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ABSTRACT		
	
Determining	 the	 pathogenicity	 of	 human	 genetic	 variants	 is	 a	 critical	 challenge,	 and	
functional	 assessment	 is	 often	 the	 only	 option.	 Experimentally	 characterizing	millions	 of	
possible	missense	 variants	 in	 thousands	 of	 clinically	 important	 genes	will	 likely	 require	
generalizable,	scalable	assays.	Here	we	describe	Variant	Abundance	by	Massively	Parallel	
Sequencing	(VAMP-seq),	which	measures	the	effects	of	thousands	of	missense	variants	of	a	
protein	on	intracellular	abundance	in	a	single	experiment.	We	apply	VAMP-seq	to	quantify	
the	 abundance	 of	 7,595	 single	 amino	 acid	 variants	 of	 two	 proteins,	 PTEN	 and	 TPMT,	 in	
which	functional	variants	are	clinically	actionable.	We	identify	1,079	PTEN	and	805	TPMT	
single	amino	acid	variants	that	result	in	low	protein	abundance,	and	may	be	pathogenic	or	
alter	 drug	 metabolism,	 respectively.	 We	 observe	 selection	 for	 low-abundance	 PTEN	
variants	 in	 cancer,	 and	 our	 abundance	 data	 suggest	 that	 a	 PTEN	 variant	 accounting	 for	
~10%	 of	 PTEN	 missense	 variants	 in	 melanomas	 functions	 via	 a	 dominant	 negative	
mechanism.	 Finally,	 we	 demonstrate	 that	 VAMP-seq	 can	 be	 applied	 to	 other	 genes,	
highlighting	its	potential	as	a	generalizable	assay	for	characterizing	missense	variants.		
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INTRODUCTION		
	
Every	 possible	 nucleotide	 change	 that	 is	 compatible	 with	 life	 is	 likely	 present	 in	 the	
germline	 of	 a	 living	 human1.	 Some	 of	 these	 variants	 alter	 protein	 activity	 or	 abundance,	
and,	consequently,	may	impact	disease	risk.	However,	only	~2%	of	all	presently	reported	
missense	variants	have	clinical	interpretations2,3.	Most	of	the	remaining	variants,	as	well	as	
nearly	 all	missense	 variants	 not	 yet	 observed,	 are	 rare	 and	 cannot	 be	 interpreted	 using	
traditional	genetic	approaches.	Furthermore,	 computational	approaches	are	 insufficiently	
accurate.	 These	 limitations	 create	 a	 major	 challenge	 for	 the	 clinical	 use	 of	 genomic	
information.	 Somatic	 mutations	 further	 complicate	 this	 picture.	 Every	 cancer	 genome	
harbors	additional	missense	variants	(~44	on	average,	in	one	survey)4,	and	distinguishing	
between	driver	and	passenger	mutations	remains	a	difficult	challenge.	
	
Deep	 mutational	 scans,	 which	 enable	 the	 simultaneous	 functional	 characterization	 of	
thousands	 of	 missense	 variants	 of	 a	 protein,	 offer	 one	 potential	 solution	 to	 the	 variant	
interpretation	problem5–7.	For	example,	the	effects	of	nearly	all	possible	single	amino	acid	
variants	 of	 the	 RING	 domain	 of	 BRCA1	 on	 E3	 ligase	 and	 BARD1	 binding	 activity	 were	
quantified	 in	 a	 single	 study8.	 In	 another	 example,	 the	 effects	 of	 all	 possible	 single	 amino	
acid	variants	of	PPARγ	on	 the	expression	of	CD36	 in	 response	 to	different	agonists	were	
measured9.	 In	both	cases,	 the	 functional	data	 led	 to	 the	accurate	 identification	of	most	of	
the	known	pathogenic	variants,	 suggesting	 that	 it	 could	be	useful	 in	 the	 interpretation	of	
newly	observed	variants.		
	
So	far,	deep	mutational	scans,	including	the	BRCA1	and	PPARγ	scans,	have	relied	on	assays	
specific	for	each	protein’s	molecular	function.	However,	developing	specific	assays	for	each	
of	the	thousands	of	disease-related	proteins	is	impractical.	To	overcome	this	challenge,	we	
sought	 to	 devise	 a	 functional	 assay	 that	 was	 both	 informative	 of	 variant	 effect	 and	
generalizable	to	many	proteins.	We	based	our	assay	on	the	fact	that,	despite	their	diversity,	
most	proteins	 share	a	key	 requirement:	 they	must	be	abundant	enough	 to	perform	 their	
molecular	function.	Variants	can	interfere	with	the	steady-state	abundance	of	a	protein	in	
cells	 via	 a	 variety	 of	 mechanisms,	 including	 by	 diminishing	 thermodynamic	 stability,	
altering	post-transcriptional	regulation	or	interrupting	trafficking.	In	fact,	as	much	as	75%	
of	 the	 pathogenic	 variation	 in	 monogenic	 disease	 is	 thought	 to	 disrupt	 thermodynamic	
stability	and,	consequently,	alter	abundance10,11.	Furthermore,	 low-abundance	variants	of	
tumor	 suppressors	 can	 lead	 to	 cancer12,13,	 while	 low-abundance	 variants	 of	 drug-
metabolizing	enzymes	can	alter	drug	response14.	 
	
Here,	we	describe	Variant	Abundance	by	Massively	Parallel	Sequencing	(VAMP-seq),	which	
measures	the	steady-state	abundance	of	variants	of	a	protein	in	cultured	human	cells.	We	
applied	 VAMP-seq	 to	 assess	 3,946	 single	 amino	 acid	 variants	 of	 the	 tumor	 suppressor	
PTEN	and	3,649	variants	of	the	enzyme	TPMT.	Our	results	reveal	how	changes	in	protein	
biophysical	 properties	 and	 interactions	 within	 and	 between	 proteins	 alter	 protein	
abundance	 in	 cells.	We	 identify	 1,079	 previously	 uncharacterized,	 low-abundance	 single	
amino	acid	variants	of	PTEN	that	are	likely	to	be	pathogenic,	and	805	TPMT	single	amino	
acid	variants	 that	 are	 likely	 to	be	unable	 to	 adequately	methylate	 and	 thereby	 inactivate	
thiopurine	 drugs.	We	 observe	 selection	 for	 low-abundance	 PTEN	 variants	 in	 cancer	 and	
identify	a	dominant	negative	mechanism	for	PTEN	variant	P38S,	which	accounts	for	~10%	
of	PTEN	missense	variants	observed	in	melanomas.	Finally,	we	demonstrate	that	VAMP-seq	
can	 be	 applied	 to	 other	 clinically	 important	 proteins	 including	VKOR,	 CYP2C9,	 CYP2C19,	
MLH1,	and	PMS2.	 
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RESULTS		
	
Multiplex	assessment	of	the	abundance	of	PTEN	and	TPMT	variants	
Inspired	by	high-throughput	methods	to	assess	the	stability	of	protein	variants	in	yeast15,	
bacteria16,	and	an	earlier	microarray-based	assay	that	profiled	protein	abundances	across	
the	 proteome17,	 we	 developed	 VAMP-seq.	 VAMP-seq	 is	 a	 multiplex	 assay	 that	 uses	
fluorescent	 reporters	 to	 measure	 the	 steady-state	 abundance	 of	 protein	 variants	 in	
cultured	human	cells	(Fig.	 1).	Each	cell	expresses	a	single	variant	directly	 fused	to	EGFP.	
The	stability	of	the	variant	dictates	the	abundance	of	the	EGFP	fusion	and,	accordingly,	the	
green	fluorescence	signal	of	the	cell.	To	control	for	expression	level,	mCherry	is	either	co-
transcriptionally	or	co-translationally	expressed	from	the	same	construct.	
	
We	 first	 evaluated	 the	 suitability	 of	 VAMP-seq	 to	 quantify	 abundance	 of	 the	 tumor	
suppressor	protein	PTEN	and	the	enzyme	TPMT.	Each	wild	type	open	reading	frame	was	N-
terminally	tagged	with	EGFP	and	recombined	into	a	single	genomic	locus	of	an	engineered	
HEK	293T	cell	line18.	We	also	constructed	cell	lines	that	expressed	known	low-abundance	
variants	 of	 each	 protein.	 After	 inducing	 expression	 of	 the	 integrated	 variants	 with	
doxycycline,	we	assessed	 the	EGFP:mCherry	ratio	by	 flow	cytometry.	We	 found	 that	cells	
expressing	 wild	 type	 PTEN	 or	 TPMT	 had	 ~5-fold	 higher	 EGFP:mCherry	 ratios	 than	 the	
known	low-abundance	variants	(Fig.	2a;	Supplementary	Fig.	1b,	c).	
	
We	next	applied	VAMP-seq	to	measure	the	steady	state	abundance	of	 thousands	of	PTEN	
and	 TPMT	 single	 amino	 acid	 variants	 in	 parallel.	 Barcoded,	 site	 saturation	 mutagenesis	
libraries	of	 each	protein	were	separately	 recombined	 into	our	engineered	HEK	293T	cell	
line18,19.	Cells	harboring	each	 library	had	EGFP:mCherry	ratios	 that	 spanned	 the	 range	of	
our	wild	type	(WT)	and	known	low-abundance	variants	controls	(Fig.	2a).	Cells	were	flow	
sorted	 into	 bins	 according	 to	 their	 EGFP:mCherry	 ratio,	 and	 high-throughput	 DNA	
sequencing	 was	 used	 to	 quantify	 each	 variant’s	 frequency	 in	 each	 bin.	 Finally,	 an	
abundance	score	was	calculated	for	each	variant	based	on	its	distribution	across	the	bins	
(Fig.	 1;	 Supplementary	 Table	 1).	Abundance	scores	 ranged	 from	about	zero,	 indicating	
total	loss	of	abundance,	to	about	one,	indicating	WT-like	abundance	(Fig.	2b).		
	
Abundance	scores	correlated	modestly	well	between	replicates	(mean	r	=	0.68	and	mean	ρ	
=	 0.66	 for	 both	 PTEN	 and	 TPMT;	 Supplementary	 Fig.	 2).	 To	 improve	 accuracy,	 final	
abundance	 scores	 and	 confidence	 intervals	 were	 computed	 from	 many	 replicate	
experiments	 (PTEN,	 n	 =	 8;	 TPMT,	 n	 =	 8).	 The	 resulting	 data	 set	 describes	 the	 effects	 of	
3,946	of	the	7,638	possible	single	amino	acid	PTEN	variants	and	3,649	of	the	4,655	possible	
TPMT	 variants	 (Fig.	 2c,	 d;	 Supplementary	 Tables	 2,	 3).	 VAMP-seq-derived	 abundance	
scores	were	 highly	 correlated	with	 individually	 assessed	 variant	 abundance	 (n	 =	 26,	 r	 =	
0.91,	ρ	=	0.96	 for	PTEN;	n	=	18,	 r	=	0.8,	ρ	=	0.68	 for	TPMT;	Supplementary	 Fig.	 3a,	 b).	
Furthermore,	PTEN	variant	abundance	measured	using	full-length	EGFP	or	a	fifteen	amino	
acid	split-GFP	tag20	were	in	agreement	(n	=	6,	r	=	0.98,	ρ	=	0.94;	Supplementary	Fig.	1d).	
Finally,	 our	 abundance	 scores	 were	 consistent	 with	 41	 PTEN	 and	 20	 TPMT	 variant	
abundance	 effects	 assessed	 by	 western	 blotting	 (Supplementary	 Fig.	 3c,	 d).	 Thus,	 we	
concluded	that	VAMP-seq	accurately	quantifies	steady-state	protein	variant	abundance.	
	
For	 both	 proteins,	 the	 distribution	 of	 abundance	 scores	 was	 bimodal	 with	 peaks	 that	
overlapped	WT	 synonyms	 and	 nonsense	 variants	 (Fig.	 2b).	 Nonsense	 variants	 exhibited	
consistently	 low	 scores,	 except	 for	 those	 at	 the	 extreme	N-	 or	 C-termini	 of	 each	 protein	
(Supplementary	 Fig.	 3e).	 A	 larger	 fraction	 of	 PTEN	variants	 had	 low	 abundance	 scores	
than	TPMT	variants,	possibly	reflecting	 the	 lower	 thermostability	of	PTEN	(Tm	=	40.3	 ˚C)	
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relative	 to	 TPMT	 (Tm	 =	 ~60	 ˚C)	 (Supplementary	 Fig	 3f)21,22.	 This	 inverse	 relationship	
between	the	fraction	of	low-abundance	variants	and	thermostability	is	consistent	with	the	
results	of	 a	deep	mutational	 scan	of	GFP,	which	has	an	even	higher	melting	 temperature	
(Tm	=	~	78	˚C)	and	had	very	few	variants	with	a	 large	effect	on	fluorescence23,24.	 	Median	
variant	 abundance	 scores	 at	 each	 position	 illustrated	 the	 tolerance	 of	 each	 position	 to	
amino	acid	substitution	(Fig.	2g,	h;	Supplementary	Tables	4,	5).	Positional	tolerance	was	
inversely	 related	 to	 positional	 conservation	 (ρ	 =	 -0.25	 and	 -0.60	 for	 PTEN	 and	 TPMT,	
respectively;	Fig.	2i,	j;	Supplementary	Fig.	3g,	h).	PTEN	positions	within	alpha	helices	and	
beta	sheets	were	less	tolerant	to	substitution,	while	those	in	the	flexible	loops	were	highly	
tolerant	(Fig.	2k,	l;	Supplementary	Fig.	3i).	TPMT	positions	within	the	beta	sheets,	which	
comprise	the	core	of	protein,	were	less	tolerant	of	substitution	(Supplementary	Fig.	3j).	
	
