bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Two C++ Libraries for Counting Trees on a Phylogenetic
Terrace

R. Biczok '*, P. Bozsoky '*, P. Eisenmann %, J. Ernst'*, T. Ribizel *, F. Scholz '*,
A. Trefzer '*, F. Weber '*, M. Hamann ', and A. Stamatakis 12+

'Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, 76128, Germany and
2Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany.

* These authors contributed equally to this work. -+ To whom correspondence should be addressed.

Abstract

Motivation: The presence of terraces in phylogenetic tree space, that is, a potentially large number of distinct tree topologies
that have exactly the same analytical likelihood score, was first described by Sanderson et al. (2011). However, popular
software tools for maximum likelihood and Bayesian phylogenetic inference do not yet routinely report, if inferred phylogenies
reside on a terrace, or not. We believe, this is due to the unavailability of an efficient library implementation to (i) determine
if a tree resides on a terrace, (ii) calculate how many trees reside on a terrace, and (iii) enumerate all trees on a terrace.

Results: In our bioinformatics programming practical we developed two efficient and independent C++ implementations of
the SUPERB algorithm by Constantinescu and Sankoff (1995) for counting and enumerating the trees on a terrace. Both
implementations yield exactly the same results and are more than one order of magnitude faster and require one order of

magnitude less memory than a previous 3rd party python implementation.
Availability: The source codes are available under GNU GPL at https://github.com/terraphast

Contact: Alexandros.Stamatakis@bh-its.org

1 Introduction

It is common practice to infer phylogenies on multi-gene datasets. One
way to analyze these is to concatenate the data from several genes or entire
genomes into one large super-matrix alignment and infer a phylogeny on
it via maximum likelihood (ML) or Bayesian inference (BI) methods.
Typically, the sites of such an alignment are grouped into a number of p
disjoint partitions (e.g., genes) P,, Pp. Each partition is assumed to
evolve according to an independent model of evolution and has a separate
set of likelihood model parameters (e.g., substitution rates, branch lengths,
etc.).

Super-matrices often exhibit patches of missing data as sequence data
for a specific taxon might not be available for all partitions P;. Such patches
occur because a specific taxon might simply not contain a gene/partition
or because the gene/partition has not been sequenced yet. In partitioned
datasets, patches of missing data can induce an important effect on the
likelihood scores of trees. Under specific partitioning schemes, model
settings, and patterns of missing data, topologically distinct trees might
have exactly the same analytical likelihood score. We say that, a tree
topology resides on a terrace, if it has the same likelihood value as another,
distinct tree topology. Recognizing such terraces, determining their size,
and enumerating all trees on a terrace therefore constitutes an important
step when searching tree space but also for post-processing the results
of empirical phylogenetic analyses. Final output trees of tree searches can
reside on a terrace and thus, represent only one of many possible solutions.

The presence of terraces in likelihood-based inferences was first
used implicitly by Stamatakis and Alachiotis (2010) to accelerate ML
calculations on patchy super-matrices. One year later, the terrace
phenomenon was explicitly named and mathematically characterized
by Sanderson et al. (2011). Some additional properties of terraces,

in particular their impact on bootstrap and other support measures
were discussed by Sanderson et al. (2015). Chernomor et al. (2015,
2016) presented full production-level implementations of terrace-aware
topological moves for ML tree searches. Finally, Derrick Zwickl developed
a python tool called terraphy for detecting terraces that is available at:
https://github.com/zwickl/terraphy.

2 Implementation

Interface: The C and C++ interfaces (see https://github.com/
terraphast) take as input: a Newick tree string; a binary matrix M
of size n X p, where n is the number of taxa and p the number of partitions
and where every row is annotated by a corresponding taxon name, that
denotes if data is available or not for species % at partition j; a bitmask
specifying the computation mode (tree on a terrace; number of trees on
terrace; enumeration of all trees on terrace); a destination file pointer to
potentially print out all trees on the terrace; a pointer to a big integer library
object for storing the number of terraces. For the latter we use the GNU
multiple precision arithmetic library (GMP) by default. As we show in our
experiments the number of trees on a terrace can easily exceed the 64 bit
unsigned integer range. Thus, using GMP is mandatory to prevent integer
overflow. The interface function returns an integer that either contains an
error code or indicates a successful invocation.

Limitations: As the library calculates the number of unrooted trees on a
terrace given an unrooted, strictly bifurcating input tree, the following
limitation applies: The binary input matrix must contain at least one row
without any missing data, a so-called comprehensive taxon tax¢c such
that all p induced per-partition trees 7’| P; can be consistently rooted on
the branch leading to tax . By induced per-partition tree we refer to the
input tree pruned down to the taxa for which sequence data is available at

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Sequential execution times (seconds) for counting trees on a
terrace with terraphy and terraphast I/11

Dataset terraphy terraphast I terraphast Il terrace size
Rosaceae 232 0.033 0.087 1.72 x 10%3
Shi.bats 6.34 0.015 0.081 2.42 x 10%°
Burleigh.small 4099.76 147.74 301.09 4.12 x 10°°

a partition ¢. This limitation allows to execute the SUPERB algorithm and,
as we show in the supplement, guarantees that the number of rooted trees
on the terrace calculated by SUPERB is identical to the number of unrooted
trees on the terrace. This limitation can be circumvented by including an
appropriate comprehensive outgroup sequence from a reference genome
into the dataset.

3 Results

We initially tested our implementations on several artificial small 5-taxon
datasets for which either all possible trees reside on a single terrace or no
terrace exists.

Subsequently, we tested both implementations on 26 empirical datasets
from recently published biological studies (available at https://
github.com/BDobrin/data. sets)andcompared their performance
to terraphy. Forempirical datasets that did not contain a comprehensive
taxon, we sub-sampled partitions such that the samples did contain
a comprehensive taxon. For our tests we used a reference system
with 4 physical Intel i7-2600 cores running at 3.40GHz and with
16GB main memory. We first verified that our two completely
independent implementations (terraphast Iandterraphast ITI)
yield exactly the same results and also compared their run-time
performance to terraphy. Under identical settings (see supplement for
details), all three codes yielded exactly the same number of unrooted
trees on all datasets, provided that the input tree is rooted at the same
comprehensive taxon tax .

In Table 1 we provide the average sequential execution times over 10
runs and number of trees on the respective terrace for terraphast I,
terraphast II,andterraphy on the three empirical datasets with
the largest terraces. All three codes were executed in tree counting
mode, that is, enumeration and printout of all topologies on the terrace
was disabled. Additional computational experiments under different
modes, including memory utilization, parallel performance, and additional
empirical datasets are provided in the on-line supplement.

