
GPseudoRank: MCMC for sampling from

posterior distributions of pseudo-orderings using

Gaussian processes

Magdalena E. Strauß, John E. Reid, and Lorenz Wernisch

30th October 2017

Abstract

A number of previous approaches to pseudotime estimation have provided
point estimates of the ordering of cells for scRNA-seq data, while more
recently, Gaussian process latent variable models and MCMC methods
have been applied to understand the uncertainty associated with the
pseudotemporal ordering. We present a new type of Gaussian process
latent variable model for pseudotemporal ordering, which samples a dis-
tribution on the probability space of the orderings, that is on the group
of permutations, rather than on the hugely high-dimensional vector space
of possible pseudotimes, as done by previous models.
We determine the best proposal distribution for our Metropolis-Hastings
sampler for different types of data in an extensive simulation study, and
show on a microarray data set that it is both able to capture complicated
posterior distributions with modes close to pseudotime estimates found
by state-of-the-art methods for point estimation of pseudotime orderings,
and identify a global maximum of the distribution close to the true order.
Finally, in an application to scRNA-seq data we demonstrate the par-
ticular potential of our method to identify phases of lower and higher
pseudotime uncertainty during a biological process.
Software in the form of Matlab code, together with sample input data
sets, is available on request from the first author.

1 Introduction

In order to obtain information about the changes of gene activity during a
process such as a response to an infection, or the transition between cellular
states, the study of time trajectories of mRNA expression levels helps us infer
which genes regulate the process at various stages. For instance, we might be
interested whether up- or down-regulation of specific genes in mRNA expression
occurs early or late in the process.
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Single cell RNA sequencing (scRNA-seq) provides mRNA expression levels of
genes for individual cells. For a description of the technical aspects of scRNA-
seq, see [18]. scRNA-seq has shown that gene expression across cells is het-
erogeneous in many situations and contexts, part of which is attributable to
technical noise and part of which is genuine cell hetereogeneity. See, for in-
stance, [6, 40].

As the cells are destroyed as a result of the measurement process during scRNA-
seq, the method only provides a single measurement per cell [37]. Therefore,
it is not possible to obtain time series data following the development of one
single cell. Typically, we obtain measurements for large numbers of cells at the
same time point, or at a few different capture times. However, individual cells
progress through changes at different time scales [39], and it is possible to obtain
a form of time series data even from cross-sectional data by statistical means,
an approach referred to as pseudotemporal ordering. Previous approaches to
pseudotemporal ordering are described in Section 2.

Figure 1 is a one-dimensional illustration of the concept of pseudotime ordering.
The given data are cross-sectional, with a number of cells measured at a few
given capture times. The cells measured at a specific capture time are at differ-
ent stages in their respective biological development. Pseudotemporal ordering
estimates the underlying biological ordering of the cells statistically.

Figure 1: Comparing unordered and ordered data

There are two types of pseudotime algorithms, the first estimating the ordering
of the cells in terms of a permutation of the set {1, . . . T}, where T is the num-
ber of cells, the second providing estimates of the developmental stage of each
individual cell in terms of a continuous pseudotime parameter. The proposed
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method, GPseudoRank is the first fully Bayesian pseudotime method to sample
from a posterior distribution of permutations rather than continuous pseudo-
times, capturing uncertainty and even bi- and multi-modality of the orderings
in terms of permutations.

2 Background

There are a number of previous approaches to pseudotemporal ordering. Most
of them are based on considering cells as elements in the space Rng , where ng
is the number of genes. The gene expression measurements for each cell are
represented as a vector in Rng . For review papers on existing pseudotemporal
methods see [3, 9].

Wanderlust [4] first computes a k nearest neighbours graph for the high-
dimensional data, which connects cells with short distances in Rng , that is cells
with similar gene expression profiles. Then it repeatedly applies a randomised
shortest path algorithm that orders the cells, in order to obtain an average
pseudotime for each cell.

Wishbone [32], based on Wanderlust, uses diffusion maps [11] to reduce the
dimensionality of the data, reduce noise and avoid the problem of short circuits,
that is cells being near each other in the ordering which are far from each other
in terms of their developmental stages. Unlike Wanderlust, Wishbone is able to
identify a branching point as well. It uses randomly sampled cells to improve
an initial trajectory based on shorted paths distances. Diffusion maps have also
been used for pseudotemporal ordering in other publications [2, 16, 17].

SLICER [41] also uses a k nearest neighbours graph. This algorithm first ap-
plies LLE (local linear embedding) [31] to reduce the dimensionality of the
space. Several methods for pseudotime estimation are based on minimal span-
ning trees (MST). Waterfall [34] first uses PCA to reduce the dimensionality of
the gene-space from ng to 2. It then performs k-means clustering in the space
of dimension 2 to group and computing an MST over the cluster centroids to
find a pseudotime path. The pseudotimes of the individual cells are positioned
based on their distance from the path found by computing the MST over the
centroids.