Thermodynamic	stability	is	a	determinant	of	variant	abundance	
Variants	can	alter	protein	abundance	inside	cells	via	a	variety	of	mechanisms,	including	by	
changing	 thermodynamic	 stability.	 We	 compared	 our	 abundance	 scores	 to	 various	
biochemical	and	biophysical	features	and	found	that	hydrophobic	packing,	which	is	known	
to	affect	thermodynamic	stability	in	vitro25–27,	was	a	key	driver	of	abundance.	Mutation	of	
WT	hydrophobic	 aromatic,	methionine,	 or	 long	nonpolar	 aliphatic	 amino	 acids	 produced	
the	 largest	 decreases	 in	 abundance	 for	 both	 proteins	 (Fig.	 3a).	 In	 fact,	 WT	 amino	 acid	
hydrophobicity	 was	 negatively	 correlated	 with	 abundance	 score	 (Fig.	 3b,	 WT	 hydroΦ),	
whereas	 mutant	 amino	 acid	 hydrophobicity	 was	 positively	 correlated	 with	 abundance	
score	 (MT	hydroΦ).	 Conversely,	mutations	 of	WT	amino	 acids	with	high	 relative	 solvent	
accessibility	 (RSA),	 polarity	 (WT	 Polarity),	 and	 crystal-structure	 temperature	 factor	 (B-
factor),	 all	 features	 associated	 with	 polar	 residues	 present	 on	 the	 protein	 surface,	 were	
associated	 with	 high	 abundance	 scores	 (Fig.	 3b).	 Consistent	 with	 the	 importance	 of	
hydrophobic	packing,	positions	with	the	lowest	average	abundance	scores	were	largely	in	
the	 solvent	 inaccessible	 interiors	 of	 each	 protein	 (Fig.	 3c,	 d).	 Finally,	 PTEN	 abundance	
scores	correlated	strongly	with	 in	vitro	melting	 temperatures21	 (n	=	5,	 r	=	0.97,	ρ	=	0.90;	
Supplementary	Fig.	4a).	These	observations,	consistent	between	PTEN	and	TPMT,	suggest	
that	variant	thermodynamic	stability	is	a	major	driver	of	variant	abundance	in	vivo.			
	
Next,	we	explored	the	role	of	polar	contacts,	using	the	PTEN	structure	to	identify	all	side-
chains	 predicted	 to	 form	 hydrogen	 bonds	 and	 ion	 pairs.	 Of	 the	 76	 positions	 potentially	
participating	 in	 these	 interactions,	only	22	were	 intolerant	 to	mutation	 (Supplementary	
Fig.	 4b).	 These	 22	 intolerant	 positions	 largely	 clustered	 into	 discrete	 groups	 in	 three-
dimensional	 space	 (Fig.	 3e;	 Supplementary	 Fig.	 4c).	 The	 groups	 highlighted	 regions	 of	
PTEN	 particularly	 important	 for	 abundance,	 and	 often	 included	 positions	 distant	 in	
primary	sequence.	For	example,	group	2	positions,	along	with	S170,	mediate	inter-domain	
contacts	between	the	PTEN	phosphatase	and	C2	domains28,	and	we	find	that	mutations	at	
these	positions	 result	 in	 a	 loss	 of	 abundance	 (Fig.	 3e).	Mutations	 at	 these	positions	 also	
frequently	 occur	 in	 different	 types	 of	 cancer28;	 our	 data	 suggests	 they	may	 compromise	
function	by	virtue	of	their	low	abundance.	Similarly,	loss	of	abundance	from	abrogation	of	
intra-domain	polar	contacts	may	account	for	the	high	frequency	of	mutations	at	K66,	Y68,	
or	D107	(group	1)	in	cancers	(Fig.	3e;	 Supplementary	Fig.	4d).	TPMT	lacked	clusters	of	
intolerant,	polar-contact	positions,	possibly	because	 it	 is	a	smaller,	single	domain	protein	
with	a	higher	melting	temperature.	
	
Interactions	with	the	cell	membrane	modulate	PTEN	variant	abundance	
Though	VAMP-seq	does	not	explicitly	query	post-translational	modification,	 trafficking	or	
partner	binding,	each	can	have	a	profound	impact	on	abundance.	Therefore,	we	searched	
for	signatures	of	these	properties	in	our	abundance	data.	PTEN	mediates	the	removal	of	the	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/211011doi: bioRxiv preprint 

https://doi.org/10.1101/211011


3’	 phosphate	 from	 phosphatidylinositol	 3,4,5-triphosphate	 (PIP3)	 to	 produce	
phosphatidylinositol	 4,5-diphosphate	 (PIP2)	 at	 the	 membrane29.	 Interaction	 with	 the	
membrane	is	aided	by	phospholipid-binding	positions	present	in	both	PTEN	domains	(Fig.	
3f)30,31.	 Furthermore,	 PTEN	 membrane	 binding	 and	 activity	 is	 negatively	 regulated	 by	
phosphorylation	of	its	unstructured	C-terminal	tail29,32.	Active	site	or	C-terminal	regulatory	
phosphosite	variants	have	been	found	to	decrease	activity,	reduce	membrane	binding	and	
increase	 abundance,	 hinting	 at	 the	 existence	 of	 a	 negative	 feedback	 mechanism	 that	
degrades	membrane-bound,	active	PTEN32,33.	
	
We	therefore	asked	whether	any	PTEN	variants	increased	abundance,	perhaps	by	altering	
membrane	 interaction.	 We	 identified	 41	 positions	 in	 PTEN	 that	 had	 mean	 abundance	
scores	 higher	 than	WT.	 19	 of	 these	 enhanced-abundance	 positions	 were	 in	 structurally	
resolved	 regions,	 and	 53%	 of	 them	 were	 within	 7	 Å	 of	 known	 phospholipid-binding	
positions.	In	comparison,	only	13%	of	all	structurally	resolved	PTEN	positions	were	within	
7	 Å	 of	 phospholipid-binding	 positions	 (Supplementary	 Fig.	 4e).	 Thus,	 positions	 with	
abundance-enhancing	 variants	 tended	 to	 be	 near	 the	membrane-proximal	 face	 of	 PTEN,	
and	included	those	important	for	binding	PIP3,	PIP2	or	PI(3)P31,34,35	(Fig.	3f).	Furthermore,	
phosphomimetic	 substitutions	 at	 the	 S385	 PTEN	 C-terminal	 regulatory	 phosphosite	
exhibited	the	highest	abundance	scores,	whereas	positively	charged	substitutions	had	low	
scores,	 supporting	 the	 impact	 of	 phosphorylation	 at	 this	 site	 on	 abundance	
(Supplementary	 Fig.	 4f).	Thus,	many	of	 the	enhanced-abundance	variants	we	 identified	
likely	disrupt	PTEN	membrane	localization	or	PIP3	phosphatase	function.	
	
New	potentially	pathogenic	variants	in	PTEN	revealed	by	abundance	data	
In	addition	to	revealing	the	biochemical	and	biological	determinants	of	protein	abundance,	
VAMP-seq	scores	can	also	be	used	to	 identify	potentially	pathogenic	variants.	To	simplify	
comparisons	 to	 clinical	 variant	 effects,	 we	 classified	 PTEN	 missense	 single	 nucleotide	
variants	 (SNVs)	 as	 either	 low	 abundance,	 possibly	 low	 abundance,	 possibly	 WT-like	
abundance,	 or	 WT-like	 abundance	 based	 on	 how	 each	 variant’s	 abundance	 score	 and	
confidence	 interval	 compared	 to	 the	 distribution	 of	 WT	 synonym	 scores	 (Fig.	 4a,	
Supplementary	Fig.	5a).	Then,	we	analyzed	variants	present	in	public	databases	of	either	
germline	or	somatic	variation	in	the	light	of	these	abundance	classifications.	
	
Heterozygous	loss	of	PTEN	activity	in	the	germline	can	cause	a	spectrum	of	clinical	findings	
including	multiple	hamartomas,	carcinoma,	and	macrocephaly,	collectively	known	as	PTEN	
Hamartoma	Tumor	Syndrome	(PHTS)36,	which	includes	Cowden	Syndrome.	There	are	216	
PTEN	 germline	 missense	 SNVs	 in	 ClinVar,	 a	 submission-driven	 database	 of	 variants	
identified	 primarily	 through	 clinical	 testing3.	 41	 of	 the	 216	 PTEN	missense	 variants	 are	
annotated	as	pathogenic,	24	of	which	had	abundance	scores	from	VAMP-seq.	Of	these	24,	
15	(62%)	were	classified	as	low	abundance	(Fig.	4b),	a	significantly	higher	proportion	than	
the	24%	of	all	scored	missense	variants	that	are	low	abundance	(Resampling	test,	n	=	24,	P	
<	0.0001;	Fig.	 4a;	 Supplementary	 Fig.	 5b;	 Supplementary	 Table	 6).	Of	 the	 remaining	
nine	variants,	four	were	possibly	low	abundance	and	three	were	active	site	variants	(H93R,	
G129E,	 and	R130L)	known	 to	be	 inactive	without	 loss	of	 abundance.	The	 remaining	 two	
variants	(D24G	and	R234Q)	were	distal	to	the	active	site	and	likely	alter	PTEN	function	by	
an	 unknown	mechanism37,38.	 Thus,	 VAMP-seq-derived	 abundance	 scores,	 combined	with	
structural	 knowledge	 of	 the	 PTEN	 active-site,	 reveal	 >90%	 of	 known	 PTEN	 pathogenic	
variants.		
	
We	could	not	 formally	assess	 the	VAMP-seq	 false	positive	rate	because	no	PTEN	variants	
are	 currently	 classified	 as	 benign.	 However,	 as	 has	 been	 done	 before9,	 we	 were	 able	 to	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/211011doi: bioRxiv preprint 

https://doi.org/10.1101/211011


identify	likely	non-damaging	variants	based	on	their	frequency	in	the	population.	Germline	
PTEN	 variants	 cause	 Cowden	 Syndrome,	 a	 high-penetrance,	 dominantly-inherited	
Mendelian	disease,	at	a	rate	of	at	least	~1	per	200,000	individuals36,39.	Thus,	on	average,	a	
particular	dominant	damaging	variant	should	occur	less	than	once	in	a	cohort	of	200,000	
individuals,	each	harboring	two	copies	of	PTEN,	corresponding	to	an	allele	frequency	of	2.5	
x	 10-6.	 21	missense	 variants	 and	 1	 nonsense	 variant	 in	 the	 GnomAD	database	 had	 allele	
frequencies	 above	 this	 threshold.	 We	 excluded	 two	 of	 the	 variants,	 R130X	 and	 R173H,	
which	were	in	cancer	databases	and	thus	are	possibly	damaging.	Of	the	remaining	20	likely	
non-damaging	variants,	16	were	scored	in	our	assay	and	all	16	were	classified	as	WT-like	
or	 possibly	 WT-like	 abundance	 (Supplementary	 Fig.	 5c).	 Three	 of	 the	 variants,	 A79T,	
P354Q,	and	S294R,	had	frequencies	higher	than	5	x	10-5,	strongly	suggesting	that	they	are	
not	damaging2	(Fig.	4a).	This	analysis	suggests	that	the	PTEN	abundance	score	data	have	a	
very	low	false	positive	rate.	
	
An	additional	41	PTEN	variants	are	annotated	as	likely	pathogenic	in	ClinVar.	Of	these,	22	
had	 abundance	 scores,	 9	 (41%)	 of	 which	 were	 classified	 as	 low	 abundance	 (Fig.	 4c;	
Supplementary	 Fig.	 5b).	 Thus,	 the	 likely	 pathogenic	 category	 also	 had	 more	 low-
abundance	variants	 than	expected	based	on	chance	(Resampling	test,	n	=	22,	P	=	0.0343;	
Supplementary	 Table	 6).	 The	 134	 remaining	 ClinVar	 variants	 are	 of	 uncertain	
significance.	81	of	these	variants	had	abundance	scores,	and	23	(28%)	were	low	abundance	
(Fig.	4d).	
	
By	providing	additional	evidence	that	supports	pathogenicity,	our	abundance	data	could	be	
used	to	alter	variant	clinical	interpretations40.	For	example,	of	the	9	low-abundance,	likely	
pathogenic	 ClinVar	 variants,	 one	 variant	 (I335K)	 could	 be	 reclassified	 as	 pathogenic	 by	
adding	 the	 low-abundance	 classification	 to	 publically	 available	 information	
(Supplementary	 Fig.	 6)40.	Furthermore,	23	variants	of	uncertain	significance	along	with	
263	 possible	 but	 not-yet-observed	 missense	 variants	 are	 low-abundance	 and	 could	
potentially	be	moved	 to	 the	 likely	pathogenic	 category	once	observed	 in	 the	 appropriate	
clinical	 setting	 (Supplementary	 Table	 7).	 However,	 we	 currently	 lack	 clinical	 data	 for	
these	variants,	and	the	absence	of	bona	fide	benign	PTEN	variants	means	that	we	cannot	
formally	 assess	 the	 specificity	 of	 our	 assay.	 Identifying	 best	 practices	 for	 integrating	 our	
PTEN	 variant	 abundance	 measurements	 into	 clinical	 practice	 will	 likely	 require	 further	
study	and	discussion	by	the	community.	
	
