org/10.1101/211516
http://creativecommons.org/licenses/by/4.0/


 3

Figure and Table Legends 675 

Figure 1 | Distinct antibiotic pretreatments have differential impacts on C. difficile 676 

colonization and cecal microbiota community structure. 677 

(A) C. difficile 630 CFU in stool of infected mice following each antibiotic-pretreated group over 678 

10 days of infection. Median and interquartile range are shown for each time point. Both 679 

cefoperzone and streptomycin pretreatments had more significantly detectable CFU on the final 680 

day of detectable CFU associated with clindamycin-pretreatment (p < 0.001). (B) Relative 681 

abundance of family-level OTU taxonomic classification in each pretreatment group from 16S 682 

rRNA gene sequencing. (C) Quantification of terminal vegetative C. difficile CFU in cecal 683 

content across 18 hour colonization models. Black lines indicate median values and each 684 

pretreatment group had significantly greater detectable CFU than no antibiotic controls. 685 

Significant differences in A were determined through permANOVA with dynamic time warping 686 

and in C were found by Wilcoxon rank-sum test with Benjamni-Hochberg correction when 687 

necessary. The limit of detection was used in place of undetectable values for statistical testing. 688 

Figure 2 | Significant differences in cecal community structure and metabolomes track 689 

with downstream C. difficile clearance across antibiotic pretreatment regimes. 690 

(A) NMDS ordination of Bray-Curtis distances of OTU relative abundances between mouse 691 

cecal communities that remained colonized by C. difficile and those that eventually cleared the 692 

infection. (B) Relative abundance of OTUs included the optimal model generated by AUCRF 693 

classifying the same groups as in panel A. Species-level identification was obtained using 694 

centroid representative sequences for each OTU. (C) NMDS ordination of Bray-Curtis distances 695 

using metabolite intensities between the aforementioned groups of animals. (D) Scaled intensity 696 

of metabolites included the optimal model generated by AUCRF classifying colonized and 697 

clearing mouse cecal microbiomes. Differences for ordinations in A & C were calculated using 698 
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permANOVA. Optimal AUCRF models demonstrated 0% out of bag error, and significant 699 

differences in B & D were determined by Wilcoxon rank-sum test with Benjamni-Hochberg 700 

correction. 701 

Figure 3 | C. difficile colonization alters gene transcription of taxonomic groups 702 

differentially between antibiotic pretreatments. 703 

Each point represents a unique gene from the respective metagenomic assembly. Coordinates 704 

were determined by the log2-transformed difference in transcription level between C. difficile-705 

infected and mock-infected conditions for each gene. Outliers were defined using linear 706 

correlation and a squared residual cutoff of 2. Distance of outliers to the x=y line were also 707 

calculated and represented in unites of deviation or UD. The coloring of each point indicates the 708 

genus that the transcript originated from and the and the gray points denote those genes with 709 

consistent transcription levels between conditions as defined by outlier analysis. Antibiotic 710 

pretreatments; (A) Streptomycin-pretreated, (B) Cefoperazone-pretreated, and (C) Clindamycin-711 

pretreated. 712 

Figure 4 | A majority of metatranscriptomic changes are focused within minority 713 

members of each microbiota. 714 

Absolute difference in metatranscriptomic reads contributed by each genus in pretreatments 715 

between mock and C. difficile-infected conditions. Colored lines denoted antibiotic pretreatment. 716 

Each point represents all transcript contributed by that genus in each pretreatment group. 717 

Numbers at the base of pretreatment lines in the first panel represent the quantity of genera in 718 

each group as some points are obscured. 719 
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Figure 5 | Metatranscriptomic changes due to infection in certain metabolic pathways are 720 

overrepresented in the minority taxa. 721 

Log2 metagenome-normalized cDNA abundances for genes with differential transcription during 722 

infection belonging to genera that had a relative abundance greater than 0.1%. Double asterisks 723 

denotes genes shared between pretreatment groups. 724 

Supplementary Figure 1 | Conserved markers of C. difficile colonization susceptibility in 725 

mouse cecal microbiomes. 726 

(A) NMDS ordination of Bray-Curtis distances of OTU relative abundances between mouse 727 

cecal communities that are susceptible to colonization by C. difficile and those that are resistant. 728 