CellTree [14] uses latent Dirichlet allocation (LDA) [5] in a Bayesian frame- work
to construct point estimates of distance matrices between cells. LDA identifies
underlying ’topics’. Different mixtures of topics explain the gene expression
levels of different cells. CellTree uses Gibbs sampling to obtain histograms
of the topics of the different cells, and compares these histograms to obtain
the matrix of pairwise differences required for the computation of the MST,
rather than propagating the uncertainty obtained through the Gibbs sampling
throughout the entire algorithm. Therefore, the output of the algorithm is a
point estimate.
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There are several other methods using MST and clustering methods to obtain
a point estimate of a pseudotemporal order. TSCAN [22] is based on the con-
struction of an MST between centroids of clusters, and, like Waterfall, uses
PCA for dimensionality reduction before performing the clustering and the or-
dering. Unlike Waterfall, it does not use k-means clustering but finite mixtures
of Normal distributions. Mpath [10] uses MST and hierarchical clustering to
find pseudotemporal orderings, constructing a network of neighbouring ’land-
mark’ clusters, clusters of cells of a certain minimum size and purity. Another
well-known method using MST and clustering is Monocle 2 [28], which applies
a recent machine learning algorithm called graph structure learning [26].

All the algorithms discussed so far provide point estimates for the orders, and
do not sample from a posterior distribution to quantify the uncertainty of the
ordering. There are two existing methods for pseudotime estimation which use
MCMC to sample from a posterior distribution [8, 30]. They use Gaussian
processes (GPs, see Section 3.1) to model the data. However, the algorithms
presented in [8, 30] sample from posterior distributions of pseudotime vectors
Rn, rather than sampling the ordering as a permutation.

To our knowledge there is no previous algorithm sampling directly from a pos-
terior distribution of pseudo-orders. In addition, our approach is the first to
provide a sampling strategy specifically tailored to the problem of pseudotem-
poral ordering, which is shown to perform well with noisy data and little inform-
ation on capture times. Unlike for other discrete sampling problems with applic-
ations in computational biology, like networks or phylogenetic trees, there have
not been any specific strategies developed to sample from complicated posterior
distributions on a sample space of orderings to our knowledge. Moreover, our
approach jointly models individual gene trajectories shares information across
them, while approaches using MST or other dimensionality reduction methods
are not able to borrow strength across different gene trajectories.

In summary, there are a number of existing approaches to estimating pseudo-
times, but very few of them provide an estimate of the uncertainty of the the
pseudotimes. The approaches that do so [8, 30] provide posterior distributions
of the pseudotimes of the individual cells, and not directly of the ordering of the
cells. Moreover, our model is one of very few [30] for pseudotime ordering that
also models not only the uncertainty of the ordering, but also the uncertainty
of the actual trajectory of the process given noisy observations. Further, our
approach provides the most detailed and stringent convergence analysis.
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3 Methods

3.1 Single-cell trajectories as stochastic processes

Our approach does not only order the data, but it also models the variation of
the individual mRNA expression levels conditional on each ordering. In fact,
our model has two components of uncertainty: first, the uncertainty of the
pseudotime ordering, and second the uncertainty from the stochasticity of the
process. We assume that there is an underlying stochastic process which all of
the cells follow. Figure 2 illustrates the mean and standard deviation of this
process. Each sample from this process is a trajectory. Figure 2 illustrates three
possible trajectories from the same process. The actual measurements are then
noisy observations of this trajectory. The lines represent sample trajectories of
the GP, and the points in the corresponding colours are the corresponding noisy
measurements.

Figure 2: Single cell trajectories (lines) and noisy measurements (points)

The stochastic process we use to model the gene expression trajectories are
Gaussian processes (GPs) [29]. GPs have been widely used to model time series
data for biological systems in areas other than pseudotemporal ordering, in
particular for the modelling of microarray time series data. For instance, there
are applications to differential expression analysis for time series microarray
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data [36, 23], for the modelling of gene expression profilebs in an ODE based
model to identify possible targets of transcription factors [21], for the inference
of gene regulatory networks [1], or to model the parametric components for
time-course data in mixture models [12, 19, 20, 24].

The proposed approach uses Gaussian processes (GPs) to model the dynam-
ics of each individual RNA expression profile, conditional on the ordering.
GPs are stochastic processes defining families of functions in terms of a mean
function and a covariance function. More precisely, f ∼ GP (µ,Σ), if for
any vector of input points τ =

(
τ1 · · · τT

)
we have

(
f(τ1) · · · f(τT )

)
=

NT (µ(τ ),Σ(τ , τ )). We use radially symmetric functions for Σ. That is, the
covariance between f(t) and f(t̃) for any t and t̃ depends only on a distance
function d(t, t̃) of the input points.

We use the squared exponential covariance function, that is

[Σ(τ )]i,j = σ2
w exp(−d(τi, τj)

2l2
) (1)

were d refers to the Euclidean distance. We refer to σ2
w as the scale parameter,

and to l as the length scale.

We model pseudo-ordered data in terms of GPs conditional on the ordering of

the cells. Let y(o) =

y1(o)
...

yn(o)

 be the ng-dimensional vector of pseudo-ordered

trajectories of ng genes, that is gene trajectories depending on their ordering o.
Then, conditional on the ordering, we model each of the trajectories as a GP,
that is

yj |o ∼ GP (o,Σ) j = 1, . . . , n, (2)

where, unless Σ is known a priori, it will depend on the ordering o. In practice,
to assume a zero-mean GP we subtract the overall mean across all genes and
cells from our given matrix of gene expression levels (see Sections 3.5.5 and
3.5.6).