Abundance	data	identifies	mechanisms	of	PTEN	dysregulation	in	cancer	
Somatic	inactivation	of	PTEN	by	missense	variation	is	an	important	contributor	to	multiple	
types	of	cancer41.	We	asked	whether	VAMP-seq	derived	abundance	data	could	yield	insight	
into	 the	contribution	of	previously	reported	somatic	PTEN	variants	 to	 tumorigenesis.	We	
collected	PTEN	missense	or	nonsense	variants	found	in	The	Cancer	Genome	Atlas42	and	the	
AACR	Project	GENIE43,	 and	compared	 the	observed	 frequencies	of	PTEN	variants	of	each	
abundance	 class	 to	 the	 expected	 frequencies	 based	 on	 cancer	 type-specific	 nucleotide	
mutation	 spectra42.	 We	 observed	 significantly	 more	 low-abundance	 PTEN	 variants	 than	
expected	 for	every	cancer	 type	analyzed	(Resampling	 test,	all	P	values	≤	0.0002;	Fig.	 4e;	
see	Supplementary	Table	8	for	p-values).	This	pattern	suggests	that	selection	for	PTEN	
inactivation	through	loss-of-abundance	is	a	common	oncogenic	mechanism.	
	
Some	inactive	variants	of	PTEN	such	as	C124S,	G129E,	R130G,	and	R130Q	are	of	wild	type-
like	abundance.	These	inactive	variants	exert	a	dominant	negative	affect	on	PTEN	activity,	
leading	to	enhanced	Akt	phosphorylation	and	enhanced	tumorigenesis	in	mouse	models44–
46.	As	expected,	known	dominant	negative	variants	had	WT-like	or	higher	abundance,	with	
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C124S,	R130G	and	G129E	exhibiting	abundance	scores	of	1.21,	1.08,	and	0.76,	respectively.	
Known	 dominant	 negative	 variants	 were	 also	 significantly	 enriched	 in	 cancer,	 largely	
driven	by	the	high	frequencies	of	R130G	and	R130Q44,47	(Fig.	4e;	Supplementary	Fig.	5d;	
Supplementary	Table	8	for	p-values).	
	
Unlike	for	every	other	cancer	type	we	examined,	melanoma	lacked	an	enrichment	of	known	
dominant	 negative	 variants.	 However,	 the	 P38S	 variant	 was	 significantly	 enriched,	
accounting	for	10.4%	of	PTEN	missense	variants	(Resampling	test,	n	=	77,	P	<	0.0001;	Fig.	
4e;	Supplementary	Fig.	 5d;	 see	 Supplementary	Table	8	 for	p-values).	P38S	has	been	
previously	 observed	 in	 melanoma	 cancer	 cell	 lines,	 yet	 had	 never	 been	 functionally	
characterized48.	P38S	had	a	slightly	higher	abundance	score	than	WT	(1.13)	 in	our	assay.	
Based	on	its	prevalence	in	melanoma	and	its	WT-like	abundance,	we	hypothesized	that	 it	
might	exert	a	dominant	negative	effect.	Indeed,	we	found	that	P38S,	like	known	dominant-
negative	variants,	drove	increased	Akt	phosphorylation	in	the	presence	of	endogenous	wild	
type	 PTEN	 (Fig.	 4f;	 Supplementary	 Fig.	 5e).	 In	 contrast,	 computational	 predictors	
suggested	 that	 P38S	 is	 thermodynamically	 unstable,	 highlighting	 the	 utility	 of	 VAMP-seq	
(Supplementary	Fig.	5f).	Overall,	our	results	show	that	loss-of-abundance	is	an	important	
mechanism	 by	 which	 PTEN	 variants	 cause	 cancer	 and	 reveal	 a	 new	 dominant	 negative	
variant,	P38S,	that	is	over-represented	in	melanoma.	
	
Implications	of	TPMT	abundance		for	thiopurine	drug	treatment		
TPMT	 is	 one	 of	 17	 pharmacogenes	whose	 genotype	 can	 be	 used	 to	 guide	 drug	 dosing49.	
Functional	TPMT	is	required	to	metabolize	thiopurine	drugs	such	as	6-mercaptopurine	(6-
MP)	 and	 its	 prodrug,	 azathioprine.	 Thiopurine	 drugs	 are	 used	 to	 treat	 individuals	 with	
leukemia,	 rheumatic	 disease,	 inflammatory	 bowel	 disease,	 or	 rejection	 in	 solid	 organ	
transplant.	 Increased	exposure	 to	 thiopurines	causes	 treatment	 interruption	or	even	 life-
threatening	myelosuppression	and	hepatotoxicity.	Three	known	nonfunctional	variants	of	
TPMT,	 A80P,	 A154T	 and	 Y240C,	 are	 found	 at	 high	 allele	 frequencies	 (combined	 MAF	 =	
0.066)	and	are	responsible	for	95%	of	decreased-function	alleles	 in	the	population50.	The	
drug	toxicity	to	carriers	of	these	variants	can	be	explained,	at	least	in	part,	by	the	fact	that	
they	 result	 in	 lower	 abundance	 of	 TPMT	 relative	 to	wild	 type14,22	 (Fig.	 5a).	 Accordingly,	
both	abundance	scores	(Fig	5a)	and	individually	assessed	EGFP:mCherry	values	(Fig.	2a;	
Supplementary	Fig.	1c)	were	lower	for	these	nonfunctional	variants	compared	to	the	WT	
allele.	Since	our	abundance	scores	accurately	identify	known	decreased-function	alleles,	we	
analyzed	the	abundance	of	rare	TPMT	variants	of	unknown	function.	
	
In	a	clinical	study	of	patients	with	acute	lymphoblastic	leukemia	(ALL),	884	patients	were	
analyzed	by	exome	array.	278	of	these	patients	also	had	exome	sequencing	data	available.	
Red	 blood	 cell	 (RBC)	 TPMT	 activity	 and	 6-MP	 dose	 intensity,	 the	 dose	 at	 which	 each	
individual	 became	 sensitive	 to	 6-MP,	 were	 also	 measured51.	 The	 three	 known,	 high-
frequency	drug	 sensitivity	variants	were	 identified,	 along	with	 four	 rare	variants:	 S125L,	
Q179H,	R215H	and	R226Q	(combined	MAF	<	0.0053).	The	mean	RBC	activity	of	individuals	
heterozygous	 for	 Q179H,	 R215H,	 and	 R226Q	 was	 lower	 than	 the	 mean	 activity	 of	
individuals	without	TPMT	variants,	but	higher	than	the	activity	of	individuals	heterozygous	
for	 the	high-frequency	drug	sensitivity	variants	 (Supplementary	 Fig.	 7a,	 b).	 In	contrast,	
RBC	activity	for	S125L	was	higher	than	WT.	Thiopurine	dose	intensity,	which	is	affected	by	
TPMT	activity,	is	highly	correlated	with	variant	abundance	(r	=	0.99,	ρ	=	1,	n	=	6;	Fig.	5b;	
Supplementary	 Fig.	 7c).	 Though	 their	 RBC	 activity	 varied	 over	 a	 wide	 range,	 the	
individuals	heterozygous	for	these	rare	variants	tolerated	a	higher	mean	dose	of	6-MP	than	
individuals	heterozygous	for	the	known	sensitivity	variants.	Additionally,	each	of	the	four	
rare	 variants	 are	 surface	 accessible,	 and	 they	 are	 classified	 as	WT-like	 based	 VAMP-seq	
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abundance	 data.	 Individual	 assessment	 confirmed	 that	 these	 rare	 alleles	 do	 not	 affect	
abundance	 (Supplementary	 Fig.	 7d).	 Thus,	 we	 suggest	 that	 S125L,	 Q179H,	 R215H	 and	
R226Q	may	not	be	decreased-function	variants.	
	
Sequencing	of	the	human	population2	and	individuals	intolerant	to	thiopurine	drugs52	has	
revealed	an	additional	120	rare	TPMT	variants.	These	variants	(MAF	range	=	0.000004	–	
0.00066)	are	carried,	 in	aggregate,	by	0.2%	of	 the	population2,	but	 the	 impact	of	most	of	
these	variants	on	TPMT	activity	and	abundance	are	unknown53.	We	measured	abundance	
scores	for	94	of	these	variants,	classifying	fourteen	(15%)	as	low	abundance	and	eighteen	
(19%)	as	possibly	 low	abundance.	When	these	or	any	of	the	other	365	missense	variants	
we	classified	as	low	or	possibly	low	abundance	are	identified	in	the	clinic,	we	suggest	that	
they	may	be	decreased-function	variants	and	 that	 the	 risk	 for	 thiopurine	 toxicity	may	be	
elevated.	Dose	reduction	or	closer	monitoring	could	minimize	toxicity	and	directly	improve	
outcomes50.	
	
General	utility	of	VAMP-seq	for	assessing	variant	abundance		
To	demonstrate	 that	VAMP-seq	 is	 applicable	 to	diverse	proteins,	we	 evaluated	wild	 type	
and	 known	 or	 predicted	 low-abundance	 variants	 for	 an	 additional	 set	 of	 seven	
pharmacogenes	 or	 “clinically	 actionable”	 genes54,55	 (Supplementary	 Table	 9).	 For	
CYP2C9,	CYP2C19,	and	VKOR,	we	found	large	differences	in	the	EGFP:mCherry	ratios	of	the	
wild	 type	 and	 known	 or	 predicted	 low-abundance	 missense	 variants	 (Fig.	 6),	 whereas	
MLH1	and	PMS2	yielded	 smaller	differences.	 For	 these	 five	proteins,	VAMP-seq	 could	be	
used	 to	 test	 variant	 effects	 on	 abundance.	 Furthermore,	~52%	of	human	proteins	 tested	
yielded	at	least	as	much	fluorescence	as	MLH1	when	expressed	as	N-terminal	EGFP	fusions	
in	 a	 genome-wide	 screen17,	 suggesting	 that	 many	 human	 proteins	 are	 compatible	 with	
VAMP-seq	 (Supplementary	 Fig.	 8).	 However,	 preliminary	 experiments	 for	 BRCA1	 and	
LMNA	resulted	in	low	EGFP	signal	or	no	difference	in	the	EGFP:mCherry	ratio	between	wild	
type	and	known	low-abundance	variants	(Fig.	6	and	data	not	shown).	Thus,	VAMP-seq	will	
not	be	applicable	in	all	cases.	In	particular,	proteins	that	are	marginally	stable	like	BRCA1,	
make	 large	 complexes	 like	 LMNA,	 or	 are	 secreted	 and	 therefore	 break	 the	 link	 between	
variant	genotype	and	phenotype	are	not	amenable	to	VAMP-seq.	
	
DISCUSSION	
	
VAMP-seq	 is	 a	 generalizable	method	 for	 multiplex	measurement	 of	 steady-state	 protein	
variant	 abundance.	 Since	 alterations	 in	 abundance	 may	 account	 for	 a	 large	 fraction	 of	
known	 pathogenic	 variation10,11,	 an	 important	 application	 of	 VAMP-seq	 may	 be	 to	 aid	
clinical	 geneticists	 in	 understanding	 the	 effects	 of	 newly	 discovered	 missense	 variants.	
Indeed,	the	American	College	of	Medical	Genetics	suggests	that	well-established	functional	
assays	can	provide	strong	evidence	of	pathogenicity40.	Thus,	 in	 the	context	of	monogenic	
diseases	where	protein	inactivation	is	pathogenic,	VAMP-seq-derived	abundance	data	can	
help	to	identify	pathogenic	variants.	The	utility	of	VAMP-seq	for	this	purpose	is	highlighted	
by	the	fact	that	62%	of	known	PTEN	pathogenic	missense	variants	were	of	low	abundance.	
If	other	proteins	yielded	similar	results,	VAMP-seq	could	provide	evidence	of	pathogenicity	
for	greater	 than	half	of	 the	pathogenic	missense	variants	we	will	eventually	 find	as	more	
human	genomes	are	sequenced.		
	
Besides	 the	 known	 PTEN	 pathogenic	 missense	 variants,	 we	 also	 identified	 1,064	 low-
abundance	PTEN	single	amino	acid	variants	 that	would	 likely	confer	an	 increased	risk	of	
PTEN	Hamartoma	Tumor	Syndrome.	Additionally,	we	identified	805	low-abundance	single	
amino	 acid	 TPMT	 variants,	 which	 would	 likely	 require	 an	 altered	 drug	 dosing.	 Our	
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prospective	 functional	characterization	of	 these	 loss-of-function	variants,	available	 in	our	
interactive	web	 interface	 could	enable	 increased	 cancer	 surveillance	 in	 the	 case	of	PTEN	
carriers	or	prevent	drug	toxicity	in	the	case	of	TPMT	carriers.		
	