4 Conclusions

‘We have two independent C++ implementations of the SUPERB algorithm
for counting trees on a phylogenetic terrace. Because we developed

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

two independent implementations that yield exactly identical results,
we are confident that the implementation of the algorithm is correct.
Furthermore, terraphast I is 28 times faster than terraphy on
the dataset containing the largest terrace (Burleigh.small) and requires
one order of magnitude less RAM (see Table 2 in the supplement). As
our experiments with empirical datasets show, a plethora of published
phylogenetic trees do reside on a terrace. While the phenomenon has
been known since 2011, authors of empirical studies do not routinely
assess if their tree resides on a terrace. We are optimistic that the
availability of an efficient and easy-to-integrate library for this purpose will
facilitate integration of this important phylogenetic post-processing step
into popular phylogenetic inference tools that are predominantly written
in C or C++. terraphast I has already been integrated into RAXML-
NG (https://github.com/amkozlov/raxml-ng). The authors
of GARLI and IQ-Tree also intend to integrate it into their tools.

Acknowledgements

Part of this work was financially supported by the Klaus Tschira
Foundation and DFG grant WA 654/22-2. We thank Olga Chernomor,
Bui Quang Minh, and Derrick Zwickl for discussions on the interface
definition, Barbara Dobrin for access to her empirical dataset repository,
and Alexey Kozlov for integration with RAXML-NG.

References

Chernomor, O. et al. (2015).
rearrangements for partition trees in phylogenomic inference. Journal
of Computational Biology, 22(12), 1129-1142.

Consequences of common topological

Chernomor, O. et al. (2016). Terrace aware data structure for
phylogenomic inference from supermatrices. Systematic biology, page
syw037.

Constantinescu, M. and Sankoff, D. (1995). An efficient algorithm for
supertrees. Journal of Classification, 12(1), 101-112.

Sanderson, M. J. etal. (2011). Terraces in phylogenetic tree space. Science,
333(6041), 448-450.

Sanderson, M. J. et al. (2015).
inference. Systematic biology, page syv024.

Stamatakis, A. and Alachiotis, N. (2010). Time and memory efficient
likelihood-based tree searches on phylogenomic alignments with
missing data. Bioinformatics, 26(12), 1132-i139.

Impacts of terraces on phylogenetic

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Supplement Section

Abstract

In this supplement we provide an overview over the SUPERB algorithm. We also show that the number of rooted trees on
a terrace as inferred with SUPERB is identical to the number of unrooted trees on a terrace if the unrooted input tree can
consistently be rooted on a branch leading to a comprehensive taxon. In addition, we provide details on the test datasets
used and discuss some noteworthy implementation details of terraphast | and terraphast Il. Finally, we document the C and
C++ interfaces and our compressed NEWICK format extension for writing all trees on a terrace to file.

1 SUPERB Overview

Terminology First we introduce some terminology and define what the
terms we use mean. With "SUPERB’ we refer to the original algorithm
by Constantinescu and Sankoff (1995) for reconstructing supertrees. We
use the terms leaf nodes, leaves, and taxa synonymously. We consistently
use “partition’ for subsets of MSA sites that evolve according to the same
evolutionary model, whereas ’split’ always refers to a split of leaf nodes
(taxa) into subsets. Such splits are denoted by X or o, respectively. The data
presence/absence matrix is denoted by M and the comprehensive taxon
for rooting by tax . The induced unrooted per-partition trees are denoted
by T'| P;, their rooted counterparts by 7”| P;. Finally, the comprehensive
input tree is denoted by 7'.

Original Superb Algorithm The original setting of the SUPERB algorithm
is as follows: Given a set of rooted binary trees, construct — if possible —
all rooted, binary so-called supertrees that are compatible with all given
trees in the input tree set.

For our purposes, we use all induced per-partition trees as input tree
set. These induced per-partition trees T'| Py, ..., T'| P, are extracted from
the given input tree " (supertree) by pruning all taxa for which no data
is available for the specific partition. Therefore, we already know that the
algorithm must find at least one such supertree. Note that, the input trees
of the SUPERB algorithm must be rooted. We describe how the unrooted
input trees T'| P1, ..., T'| P, can be consistently rooted in Section 2.

SUPERB consists of two steps: Given the tree set as input, it first
constructs a set of constraints that the supertree must fulfill/comply with to
fully describe the induced per-partition trees. Then, given these constraints,
SUPERB enumerates all binary rooted trees that do fulfill them.

1.1 Constraint Construction

For the constraint construction, the two children of each node in a tree
T|P; are ordered (note that, the actual binary input trees are unordered
leaf-labeled trees) such that there is a clearly determined left and a right
child. The actual order chosen is not relevant as long as it is fixed. By
lca(z,y) we denote the lowest common ancestor of the leaves (taxa)
and y, that is, the lowest node in the tree that is both in the path from z to
the root of the tree and in the path from y to the root of the tree. Further, for
an inner node we denote by 2!/z" the leftmost/rightmost leaf of x, that
is, the leaf we reach if, starting a tree traversal at x, we always descend
into the leftmost/rightmost child of a node. The constraints are of the form
lca(i, j) < lca(k,). This form denotes that the lowest common ancestor
of leafs 7 and j must be below the lowest common ancestor (LCA) of leafs
k and [in the supertree we intend to construct. For a given rooted binary
tree, it is sufficient to generate one constraint per inner edge (commonly
referred to as branches in phylogenetics) (x, y), where and y are inner
nodes of the tree. This constraint for (x,y), where y is a child of x has

Fig. 1. Example tree and the corresponding constraint (for the red edge/branch).

lca(l2,13) < lca(l1,13)

the form lca(y!,y™) < lca(z!,z"). Note that, depending on whether
y is the left or right child of =, y* = z! or y” = 2. Thus, due to
the symmetric nature of the lca, the extracted constraints are actually of
the form lca(i, j) < lca(j, k). Figure 1 shows a simple example of this
constraint construction procedure. In our example, there is only one inner
edge (branch) and therefore just one constraint.