3.2 Accounting for irregular pseudotimes:
pseudotime versus rank time

If we may assume pseudotime points to be approximately uniformly distributed,
then the input points for the GP modelling may be chosen equidistant. We refer
to this approach as rank time. However, if the rate of development during a
biological process changes substantially, then the GP might not be stationary
with respect to rank time, and we need to apply the concept of pseudotime
as a latent variable measuring biological development [8, 30, 42]. By estimat-
ing or sampling pseudotime vectors as vectors in Rn, existing GP methods for
pseudotime estimation [8, 30, 42] provide a latent pseudotime parameter, which
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measures biological development. We have extended our model to estimate both
pseudotime and rank time simultaneously, for the case of pseudotime differing
significantly from rank time. Thus, our approach provides both pseudotimes
and rank times automatically, and if, for instance we want to compare genetic
and epigenetic data from different cells undergoing the same biological process,
we do not need to introduce additional steps to convert the different pseudotimes
to a common timescale as in [42].

Our proposed method samples orderings directly, and we obtain a rank time
tj ∈ (0, 1) for each cell as follows: if cj is the position of cell j in the order-

ing, then the corresponding rank time is tj =
cj− 1

2

T , where T is the number of
cells. Thus rank time is approximately uniformly distributed and therefore an
approximation to linear time, rather than pseudotime. The advantage of rank
time as opposed to pseudotime is the fact that it allows us to compare directly
genetic versus epigenetic measurements on different cells of the same popula-
tion, process, and cell type. Pseudotime measures the biological development,
that is pseudotime intervals are shorter than rank time intervals during peri-
ods of slower development, whereas pseudotime intervals are longer than the
corresponding rank time ones during periods of faster development. Rank time
is similar to the concept of master time developed in [42], where the authors
map pseudotime to corresponding uniform quantiles and then use linear inter-
polation or Gaussian process regression to obtain approximations to genetic and
epigenetic measurements of different cells corresponding to the same uniformly
distributed master time.

Our model provides pseudotime values corresponding to given orderings as fol-
lows: if o =

(
o1 · · · oT

)
is a given ordering, and

y(o) =

y1(o1) y1(o2) · · · y1(oT )
. . .

. . .
. . .

. . .

yn(o1) y1(o2) · · · yn(oT )


the n × T dimensional vector of ordered RNA expression levels, then we set
τ̃ =

(
τ̃1 · · · τ̃T

)
, with τ̃1 = 0 and τ̃j+1 = τ̃j + ‖y(oj+1),y(oj)‖2, where y(oj) =y1(oj)

...
yn(oj)

 and ‖.‖2 refers to the Euclidean norm in Rn. Then we set τ = τ̃
max(τ̃ ) ,

to obtain pseudotimes in [0, 1].

This constructs pseudotimes as sums of Euclidean distances between neighbour-
ing cells. This approximates geodesic distances on the underlying manifold [38].
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Figure 3: Rank time versus pseudotime

Figure 3 illustrates the difference between rank time and pseudotime. We use
simulated data corresponding to a situation where there is slower development
during the first part of the process. We see from the GP interpolation that
for the rank time approximation the curve is flatter at the beginning and then
becomes steeper as the second phase of faster development sets in. This effect
is not there if we use pseudotime instead of rank time, as pseudotime intervals
stretch and shrink to compensate for different developmental speeds.

3.3 Extending the model: GP parameters

For real datasets the parameters of the GPs underlying the gene expression
trajectories are not known. As integrating them out would computationally be
all but unfeasible, we sample them. A distribution over both orders and GP
parameters is, however, almost guaranteed to be multi-modal, in particular with
local modes where less likely orders are compensated by a very noisy or short
length scale GP. In order to avoid this, our method uses informative priors on
the GP parameters reflecting our knowledge that likely orders are associated
with a higher signal-to-noise ratio than less likely orders. In addition, to avoid
getting trapped in local modes with both a high scale parameter σ2

w and a high
noise parameter σ2

ε , we sample only σ2
w and set σ2

ε = V − σ2
w, where V is the

sample variance taken across the entire ng × T matrix of gene expression levels
of T cells for ng genes.

We use log-normal prior distributions for the scale parameter σ2
w and the length
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scale l, and a uniform prior on the orders. Formally, our model is as follows:

σ2
w ∼ logN (., .) l ∼ logN (., .) o ∼ uniform (3)

yj |o, σ2
w, l,∼ GP (0, κ(σ2

w, l, V − σ2
w)) (4)

where κ is a squared exponential covariance function for a GP (see equation 1).

Let V be the overall variance of the ng × T matrix of gene expression data.

We use the following prior distributions for the GP parameters: log(
√
σ2
w) ∼

N (log(
√

(0.9 · V )), 0.01), log(l) ∼ N (log( 1
2 ), v), where v = 0.1 for the micro-

array data set considered in [43] (see Section 3.5.5) and v = 0.01 for the scRNA-
seq data set [33] (see Section 3.5.6). The stronger prior for the scRNA-seq data
set was chosen to account for the high noise levels and the fact that the prior
with high signal and low noise may otherwise lead to getting trapped in local
modes with very short length scales and orders that would be unlikely given
longer length scales.

3.4 Fully Bayesian approaches and MCMC

We use a Bayesian approach for inference, as we believe that a full understanding
of the uncertainty of the ordering of the cells is desirable, as different orderings
will lead to different gene trajectories, which in turn will lead to different in-
ferences about differential expression and gene regulatory networks. We use a
Bayesian approach and an inference method which samples from the posterior
distribution of the model. MCMC is probably the most widely used method for
this.