Interpretation	of	somatic	variation	 is	more	difficult,	but	 functional	data	can	reveal	driver	
variants	and,	therefore,	potential	treatments.	For	example,	variation	in	PTEN,	presumably	
resulting	 in	 PTEN	 loss-of-function,	 is	 associated	with	 increased	 sensitivity	 to	 PI3K,	 AKT,	
and	mTOR	 inhibitors,	 and	 decreased	 sensitivity	 to	 receptor	 tyrosine	 kinase	 inhibitors56.	
Our	 PTEN	 abundance	 data	 reveal	 many	 loss-of-function	 variants,	 which	 could	 help	 to	
clarify	the	link	between	PTEN	inactivation	and	altered	drug	sensitivity,	and	as	such	might	
inform	cancer	treatment.	Furthermore,	aided	by	our	abundance	data,	we	identified	P38S	as	
a	 candidate	 PTEN	 dominant	 negative	 variant	 in	 melanoma.	 We	 showed	 that	 cells	
expressing	 the	P38S	variant	have	elevated	 levels	of	activated	AKT,	 supporting	 the	notion	
that	P38S	acts	in	a	dominant	negative	fashion.	Since	the	known	dominant	negative	variants	
G129E	 and	 C124S	 result	 in	 exacerbated	 oncogenic	 phenotypes	 in	 mice44,46,	 P38S	 status	
might	help	to	predict	tumor	aggressiveness.		
	
Despite	its	utility,	VAMP-seq	has	limitations.	Bottlenecks	in	our	library	generation	method	
were	the	main	culprit	in	the	absence	of	approximately	half	of	all	possible	PTEN	variants	in	
the	 final	 data	 set.	 In	 the	 future,	 early	 validation	of	 library	quality	using	deep	 sequencing	
along	with	utilization	of	 other	well-validated	 library	 generation	methods9	 could	 improve	
coverage.	Additionally,	like	any	experimental	assay,	VAMP-seq	abundance	data	is	subject	to	
uncertainty.	To	address	 this	 concern,	we	quantified	 the	uncertainty	associated	with	each	
variant’s	abundance	score.	We	suggest	that	abundance	score	uncertainty	should	be	taken	
into	 consideration,	 as	 we	 did	 when	 classifying	 variant	 abundance.	 VAMP-seq	 relies	 on	
fusion	of	the	protein	of	interest	to	EGFP.	We	showed	a	high	concordance	between	VAMP-
seq	 abundance	 data	 and	 abundance	 as	 measured	 by	 other	 methods,	 but	 this	 might	 not	
always	 be	 the	 case.	 Furthermore,	 VAMP-seq	 cannot	 yield	 insight	 into	 variants	 that	 are	
pathogenic	 because	 of	 reduced	 enzymatic	 activity,	 altered	 localization,	 or	 effects	 on	
splicing.	Thus,	while	VAMP-seq	abundance	data	is	useful	for	providing	evidence	of	variant	
pathogenicity,	it	should	not	be	used	to	conclude	that	a	variant	is	benign.		
	
In	 addition	 to	 providing	 evidence	 for	 clinical	 variant	 interpretation,	 VAMP-seq	 data	 can	
also	 yield	 insight	 into	 the	 biophysical	 and	 biochemical	 features	 that	 influence	 protein	
abundance	 and	 function	 inside	 the	 cell.	 Proteins	 with	 single	 functions	 and	 limited	 post-
translational	regulation,	such	as	TPMT,	yield	variant	abundance	profiles	that	largely	reflect	
molecular	 determinants	 of	 folding	 and	 thermodynamic	 stability.	 Alternatively,	 proteins	
with	multiple	functions,	intramolecular	interactions	and	levels	of	regulation,	such	as	PTEN,	
yield	 abundance	 profiles	 that	 are	 a	 composite	 of	 these	 many	 factors.	 For	 example,	 we	
observed	 that	 variants	 at	 PTEN	 positions	 known	 to	 influence	 membrane	 interaction	
generally	resulted	 in	elevated	abundance.	This	effect	could	be	due	to	a	negative	 feedback	
mechanism	 wherein	 membrane-associated,	 active	 PTEN	 is	 particularly	 susceptible	 to	
degradation32,33.	Thus,	 further	study	of	high-abundance	PTEN	variants	might	reveal	novel	
features	of	PTEN	membrane	interaction.	Proteins	such	as	Src	and	EGFR	are	also	believed	to	
possess	 negative	 feedback	mechanisms	 regulating	 abundance33,	 and	 are	 thus	 high-value	
targets	for	VAMP-seq.	
	 	
We	suggest	that	generalizable	assays	like	VAMP-seq	are	a	promising	way	to	understand	the	
functional	 effects	 of	 missense	 variation	 at	 scale.	 In	 addition	 to	 demonstrating	 its	
effectiveness	 for	PTEN	and	TPMT,	we	provide	preliminary	evidence	that	VAMP-seq	could	
be	applied	 to	many	other	clinically	relevant	human	proteins.	VAMP-seq	also	avoids	 time-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/211011doi: bioRxiv preprint 

https://doi.org/10.1101/211011


intensive	steps	like	engineering	knockouts	of	each	gene	of	interest,	which	can	be	required	
for	some	functional	assays.	Furthermore,	repeating	VAMP-seq	assays	in	different	cell	lines	
could	 reveal	 cell-type	 specific	 regulation	 of	 variant	 abundance.	 Comparing	 variant	
abundance	 data	 in	 wild	 type	 and	 chaperone	 knockout	 cells	 could	 reveal	 what	 makes	 a	
protein	 a	 chaperone	 client.	 Combining	 VAMP-seq	 with	 small	 molecule	 modulators	 of	
chaperone	or	protein	degradation	machinery	may	even	reveal	variant-specific	treatments	
that	could	rescue	 low-abundance	variants.	Thus,	VAMP-seq	greatly	expands	our	ability	to	
measure	 the	 impact	 of	 missense	 variants	 on	 abundance,	 a	 generally	 important,	
fundamental	property	that	underlies	protein	function.	
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Figure	1	|	Overview	of	Variant	Abundance	by	Massively	Parallel	Sequencing	(VAMP-
seq).	A	mixed	population	of	cells	each	expressing	one	protein	variant	fused	to	EGFP	is	
created.	The	variant	dictates	the	abundance	of	the	variant-EGFP	fusion	protein,	resulting	in	
a	range	of	cellular	EGFP	fluorescence	levels.	Cells	are	then	sorted	into	bins	based	on	their	
level	of	fluorescence,	and	high	throughput	sequencing	is	used	to	quantify	every	variant	in	
each	bin.	VAMP-seq	scores	are	calculated	from	the	scaled,	weighted	average	of	variants	
across	bins.	The	resulting	sequence-function	maps	describe	the	relative	intracellular	
abundance	of	thousands	of	protein	variants.	
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Figure	2	|	VAMP-seq	abundance	scores	for	PTEN	and	TPMT.			
a,	Flow	cytometry	profiles	
for	PTEN	(left)	and	TPMT	
(right),	with	WT	(red),	
known	low-abundance	
variant	controls	(blue),	and	
the	variant	libraries	(gray)	
overlaid.	Bin	thresholds	
used	to	sort	the	library	are	
shown	above	the	plots.	Each	
smoothed	histogram	was	
generated	from	at	least	
1,500	recombined	cells	from	
control	constructs,	and	at	
least	6,000	recombined	cells	
from	the	library.		b,	VAMP-
seq	abundance	score	
density	plots	for	PTEN	(left)	
and	TPMT	(right)	nonsense	
variants	(blue	dotted	line),	
synonymous	variants	(red	
dotted	line),	and	missense	
variants	(filled,	solid	line).	
The	missense	variant	
densities	are	colored	as	
gradients	between	the	
lowest	10%	of	abundance	
scores	(blue),	the	WT	
abundance	score	(white),	
and	abundance	scores	above	
WT	(red).	c,	d,	Heatmap	of	
PTEN	(c)	and	TPMT	(d)	
abundance	scores,	colored	
according	to	the	scale	in	b.	
Variants	that	were	not	
scored	are	colored	gray.	e,	f,	
Number	of	amino	acid	
substitutions	scored	at	each	
position	for	PTEN	and	
TPMT.	g,	h,		Positional	
median	PTEN	and	TPMT	
abundance	scores,	
computed	for	positions	with	
a	minimum	of	5	variants,	are	
shown	as	dots.	The	gray	line	represents	the	mean	abundance	score	in	a	three-residue	
sliding	window.	i,	j,	PTEN	and	TPMT	position-specific	PSIC	conservation	scores	are	shown	
as	dots,	and	the	gray	line	represents	the	mean	PSIC	score	within	a	three-residue	sliding	
window.	k,	l,	PTEN	and	TPMT	domain	architecture	is	shown,	with	positions	in	alpha	helices	
and	beta	sheets	colored	cyan	and	pink,	respectively.	
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Figure	3	|	Biochemical	features	influencing	intracellular	protein	abundance.		a,	
Scatterplots	of	variant	abundance	scores	averaged	over	all	twenty	WT	residues	(left)	or	
mutant	residues	(right)	for	PTEN	(x-axis)	and	TPMT	(y-axis).	b,	A	scatterplot	of	Spearman’s	
rho	values	for	PTEN	(x-axis)	or	TPMT	(y-axis)	abundance	score	correlations	with	various	
evolutionary	(red),	structural	(blue),	or	primary	protein	sequence	(cyan)	features.	See	
legend	of	Supplementary	Table	2	for	information	regarding	these	features.	c,	d,	PTEN	(c,	
PDB:	1d5r)	and	TPMT	(d,	PDB:	2h11)	crystal	structures	are	shown.	Chains	are	colored	
according	to	positional	median	abundance	scores	using	a	gradient	between	the	lowest	10%	
of	positional	median	abundance	scores	(blue),	the	WT	abundance	score	(white),	and	
abundance	scores	above	WT	(red).	The	20%	of	positions	with	the	lowest	scores	are	shown	
as	a	semi-transparent	surface.	The	substrate	mimicking	compounds	tartrate	and	S-
adenosyl-L-homocysteine	are	displayed	as	magenta	spheres.	e,	Low-abundance	PTEN	
residues	with	predicted	hydrogen	bonds	or	salt	bridges	are	shown	as	sticks	with	a	semi-
transparent	surface	representation.	Residues	within	11	Å	of	each	other	are	clustered	and	
colored	as	discrete	groups.	The	residues	in	each	group	are	identified	by	number,	followed,	
in	parentheses,	by	the	number	of	times	any	variant	at	the	residue	is	found	in	the	COSMIC	
database.	f,	Residues	with	high	abundance	scores	are	shown	as	semi-transparent	red	
spheres,	and	known	membrane-interacting	side-chains	shown	as	opaque	cyan	spheres.	
Residues	that	are	both	membrane-interacting	and	have	high	abundance	scores	are	shown	
in	gray.	
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Figure	4	|	PTEN	variant	abundance	classes	across	PHTS	and	cancer.			
a,	A	histogram	of	PTEN	abundance	
scores	for	all	missense	variants	
observed	in	the	experiment,	with	bars	
colored	according	to	abundance	
classification.	Abundance	scores	for	
three	possibly	benign	variants	present	
in	the	GnomAD	database	are	shown	as	
dots	colored	by	classification.	b,	c,	d,	
Abundance	score	histograms,	colored	
by	abundance	classification,	for	PTEN	
germline	variants	listed	in	ClinVar	as	
known	pathogenic	(b),	likely	
pathogenic	(c),	or	variants	of	
uncertain	significance	(d).	e,	PTEN	
missense	and	nonsense	variants	in	
TCGA	and	the	AACR	GENIE	project	
databases	are	arranged	by	cancer	
type.	The	top	bar	in	each	cancer	type	
panel	shows	the	observed	frequency	
of	variants	in	each	abundance	class	as	
determined	using	VAMP-seq	data.	The	
bottom	bar	in	each	cancer	type	panel	
shows	the	expected	abundance	class	
frequencies	based	on	cancer	type-
specific	nucleotide	substitution	rates.	
Abundance	classes	are	colored	blue	
(low-abundance),	light	blue	(possibly	
low-abundance),	pink	(possibly	WT-
like),	or	red	(WT-like).	The	P38S	
variant	is	additionally	colored	with	
yellow	stripes.	The	four	known	PTEN	
dominant	negative	variants	are	
colored	yellow.	Variants	not	scored	in	
the	experiment	are	colored	grey.	f,	A	
western	blot	analysis	of	cells	stably	
expressing	WT	or	missense	variants	of	
N-terminally	HA-tagged	PTEN.	
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Figure	5	|	TPMT	variant	abundance	classes	across	pharmacogenomics	phenotypes.		
a,	A	histogram	of	TPMT	abundance	scores	for	all	missense	variants	observed	in	the	
experiment,	with	bars	colored	according	to	abundance	classification	(top).	Abundance	
scores	for	variants	previously	identified	and	characterized	in	patients	are	shown	as	dots	
colored	by	classification.	Variants	found	in	gnomAD	at	frequencies	higher	than	4x10-6	are	
also	shown	(bottom).	b,	A	scatterplot	of	abundance	score	and	mean	6-MP	dose	tolerated	by	
individuals	heterozygous	for	each	variant.	Dose	intensity	is	the	dose	at	which	6-MP	
becomes	toxic	to	the	patient	before	the	100%	protocol	dose	of	75	mg/m2.	
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Figure	6	|	Additional	drug-	and	disease-related	genes	are	compatible	with	VAMP-seq.		
Representative	flow	cytometry	EGFP:mCherry	smoothed	histogram	plots	for	WT	(red)	and	
known	or	predicted	destabilized	variants	(blue)	for	VKOR,	CYP2C9,	CYP2C19,		MLH1,	
PMS2,	and	LMNA.	Each	smoothed	histogram	was	generated	from	at	least	1,000	recombined	
cells.	
	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/211011doi: bioRxiv preprint 

https://doi.org/10.1101/211011


ONLINE	METHODS	
	
General	reagents,	DNA	oligonucleotides	and	plasmids.	
	