(B) Relative abundance of OTUs included in the optimal model generated by AUCRF classifying 729 

the same groups as in panel A, labeled with the finest resolution provided by classifying to the 730 

RDP reference database. (C) NMDS ordination of Bray-Curtis distances between metabolite 731 

intensities. (D) Scaled metabolites relative abundnaces included the optimal model generated 732 

by AUCRF classifying resistant and susceptible cecal microbiomes. Significant differences in A 733 

& C were also calculated using permANOVA. The AUCRF models generated in this analysis 734 

also had 0% out of bag error and significant differences in B & D were calculated as in Figure 2. 735 

Supplementary Figure 2 | Signatures of infection effect on the cecal microbiomes 736 

conserved across pretreatment groups. 737 

(A) NMDS ordination of Bray-Curtis distances of OTU relative abundances between antibiotic-738 

pretreated mouse cecal communities that are either C. difficile-colonized or mock-infected. (B) 739 

Relative abundance of OTUs included the optimal model generated by AUCRF classifying the 740 

same groups as in panel A. (C) NMDS ordination of Bray-Curtis distances using metabolite 741 

intensities between the same classes. (D) Scaled intensity of metabolites included the optimal 742 
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model classifying infected and uninfected cecal microbiomes. Statistical differences were 743 

performed as in Figure 2. 744 

Supplementary Figure 3 | Relative concentrations of select C. difficile Stickland 745 

fermentation metabolites across infection models. 746 

Metabolites included in this analysis were chosen based on their previously published 747 

interaction with C. difficile Stickland fermentation: (A) Proline, (B) 4-Hydroxyproline, (C) Glycine, 748 

(D) 5-Aminovalerate. Significant differences were determined by Wilcoxon rank-sum test with 749 

Benjamini-Hochberg correction when necessary. Black asterisks in the plotting area represent 750 

within group differences, while green asterisks along the top border denote significant 751 

differences compared to untreated control. 752 

Supplementary Figure 4 | Unique genes with functional annotation detectable within each 753 

metagenome and metatranscriptome. 754 

Genes in each datasets were derived from respective metagenomic assemblies, with only those 755 

genes that mapped to a KEGG pathway-level annotation: (A) Untreated, (B) Streptomycin-756 

pretreated, (C) Cefoperazone-pretreated, and (D) Clindamycin-pretreated mice. Each panel 757 

includes that treatments’ unique genes from metagenomic assembly and genes that recruited at 758 

least one cDNA read from the corresponding metatranscriptomes. Collector’s curves from 759 

rarefaction analysis of reads mapped to genes from (E) metagenomes and (F) 760 

metatranscriptomes. 761 

Supplementary Table 1 | Antibiotic pretreatment regime summaries. 762 

Antibiotic classes, mechanisms, and dosage information for each pretreatment. Quantified effect 763 

on alpha- and beta-diversities of the cecal microbiota are also included. 764 
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Supplementary Table 2 | Summary of impact of infection on cecal community structure 765 

and metabolome. 766 

Global effect as well as changes to specific metabolites are included. 767 

Supplementary Table 3 | Summary statistics for datasets containing replicates generated 768 

during this study. 769 

Supplementary Table 4 | High-throughput sequencing read counts and metagenomic 770 

assembly. 771 

Raw and curated read abundances for both metagenomic and metatranscriptomic sequencing 772 

efforts. Raw read curation steps are outlined in Materials & Methods. Metagenomic contig 773 

summary statistics reflect the quality of assembly for each group. 774 
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