3.5 Data sets

3.5.1 Simulation studies

The following simulation studies illustrate the efficacy of the individual moves
and of combinations of different moves for different types of data. We simulate
50 genes with 90 cells. For each of the simulation studies we generate 16 data
sets. On each of these data sets we run MCMC chains using all the possible
combinations of our 4 proposed moves. For the chains with combinations of
more than one moves, we apply each of them with equal probability.

We perform 3 different simulations to illustrate the strengths of the individual
moves, as different moves are particularly powerful in different situations. The
first simulation is relatively informative data, with detailed information on cap-
ture times and a substantial, though not very high, noise level. The second
simulation has fewer capture times, and the third is more noisy data.

To focus on the convergence of the orders and on their proposal distribution,
we use the known true parameters in the model, and do not sample them. We
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use regular spaced pseudotimes, as we simulated them from a uniform U(0, 1)
distribution.

We run all the chains without adaptation of the proposal distribution, which,
provided we have found reasonably good fixed parameters for the proposal
moves, has not shown to accelerate convergence in general.

3.5.2 Simulation 1

We generate 16 data sets as follows: For the GP parameters, we draw 16 samples
each from the following distributions:

log(σw) ∼ N (0, 0.1) log(L) ∼ N (log(0.4), 0.1)

log(σε) ∼ N (log(
1√
2
, 0.1).

Using the parameters sampled above, we simulate 50 orderings with 90 input
points each from the 16 zero-mean GP with the squared exponential covariance
matrix specified by the 16 different sets of GP parameters. The input points
are drawn from a uniform distribution U(0, 1). For this simulation, we assume
three capture times, with the first 30 cells drawn from the first capture time,
the second 30 cells from the second capture times, and the remaining 30 cells
from the last capture time.

3.5.3 Fewer capture times

To gain better understanding of how the moves perform in different situations
relevant to the analysis of single-cell data, we next look at how the different
combinations of moves perform when there are fewer capture times. The setup
is identical to simulation 1, however instead of three capture times with 30 cells
each, we only have two capture times, with the first 30 cells belonging to the
first, and the remaining 60 belonging to the second capture time.

3.5.4 Higher noise

Finally, as single-cell data tends to be quite noisy, we also explore the perform-
ance of the individual moves in the presence of higher noise levels. We use the
same number of capture times, cells and genes as in simulation 1. We sample
L and σw for the generation of simulated data from the same distribution as
with simulation 1, but this time we sample σε from the same distribution as σw,
which means that on average we have a signal-to-noise ratio of 1.
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3.5.5 Microarray data

To validate the proposed algorithm, we apply it to a data set with known true
order, the whole leaf Arabidopsis thaliana microarray data set [43]. [43] studied
the response of Arabidopsis thaliana to infection by the fungal pathogen Botrytis
cinerea, generating microarray time series data over 48 h, with measurements at
intervals of 2h. We compare our distribution of posterior orders to the true order
and to estimates produced by two established pseudotime methods, TSCAN [22]
and SLICER [41]. We subtract from the data its sample mean across all cells
and genes. For the analysis with TSCAN and SLICER we use the standard
settings implemented for the respective algorithm, and we use the 150 genes
mentioned in the paper by Windram et al. [43]. With SLICER, we tried several
different values for the number of edges of the nearest neighbours graph in the
low dimensional space, and found that the values leading to the order closest
to the true one are 4 and 5. Like Reid and Wernisch [30], we group the known
24 capture times into 4 groups of 6, assuming that we do not have any further
information, in order to test the algorithm.

3.5.6 scRNA-seq data

Shalek et al. [33] examined the response of primary mouse bone-marrow-derived
dendritic cells in three different conditions using single-cell RNA- seq. We apply
our model to the data on the lipopolysaccharide stimulated (LPS) condition.
Shalek et al. [33] identified four modules of genes. For the ordering, we use a total
of 74 genes from the four modules with the highest temporal variance relative
to their noise levels [30]. The number of cells is 307, with 49 unstimulated cells,
75 captured after 1h, 65 after 2h, 60 after 4h, and 58 after 6h. We subtract
from the data its sample mean across all cells and genes.

3.6 The proposal distribution for the orderings

We apply the following five moves, each with probability pj , j = 1, . . . , 5:

1. Move 1- iterated swaps of neighbouring cells: we draw a number r1 uni-
formly from U(1, n0), where T is the number of cells, and n0 is a constant.
Then we draw r1 cell positions P1, . . . , Pr from U(1, T − 1) with replace-
ment, and iterate the following for j = 1, . . . , r1: We swap the cell cur-
rently at position Pj with its current right-hand neighbour. For instance,
if Pk = 1, 2, 3, 4, 5, 6, 7, 8 is the current ordering, then with r1 = 2, the
next state could be Pk+1 = 1, 3, 2, 4, 5, 7, 6, 8. However, there could also
be an overlap, for instance Pk+1 = 1, 3, 4, 2, 5, 6, 7, 8.

By default, we set n0 =
⌊
T
4

⌋
, and we use this default setting for the simu-

lation studies, but we often use a different value to optimise the acceptance
rate.
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Adaptive version: During a short period at the beginning, we adjust n0
to achieve an optimal acceptance rate between 0.2 and 0.3, but requiring⌊
T
3

⌋
≤ n0 ≤

⌊
T
30

⌋
. For many data sets the acceptance rate for this move

will therefore be above 0.3.