Unless	otherwise	noted,	all	chemicals	were	obtained	from	Sigma	and	all	enzymes	were	
obtained	from	New	England	Biolabs.	E.	coli	were	cultured	at	37°C	in	Luria	Broth.	All	cell	
culture	reagents	were	purchased	from	ThermoFisher	Scientific	unless	otherwise	noted.	
HEK	293T	cells	and	derivatives	thereof	were	cultured	in	Dulbecco’s	modified	Eagle’s	
medium	(DMEM)	supplemented	with	10%	fetal	bovine	serum	(FBS),	100	U/mL	penicillin,	
and	0.1	mg/mL	streptomycin.	Induction	medium	was	furthermore	supplemented	with	2	
μg/mL	doxycycline	(Sigma-Aldrich).	Cells	were	passaged	by	detachment	with	trypsin–
EDTA	0.25%.	All	synthetic	oligonucleotides	were	obtained	from	IDT	and	can	be	found	in	
Supplementary	Table	10.	
	
All	non-library	related	plasmid	modifications	were	performed	with	Gibson	assembly57.	The	
PTEN	open	reading	frame	was	obtained	from	1066	pBabe	puroL	PTEN,	which	was	a	gift	
from	William	Sellers	(Addgene	plasmid	#	10785),	and	combined	with	additional	
previously-used	coding	sequences18	to	create	attB-EGFP-PTEN-IRES-mCherry-562bgl.	This	
plasmid	was	modified	through	splitting	of	the	EGFP	coding	sequence	to	create	attB-sGFP-
PTEN-IRES-mCherry-bGFP,	which	was	used	in	assessing	fluorescence	ratios	of	WT	or	
mutant	PTEN	using	the	split-GFP	format20.	The	blasticidin	resistance	gene	was	obtained	
from	pLenti	CMV	rtTA3	Blast	(w756-1),	which	was	a	gift	from	Eric	Campeau	(Addgene	
plasmid	#	26429),	and	fused	C-terminally	to	mCherry	to	create	attB-EGFP-PTEN-IRES-
mCherry-BlastR.	This	construct	was	used	to	create	the	large	panel	of	individually	tested	
PTEN	variants.	The	ampicillin	resistance	cassette	in	attB-EGFP-PTEN-IRES-mCherry-
562bgl	was	replaced	with	a	kanamycin	resistance	cassette	to	create	attB-EGFP-PTEN-IRES-
mCherry-562bgl-KanR,	which	was	used	to	shuttle	the	mutagenized	PTEN	open	reading	
frame	in	the	library	generation	process.	The	PTEN	coding	region	in	attB-EGFP-PTEN-IRES-
mCherry-562bgl	was	replaced	to	create	the	constructs	used	to	test	VKOR	(IDT	gBlock),	
MLH1,	and	LMNA.	CYP2C9	and	CYP2C19	plasmids	were	also	created	using	the	backbone	of	
attB-EGFP-PTEN-IRES-mCherry-562bgl	by	replacing	the	PTEN	coding	sequence	with	
CYP2C9	or	CYP2C19	ORFs	(IDT	gBlocks)	and	moving	the	EGFP	tag	to	the	C-terminus	of	the	
protein.	The	MLH1	vector	was	additionally	modified	to	create	attB-EGFP-PMS2-2A-MLH1-
IRES-mCherry,	as	MLH1	co-expression	was	necessary	to	observe	signal	with	EGFP-fused	
PMS2.	MLH1	was	cloned	from	pCEP9	MLH1,	which	was	a	gift	from	Bert	Vogelstein	
(Addgene	plasmid	#	16458)58.	PMS2	was	cloned	from	pSG5	PMS2-wt,	which	was	a	gift	from	
Bert	Vogelstein	(Addgene	plasmid	#	16475)59.	LMNA	was	cloned	from	pBABE-puro-GFP-
wt-lamin	A,	which	was	a	gift	from	Tom	Misteli	(Addgene	plasmid	#	17662)60.		pCAG-NLS-
HA-Bxb1	was	a	gift	from	Pawel	Pelczar	(Addgene	plasmid	#	51271)61.	The	
attB_mCherry_P2A_MCS	plasmid	was	built	from	the	pcDNA5/FRT/TO	backbone	
(ThermoFisher).	mCherry_P2A	was	synthesized	(gBlocks,	IDT)	and	EGFP	amplified	from	
pHAGE-CMV-eGFP-N	(gift	from	Alejandro	Balazs)	using	primers	eGFP1	and	2	was	added	by	
Gibson	assembly.	Wild-type	TPMT	(NM_000367.3)	was	synthesized	(gBlocks,	IDT)	and	
cloned	in-frame	with	the	EGFP	by	Gibson	Assembly.	The	CMV	promoter	was	replaced	with	
the	synthesized	AttB	sequence	(gBlocks,	IDT).	The	final	vector	was	shorted	be	removing	all	
of	the	intervening	sequence	between	the	E.Coli	Ori	and	the	BGH	poly-A	signal	that	follows	
the	EGFP-X	fusion	by	inverse	PCR	with	Inv_attB_GPS_AscI_R	and	Inv_attB_GPS_AscI_F,	
cutting	with	AscI	and	religation.	Single	amino	acid	mutations	were	made	using	the	same	
inverse	PCR	method	described	below.	
	
Construction	of	barcoded,	site-saturation	mutagenesis	libraries	for	TPMT	and	PTEN	
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Site-saturation	mutagenesis	libraries	of	TPMT	and	PTEN	were	constructed	using	inverse	
PCR19.	For	TMPT,	wild	type	TPMT	was	first	cloned	into	pUC19.	Next,	for	each	codon,	
mutagenic	primers	were	ordered	with	machine-mixed	NNK	bases	at	the	5’	end	of	the	sense	
oligonucleotide.	Mutagenized	TPMT	was	cloned	into	the	Hind-III/Xho-I	sites	of	
aatB_mCherry_P2A_MCS.	A	15	base,	degenerate	barcode	was	then	cloned	into	the	XbaI	site	
of	the	multiple	cloning	site	by	Gibson	Assembly57.		Owing	to	poor	coverage	in	the	initial	
library,	a	separate	“fill-in”	library	was	constructed	for	TPMT	amino	acids	192-239	by	the	
same	protocol.	Colony	counts	revealed	approximately	40,000	and	10,000	barcode	clones	
for	the	main	TPMT	and	TPMT	fill-in	plasmid	libraries	respectively.	
	
For	PTEN,	eight	randomly	chosen	codons	were	used	to	optimized	inverse	PCR	
amplification,	using	attB-EGFP-PTEN-IRES-mCherry-562bgl	as	the	template.	Template	
concentrations	between	0.02	pg	through	20,000	pg	were	used	to	identify	the	minimum	
amount	of	template	needed	to	see	bands	on	an	agarose	gel	after	20	cycles	using	primer	
concentrations	between	0.25	and	0.5	µΜ.	The	final	concentrations	were	250	pg	of	template	
plasmid	and	0.25uM	of	forward	and	reverse	primers.	Each	codon	amplification	was	done	in	
a	total	volume	of	10	uL	using	20	cycles	at	the	standard	conditions	recommended	for	Kapa	
HiFi	(95°C	for	3	minutes	followed	by	20	cycles	of	98°C	for	20s,	60°C	for	15s	and	72°C	for	
30s/kb	of	template	plasmid,	followed	by	a	final	extension	of	5	min).		Two	µL	of	each	
amplified	product	were	run	on	a	0.7%	agarose	gel	for	visual	validation	of	amplification,	and	
the	remaining	8	µL	of	product	was	diluted	1:10	with	water.	Two	µL	of	this	diluted	product	
was	quantified	using	PicoGreen	(ThermoFisher)	on	a	BioTek	H1	plate	reader.	PicoGreen		
measurements	were	ignored	for	codons	where	multiple	amplified	bands	of	multiple	sizes	
were	observed,	and	instead	replaced	by	PicoGreen	measurements	for	adjacent	codons	with	
amplified	bands	of	the	intended	size	of	similar	intensity	to	the	amplified	band	of	the	
intended	size	for	the	codon	in	question.	Based	on	these	PicoGreen-derived	concentrations,	
all	amplicons	were	mixed	together	so	that	approximately	equal	amounts	of	the	bands	of	
intended	size	were	present	for	all	amplified	codons.	This	final	mixture	of	the	library	was	
cleaned	and	concentrated	by	ethanol	precipitation.	The	precipitated	product	was	
resuspended	in	100	μL	of	ddH2O.	To	phosphorylated	the	amplified	product,	16	μL	of	
cleaned	product	at	~	11.5	ng/μL	was	mixed	with	2	μL	of	10x	T4	DNA	ligase	buffer	(New	
England	Biolabs)	and	2	μL	of	T4	PNK	enzyme,	and	incubated	at	37°C	for	1	hour.	To	
circularize	the	amplified	product,	the	entire	20	μL	reaction	was	then	mixed	with	4	μL	10x	
T4	DNA	ligase	buffer,	14	μL	of	ddH2O,	and	2	μL	of	T4	DNA	ligase,	incubated	at	16°C	for	1	
hour,	25°C	for	10	min,	and	heat	inactivated	at	65°C	for	10	min.	Residual	template	plasmid	
was	then	removed	by	adding	1	μL	of	DPNI	enzyme	to	the	tube,	and	incubated	at	37°C	for	1	
hour.	The	ligated	product	was	cleaned	and	concentrated	into	a	final	6	µL	volume	using	a	
Zymo	Clean	and	Concentrate	kit,	and	then	transformed	into	NEB	10-beta	electrocompetent	
E.	coli.	To	select	against	input	plasmid	and	plasmids	containing	short	PCR	products,	the	
library	was	then	shuttled	into	attB-EGFP-PTEN-IRES-mCherry-562bgl-KanR	via	directional	
cloning	using	XbaI	and	EcoRI.		Barcodes	were	added	to	the	library	by	filling	in	a	long	oligo	
(PTEN_BC_F1.1)	supplemented	with	a	short	reverse	oligo	(PTEN_BC_R)	using	Klenow(-exo)	
polymerase.	Here,	0.25	µΜ of	PTEN_BC_F1.1	and	PTEN_BC_R	were	melted	and	annealed	
together	at	98°C	for	3	minutes	in	Buffer	2.1	(New	England	Biolabs)	and	cooled	to	25˚C	at	a	
rate	of	–	0.1°C/sec.	4000	units	of	Klenow(-exo)	and	0.033	µΜ dNTP’s	were	added,	and	the	
mixture	was	incubated	for	15	minutes	at	25°C.	The	polymerase	was	inactivated	by	
incubating	for	20	minutess	at	70°C,	and	the	product	was	cooled	to	37°C	at	a	rate	of	-
0.1°C/sec.	The	cooled	product	was	then	digested	with	EcoRI	and	SacII	in	Buffer	2.1,	
purified	with	a	Zymo	Clean	and	Concentrate	kit,	and	eluted	in	30	μL	of	ddH2O.	To	digest	the	
mutagenized	PTEN	library	in	the	attB-EGFP-PTEN-IRES-mCherry-562bgl-KanR	vector,	2	μg	
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of	plasmid	was	mixed	with	5	μl	of	10x	Cutsmart	buffer,	1	μl	EcoRI-HF,	and	1	μl	Sac-II	in	a	50	
μl	reaction,	digested	at	37*C	for	1	hour,	and	purified	with	a	Zymo	Clean	and	Concentrate	
kit.	Both	purified	digestion	products	were	mixed	together,	ligated	with	T4	DNA	ligase,	
purified	with	a	Zymo	Clean	and	Concentrate	kit,	and	transformed	into	into	NEB	10-beta	
electrocompetent	E.	coli	(New	England	Biolabs).	Colony	counts	estimated	this	library	to	
contain	roughly	35,200	barcodes.	
	