1.2 Tree Enumeration

The main part of the SUPERB algorithm recursively divides the set of
taxa/leaves S of the entire tree set, respectively the input tree 7" together
with a set of constraints C's on these leaf nodes. The algorithm starts
with all leaves/taxa. Then, for each leaf, it determines if it belongs to
the left or right subtree of the root. In the recursion, the algorithm then
again divides the leaves among the children of the next node. Therefore,
each recursive step corresponds to one node in the supertree we intend to
build. The basic insight for dividing the leaves is that for each constraint
lca(i,7) < lca(j, k) the leaves 4 and j must be located together in a
subtree while j and k may be separated. Therefore, starting with a trivial
split3Xo = {{v}|v € X} whereevery node s in its own part, the algorithm
iteratively joins for each constraint lca(s, j) < lca(j, k) the parts o4 and
oy that contain ¢ and j, respectively. If a supertree exists, at the end of this
procedure, there will be a split 3, with at least two parts. If there are exactly
two parts, these are the leaves that are located below the two children of
the current node. Otherwise, we must consider all possibilities to combine
these parts such that we obtain exactly two parts. Each of these possibilities
to combine parts results in a different supertree. Thus, enumerating all of
them will generate all possible supertrees. For each of the two parts, we
call the algorithm recursively with only the leaf nodes in the respective part
and the constraints that only contain leaves of that specific part. If there
are no constraints in one of the recursive calls, it suffices to enumerate all
possible binary trees for the corresponding subset of leaf nodes of S. This
can be implemented in a straight-forward way.

Let us consider an example with S = {1,2,3,4,5} and Cg =
{lca(1,2) < Ica(3,2),lca(4,5) < Ica(4,2)}. Then o =
{{1}, {2}, {3},{4},{5}}. In the next step, we merge 1 and 2:
31 = {{1,2},{3},{4},{5}}. Then, we merge 4 and 5: Xo =
{{1,2}, {3}, {4, 5} }. There are now 3 different ways to split these subsets
into two: ({1,2},{3,4,5}), ({1,2,3},{4,5}) and ({1, 2,4, 5}, {3}).

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

So far, this yields three distinct trees. Now let us consider the recursion
into all three partitions:

1. ({1,2},{3,4,5}): For {1, 2}, there are no constraints left and we
obtain exactly one tree. For {3, 4, 5} there are also no constraints left.
We therefore need to enumerate all possible rooted binary trees with
3 leaves. Those trees all have the form of the tree in Figure 1 and there
are exactly 3 of them as we have 3 possibilities for choosing {1. Thus
we obtain 3 trees from this recursion.

2. ({1,2,3},{4,5}): For {1,2,3}, there is the constraint that
lca(1,2) < lca(3,2). Therefore, we join 1 and 2 and obtain
({1, 2}, {3}) asanew split. From the next recursion we obtain exactly
one result as there is only one binary tree with two leaves and 1 with
one leaf (the leaf itself). For {4, 5} there is also only one tree. Thus,
we obtain exactly 1 tree from this recursive step.

3. ({1,2,4,5},{3}): For {1,2,4,5} we have the constraint that
Ica(4,5) < lca(4,2). Thus, we obtain the splits {1}, {2}, {4,5}.
Again, there are three different ways of splitting these subsets into two:
({1,2},{4,5}), ({1},{2,4,5}), ({2},{1,4,5}). The first yields
exactly one tree from the recursion, the second one also returns only
one as the constraint is being used, and the third yields three subtrees
as there is no constraint left. Thus we obtain 1 + 1 + 3 = 5 trees
from this recursion.

In total, there are 3 + 1 4+ 5 = 9 possible supertrees for the given set of
constraints.

Next, we address the problem of how to root the unrooted input trees
for executing SUPERB.

2 Rooting by comprehensive taxa

The original SUPERB algorithm is defined on rooted trees. However,
all ’classic’ likelihood- and parsimony-based phylogenetic inference
programs and criteria return unrooted trees, except if an outgroup is
specified, which however, merely constitutes a drawing option. Therefore,
our library function specification explicitly requires a fully bifurcating
unrooted phylogenetic tree as input. Depending on the API (Application
Programmer Interface) parameter settings, the output is specified to be the
number of unrooted phylogenetic trees that reside on the same terrace as
the input tree, potentially also including the topologies of all those trees
written to a file in NEWICK format.

As the original algorithm is specified on rooted trees we need to devise
a method to (i) consistently root our unrooted trees and (ii) ensure that the
number of rooted trees reported by the algorithm is identical to the number
of unrooted trees. This can be achieved by requiring the input dataset to
contain at least one so-called comprehensive taxon taz ¢, that is, a taxon
that has data for all partitions of the MSA. In other words, the binary input
matrix M that contains the presence/absence information about sequence
data per species (rows) and partition (columns) needs to contain at least
one row that entirely consists of 1s.

If a taxc exists, every induced tree T'|P; for each partition ¢ will
contain a branch leading to tax . Consequently, each T'| P; can be rooted
on the branch/edge leading to taxc and all induced rooted trees 7" | P;
can therefore be consistently rooted and provided as input to SUPERB.

Given this consistent rooting, we now need to show that the number of
trees and actual tree topologies rooted at tax ¢ as returned by SUPERB
are identical to the number of unrooted trees and unrooted tree topologies
containing tax . Without loss of generality, we can order the leaves of the
rooted induced trees passed to SUPERB as tax ¢ first and then all other
taxa by some fixed, numerical index (e.g., a lexicographic order).

Given this ordering and rooting the lca(taxc,y) will always be the
root of the tree for any 7’| P; and any taxony € S,y # taxc in the tree.

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

To prove the equivalence of rooted and unrooted supertrees, we show
that the mapping unroot: 7/ — T is bijective. unroot maps any
rooted tree to its unrooted counter-part by simply removing the root. If we
restrict the mapping to all supertrees that are enumerated by the SUPERB
algorithm, this mapping is surjective onto the set of all unrooted supertrees
of the induced subtrees T'| P;. This is because every unrooted supertree is
also a rooted supertree of 77| P; when we place the root into the branch
leading to taxc.

However, the mapping is not necessarily injective (see Section 7.1).
To ensure that it is injective, we need to restrict the SUPERB algorithm
to supertrees where taxc is a direct descendant of the root node. This
can be achieved by fixing the leaf split in the first recursion step such
that taxzc is placed in one set and all remaining leaves are placed in
the other set. This modification of the SUPERB algorithm does not alter
the results and is hence correct based on the following observations:
As mentioned above, every constraint involving taxc is of the form
leca(i,j) < lca(j,taxzc). Thus, taxc will always be placed into a
singleton set when we apply the constraints. Therefore, the fixed split
between taxzc and all remaining leaves constitutes a valid split in the
original SUPERB algorithm. Since we ignore all other possible splits,
the modified SUPERB algorithm enumerates exactly all those rooted
supertrees that contain tax ¢ as direct descendant of the root. Note that, the
above modification maintains surjectivity as every tree unrooted at tax ¢
can be re-rooted at tax .