2. Move 2-swaps of cells with short L1-distances: we compute a distribution
over the pairs of cells proportional to a squared exponential of the L1-

distance between the cells, that is pij ∝ exp(−d(ci,cj)
2

γ1
), where d refers

to the L1 distances to cells as elements in Rng , where ng is the number
of genes. We then sample one pair of cells from pij , to swap them. If
Pk = 1, 2, 3, 4, 5, 6, 7, 8 is the current ordering, and cells 2 and 5 are close
in terms of their L1-distance, then the proposed ordering could be Pk+1 =
1, 5, 3, 4, 2, 6, 7, 8.

Adaptive version: During a short period of the beginning, we temper
or anneal the distribution f from which we sample the pairs of cells by
sampling from fa instead of f , in case of very high or low acceptance
rates.

3. Move 3 - reversals: again we compute a distribution over the pairs of
cells proportional to a squared exponential of the L1-distance between the

cells, that is pij ∝ exp(−d(ci,cj)
2

γ2
). Now the proposed move is to reverse

the ordering between these two sampled cells, where the reversal includes
the pair of cells sampled. If Pk = 1, 2, 3, 4, 5, 6, 7, 8 is the current ordering,
and cells 2 and 5 are close in terms of their L1-distance, then the proposed
ordering could be Pk+1 = 1, 5, 4, 3, 2, 6, 7, 8.

Adaptive version: During a short period of the beginning, we temper or
anneal the distribution from which we sample the pairs of cells in case of
very high or low acceptance rates.

4. Move 4-short permutations: for a fixed n3 we draw a number r2 uniformly
from U(1, n3). For each j = 1, . . . , r2, we draw a number r3,j uniformly
from U(3,max(n3a, 3)) for a fixed n3a, and a cell position k uniformly from
U(1, T−r3). We then randomly permute the cells at positions k, . . . , k+r3.
If Pk = 1, 2, 3, 4, 5, 6, 7, 8 is the current ordering, r2 = 2, r3,1 = 3, r3,2 = 4,
then the proposed ordering could be Pk+1 = 3, 1, 2, 4, 7, 8, 5, 6, where we
randomly permuted 1, 2, 3 and 5, 6, 7, 8. There could also be an overlap of
the two or more permutations, for instance Pk+1 = 3, 7, 4, 2, 1, 8, 5, 6.

By default, we set n3 =
⌊
T
20

⌋
, and n3a =

⌊
T
12

⌋
.

Adaptive version: At the beginning, we adapt n3 and n3a in case of ac-
ceptance rates above 0.3 or below 0.1, but we require

⌊
T
50

⌋
≤ n3 ≤

⌊
T
10

⌋
and 4 ≤ n3a ≤

⌊
T
10

⌋
.

5. Move 5-reversing the entire ordering: with a low probability p5 we reverse
the entire ordering, which is accepted with probability 1. This move allows
us to exploit the symmetry of our posterior distribution for convergence
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assessment. If Pk = 1, 2, 3, 4, 5, 6, 7, 8 is the current ordering, then the
proposed ordering would be Pk+1 = 8, 7, 6, 5, 4, 3, 2, 1.

For the simulation studies we apply all possible combinations of moves 1-4.
For the microarray data we apply one move 3, as it was shown to be the best
sampling strategy for multi-modal distributions. For the scRNA-seq data set,
we use all the moves. For the microarray data set we use γ2 = 1000 and
an additional tempering factor a = 0.1. For the scRNA-seq data set we set
γ1 = γ2 = 4000, without any tempering factor for moves 2 or 3.

3.7 Order symmetry and MCMC parameters

As our posterior distribution is a symmetric function of the order, each order and
its reverse will be sampled with equal probability from the posterior distribution.
However, we are only interested in those orders that correlate positively with the
capture times of the cells. Therefore, we reverse the orders negatively correlated
with the capture times.

For the simulated and the microarray data sets we run chains for 100,000 iter-
ations and apply a thinning factor of 10. For the scRNA-seq data we use the
same thinning factor but 500,00 iterations. For each of the data sets, we run 12
chains from random starting orders and with random GP parameters sampled
from the prior distribution. For the starting orders we restrict the randomness
to permuting the data randomly within capture times, but not across capture
times.

3.8 Assessment of MCMC convergence

MCMC convergence needs to be checked rigorously for the following two reasons.
First, we need to check that our proposal distribution effectively reaches all the
regions of high density of the posterior distribution, and does not get trapped
around one single mode. Second, we need to make sure that we have run our
chain long enough for it to have converged to its invariant distribution. The
Gelman-Rubin R̂-statistic is an established method to assess convergence. It
was first proposed in [15], and later corrected to account for sampling variability
[7]. The R̂-statistic requires several MCMC chains with over-dispersed initial
states, and estimates the potential scale reduction factor, the factor by which the
pooled variance across all the chains is larger than the within-sample variance.
For convergent chains, R̂ approaches 1 as the number of samples tends to infinity.
According to [7], we may assume that convergence has been reached if R̂ < 1.2
for all model parameters. We use the more stringent recommendation to run
MCMC-chains until a value of 1.1 has been reached for the R̂-statistic [35].

Apart from determining the length of the burn-in and checking whether a set
of MCMC chains have converged, we may also use the R̂-statistic to assess the
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speed of convergence for different proposal distributions. More previously, for
different values of ε > 0, we check whether the R̂ reaches below 1 + ε for a given
number of samples. A different way of assessing the speed of convergence is to
measure the number of samples required for the chain to reach below 1 + ε.