Single	Molecule	Real	Time	(SMRT)	sequencing	to	link	each	TPMT	and	PTEN	variants	
to	its	barcode		
For	both	PTEN	and	TPMT,	the	relationship	between	variants	and	barcodes	was	established	
using	SMRT	sequencing	(Pacific	Biosciences).	To	prepare	the	circular	SMRT-bell	
templates62,	library	plasmids	were	digested	with	restriction	enzymes	to	release	the	
barcode	and	open	reading	frame.	Hairpin	SMRT-bell	oligonucleotides	with	complementary	
sticky	ends	and	SMRT	priming	sequences	were	ligated	to	the	fragments.	TPMT	libraries	
were	digested	using	BsrGI	and	SphI.	The	correct	fragment	was	size-selected	on	1%	agarose	
and	gel-purified	with	NEB	Monarch	DNA	Gel	Extraction	kit	(New	England	Biolabs).	Custom	
SMRT	bell	adapters	pb_SphI	and	pb_BsrGI	were	sticky-end	ligated	to	the	purified	fragment.	
To	make	a	working	stock	of	20	μM	SMRT	bell	adaptors	in	10	mM	Tris,	0.1	mM	EDTA,	100	
mM	NaCl,	they	were	heated	to	85˚C	and	snap	cooled	on	ice.	The	ligation	reaction	contained	
500	ng	purified	fragment,	2.5	µM	of	each	adaptor,	1 µL	of	BsrGI,	1 µL	of		SphI,	1X	ligase	
buffer,	and	2	µL	of	T4	ligase	in	a	40	µL	reaction.	The	ligation	was	performed	at	room	
temperature	for	2	hours,	then	heat	inactivated	at	65˚C	for	20	minutes.	1	µL	each	of	ExoIII	
and	ExoVII	were	added	and	incubated	at	37˚C	for	1	hour.	The	final	SMRT	bell	fragments	
were	purified	via	AmpurePB	(Pacific	Biosciences)	at	1.8X	concentration,	washed	in	70%	
ethanol,	eluted	in	15	µL	10mM	Tris	and	quantified	by	BioAnalyzer	(Agilent).	The	PTEN	
library	was	digested	using	SacII	and	XbaI.	The	correct	fragment	was	size-selected	on	1%	
agarose	and	gel-purified	with	a	Qiagen	Gel	Extraction	kit	(Qiagen).	Custom	SMRT	bell	
adapters	XbaI_SMRTBell	and	SacII_SMRTBell	were	sticky-end	ligated	to	~150	ng	of	the	
purified	fragment	in	a		50	µL	reaction	using	1x	T4	DNA	ligase	buffer,	1 µM	of	each	oligo,	
800	units	of	T4	DNA	ligase,	5	units	of	SacII,	and	5	units	of	XbaI.	The	ligation	was	performed	
at	room	temperature	for	30	minutes,	then	heat	inactivated	at	65˚C	for	10	minutes.	Ten	
units	of	Exonuclease	VII	(ThermoFisher)	and	100	units	of	Exonuclease	III	(Enzymatics)	
were	added	to	the	mixture,	incubated	for	30	mins	at	37°C.	The	final	SMRT	bell	fragments	
were	purified	with	AmpurePB	(Pacific	Biosciences)	at	1.8X	concentration,	washed	twice	in	
70%	ethanol,	eluted	in	20	µL	10mM	Tris,	and	quantified	using	a	QuBit	(ThermoFisher)	and	
BioAnalyzer	(Agilent).	
	
The	TPMT	and	PTEN	constructs	were	sequenced	on	a	Pacific	Biosciences	RS	II	sequencer.	
The	main	TPMT	library	was	sequenced	using	four	SMRT	cells	and	the	fill-in	TPMT	library	
was	sequenced	using	two.	The	PTEN	library	was	sequenced	using	five	SMRT	cells.	Base	call	
files	were	converted	from	the	bax	format	to	the	bam	format	using	bax2bam	(version	0.0.2)	
and	then	bam	files	for	each	library	from	separate	lanes	were	concatenated.	Consensus	
sequences	for	each	sequenced	molecule	in	every	library	were	determined	using	the	
Circular	Consensus	Sequencing	2	algorithm	(version	2.0.0)	with	default	parameters	
(bax2bam	and	ccs	can	found	on	Github,	
https://github.com/PacificBiosciences/unanimity/blob/master/doc/PBCCS.md).	Each	
resulting	consensus	sequence	was	then	aligned	to	either	the	TPMT	or	PTEN	reference	
sequence	using	Burrows-Wheeler	Aligner63	(http://bio-bwa.sourceforge.net/).	Barcodes	
and	insert	sequences	were	extracted	from	each	alignment	using	custom	scripts	that	parsed	
the	CIGAR	and	MD	strings.	For	barcodes	sequenced	more	than	once,	if	barcode-variant	
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sequences	differed,	the	barcode	was	assigned	to	the	variant	that	represented	more	than	
50%	of	the	sequences.	Barcodes	lacking	a	majority	variant	sequence	were	assigned	the	
variant	sequence	with	the	highest	average	quality	score	as	determined	by	the	ccs2	
algorithm.	The	barcode-variant	extraction	and	barcode	unification	scripts	can	be	found	at	
https://github.com/shendurelab/AssemblyByPacBio/.	Metrics	regarding	the	processing	of	
sequencing	data	for	the	barcode-variant	assignments	can	be	found	in	Supplementary	
Table	13.	The	final	TPMT	libraries	have	26,416	barcodes	associated	with	6,251	full-length	
nucleotide	sequence	variants	that	encoded	3,994	unique	protein	sequences	with	zero	or	
one	amino	acid	change.	The	final	PTEN	library	had	22,707	barcodes	associated	with	7,756	
full-length	nucleotide	sequence	variants	that	encoded	5,043	unique	protein	sequences	with	
zero	or	one	amino	acid	change.	For	both	TPMT	and	PTEN	a	barcode-variant	map	file	was	
created	that	contains	each	barcode	and	its	nucleotide	sequence.		
	
Integration	of	single	variant	clones	or	barcoded	libraries	into	the	HEK293-landing	
pad	cell	line	
Barcoded	variant	libraries	or	single	variant	clones	were	recombined	into	the	Tet-on	
landing	pad	in	engineered	HEK	293T	TetBxb1BFP	Clone4	cells	that	we	generated	
previously18.	These	cells	harbor	exactly	one	copy	of	a	tet-inducible	promoter	followed	by	a	
Bxb1	recombinase	site.	Integration	of	a	promoterless	plasmid	containing	a	Bxb1	
recombinase	site	results	in	expression	of	one	variant	per	cell.	First,	FuGENE	6	(Promega)	
was	used	to	transfect	the	Bxb1	recombinase-expressing	pCAG–NLS–HA–Bxb1	plasmid,	
followed	24-48	hours	later	by	the	single	variant	or	library	plasmid.	Two	days	after	
transfection,	variant	expression	was	induced	by	adding	0.5-2	µg/mL	doxycycline	to	the	
media	(DMEM	+	10%	FBS).	Then,	cells	were	prepared	for	sorting	by	lifting	from	10	cm	
plates	with	Versene	solution	(0.48	mM	EDTA	in	PBS),	washing	1X	in	PBS,	resuspending	in	
sort	buffer	(1X	PBS	+	1%	heat-inactivated	FBS,	1	mM	EDTA	and	25	mM	HEPES	pH	7.0)	and	
filtering	through	35	μm	nylon	mesh.	Cells	were	sorted	on	a	BD	Aria	III	FACS	machine	using	
an	85	or	100	μm	nozzle.	mTagBFP2,	expressed	from	the	unrecombined	landing	pad,	was	
excited	with	a	405	nm	laser,	and	emitted	light	was	collected	after	passing	through	a	450/50	
nm	band	pass	filter.	EGFP,	expressed	after	successful	recombination	of	the	variant	or	
library	plasmid,	was	excited	with	a	488	nm	laser,	and	emitted	light	was	collected	after	
passing	through	505	nm	long	pass	and	530/30	nm	band	pass	filters.	mCherry,	also	
expressed	after	successful	recombination	of	the	variant	or	library	plasmid	was	excited	with	
a	561	nm	laser,	and	emission	was	detected	using	600	nm	long	pass	and	610/20	band	pass	
filters.	Before	analysis	of	fluorescence,	live,	single	cells	were	gated	using	FSC-A	and	SSC-A	
(for	live	cells)	or	FSC-A	and	FSC-H	(for	single	cells)	signals.	Recombinant	mTagBFP2	
negative,	mCherry	positive	cells	were	isolated,	with	mCherry	fluorescence	values	at	least	
10	times	higher	than	the	median	fluorescence	value	of	negative	or	control	cells,	and	
mTagBFP2	fluorescence	at	least	10	times	lower	than	the	median	of	the	unrecombined	
mTagBFP2	positive	cells	(See	Supplementary	Fig.	1a	for	gating	example).		Multiple	
replicate	integrations	were	conducted	and	sorted	for	recombinants	(Supplementary	
Table	1).	After	sorting,	the	libraries	were	uniformly	mTag2BFP	negative	and	mCherry	
positive.	Analytical	flow	cytometry	was	performed	with	a	BD	LSR	II	flow	cytometer,	
equipped	with	filter	sets	identical	to	those	described	for	the	Aria	III,	with	the	exception	of	
mCherry	emission	which	was	detected	using	595nm	long	pass	and	610/20	band	pass	
filters.	
	
FACS	to	bin	cells	by	mCherry:EGFP	ratio	
Cells	harboring	variant	libraries,	prepared	as	described	above,	were	sorted	using	a	
FACSAria	III	(BD	Biosciences)	into	bins	according	to	the	abundance	of	their	expressed,	
EGFP	tagged	variant.	First,	live,	single,	recombinant	cells	were	selected	using	forward	and	
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side	scatter,	mCherry	and	mTagBFP2	signals.	Then,	a	FITC:PE-Texas	Red	ratiometric	
parameter	in	the	BD	FACSDIVA	software	was	created.	A	histogram	of	the	FITC:PE-Texas	
Red	ratio	was	created	and	gates	dividing	the	library	into	four	equally	populated	bins	based	
on	the	ratio	were	established.	The	details	of	replicate	sorts	can	be	found	in	Supplementary	
Table	1.	
	
Sorted	library	genomic	DNA	preparation,	barcode	amplification	and	sequencing	
For	the	TPMT	experiments,	sorted	cells	were	collected	by	centrifugation	and	the	FACS	
sheath	buffer	was	aspirated.	Cells	were	transferred	into	a	microfuge	tube,	pelleted	and	
stored	at	-20˚C.	Genomic	DNA	was	prepared	using	the	GentraPrep	kit	(Qiagen).	For	each	
bin,	all	the	purified	DNA	was	spread	over	eight	25	uL	PCR	reactions	containing	Kapa	
Robust,	primers	GPS-landing-f	(in	the	genome)	and	BC-GPS-P7-i#-UMI	(3’	of	the	barcode)	
to	tag	the	barcodes	with	a	unique	molecular	index	(UMI)	and	add	a	sample	index.		UMI-
tagging	PCR	were	performed	using	the	following	conditions:	initial	denaturation	95	˚C	2	
minutes,	followed	by	three	cycles	of	(95	˚C	15	seconds,	60	˚C	20	seconds,	72	˚C	3	minutes).	
The	eight	PCR	reactions	were	pooled	and	the	PCR	amplicon	was	purified	using	1x	Ampure	
XP	(Beckman	Coulter).	To	shorten	the	amplicon	and	add	the	p5	and	p7	Illumina	cluster-
generating	sequences,	the	UMI-tagged	barcodes	were	then	amplified	with	primers	BC-
TPMT-P5-v2	and	Illumina	p7.	This	PCR	was	performed	with	Kapa	Robust	and	SYBR	green	II	
on	a	Bio-Rad	mini-opticon	qPCR	machine,	reactions	were	monitored	and	removed	before	
saturation	of	the	SYBR	green	II	signal,	at	around	25	cycles.	The	amplicons	were	pooled	and	
gel	purified.	Barcodes	were	read	twice	by	paired-end	sequencing	primers	TPMT_Read1	and	
TPMT_Read2.	The	UMI	and	index	were	sequenced	by	the	index	read	and	primer	
TPMT_Index	using	a	NextSeq	500	(Illumina).	After	converting	to	from	the	BCL	to	FASTQ	
format	using	Illumina’s	bcl2fastq	version	2.18,	a	custom	script	was	used	to	demultiplex	the	
samples	by	index	and	call	a	consensus	barcode	from	the	read1	and	read2	sequences.	To	
collapse	the	barcode	copies	associated	with	unique	UMIs,	the	UMI	(bases	1-10	of	the	index	
read)	were	pasted	onto	the	consensus	barcode	and	unique	combinations	were	identified	
(sort	|	uniq	-c).	The	barcode	from	each	unique	barcode-UMI	pair	was	used	to	populate	a	
FASTQ	file	that	could	be	used	by	the	Enrich	2	software	package	to	count	variants.		
	