Since we have shown injectivity and surjectivity of unroot, the set
of unrooted supertrees is equivalent to the set of rooted trees returned by
our modified version of SUPERB.

3 Implementation Overview

We initially discuss the parts that are common to both implementations
before describing some specific implementation details of terraphast
I/II. Algorithm 1 illustrates the unoptimized pseudo code for both
libraries.

3.1 Pre-calculation and Constraint Construction

Before the tree enumerations, our implementations check via function
root_tree if a comprehensive taxon tax ¢ exists. If it exists, we root
the unrooted input tree 7" on the branch leading to taxon taz . We unroot
and re-root the tree on tax ¢ if the input tree is given as rooted tree. This
defines a fixed traversal order for the rooted tree 7" . If more than one taz ¢
exists, we select the first valid tax ¢ that appears when reading M line by
line. The SUPERB algorithm is supposed to operate on a set of leaves .S
extracted by the call to extract_leaves. This step is, depending on the
implementation, carried out implicitly by root_tree.

After the comprehensive input tree has been re-rooted, we
extract all constraints by invoking compute_constraints. For
each partition P; of the missing data matrix M, we first calculate
the induced per-partition tree 7”|P; via a post-order traversal of
T’ (extract_partition_tree). Then, we construct the LCA
constraints for each T/|P; (extract_constraints) and combine
them into a de-duplicated list.

Duplicate constraints can arise when identical subtrees (see Fig. 1
for an example) are induced by more than one partition. Such duplicate
constraints can be removed because they provide no additional information
on the topology of the T”| P;. Avoiding unnecessary constraints is another
reason for de-duplicating the constraint list. Although SUPERB allows
for arbitrary constraints lca(a, b) < lca(c,d), the constraints extracted
from the T"| P; can only be of the form lca(a, b) < lca(b, c). Note that,
SUPERB does not need to distinguish between constraints lca(a, b) <
Ica(b, c) and lca(b,a) < lca(a,c) as they are applied and filtered

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1: Pseudo code of terraphast I/IT

Data: Comprehensive tree 7', missing data matrix M

Result: Information R about terrace composition ,
e.g., terrace size, trees in NEWICK format, ...

1 begin

2 | T + root_tree (T, M);

3 | S+ extract_leaves(T, M);

4 Cg <+ compute_constraints (T, M);

5 | R+ enumerate_trees (S, Cg);

6 end

7 Function compute_constraints (17, M)

8 | Cg <+ 0

9 | foreach Partition P; in M do

10 T'|P; < extract_partition_tree (T",P;);
1 Cs + CgUextract_constraints (T7|F;);
12 | end

13 | return Set of (unique) constraints C'g

14 end

15 Function enumerate_trees (S, Cg)

16 | if Cs = () then

17 ‘ return enumerate_binary_trees (S)

18 | end

19 R <+ init_result();

20 | X« apply_constraints (S, Cg);

21 | foreach split o = (S, 5%) in X do

// Combine results R’ from each split

2 191 < filter_constraints (5], Cg);
23 R| < enumerate_trees (57, CfS‘l):
24 C’g2 < filter_constraints (S}, Cg);
25 R} < enumerate_trees (S5, Cg,);

26 R + R| O RL;

// Accumulate per-split results R’ to R
27 R+ R® R

28 | end

29 | return Combined result R of each split o
30 end

equivalently. By generating constraints for each T P;, we may encounter
a specific subtree x times and thus generate x instances of the constraint
lca(lg, lg) < lca(ll, 13).

3.2 Tree Enumeration

The function enumerate_trees performs the actual terrace analysis.
To support various execution modes, this part of our implementations
is generic. This means that, function init_result, function
enumerate_binary_trees, operator ®, and operator ¢ are
placeholders for specialized variants of enumerate_trees. For
instance, if the user wishes to retrieve the exact terrace size, the result to be
returned is an integer. In this case, function init_result will initialize
the result variable R as arbitrary precision integer with a starting value
of 0, function enumerate_binary_trees calculates the number of
binary trees for a leaf set .S if no constraint are left, and the operator ® /
@ adds/multiplies intermediate results from the recursive calls. If the user
wishes to enumerate all tree topologies on the terrace, all aforementioned
functions and operators will generate corresponding tree data structures
instead.

Both, terraphast Iandterraphast II providethefollowing
four enumerate_trees execution modes:

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

e Terrace detection for checking if the given comprehensive tree 1T°
resides on a terrace or not.

e Tree counting for calculating the number of distinct trees that reside
on the terrace.

o NEWICK tree enumeration for printing all trees on the terrace to file
in NEWICK format.

e Compressed NEWICK tree enumeration for printing the compressed
NEWICK tree format to file (see Section 8.1)

An important function in the tree enumeration phase is apply_
constraints, because it accounts for alarge fraction of overall runtime.
Function apply_constraints applies a given set of constraints S¢
to a set of sets of leaves generated from the given input set S. It combines,
for instance, a set S containing a leaf [, and a set S2 containing a leaf
ly, iff, there is a constraint satisfying Ica(lz,ly) < lca(rgz,ry) for any
leaf pair (74, 7y). Since combining sets, and checking, if a particular leaf
is present within a specific set of leaves are frequently invoked operations,
they should ideally require constant runtime. To this end, we experimented
with two alternative data structures for this task in both implementations.
One of them is the union-find with the conventional union by rank and path
compression heuristics. As described by Tarjan (1975), the union-find data
structure with both heuristics allows for searching and combining sets in
amortized O(c(n)) time where a(n) is the inverse Ackerman function.
This results in an almost constant time operation as a(n) < 5 for any
relevant number n < 1089 in our context. Alternatively, one can use bit
vectors where a set bit indicates if a specific leaf node is contained in the
set or not.

After applying the constraints, the algorithm iterates over all possible
splits of those leaf sets into pairs of disjunct leaf sets (a specific
split) denoted by X. For both parts Sj and S/ of a particular split,
filter_constraints determines all constraints Cg , and Cg2 that
are still applicable. We then recursively apply enumerate_trees on
S1 and S with their corresponding constraint sets C'g, and C'g,, Finally,
the ® operation combines the results from both recursive calls, while the &
operation accumulates the results for all possible splits in a single recursive
call.