3.8.1 Comparison of move efficiency

To compare the efficacy of the individual moves described in Section 3.6 in the
simulation setting described in Section 3.5.1, we construct for each of the 16
simulated data sets 5 different starting orderings (one for each simulated data
set) by permuting the cells within, but not across, the three capture times.
For each combination of moves, and each of the 16 simulated data sets, we
run 5 chains starting from the 5 starting orderings for 100,000 iterations, with
a thinning factor of 10. We compute for each combination of moves and for
each of the 16 sets of 5 chains the Gelman-Rubin R̂-statistic as in [7] on the
log-likelihood as follows: For each batch for which we compute the R̂-statistic
on only the second half, discarding the first 50% as burn-in. We first compute
the statistic after 50 thinned samples, which would correspond to 500 samples
without the thinning. Then we recompute the statistic after each additional
20 thinned samples. That is, we obtain values for the statistic at the following
thinned sample numbers: 51, 71, 91, 101, ... . To compute the Gelman-Rubin
statistic as in [7], we use the R-package coda citecoda.

For each ordering in each chain we compute the corresponding positions of the
cells, that is the inverse permutation of the given ordering. Then we compute for
each sample the L1-distance of the corresponding cell positions to the reference
positions 1 : 100. For each combination of moves and each of the 16 sets of 5
chains we compute the R̂-statistic on these L1-distances. Again we compute the
R̂-statistic with the same intervals as above and discarding the first 50% of each
batch as burn-in. Thereby, for each combination of moves and for each of the
16 simulations, we obtain two curves of R̂-statistics, one for the log-likelihood
and one for the L1-distances.

We assess the moves according to the following criteria: Whether they have con-
verged before 10,000 thinned samples according to the R̂-statistic, at different
levels. That is, we check whether for all the 16 simulations for a given combin-
ation of moves the chains have converged at the 1.1, 1.07, 1.05, and 1.02 levels.
For the moves for which there is convergence at a given level we compute the
average number of thinned samples to convergence, where the average is based
on computations of the R̂-statistic at intervals of 20. We also compute the max-
imum number of thinned samples to convergence, again based on computations
of the R̂-statistic at intervals of 20.
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4 Results

4.1 Results of the simulation studies

4.1.1 Simulation study 1

For the following combinations of moves the chains on all simulated data sets
have an R̂ < 1.02 before the last sample, both for the log-likelihood and the
L1-distances: 4; 1,4; 2,4; 1,3,4; 1,2,3,4; Simulation study 1 therefore indicates
that these combinations of moves are the most suitable ones for sampling from
data sets with medium, but not very high, noise levels, and with relatively good
information on capture times. The worst performing combinations of moves
with these sets of simulated data is clearly move 3, for which some of the 16
data sets have R̂-statistics which remain above the 1.07 threshold. Among the
best performing moves, it is less clear-cut which one is the combination of moves
leading the fastest convergence, as the sample size of our quite extensive simu-
lation study is still limited. However, assigning ranks to a number of criteria,
we see that move 4 is ranked first in seven of these criteria. For a more de-
tailed analysis, see in the supplementary materials. Figure 4 compares the best
and the worst performing move in the set-up of simulation 1. We plotted the
Gelman-Rubin statistics for the log-likelihoods for all the 16 simulated data sets.

Figure 4: The worst and the best performing move in simulation 1, R̂ for log-
likelihood
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4.1.2 Simulation 2: fewer capture times

The performance of the different combinations of different moves is very different
to what we saw in simulation 1. In fact, as illustrated by Figure 5, when
comparing the performance of single moves, we now see that move 3 performs
better than any other single move.

Figure 5: Performance of individual moves with fewer capture times, R̂ for
log-likelihood
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In fact, move 3 is the only move for which all R̂-statistics go below 1.1 within
the first 10,000 thinned samples. With move 1 and move 4, the R̂-statistic
does not go below 1.1 for any single simulated data set. Fortunately, we can
improve convergence in this case by combining at least three moves, as long as
they do not include both move 1 and move 4. In fact, the only combination of
moves for which not for a single one of the simulated data sets the R̂-statistics
gets below 1.1 is the combination of moves 1 and 4, which performed well in
simulation 1, when we had more capture times. Fortunately, very reasonable
levels of convergence are still attained with combinations of moves more suited
to the challenge of fewer capture times. In fact, for the following combinations
of moves, all the R̂-statistics are below 1.05 by the last sample: 1,3; 2,3; 1,2,3;
2,3,4; 1,2,3,4

The combination of moves that is ranked first according to the largest number
of criteria is the combination 1,2,3,4 of all the moves. See table 2 in Section A.1
of the supplementary materials for details on the performance of each individual
combination of moves. See Figures 15 and 18 for a visual comparison of all the
combinations of moves in terms of the R̂ statistic for both the log-likelihood and
the L1-differences.

Figure 6: Fewer capture times: worst and best combination of moves

Figures comparing the performance of all the 15 possible combinations of the
four moves can be found in Section A.1 in the supplementary materials, where
we also provide a table (table 1) listing the performance of the combinations
of moves on our criteria outlined in this Section and provide plots not only of
the R̂-statistics for the log-likelihood, but also for the L1-differences from the
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reference permutation.