For	the	PTEN	experiments,	sorted	cells	were	replated	onto	10	cm	plates	and	allowed	to	
grow	for	approximately	five	days.	Cells	were	then	collected,	pelleted	by	centrifugation,	and	
stored	at	-20˚C.	Genomic	DNA	was	prepared	using	a	DNEasy	kit,	according	to	the	
manufacturer’s	instructions	(Qiagen)	with	the	addition	of	a	30	minute	incubation	at	37°C	
with	RNAse	in	the	re-suspension	step.		Eight	50	μL	first-round	PCR	reactions	were	each	
prepared	with	a	final	concentration	of	~50	ng/μL	input	genomic	DNA,	1x	Kapa	HiFi	
ReadyMix,	and	0.25	μM	of	the	KAM499/JJS_501a	primers.	The	reaction	conditions	were	95	
°C	for	5	minutes,	98	°C	for	20	seconds,	60	°C	for	15	seconds,	72	°C	for	90	seconds,	repeat	7	
times,	72	°C	for	2	minutes,	4	°C	hold.	Eight	50	μL	reactions	were	combined,	bound	to	
AMPure	XP	(Beckman	Coulter),	cleaned,	and	eluted	with	40	μL	water.	40%	of	the	eluted	
volume	was	mixed	with	2x	Kapa	Robust	ReadyMix;	JJS_seq_F	and	one	of	the	indexed	
reverse	primers,	JJS_seq_R1a	through	JJS_seq_R12a	were	added	at	0.25	μM	each.	Reaction	
conditions	for	the	second	round	PCR	were	95	°C	for	3	minutes,	95	°C	for	15	seconds,	60	°C	
for	15	seconds,	72	°C	for	30	seconds,	repeat	14	times,	72	°C	for	1	minutes,	4	°C	hold.		
Amplicons	were	extracted	after	separation	on	a	1.5%	TBE/agarose	gel	using	a	Quantum	
Prep	Freeze	‘N	Squeeze	DNA	Gel	Extraction	Kit	(Bio-Rad).	Extracted	amplicons	were	
quantified	using	a	KAPA	Library	Quantification	Kit	(Kapa	Biosystems)	and	sequenced	on	a	
NextSeq	500	using	a	NextSeq	500/550	High	Output	v2	75	cycle	kit	(Illumina),	using	
primers	JJS_read_1,	JJS_index_1,	and	JJS_read_2.	Sequencing	reads	were	converted	to	FASTQ	
format	and	de-multiplexed	with	bcl2fastq.	Barcode	paired	sequencing	reads	for	PTEN	
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experiments	1	through	4	were	joined	using	the	fastq-join	tool	within	the	ea-utils	package	
(http://expressionanalysis.github.io/ea-utils/)	using	the	default	parameters,	whereas	only	
one	barcode	read	was	collected	for	PTEN	experiments	5	through	8.	Technical	amplification	
and	sequencing	replicates	were	conducted	for	every	sample,	and	compared	to	assess	
variability	in	quantitation	stemming	from	amplification	and	sequencing.	Experiments	with	
poor	technical	replication	across	multiple	bins	were	reamplified	and	resequenced	in	their	
entirety,	leaving	eight	replicate	experiments	with	technical	replicates	shown	here	
(Supplementary	Fig.	9).	FASTQ	files	from	these	technical	replicate	amplification	and	
sequencing	runs	were	concatenated	for	analysis	with	Enrich2.	
	
Barcode	counting	and	variant	calling	
Enrich2	was	used	to	count	the	barcodes,	associate	each	barcode	with	a	nucleotide	variant,	
and	then	translate	and	count	both	the	unique-nucleotide	and	unique-amino	acid	variants64.	
FASTQ	files	containing	either	UMI-collapsed	barcodes	(TPMT)	or	total	barcodes	(PTEN)	
and	the	barcode-map	for	each	protein	were	used	as	input	for	Enrich2.	Enrich2	
configuration	files	for	each	experiment	are	available	on	the	GitHub	repository	
(http://github.com/FowlerLab/VAMPseq).	Barcodes	assigned	to	variants	containing	
insertions,	deletions	or	multiple	amino	acid	mutations	were	removed	from	the	analysis.	
	
Calculating	VAMP-seq	scores	and	classifications	
RStudio	v1.0.136	was	used	for	all	subsequent	analysis	of	the	Enrich2	output.	The	count	for	
each	variant	in	a	bin	was	divided	by	the	sum	of	counts	recorded	in	that	bin	to	obtain	the	
frequency	of	each	variant	(Fv)	within	that	bin.	This	calculation	was	repeated	for	every	bin	
in	each	replicate	experiment.	The	frequencies	of	a	variant	in	all	four	bins	of	an	experiment	
were	added	together	to	obtain	the	total	frequency	value	(Fv,total)	for	each	variant	for	each	
experiment.	This	total	frequency	value	was	used	for	filtering	low-frequency	variants,	which	
we	reasoned	would	be	subject	to	high	levels	of	counting	noise,	out	of	the	subsequent	
calculations.	We	set	the	Fv,total	filtering	threshold	based	on	the	assumption	that	accurately	
scored	synonymous	variants	should	create	a	clear,	unimodal	distribution	around	WT.	We	
examined	how	different	minimum	Fv,total	filtering	threshold	values	affected	the	spread	and	
central	tendency	of	the	synonymous	distribution	(Supplementary	Fig.	10).	We	empirically	
selected	1	x	10-4	as	the	Fv,total	filtering	threshold	value	as	it	minimized	the	skew	and	
coefficient	of	variation	of	the	synonymous	variant	abundance	score	distribution	while	
retaining	the	majority	of	missense	variants.	
	
Next,	for	each	experiment,	a	weighted	average	was	calculated	for	each	variant	(Wv)	passing	
the	Fv,total	filtering	threshold	value	using	the	following	equation:	
	

𝑊! =
(𝐹!,!"# ! × 0.25)+ 𝐹!,!"# ! × 0.5 +  (𝐹!,!"# !× 0.75)+  (𝐹!,!"# ! × 1)

4 	
	
Thus,	all	weighted	average	values	ranged	from	a	value	of	0.25	to	1.	
	
Finally,	for	each	experiment,	an	abundance	score	for	each	variant	(Sv)	was	obtained	by	
subjecting	the	weighted	average	of	each	variant	to	min-max	normalization,	using	the	
weighted	average	value	of	WT	(Wwt),	which	was	given	a	score	of	1,	and	the	median	
weighted	average	value	for	non-terminal	nonsense	variants	(Wnonsense)	at	positions	51	
through	349	for	PTEN,	or	positions	51	through	219	for	TPMT,	which	was	given	an	
abundance	score	of	0,	using	the	following	equation:	
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𝑆! =  
(𝑊! −𝑊!"!#$!#$)
(𝑊!" −  𝑊!"!#$!#$)

	

	
The	final	abundance	score	for	each	variant	was	calculated	by	taking	the	mean	of	the	min-
max	normalized	abundance	scores	across	the	eight	replicate	experiments	in	which	it	could	
have	been	observed.	Only	variants	which	were	scored	in	two	or	more	replicate	
experiments	were	retained	in	the	analysis.	We	implemented	this	filter	because	many	
sources	of	noise	are	not	captured	in	count-based	estimates	of	variance	and	because	having	
replicate-level	variance	estimates	was	critical	to	our	abundance	classification	scheme.	A	
standard	error	for	each	abundance	score	was	calculated	by	dividing	the	standard	deviation	
of	the	min-max	normalized	values	for	each	variant	by	the	square	root	of	the	number	of	
replicate	experiments	in	which	it	was	observed.	Lastly,	the	lower	bound	of	the	95%	
confidence	interval	was	calculated	by	multiplying	the	standard	error	by	the	97.5	percentile	
value	of	a	normal	distribution	and	subtracting	this	product	from	the	abundance	score.	The	
upper	bound	of	the	95%	confidence	interval	was	calculated	by	instead	adding	the	product	
to	the	abundance	score.	Positional	VAMP-seq	scores	were	calculated	by	taking	the	median	
of	all	single	amino	acid	VAMP-seq	scores	at	each	position.	
	
In	NNK	mutagenesis	schemes	like	the	one	we	employed,	synonymous	variants	can	be	
generated	at	50	of	the	61	amino	acid-coding	codons	that	may	exist	in	the	template	
sequence.	Notably,	the	following	codons	in	the	template	sequence	preclude	generation	of	a	
synonymous	variant	at	that	position:	ATG	(M),	ATT	(I),	TTT	(F),	GAG	(E),	GAT	(D),	AAG	(K),	
AAT	(N),	CAG	(Q),	CAT	(H),	TAT	(Y),	and	TGT	(C).	Thus,	synonymous	variants	were	
theoretically	possible	at	272	and	167	codons	for	the	PTEN	and	TPMT	proteins,	
respectively.	Of	these,	synonymous	variants	were	observed	at	151	PTEN	and	138	TPMT	
codons	in	our	final	data	set.	
	
For	both	TPMT	and	PTEN,	the	distribution	of	wild	type	synonyms	was	used	to	create	
VAMP-seq	classifications	for	every	variant	(see	Supplementary	Fig.	5a	for	scheme).	First,	
we	established	a	synonymous	score	threshold	by	determining	the	abundance	score	that	
separated	the	95%	most	abundant	synonymous	variants	from	the	5%	lowest	abundance	
synonymous	variants	(0.689	for	PTEN,	and	0.723	for	TPMT).	Variants	whose	abundance	
score	and	upper	confidence	interval	were	both	below	this	synonymous	threshold	value	
were	classified	as	“low	abundance”	variants,	whereas	those	with	abundance	scores	below	
this	threshold	but	upper	confidence	interval	over	this	this	were	classified	“possibly	low	
abundance”.	Variants	with	scores	above	this	threshold	but	lower	confidence	intervals	
below	the	threshold	were	considered	“possibly	wt-like	abundance”.	Variants	with	scores	
and	lower	confidence	interval	above	the	threshold	were	classified	as	“WT-like	abundance.”		
	
For	both	TPMT	and	PTEN,	substitution-intolerant	positions	were	determined	based	on	the	
proportion	of	variants	at	the	position	with	scores	below	the	synonymous	threshold,	
determined	as	described	above.	Positions	where	5	or	more	variants	were	scored	and	
greater	than	90%	of	the	scores	were	below	the	synonymous	variant	threshold	value	were	
considered	substitution	intolerant.	Enhanced	abundance	positions	were	determined	based	
on	the	proportion	of	variants	at	the	position	with	scores	above	the	median	of	the	
synonymous	distribution.	Positions	where	5	or	more	variants	were	scored	and	more	than	5	
variants	had	scores	above	the	median	of	the	synonymous	distribution	were	considered	
enhanced-abundance	positions.	
	
Assessment	of	the	PTEN	library	composition	
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To	better	understand	the	sources	bottlenecking	in	the	PTEN	experiments,	the	composition	
of	the	PTEN	plasmid	library	preparation	used	to	generate	recombinant	cells	was	assessed	
by	determining	barcode	frequencies	using	high	throughput	Illumina	sequencing.	Two	
reactions	were	independently	performed	from	the	same	plasmid	preparation	and	served	as	
technical	replicates.	Each	50	μL	first-round	PCR	reaction	was	prepared	with	a	final	
concentration	of	~50	ng/μL	input	plasmid	DNA,	1x	Kapa	HiFi	ReadyMix,	and	0.25	μM	each	
of	the	JJS_seq_F/JJS_501a	primers.	The	reaction	conditions	were	95	°C	for	3	minutes,	98	°C	
for	20	seconds,	60	°C	for	15	seconds,	72	°C	for	15	seconds,	repeat	5	times,	72	°C	for	2	
minutes,	4	°C	hold.	The	reaction	was	bound	to	AMPure	XP	beads	(Beckman	Coulter),	
cleaned,	and	eluted	with	16	μL	water.	15	μL	of	the	eluted	volume	was	mixed	with	2x	Kapa	
Robust	ReadyMix;	JJS_P5_(short)	and	either	JJS_seq_R1a	for	technical	replicate	1	or	
JJS_seq_R2a	for	technical	replicate	2	were	added	at	0.25	μM	each.	Reaction	conditions	for	
the	second	round	PCR	were	95	°C	for	3	minutes,	95	°C	for	15	seconds,	60	°C	for	15	seconds,	
72	°C	for	30	seconds,	repeat	19	times,	72	°C	for	1	minutes,	4	°C	hold.		Amplicons	were	
extracted	after	separation	on	a	1.5%	TBE/agarose	gel	using	a	Quantum	Prep	Freeze	‘N	
Squeeze	DNA	Gel	Extraction	Kit	(Bio-Rad).	Extracted	amplicons	were	quantified	using	a	
KAPA	Library	Quantification	Kit	(Kapa	Biosystems)	and	sequenced	on	a	NextSeq	500	using	
a	NextSeq	500/550	High	Output	v2	75	cycle	kit	(Illumina),	using	primers	JJS_read_1,	
JJS_index_1,	and	JJS_read_2.	Sequencing	reads	were	converted	to	FASTQ	format	and	de-
multiplexed	with	bcl2fastq.	Barcode	paired	sequencing	reads	were	joined	using	the	fastq-
join	tool	within	the	ea-utils	package.	Enrich2	was	used	to	count	the	barcodes	in	the	reads,	
using	a	minimum	quality	filter	of	20.	
	
High	correlation	(Pearson’s	r	=	99)	of	barcode	counts	was	observed	between	technical	
replicate	amplifications	(Supplementary	Fig.	11a).		After	barcode	counts	in	both	
replicates	were	combined,	a	minimum	count	filter	of	200	was	imposed	to	remove	barcodes	
arising	from	sequencing	error	(Supplementary	Fig.	11b).	Each	barcode’s	count	was	
divided	by	the	total	number	of	barcode	reads	passing	this	filter	to	obtain	frequencies	for	
each	barcode.	Using	the	barcode-variant	map	generated	by	PacBio	subassembly,	a	protein	
sequence	was	assigned	to	each	barcode.	Barcodes	missing	from	the	barcode-variant	map	
were	categorized	as	“Not	subassembled”.	The	frequency	of	each	type	of	sequence	was	
determined	(Supplementary	Fig.	11c).	The	composition	of	the	single	amino	acid	variants	
in	the	library	were	next	analyzed	to	determine	sources	of	potential	library	bottlenecking.	
The	nucleotide	frequencies	at	each	mutated	codon	were	determined	(Supplementary	Fig.	
11d),	and	relative	frequencies	of	each	amino	acid	variant	observed	in	the	library	were	
calculated	(Supplementary	Fig.	11e).	Single	amino	acid	substitution	coverage	was	
determined	for	each	position	along	the	protein	(Supplementary	Fig.	11f	and	11g).	Lastly,	
the	distribution	of	single	amino	acid	variants	within	the	library	was	determined	
(Supplementary	Fig.	11h),	and	simulations	of	sample	sizes	required	to	observe	each	
PTEN	single	amino	acid	variant	were	performed	(Supplementary	Fig.	11i).		
	
