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Abstract
Gut microbiota are shaped by a combination of ecological and evolutionary forces. While the
ecological dynamics have been extensively studied, much less is known about how species
of gut bacteria evolve over time. Here we introduce a model-based framework for quantifying
evolutionary dynamics within and across hosts using a panel of metagenomic samples. We use
this approach to study evolution in ∼30 prevalent species in the human gut. Although the patterns
of between-host diversity are consistent with quasi-sexual evolution and purifying selection on long
timescales, we identify new genealogical signatures that challenge standard population genetic
models of these processes. Within hosts, we find that genetic differences that accumulate over ∼ 6
month timescales are only rarely attributable to replacement by distantly related strains. Instead,
the resident strains more commonly acquire a smaller number of putative evolutionary changes, in
which nucleotide variants or gene gains or losses rapidly sweep to high frequency. By comparing
these mutations with the typical between-host differences, we find evidence that some sweeps
are seeded by recombination, in addition to new mutations. However, comparisons of adult twins
suggest that replacement eventually overwhelms evolution over multi-decade timescales, hinting
at fundamental limits to the extent of local adaptation. Together, our results suggest that gut
bacteria can evolve on human-relevant timescales, and they highlight the connections between
these short-term evolutionary dynamics and longer-term evolution across hosts.
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Introduction
The gut microbiome is a complex ecosystem comprised of a diverse array of microbial organisms.
The abundances of different species and strains can vary dramatically based on diet [1], host-
species [2], and the identities of other co-colonizing taxa [3]. These rapid shifts in community
composition suggest that individual gut microbes may be adapted to specific environmental
conditions, with strong selection pressures between competing species or strains. Yet while these
ecological responses have been extensively studied, much less is known about the evolutionary
forces that operate within populations of gut bacteria, both within individual hosts, and across
the larger host-associated population. This makes it difficult to predict how rapidly strains of gut
microbes will evolve new ecological preferences when faced with environmental challenges, like
drugs or diet, and how the genetic composition of the community will change as a result.

The answers to these questions depend on two different types of information. At a mechanistic
level, one must understand the functional traits that are under selection in the gut, and how
they may be modified genetically. Recent work has started to address this question, leveraging
techniques from comparative genomics [4–6], evolution in model organisms [7–9], and high-
throughput genetic screens [10, 11]. Yet in addition to the targets of selection, evolution also
depends on population genetic processes that describe how mutations spread through a population
of gut bacteria, both within individual hosts, and across the larger population. These dynamical
processes can strongly influence which mutations are likely fix within a population, and the
levels of genetic diversity that such populations can maintain. Understanding these processes is
the goal of our present work.

Previous studies of pathogens [12], laboratory evolution experiments [13], and some environ-
mental communities [14–17] have shown that microbial evolutionary dynamics are often domi-
nated by rapid adaptation, with new variants accumulating within months or years [7, 14, 18–25].
However, it is not clear how this existing picture of microbial evolution extends to a more complex
and established ecosystem like the healthy gut microbiome. On the one hand, hominid gut
bacteria have had many generations to adapt to their host environment [26], and may not be
subject to the continually changing immune pressures faced by many pathogens. The large
number of potential competitors in the gut ecosystem may also provide fewer opportunities for a
strain to adapt to new conditions before an existing strain expands to fill the niche [27,28] or a
new strain invades from outside the host. On the other hand, it is also possible that small-scale
environmental fluctuations, either driven directly by the host or through interactions with other
resident strains, might increase the opportunities for local adaptation [29]. If immigration is
restricted, the large census population size of gut bacteria could allow residents to produce and
fix adaptive variants rapidly before a new strain is able to invade. In this case, one could observe
rapid adaptation on short timescales, which is eventually arrested on longer timescales as strains
are exposed to the full range of host environments. Additional opportunities for adaptation can
occur if the range of host environments also shifts over time (e.g., due to urbanization, antibiotic
usage, etc.). Determining which of these scenarios apply to gut communities is critical for efforts
to study and manipulate the microbiome.

While traditional amplicon sequencing provides limited resolution to detect within-species
evolution [30], whole-genome shotgun metagenomic sequencing is starting to provide the raw
polymorphism data necessary to address these questions [31]. In particular, several reference-
based approaches have been developed to detect genetic variants within individual species in
larger metagenomic samples [31–36]. While these approaches enable strain-level comparisons
between samples, they have also documented substantial within-species variation in individual
metagenomes [31, 35, 37]. This makes it difficult to assign an evolutionary interpretation to the
genetic differences between samples, since they arise from unobserved mixtures of different
bacterial lineages.

Several approaches have been developed to further resolve these mixed populations into
individual haplotypes or “strains”. These range from simple consensus approximations [35,37,38],
to sophisticated clustering algorithms [39,40] and the incorporation of physical linkage information
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[41]. However, while these methods are useful for tracking well-defined strains across samples,
it is not known how their assumptions and failure modes might bias inferences of evolutionary
dynamics, particularly among closely related strains. As a result, the evolutionary processes that
operate within species of gut bacteria remain poorly characterized.