4.1.3 Simulation 3: higher noise

Our moves still perform well in this situation, with the exception of move 3,
which does not even reach the 1.1 level for the Gelman-Rubin statistic for all
the simulated data sets. The moves which are ranked the highest in the largest
number of our categories are move 4, and the combination 1,4 (see table 3 in
Section A.1 of the supplementary materials for details). The following other
combinations of moves also provide convergence for all the simulated data sets
at the 1.05 - level: 2; 1,2; 2,4; 3,4 and all combinations of at least three moves.
Again, we refer the reader to the supplementary materials for detailed tables
and Figures.

4.1.4 Adaptive moves

For this simulation study we used suitable parameters for the definition of the
moves, and did not adapt them during a fixed number of iterations at the
beginning. We repeated all the simulations using adaptations of the moves
at the beginning as described in Section 3.6. However, our results indicate
that convergence tends to be better without the adjustment, provided that
parameters for the moves with good acceptance rates can be found, for instance
by running the sampler for a short number of iterations with different settings.
A detailed comparison without the non-adaptive and the adaptive version can
be found in table 4 in Section A.1 of the supplementary materials.

4.2 Validation on microarray data

We first apply GPseudoRank with irregular pseudotimes. The irregular pseudo-
times reflect the different speed of biological development during different phases
of the process, even if we know that the real time points are equidistant with
2h each between them. We again use the Gelman-Rubin statistic to assess
convergence (see Figure 7).
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Figure 7: Convergence analysis for GPseudoRank: Windram data

Figure 8: L1-distances from the real order: Windram data

We plotted the Gelman-Rubin statistic for both the log-likelihood and the L1-
distances from the true order. From Figure 7 we see that it would be easily
sufficient to run the chain for 36,000 samples, that is 3,600 thinned samples, as
by that number both of the R̂ statistics have reached below 1.1. Discarding half
of the 3,600 thinned samples as burn-in as recommended in [35], we discard a
burn-in of 1,800 samples.

We also plotted the L1-distances from the real order for GPseudoRank, as well
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as for two algorithms providing point estimates. As illustrated by Figure 8
the distribution of GPseudoRank is bi-modal, while the estimates provided by
SLICER [41] and TSCAN [22] are both close to one of the modes of the distri-
bution of GPseudoRank. This illustrates how important is it to sample from
the distribution of the orderings rather than just obtaining a point estimate.
In practice, when we do not know the true order and two ordering algorithms
provide very different point estimates, then we do not know which one is the
closer to the true underlying biological order. Therefore, it is preferable to
quantify the uncertainty, rather than only providing point values.

Figure 9: TSCAN and SLICER: Windram data

Figure 10: Distribution of cell positions: Windram data
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Figures 9 and 10 also illustrate the differences between point estimates for the
order and the sampling from a distribution. The Figures compare the true
order of the cell along the x-axis with its positions (TSCAN, SLICER) or the
distribution of its position (GPseudoRank) estimated by the models.

The run time of GPseudo rank with irregular pseudotimes for 100,000 iterations
for the Windram data is about 7min 20s on an Intel Xeon X5 2.0GHz CPU.

4.3 Pseudotemporal uncertainty varies during a response
to an infection

We again check convergence carefully using the R̂-statistics on both the log-
likelihood and the L1-distances from a reference order (figure 11). This time
the true order is unknown. We could take any fixed reference order, so we use
1 : 307.

Figure 11: Convergence analysis for GPseudoRank: Shalek data

The run time of GPseudo rank for 500,000 iterations for the Shalek data is about
3 hours on an Intel Xeon X5 2.0GHz CPU. It should be noted that because of the
focus of this paper on showing the good convergence properties of our method
we run the chain for long to show that high levels of convergence can be achieve.
However, according to the recommendation to run chains until an R̂ < 1.2 has
been reached ([35]), 10,000 thinned samples, that is a total of 100,000 samples
would easily be sufficient even with a stricter threshold of 1.1. We discard a
burn-in of 5,000 thinned samples at the beginning of each chain.
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Figure 12: L1-distances from the real order: Shalek data

Figure 12 underlines again that it is important to provide a posterior distribution
over the orders, rather than a point estimate, as again the two methods for
point estimation give rather different results, and not knowing the uncertainty
will lead to over-confidence in the results. Of course, now with the true order
not known, it is not clear which of the two point estimates is closer to the truth.

In addition to providing the uncertainty of the orders, our approach also shows
how this uncertainty varies during the course of the process.

Figure 13: Uncertainty of the ordering as a function of pseudotime: Shalek data
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Figure 13 illustrates a particular insight we gain using GPseudoRank. The
Figure shows how the distribution of the cell position changes as a function of
the mean position. While at the beginning and end of the process the standard
deviation of the marginal distributions of the individual cell positions is high, it
decreases a lot during the middle of the process, when the response that takes
place in reaction to the infection has set in but is not yet completed.

5 Discussion

5.1 Possible alternatives to MCMC

There are, of course, alternatives to MCMC for sampling from posterior distri-
butions, in particular importance sampling and extensions to it such as annealed
importance sampling [27], or annealed SMC sampling [13]. However, the geo-
metry of our posterior distribution makes it all but impossible to implement
importance sampling. While annealed SMC sampling could be an interesting
alternative for future work, we have implemented a proposal distribution for
MCMC that is particularly suitable to our problem and has good convergence
properties even if the data are very noise or little is known about their capture
times.