Variant	annotation	from	online	databases	
Published	western	blotting	results	for	PTEN	and	TPMT	variants	are	listed,	along	with	
references,	in	Supplementary	Table	11	and	Supplementary	Table	12.	We	collected	
structural	feature	information,	including	absolute	solvent	accessibilities,	using	DSSP65,66	
based	on	PDB	structure	1d5r	for	PTEN	and	2H11	for	TPMT.	For	each	amino	acid	in	both	
proteins,	we	divided	the	absolute	solvent	accessibility	derived	from	DSSP	by	the	
empirically	determined	maximum	accessibility	of	that	amino	acid	to	yield	relative	solvent	
accessibility67.	The	COSMIC	(Catalogue	of	Somatic	Mutations	in	Cancer)	release	v81	was	
used	for	the	analyses	we	presented68.	Cancer	genomics	data	including	those	from	The	
Cancer	Genome	Atlas	and	AACR	Project	GENIE43	data	was	accessed	from	cBioPortal69	on	
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2/15/2017	and	2/21/2017,	respectively.	PTEN	variants	observed	in	the	GBM,	LGG-GBM,	
and	Glioma	cancer	categories	were	combined	into	a	single	brain	cancer	category	for	the	
analysis.	ClinVar3	data	was	accessed	on	6/29/2017	and	filtered	to	exclude	everything	
except	germline	missense	and	nonsense	variants.	Average	evolutionary	coupling70	values	
by	position	were	calculated	using	data	from	http://evfold.org/.	Mutational	spectra	from	
the	six	transition	or	transversion	categories	for	breast	adenocarcinoma,	lung	squamous	cell	
carcinoma,	uterine	corpus	endometrial	carcinoma,	glioblastoma	multiforme,	colon	and	
rectal	carcinoma,	ovarian	serous	carcinoma42,	and	melanoma71	were	used	to	create	
expected	PTEN	variant	frequency	distributions.	Minor	allele	frequencies	were	extracted	
from	the	GnomAD	database	(Feb.	2017	release)2.	TPMT	alleles	names	and	RSID	numbers	
were	taken	from	http://www.imh.liu.se/tpmtalleles/tabell-over-tpmt-alleler?l=en.	The	
PTEN	variant	effect	predictions	were	obtained	from	Polyphen-2	
(http://genetics.bwh.harvard.edu/pph2/)72,	Provean	(http://provean.jcvi.org/)73,	SIFT	
(http://sift.jcvi.org/)74,	Snap2	(https://rostlab.org/services/snap2web/)75,	Mutation	
assessor	(http://mutationassessor.org/r3/)76,	and	FATHMM	
(http://fathmm.biocompute.org.uk/)77	by	querying	their	respective	websites.	PTENpred78	
was	downloaded	and	all	predictions	were	run	locally.	The	predictions	for	LRT79,	Mutation	
Taster80,	MetaSVM81,	MetaLR81,	MCap82,	and	CADD83	were	collected	with	dbNSFP84,	which	
was	downloaded	and	run	locally.	
	
PTEN	ClinVar	and	cancer	genomics	analyses	
Nine	PTEN	variants	were	listed	in	ClinVar	as	both	likely	pathogenic	and	pathogenic.	We	
examined	the	evidence	for	these	variants	–	H61R,	Y68H,	L108P,	G127R,	R130L,	R130Q,	
G132V,	R173C,	and	R173H	–	and	following	the	ACMG-AMP	guidelines40,		all	nine	were	
deemed	to	belong	in	the	likely	pathogenic	category.	An	additional	two	variants	–	R15K	and	
P96S	–	had	an	interpretation	of	uncertain	significance	along	with	another	interpretation	of	
likely	pathogenic	or	pathogenic,	and	thus	the	clinical	significance	of	the	variant	was	listed	
as	“Conflicting	interpretations	of	pathogenicity”.	As	recommended	by	the	ACMG/AMP	
guidelines40,	variants	with	conflicting	interpretations	were	considered	variants	of	
unknown	significance.	For	our	statistical	analysis	of	the	enrichments	of	low-abundance	
variants	in	the	pathogenic,	likely	pathogenic,	and	uncertain	significance	ClinVar	categories	
we	used	a	resampling	approach.	We	drew	10,000	random	samples,	with	replacement	
corresponding	to	the	number	of	variants	scored	from	each	category	in	ClinVar	(pathogenic	
=	24;	likely	pathogenic	=	22;	uncertain	significance=	81)	from	the	1,313	PTEN	missense	
variants	(e.g.	single	nucleotide	variants	that	change	an	amino	acid)	with	abundance	scores.	
We	recorded	the	frequency	of	low	abundance	variants	in	each	round	of	resampling.	Then,	
we	computed	the	P-value	for	each	category	by	dividing	the	number	of	times	the	observed	
frequency	of	PTEN	low-abundance	variants	fell	below	the	frequencies	of	low-abundance	
variants	in	the	resampled	sets	by	10,000.	
	
For	our	statistical	analysis	of	enrichments	of	low-abundance,	dominant	negative,	or	P38S	
variants	in	different	cancer	types,	we	first	used	the	rates	of	single	nucleotide	transitions	
and	transversions	observed	in	TCGA42,71	to	create	mutational	probabilities	for	every	
possible	PTEN	missense	or	nonsense	variant.	Based	on	these	probabilities	we	drew	10,000	
random	samples	of	PTEN	variants	of	size	to	equal	the	number	of	PTEN	variants	found	in	
each	cancer	type	(n	=		337,	192,	153,	186,	77,	113,	and	327	for	brain,	breast,	colorectal,	
endometrial,	melanoma,	NSCLC,	and	uterine	cancers,	respectively).	For	each	cancer	type,	
this	created	the	null	distribution	of	PTEN	variant	frequencies	based	on	the	mutation	
spectrum	alone.	Then,	for	each	cancer	type,	we	computed	the	P-value	by	dividing	the	
number	of	times	the	observed	frequency	of	low-abundance,	dominant	negative	or	P38S	
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variants	fell	below	the	frequency	of	the	appropriate	type	of	variants	in	the	resampled	sets	
by	10,000.	
	
Rosetta	ΔΔG	predictions	
Computational	predictions	of	PTEN	variant	losses	in	folding	energy	(e.g.	ΔΔGs)	were	
performed	using	the	2017.08	release	of	Rosetta.	The	PTEN	protein	data	bank	(PDB)	file	
1d5r	was	renumbered	to	accommodate	missing	residues,	and	the	TLA	ligand	was	removed.	
Preminimization	of	the	ensuing	file	was	performed	using	Rosetta	minimize_with_cst,	
followed	by	the	convert_to_cst_file	shell	script.	Fine	grain	estimations	of	folding	energy	
changes	upon	PTEN	mutation	were	created	with	Rosetta	ddg_monomer85	using	the	
talaris2014	scoring	function,	and	the	following	flags:	-ddg:weight_file	soft_rep_design,	-
fa_max_dis	9.0,	ddg::iterations	50,	-ddg::dump_pdbs	true,	-ignore_unrecognized_res,	-
ddg::local_opt_only	false,	-ddg::min_cst	true,	-constraints::cst_file	input.cst,	-
ddg::suppress_checkpointing	true,	-in::file::fullatom,	-ddg::mean	false,	-ddg::min	true,	-
ddg::sc_min_only	false,	-ddg::ramp_repulsive	true,	-ddg::output_silent	true.	
	
Comparison	of	TPMT	red	blood	cell	activity	or	dose	intensity	to	abundance	scores.	
Genotypes,	TPMT	red	blood	cell	activity	that	was	normalized	by	cohort		and	dose	intensity	
data	for	884	ALL	patients	was	provided	from	the	study	described	in	Liu	et	al.51.	The	mean	
TPMT	red	blood	cell	activity	and	dose	intensity	from	individuals	heterozygous	for	each	
unique	TPMT	variant	was	calculated.	These	values	were	directly	compared	to	abundance	
scores	for	that	variant	from	the	VAMP-seq	assay	or	the	wild-type	normalized	GFP:mCherry	
ratio	from	individual	flow	cytometry	experiments	(Figure5;	Supplementary	Fig.	7).		
	
Western	blotting	
HEK	293T	TetBxb1BFP	Clone4	cells18	were	transfected	with	the	pCAG-NLS-HA-Bxb1	
expression	vector	and	either	an	attB-PTEN-HA-IRES-mCherry	plasmid	encoding	a	PTEN	
variant	or	an	attB-mCherry_2A_GFP	plasmid	encoding	a	TPMT	variant.	Two	days	after	
transfection,	cells	were	switched	to	media	containing	2	μg/mL	doxycycline.	For	each	
variant,	approximately	8,000	mTagBFP2	negative,	mCherry	positive	cells	were	sorted	using	
a	FACSAriaIII	sorter	(BD	Biosciences),	and	allowed	to	grow	to	confluence	in	6-well	plates	
with	Dox-containing	media.	Cells	expressing	PTEN	variants	were	then	collected	with	
Trypsin-EDTA,	washed	in	PBS,	and	incubated	with	lysis	buffer	(20	mM	Tris	pH	8.0,	150	mM	
NaCl,	1%	Triton	X-100,	and	Protease	Inhibitor	Cocktail	(Sigma-Aldrich))	for	10	minutes	at	
4	°C.	The	tubes	were	centrifuged	at	21,000	x	g	for	5	minutes,	the	supernatant	was	collected,	
and	protein	concentration	was	determined	by	the	DC	Protein	assay	(Bio-Rad)	against	a	
standard	curve	of	bovine	serum	albumin.	40	μg	of	protein	was	loaded	per	well	of	a	NuPage	
4-12%	Bis-Tris	gel	(Invitrogen)	in	MOPS	buffer,	using	Spectra	Multicolor	Broad	Range	
Protein	Ladder	(ThermoFisher	Scientific)	for	size	comparison.	Proteins	were	transferred	to	
a	PVDF	membrane	using	a	GenieBlotter	(Idea	Scientific).	Western	blotting	was	performed	
using	a	1:2,000	dilution	of	anti-phospho-AKT	(T308;	13038;	Cell	Signaling	Technology)	
followed	by	detection	with	a	1:10,000	dilution	of	anti-rabbit-HRP	(NA934V;	GE	
Healthcare);	a	1:2,000	dilution	of	anti-pan-AKT	(2920;	Cell	Signaling	Technology)	followed	
by	detection	with	a	1:10,000	dilution	of	anti-mouse-HRP	(NA931V;	GE	Healthcare);	a	
1:4,000	dilution	of	anti-GFP	antibody	(11814460001;Roche),	followed	by	detection	with	a	
1:10,000	dilution	of	anti-mouse-HRP;	1:5,000	dilution	of	anti-HA-HRP	(3F10;	Roche);	or	a	
1:5,000	dilution	of	anti-beta-actin-HRP	(ab8224;	Abcam),	using	the	SuperSignal™	West	
Dura	extended	duration	substrate	(ThermoFisher	Scientific).		
	
TPMT	expressing	cells	were	removed	from	the	plate	with	cold	PBS,	pelleted	and	
resuspended	in	lysis	buffer	(50	mM	Tris	pH	8.0,	150	mM	NaCl,	1%	NP-40,	and	Protease	
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Inhibitor	Cocktail	(Roche)).	Protein	concentration	was	determined	by	Bradford	Assay	(Bio-
Rad).	45,	15	and	5	µg	of	lysate	was	loaded	per	well	of	a	NuPage	4-12%	Bis-Tris	gel	
(Invitrogen)	in	MOPS	buffer,	using	SeeBlue	Plus2	Protein	Ladder	(ThermoFisher	Scientific)	
for	size	comparison.	Proteins	were	transferred	to	a	PVDF	membrane	using	a	GenieBlotter	
(Idea	Scientific).		Western	blotting	was	performed	using	a	1:3,000	dilution	of	anti-GFP	
antibody	(11814460001;	Roche)	followed	by	detection	with	a	1:10,000	dilution	of	anti-
mouse-HRP	(NA934V;	GE	Healthcare)	or	a	1:5,000	dilution	of	anti-beta-actin-HRP	(ab8224;	
Abcam),	using	the	SuperSignal™	West	Dura	extended	duration	substrate	(ThermoFisher	
Scientific).		
	
Data	and	code	availability	
The	data	presented	in	the	manuscript	are	available	as	Supplementary	Tables.	Code	used	for	
the	analyses	performed	in	this	work	is	included	as	Supplementary	File	1,	and	also	available	
at	http://github.com/FowlerLab/VAMPseq.	Code	used	for	subassembly	by	PacBio	is	
available	at	http://github.com/shendurelab/AssemblyByPacBio.	The	Illumina	and	PacBio	
raw	sequencing	files	and	barcode-variant	maps	can	be	accessed	at	the	NCBI	Gene	
Expression	Omnibus	(GEO)	repository	under	accession	number	GSE108727	(released	upon	
publication).	
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