4 Implementation of terraphast |

4.1 Constraint Construction

‘We extract the per-partition trees in a two-step process: For every partition
P;, we determine which subtrees of 7" occur in the induced tree 7" |P;.
This is calculated simultaneously for all partitions 7 and for every inner
node v that represents/roots a subtree. More specifically, we compute the
bitwise or of the entries in matrix M for both children of v via a post-
order traversal. The result is then stored in an augmented presence/absence
matrix M.

After extracting the induced per-partition trees, we calculate the
constraints as follows. First, we traverse the T"|P; in post-order to
determine the outermost descendant nodes for every node v. These
outermost nodes have the LCA v. We then traverse all edges/branches
of all trees T"|P; once more and use the above information to establish
LCA relationships. Constraint calculation is completed by calculating a
de-duplicated list of LCA constraints from the above LCA relationships.

4.2 Tree Enumeration

Before the actual tree enumeration, we first use the extracted LCA
constraints to construct a so-called multitree. A multitree is a single
tree that complies with the constraints and represents all ambiguous
(multi-furcating) nodes in the tree via a dedicated node type. Such
ambiguities/multi-furcations occur when no constraints exist for a specific

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

subset of nodes. For instance, we represent a three-taxon subtree {a, b, c}
as a single node in the multitree. When we generate all possible supertrees
based on the multitree, for every possible partial topology not containing
{a,b,c}, the {a,b, c} node yields the three subtrees (a, (b, c)),
(b, (a,c)), and (c, (a,b)). In other words, a multitree represents
the set of all possible supertrees (trees on the terrace) that can be generated
from the constraints via SUPERB. A supertree iterator construct (based
on regular C++ Standard Template Library iterators) uses this multitree to
iterate over, and generate all (if the option is set) such supertrees.

4.3 Data Structures

4.3.1 Bitvectors

Subsets of leaves and constraints are represented by packed bitvectors.
We implemented an efficient operation to iterate over all set bits in these
bitvectors by using bitmasks and the BSF (bitscan forward) instruction.
As mentioned above, we calculate the node set of every T|P; via a
post-order traversal. Here, the bit vector of an inner node is the bit-
wise or of its children. The bit vector of a leaf node ¢ contains only
one set bit at position ¢ that corresponds to the respective taxon ID.
Our bitvector implementation also provides efficient set operations like
union, complement, and symmetric difference. They correspond to the
bit-wise operations or, xor, and not which are used throughout our
implementation.

In addition, the leaf bitvector is augmented by a constant-time rank
support data structure, that is, the rank of an element in the set [can be
computed efficiently using but a few CPU cycles. The rank operation index
only needs to be updated once per recursive call.

4.3.2 Union-find

The union-find data structure uses the union by rank heuristic as well
as path compression to achieve almost constant-time operations. We
also implemented an explicit path compression method for the entire
data structure to obtain a thread-safe £ind operation(simple_find).
Therefore, we do not need to duplicate these data structures for the threads
in the parallel version of the code.

4.4 Memory Allocation

In an early version of terrphast I, memory-management represented
the largest performance bottleneck due to the high number of recursive
calls and the frequent allocation and deallocation of the respective data
structures. Thus, we developed a dedicated memory manager that leverages
the LIFO (Last In First Out) structure of the memory allocations in
conjunction with the predictable size of the allocations. It maintains a
free-list of memory blocks and uses the worst-case (largest) size for every
data structure. Note that, the RAM requirements of our implementation are
generally low (see Table 2) such that this slight over-allocation of memory
is justified.

4.5 Leaf-based Indexing

Since the constraints only contain leaf nodes, we remap all index values
(constraints and comprehensive taxon index) from the original indexing
based on their node index in the tree to leaf-based indexing. More
specifically, we replace every leaf node index by its rank in the leaf set.
This allowed us to reduce the space requirements for the leaf bitvectors
by a factor of two, and thus further improved spatial locality and, as a
consequence, runtime.

4.6 Generalized Implementation

We use an approach similar to the Strategy pattern where the SUPERB
implementation tree_enumerator relies on a Callback object

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

which implements several callback methods. These callback methods
are used for status information (enter, exit, ...), execution
control (fast_return, continue_iteration), or to provide the
elementary operations (combine for ®, accumulate for @) and base
cases (base_*, null_result,...). Due to static polymorphism, the
compiler is able to remove all potential overhead induced by empty method
calls.

Analogously to the description in Section 3.2, our implementation
provides four different variants of these callback objects: The
count_callback and clamped_count_callback callbacks
simply count the supertrees. Note that, the results are clamped
in case of an integer overflow in the clamped_ variant. The
multitree_callback callback constructs a multitree structure that
represents all trees on the terrace in a compressed format. Finally, the
check_callback callback only checks if there are at least two trees
on the terrace. This is accomplished by stopping the split iteration either
when the accumulated number of trees is at least two or when a recursive
call returns at least two trees (see below).

4.7 Fast Check Heuristic

When checking whether a tree resides on a terrace, we try to prune the
recursions of the regular tree counting to the largest extent possible. This
is achieved by stopping the iteration over all leaf splits as soon as our
accumulated count is > 2. In fact, it is possible to stop the recursion
even earlier by using a straight-forward lower bound on the number of
equivalent trees generated by a subset of the leaves. Every recursive call
returns at least one tree. Thus, the number of possible leaf splits is a lower
bound on the number of possible trees at every recursion level. Using this
lower bound, we can stop the recursion as soon as we encounter more
than two possible leaf splits after the constraints have been applied in a
recursive call by invoking the fast_return callback.

4.8 Parallelization

The should_resume_parallel method decides whether the current
recursive call should enumerate its different splits in parallel. If this is the
case, it prepares all parameters for the recursive calls and aggregates the
results after completion of the parallel invocations.

Our parallelization approach could be further improved as follows:

e Currently, all input parameters for the parallel recursive calls are
computed in the main thread. By deferring this work to the worker
threads, we could potentially further reduce the overhead of the parallel
implementation.

e Since the recursive calls often exhibit load imbalance, distributing the
workload from two subsequent recursion levels via more sophisticated
work-stealing approaches could potentially yield improved load
balance.

5 Implementation of terraphast Il
5.1 Constraint Construction

The function compute_constraints is implemented as described
in the Algorithm 1 except that it also omits taxc and all constraints
containing it. This is a valid optimization, because the first iteration of
the tree enumeration phase will always generate a split between tax ¢ and
all other leaves. The implementation is aware of the fact, that taxzc only
exists implicitly, that is, it is added back after enumerate_trees has
been completed.