5.2 Two-step approaches to branching processes

One drawback of our model is that, like the other pseudotime models using GPs,
it is not able to model branching processes in a one-step process. How- ever, it
should be noted that while models using GPs do not directly infer the branching
structure of a branching process, they have been used for variational inference
in a two-step process that first infers the pseudotimes and then identifies the
branches [25]. Along the same lines, our model could be used to provide a full
posterior distribution of the pseudotimes, which could be used as a basis to
infer branches depending on the pseudotimes, although this would be computa-
tionally more expensive than the variational approach. Alternatively, we could
first use a well-established existing method that provides a point estimate of
the branching structure, such as TSCAN or SLICER, and then use the method
proposed in this paper to provide full inference of the posterior distribution of
the pseudotimes of each branch, an approach that is likely to be more efficient
computationally.
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6 Conclusions

We presented a new type of Gaussian process latent variable model for pseudotem-
poral ordering, which samples a distribution on the probability space of the
orderings, that is on the group of permutations, rather than on the hugely high-
dimensional vector space of possible pseudotimes, as done by previous mod-
els. We have implemented a Metropolis-Hastings sampler on our sample space,
which is still very large and difficult to sample from. We found it necessary to
develop novel moves in order to explore the posterior effectively. Our proposal
distribution allows the sampler to make long distance moves in this space with
a good acceptance rate.

An extensive simulation study examined how different combinations of moves
perform in different situations relevant to the analysis of single-cell data. Com-
binations of all the four moves proposed perform well in all the situations con-
sidered. We therefore generally recommend to use a combination of all four
moves. Combinations of three moves also perform well, except for those con-
taining both moves 1 and 4, which do not perform well with fewer capture times.
If we have several capture times with not very many cells each, then move 4, on
its own or combined with move 1, will probably provide the fastest convergence.
However, even if there are several capture times, there tends to be an overlap
between them with real data, as opposed to the situation we simulated. In fact,
towards the end of a biological process, the last two or so capture times might
overlap considerably (see Section 4.3). This means that de facto we have one
capture time less.

Important insights are also gained from the validation of our algorithm on mi-
croarray data. As illustrated by Figure 8, point estimates of cell orderings, even
if computed using state-of-the-art pseudotime estimation methods, only provide
estimates near one mode of the distribution of the orderings. Even if for this
data set we know the real order, orders near the second mode are still likely or-
ders, and with a data set without a known true order it would be important to
sample the full distribution, in particular for a data set where the two modes are
so far apart. This illustrates the particular importance of methods accounting
for uncertainty and possible multi-modality in pseudotime ordering.

Finally, an application to an scRNA-seq data set illustrates the good conver-
gence properties of our algorithm, and a comparison to point estimation methods
of orderings illustrates once more the need for a method of estimating orderings
that fully captures the uncertainty in a Bayesian way. One particular interest-
ing aspect of the uncertainty of the ordering captured by our algorithm is the
fact that the uncertainty is lowest during the middle of the process, where the
heterogeneity of cells with regard to their progress through the response to the
infection is highest.
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A Supplementary material

A.1 Detailed results of the simulation studies

We assessed the 15 possible combinations of our four moves according to the
following:

• The proportion out of the 16 Gelman-Rubin statistics for the log-likelihood
and the L1-distances from a reference permutation

• Whether or not all the chains have converged by the 10,000th thinned
sample at the 1.1, 1.07, 1.05, and 1.02 levels in terms of both the log-
likelihood and the distance function

• The average number of samples till convergence (note that we compute
the R̂ statistics in intervals of 20 for the thinned samples)

• The maximum number of samples till convergence for the 16 simulated
data sets (note again that the R̂ statistics are in intervals of 20)

Tables 1, 2, and 3 list the values of these criteria for each combination of moves
for the three different scenarios explored in our simulation studies. For each
criterion, the best performing combination is marked in magenta.

Figures 14, 15 and 16 illustrate the performance of the different combinations
of moves in terms of the R̂ statistic of the log-likelihood. Each line in the plots
represents the R̂- statistic that belongs to one of the 16 simulated data sets.
Figures 17, 18 and 19 do the same for the R̂ for the distance function.

Finally, table 4 compares the non-adaptive simulations with adaptive ones,
where we adapt the parameters for the proposal moves at every 50th iteration
during the first 5,000 samples.
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Figure 14: Simulation 1: GR statistic for log-likelihood
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Figure 15: Simulation with fewer capture times: GR statistic for log-likelihood
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Figure 16: Simulation with more noise: GR statistic for log-likelihood
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Figure 17: Simulation 1: GR statistic for L1 - distance from ref. permutation
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Figure 18: Simulation with fewer capture times: GR statistic for L1 - distance
from ref. permutation
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Figure 19: Simulation with more noise: GR statistic for L1 - distance from ref.
permutation
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A.2 Comparison between regular and irregular pseudo-
times for the microarray data set

Figures 20 and 21 illustrate the improvement obtained through the use of ir-
regular instead of regular pseudotimes. Each of the Figures contains Figures
corresponding to 12 MCMC chains. The heatmaps illustrate the positions of
each cell, with the true order corresponding to the diagonal of the matrix.
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Figure 20: Distributions of cell positions with irregular pseudotimes: Windram
data
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Figure 21: Distributions of cell positions with regular pseudotimes: Windram
data
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