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

5.2 Tree Enumeration

‘We use a conventional for loop toiterate over the splits ¢. This is achieved
by enumerating all possible splits for a specific leaf set/constraint set
combination from 1 to 261 — 1 where c is the number of sets that is left
afterexecuting apply_constraints. Themethodget_nth_split
computes the nth split by interpreting the number n as a bit vector of length
c. Each bit ¢ set to 1 means that leaf set ¢; is supposed to be merged with
the set S{. Otherwise, if i = 0, the leaf set ¢; is merged with set S
instead. For both parts of the split, filter_constraints determines
all constraints that are still applicable for the respective part.

5.3 Data Structures

Benchmarks comparing the two alternative implementations suggest that
the union-find data structure is on average 24.10% slower in tree counting
mode than the bit vector structure. Therefore, terraphast IT uses
bitvectors by default. Users can chose to switch between union-find and
bit vectors by editing the header file 1eaf_set.h.

5.4 Generalized Implementation

We implemented the four execution modi of the SUPERB algorithm
by using C++ similar to
terraphast I.There exists one C++ class for each mode, where each

has specialized operator implementations such as

templates and static polymorphism,

combine_split_results (¢ operator) or
combine_part_results (® operator).

e CountAllRootedTrees only counts the number of (sub-) trees
by using the arbitrary precision integer type mpz_class. The
implementation of combine_split_results, for example, only
calculates the sum over the terrace sizes for individual splits. The
recursion stops when no additional constraints can be fulfilled by a
leaf set.

e CheckIfTerrace determines if 7" resides on a terrace. This is the
case when invoking combine_split_results in any step of the
recursion yields more than one split. This version of the algorithm
stops as soon as a recursive step identifies a terrace for a leaf subset.

e FindAllRootedTrees generates all trees residing on the terrace
by representing each tree thereon as a corresponding binary
data structure. Here, each recursion returns a dynamic array
(std::vector) containing these binary trees.

e FindCompressedTree behaves analogously to version FindAll
RootedTrees, but only maintains one dedicated data structure
that represents the compressed NEWICK tree representation (see
Section 8.1) of the terrace.

For each possible split of leaf nodes, the algorithm is then recursively
applied to the respective subset of leaf nodes. The intermediate results
(terrace detection flag, number of subtrees, or subtree structures) are then
combined by combine_split_results. The run time contributions
and return values of combine_split_results vary withthe specified
execution mode.

5.5 Parallelization

Our parallelization approach is straight-forward and fairly similar to the
one used in terraphast I (see Section 4.8). The loop, that iterates
over all splits returned by get_nth_split, is parallelized via the
parallel for OpenMP pragma. This can be done, because every
split represents a different set of trees. Therefore, these iterations are
independent of each other. One performance problem is that, the trees
from the splits assigned to a thread may be easy/fast to compute, so that
this thread finishes long before the others. Hence, parallel efficiency is

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Table 1. Empirical test datasets used

name # partitions # taxa subsampled yes/no terrace size
Allium 4 57 yes 8038035
Allium_Reduced 4 30 yes 730680125
Allium_Tiny 3 6 yes 35
Asplenium. 1 3 132 yes 1
Asplenium.2 2 133 yes 95
Bouchenak 3 298 no 61261515
Burleigh.birds.small 29 627 yes 4.12 x 10°°
Caryophyllaceae 6 224 yes 7.18 x 1011
Eucalyptus.1 4 136 yes 229
Eucalyptus.2 4 136 yes 267
Euphorbia.1 6 131 yes 759
Euphorbia.2 5 131 yes 759
Ficus.1 4 110 yes 283815
Ficus.2 4 108 yes 851445
Ficus.3 4 110 yes 851445
Iris 4 137 yes 1
Meredith.mammals 26 169 yes 1
Meusemann 97 117 no 1
Miadlikowska.fungi 9 1317 yes 11655
Misof.insects 479 144 yes 1
Primula 5 185 yes 2835
Pyron 5 767 no 2205
Rabosky.scincids 6 213 yes 3
Ranunculus 6 170 yes 3
Rhododendron 4 117 yes 81
Rosaceae 7 529 vyes 1.72 x 10?3
Shi.bats 25 797 yes 2.42 x 10%°
Solanum 6 187 yes 211865625
Springer.primates 77 372 yes 70840575
Szygium.1 3 106 yes 45
Szygium.2 3 106 yes 45
Tolley.chameleons 6 202 yes 1
Wick. 1kp.few.genes 8 102 yes 1
Wick.1kp.many.genes 619 102 yes 1
Yang.caryo.1122 1115 95 yes 1
Yang.caryo.209 209 95 yes 1

reduced by load imbalance. To avoid potential overhead by invoking too
many threads, the OpenMP parallelization is only applied to the first
recursion level at the root. Subsequently, the aforementioned for-loop
is executed sequentially. As for terraphast I, parallel performance
could potentially be improved by deploying work-stealing concepts, but
is outside the scope of this work.

6 Test Datasets

For testing, we used all empirical test datasets provided at https:
//github.com/BDobrin/data.sets. The repository contains
several recently published partitioned phylogenomic datasets with missing
data. As already mentioned in the main text, some of these datasets did
not contain a comprehensive taxon tax . To this end, we sub-sampled
the datasets by applying the following procedure: First, we determined the
number of partitions every taxon contains data for. By selecting the taxa
with data for the largest number of partitions, we determined candidate
taxa which are comprehensive for a large subset of the partitions. We then
generated the subsampled data sets by using the cut utility for pruning
partitions.

Overall, we generated 36 test datasets from the 26 empirical datasets
which are described in Table 1.

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

In addition, we used some simple artificial datasets for initial testing
and verification.

For instance, the following M matrix exhibits a structure where the
terrace comprises all possible trees with 5 taxa:

taxonl //taxonl has data for partition 0 only
taxon2
taxon3

taxon4

[I R R

0
0
1
1
taxonb 1

The following M matrix does not exhibit any terraces as there is no
missing data:

taxonl
taxon2
taxon3
taxon4

[R S
[S S

taxonb5

7 Additional Experimental Results

In Table 2 we show the memory consumption of terraphy and
terraphast I/II for all test datasets in tree counting mode. Note
that, the RAM consumption of terraphast I/I1I isone totwo orders
of magnitude lower than that of terraphy. The larger variance of the
RAM consumptionin terraphast I isduetoamemory-wise not fully
optimized data structure for storing the induced per-partition subtrees
T|P;. Therefore, this slight waste of RAM becomes more apparent on
datasets with a larger number of partitions.

In Table 3 we show run-times for all datasets in terrace detection,
tree counting, and tree enumeration modes for terraphy and
terraphast I/II. Note that, terraphy does not offer a terrace
detection mode. The results for the tree enumeration mode are incomplete
due to excessive run-times.

7.1 Differences between terraphy and our implementations

While conducting our experiments, we noticed that for the Allium_Tiny
dataset, terraphy enumerated 37 rooted trees, while there are only
35 unrooted trees on the terrace. This difference stems from the rooting,
as in these initial tests the terraphy input tree was not rooted at a
comprehensive taxon taxc. When we re-rooted the terraphy input
tree at a comprehensive taxon, terraphy also enumerated 35 rooted
trees which correspond to our 35 unrooted trees due to the consistent
rooting.
To further elucidate this, consider the following small example:

((((s3,85),s82),s1), (s6,s4));
((((s3,85),s82), (s6,s4)),s81);
(((s3,85),82), (s1, (s6,s84)));

The three trees above become topologically identical if they are
consistently re-rooted at taxon s1.

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Table 2. RAM consumption (MB) in tree counting mode

Dataset terraphy terraphast I terraphast II
Allium 20.7 3.83 4.36
Allium_Reduced 20.3 3.80 4.27
Allium_Tiny 19.7 3.87 422
Asplenium.1 233 3.96 4.42
Asplenium.2 22.8 3.89 434
Bouchenak 28.5 4.01 4.71
Burleigh.birds.small 50.3 4.63 577
Caryophyllaceae 28.2 4.00 4.56
Eucalyptus.1 23.7 3.90 441
Eucalyptus.2 23.8 3.94 4.78
Euphorbia.l 242 3.93 4.27
Euphorbia.2 24.3 3.89 4.81
Ficus.1 234 3.89 4.36
Ficus.2 233 3.88 8.37
Ficus.3 233 391 4.38
Iris 23.7 3.96 4.43
Meredith.mammals 61.7 3.99 4.44
Meusemann 99.0 4.18 4.50
Miadlikowska.fungi 76.4 4.68 7.52
Misof.insects 680.1 8.24 4.47
Primula 26.0 3.98 4.46
Pyron 43.7 3.98 5.03
Rabosky.scincids 30.2 3.96 4.53
Ranunculus 252 3.95 4.40
Rhododendron 234 3.94 4.29
Rosaceae 36.4 4.14 6.11
Shi.bats 59.3 4.75 5.54
Solanum 25.8 4.00 4.45
Springer.primates 130.4 5.36 4.89
Szygium.1 22.8 391 4.35
Szygium.2 22.8 3.89 4.41
Tolley.chameleons 31.6 4.02 4.54
Wick. 1kp.few.genes 28.0 3.94 4.24
Wick.1kp.many.genes 610.4 7.97 4.54
Yang.caryo.1122 1001.9 12.36 4.70
Yang.caryo.209 210.9 5.21 4.39

Parallel performance Finally, in Figure 2 we provide the parallel speedup
of terraphast I for up to 4 physical cores and up to 8 threads (using
hyper-threading) on the reference test system.

The highly frequent memory allocations and deallocations in the
algorithm constitute a potential parallel performance bottleneck. To
this end, we deployed the dedicated lockless parallel memory allocator
jemalloc (seehttp://jemalloc.net/) which yielded up to 25%
run time improvement for the GMP-based version that executes a higher
number of memory allocations to implement arbitrary precision integers.

In addition, we also assessed if thread pinning, that is, specific thread-
to-core assignments, have a notable impact on performance. This is
because it is known that thread pinning can substantially affect parallel
efficiency on distributed shared memory systems (Klug et al., 2011). In
Figure 2 we show speedups for the respective optimal pinning, albeit
distinct pinnings did not exhibit a substantial performance impact.

As mentioned before, parallel efficiency could be further improved via
appropriate load balancing and work stealing concepts. This was however
outside the scope of this work.

8 C and C++ Interfaces

In the following we briefly present the C and C++ interfaces.

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 3. Run times in seconds for terrace detection, counting, and enumeration modes.

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

detection counting enumeration
Dataset terraphast I terraphast II | terraphy terraphast I terraphast IT | terraphy terraphast I terraphast IT
Allium 0.00040 0.0041 0.50 0.0088 0.0159 - - -
Allium_Reduced 0.00024 0.0037 54.53 1.7701 3.4969 - - -
Allium_Tiny 0.00014 0.0038 0.34 0.0030 0.0034 0.34 0.0004 0.0038
Asplenium. 1 0.00063 0.0045 0.47 0.0030 0.0056 0.49 0.0010 0.0059
Asplenium.2 0.00053 0.0056 0.44 0.0031 0.0079 0.84 0.0047 0.0114
Bouchenak 0.00099 0.0100 0.86 0.0045 0.0189 - - -
Burleigh.birds.small 0.00281 0.0322 | 4099.76 147.74 301.0850 - - -
Caryophyllaceae 0.00059 0.0076 0.92 0.0096 0.0271 - - -
Eucalyptus.1 0.00037 0.0053 0.66 0.0062 0.0225 1.70 0.0115 0.0273
Eucalyptus.2 0.00034 0.0053 0.65 0.0061 0.0210 1.81 0.0155 0.0372
Euphorbia.1 0.00043 0.0062 0.51 0.0025 0.0068 2.47 0.0264 0.0286
Euphorbia.2 0.00034 0.0050 0.63 0.0030 0.0159 2.92 0.0340 0.0395
Ficus.1 0.00035 0.0054 0.51 0.0020 0.0076 - - -
Ficus.2 0.00032 0.0052 0.47 0.0020 0.0072 - - -
Ficus.3 0.00028 0.0026 0.65 0.0058 0.0159 - - -
Iris 0.00044 0.0059 0.52 0.0021 0.0058 0.51 0.0008 0.0064
Meredith.mammals 0.00134 0.0108 2.13 0.0030 0.0133 2.16 0.0021 0.0132
Meusemann 0.00249 0.0184 3.85 0.0040 0.0199 3.86 0.0037 0.0223
Miadlikowska.fungi 0.00690 0.1289 7.82 0.0155 0.1406 - - -
Misof.insects 0.01560 0.1054 28.53 0.0191 0.0861 28.58 0.0259 0.1033
Primula 0.00083 0.0082 0.67 0.0022 0.0088 11.25 0.1253 0.1254
Pyron 0.00323 0.0223 2.33 0.0042 0.0253 32.59 0.3375 0.2832
Rabosky.scincids 0.00090 0.0096 0.88 0.0027 0.0091 0.91 0.0020 0.0070
Ranunculus 0.00061 0.0073 0.61 0.0033 0.0058 0.65 0.0013 0.0076
Rhododendron 0.00048 0.0060 0.49 0.0026 0.0049 0.72 0.0034 0.0083
Rosaceae 0.00136 0.0122 2.32 0.0334 0.0867 - - -
Shi.bats 0.00402 0.0470 6.34 0.0146 0.0810 - - -
Solanum 0.00057 0.0068 0.77 0.0050 0.0174 - - -
Springer.primates 0.00476 0.0489 8.53 0.0072 0.0489 - - -
Szygium.1 0.00038 0.0056 0.43 0.0020 0.0058 0.56 0.0020 0.0059
Szygium.2 0.00048 0.0042 0.47 0.0020 0.0059 0.57 0.0017 0.0074
Tolley.chameleons 0.00123 0.0091 0.92 0.0025 0.0081 0.97 0.0012 0.0105
Wick. 1kp.few.genes 0.00068 0.0064 0.69 0.0020 0.0064 0.67 0.0007 0.0060
Wick. lkp.many.genes 0.01708 0.0981 26.28 0.0222 0.0751 26.34 0.0150 0.0749
Yang.caryo.1122 0.02313 0.1154 43.36 0.0369 0.1282 43.37 0.0324 0.1118
Yang.caryo.209 0.00464 0.0283 7.90 0.0092 0.0255 7.93 0.0079 0.0299
C interface
int terraceAnalysis(
missingData *m,
1o a) . 0 i O const char *newickTreeString,
© o p) ol _e--mT®TRILG const int ta_outspec,
o — 3] --o0 -0
2 ° C) . e FILE *allTreesOnTerrace,
%J_ - o d) : . _,—O;g:: - /0 r)npz_t terraceSize
n , .0 ;
E (: . ,'lvo"'/,O\o \
s / Here m represents the binary data input matrix M that also contains
g o ° a list of taxon/species names for each row. newickTreeString is the
g ¢ / tree string of the comprehensive tree 7' in NEWICK format that is passed
CI' from the application program to the library. The library will then internally

number of threads

Fig. 2. Parallel speedup in tree counting mode for (a) Allium_Reduced with GMP,
(b) Burleigh.birds.small with GMP, (c) Allium_Reduced without GMP and (d)
Burleigh.birds.small without GMP

compute the induced per-partition trees 77| P;. ta_outspec specifies
the desired output (execution mode), that is, if the function shall only
determine whether the tree is on a terrace or not, if it shall return the number
of trees on the potential terrace, or if it shall also enumerate and print
to file (in compressed/uncompressed format), all trees on the respective
terrace. allTreesOnTerrace is a file pointer for printing all trees on
the terrace. Finally, terraceSize is used to store the number of trees on
the terrace, where mpz_t is the respective GNU multi-precision library
integer type.

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 4. Size of enumerated NEWICK trees in bytes.

Dataset Uncompressed Compressed Space Saving
Allium_Tiny 4,096 1,103 73.071 %
Primula 10,653,930 5,551 99.946 %
Pyron 37,612,890 20,407 99.945 %

The function returns 0 in case of success and a negative error code to
handle errors (e.g., no taxc could be found, problem parsing NEWICK
tree string, mismatch between taxon names in NEWICK tree and m etc.).

C++ interface The C++-interface consists of four families of functions:

bool is_on_terrace (nwk, matrix)
std::uint64_t get_terrace_size (nwk, matrix)
mpz_class get_terrace_size_bigint (nwk, matrix)

mpz_class print_terrace (nwk, matrix, out)

The argument-types of nwk andmatrixareconst std::stringg
and std::istreams& (four overloads are provided with all possible
combinations). The out-argument of the print_terrace-function
has the type std::ostreamé. Finally, there is a *_from_file-
of every function-family that
const std::stringé& and reads its data from those files while the

variant takes two filenames as
other arguments remain unchanged.

If the terrace size exceeds the maximum integer value that can be
represented by std: :uint64_t,the get_terrace_size family of
functions will simply return the maximum integer value (264 — 1). If the
exact terrace size is required nonetheless, the _bigint-variants of the

functions can be deployed to obtain it. Errors are handled via exceptions.

8.1 Compressed NEWICK representation of a terrace

As enumerating and printing all trees on a terrace to file can easily
dominate run-times and require large amounts of disk space, we propose

bioRxiv preprint doi: https://doi.org/10.1101/211276; this version posted November 2, 2017. The copyright holder for this preprint (which was not certified by peer review)
is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

a compressed NEWICK representation that defines all trees on the
terrace, but requires substantially less disk space. In Table 4 we provide
the compression ratios for output tree files on three representative
empirical test datasets. The compressed representation is an extension
of the NEWICK format. It relies on the following two extension:
First, we use curly brackets to identify a subset of taxa that has no
applicable constraint left. For instance, we write { s1, s2, s3} instead of
(sl, (s2,s83)); (s2,(sl,s2)); (s3,(sl,s2));
all (rooted) binary trees for these 3 taxa. Second, we use the | symbol

to denote

to list all subtrees that can be inserted at a specific position in the
, (b,c)), (d, (e, f)) | (e, (d,£))), for
example, is a compressed representation of the two alternative trees
((a, (b,c)), (d, (e,£)); and ((a, (b,c)), (e, (d,£)));.
This compressed NEWICK extension could be used, for instance, by tools

tree. The expression ((a

for post-processing terraces.

Acknowledgements

Part of this work was financially supported by the Klaus Tschira
Foundation and the DFG grant WA 654/22-2. We thank Olga Chernomor,
Bui Quang Minh, and Derrick Zwickl for discussions on the interface
definition, Barbara Dobrin for access to her empirical dataset repository,
and Alexey Kozlov for integration with RAXML-NG.

References

Constantinescu, M. and Sankoff, D. (1995). An efficient algorithm for
supertrees. Journal of Classification, 12(1), 101-112.

Klug, T. et al. (2011). autopin — Automated Optimization of Thread-to-
Core Pinning on Multicore Systems, pages 219-235. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Tarjan, R. E. (1975). Efficiency of a good but not linear set union algorithm.
J.ACM, 22(2), 215-225.

https://doi.org/10.1101/211276
http://creativecommons.org/licenses/by-nc-nd/4.0/