In this study, we take a different approach to the strain detection problem that is specifically
designed for inferring evolutionary dynamics in a large panel of metagenomes. Building on
earlier work by [4, 35], we show that many prevalent species have a subset of hosts for which
a portion of the dominant lineage is much easier to identify. By focusing only on this subset
of “quasi-phaseable” samples, we develop methods for resolving small differences between the
dominant lineages with a high degree of confidence.

Weuse this approach to analyze a large panel of publicly available human stool samples [42–46],
which allows us to quantify evolutionary dynamics within and across hosts in ∼30 prevalent
bacterial species. We find that the long-term evolutionary dynamics across hosts are broadly
consistent with models of quasi-sexual evolution and purifying selection, with relatively weak
geographic structure in many prevalent species. However, our quantitative approach also reveals
interesting departures from standard population genetic models of these processes, which suggests
that new models are required to fully understand the evolutionary dynamics that take place across
the larger population.

We also use our approach to detect examples of within-host adaptation, in which nucleotide
variants or gene gains or losses rapidly sweep to high frequency within ∼6 month intervals. We
find within-host sweeps may be seeded by recombination, in addition to de novo mutations,
as might be expected for complex ecosystems with large census population sizes and frequent
horizontal exchange. However, by analyzing differences between adult twins, we find that
short-term evolution can eventually be overwhelmed by the invasion of distantly related strains
on multi-decade timescales. This suggests that resident strains are rarely able to become so
well-adapted to a particular host that they prevent future replacements. Together, these results
show that the gut microbiome is a promising system for studying the dynamics of microbial
evolution in a complex community setting. The framework we introduce may also be useful for
characterizing evolution of microbial communities in other environments.

Methods
Resolving within-host lineage structure in a panel of metagenomic samples
To investigate evolutionary dynamics within species in the gut microbiome, we analyzed shotgun
metagenomic data from a panel of stool samples from 693 healthy individuals sequenced in
previous work (Table S1). This panel includes 250 North American subjects sequenced by the
Human Microbiome Project [42,44], a subset of which were sampled at 2 or 3 timepoints roughly
6-12 months apart. To probe within-host dynamics on longer timescales, we also included data
from a cohort of 125 pairs of adult twins from the TwinsUK registry [45], and 4 pairs of younger
twins from Ref. [46]. Previous work has demonstrated that twins are often colonized by the
nearly identical strains in childhood [46], so that differences between twins may serve as a proxy
for the temporal changes that accumulate over the decades since childhood. Finally, to further
control for geographic structure, we also included samples from 185 Chinese subjects sequenced
at a single timepoint [43].

We used a standard reference-based approach to measure single nucleotide variant (SNV)
frequencies and gene copy number across a panel of prevalent species for each metagenomic
sample (see SI Section S1 Text for details on the bioinformatic pipeline, including mapping
parameters and other filters). Descriptive summaries of this genetic variation have been reported
elsewhere [31, 33–35, 37, 44]. Here, we revisit these patterns to investigate how they emerge
from the lineage structure set by the host colonization process. Using these results, we then show
how certain aspects of this lineage structure can be inferred from the statistics of within-host
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Fig 1. Genetic diversity within hosts. Bacteroides vulgatus is shown as an example in panels a-e. (a-d) The distribution of major allele
frequencies at synonymous sites in the core genome for four different samples, with the median read depth D listed above each panel. To
emphasize the distributional patterns, the vertical axis is scaled by an arbitrary normalization constant in each panel, and it is truncated for
visibility. The white region denotes the intermediate frequency range used for the polymorphism calculations below. (e) The average
fraction of synonymous sites in the core genome with major allele frequencies ≤ 80% (white region in a-d), for all samples with D ≥ 20.
Vertical lines denote 95% posterior confidence intervals based on the observed number of counts (Text S2 Text). For comparison, the
corresponding values for the samples in panels (a-d) are indicated by the numbers (1-4). (f) The distribution of quasi-phaseable (QP)
samples among the 35 most prevalent species, arranged by descending prevalence; the distribution across hosts is shown in Fig. S4. For
comparison, panels (c) and (d) are classified as quasi-phaseable, while panels (a) and (b) are not.

polymorphism, which enable measurements of evolutionary dynamics across samples.
As an illustrative example, we first focus on the patterns of polymorphism in Bacteroides

vulgatus, which is among the most abundant and prevalent species in the human gut. These
properties ensure that the B. vulgatus genome has high-coverage in many samples, which enables
more precise estimates of the allele frequencies in each sample (Fig. 1A-D). The overall levels
of within-host diversity for this species are summarized in Fig. 1E, based on the fraction of
synonymous sites in core genes with intermediate allele frequencies (white region in Figs. 1A-
D). This measure of within-host genetic variation varies widely across the samples: some
metagenomes have only a few variants along the B. vulgatus genome, while others have mutations
at more than 1% of all synonymous sites (comparable to the differences between samples,
Fig. S2).

We first asked whether these patterns are consistent with a model in which each host is
colonized by a single B. vulgatus clone, so that the intermediate frequency variants represent
mutations that have arisen since colonization. Assuming this model and using conservatively
high estimates for per site mutation rates (µ ∼ 10−9 [47]), generation times (∼ 10 per day [48]),
and time since colonization (< 100 years), we estimate a neutral polymorphism rate < 10−3 at
each synonymous site (Text S2.1), which is at odds with the higher levels of diversity in many
samples (Fig. 1E). Instead, we conclude that the samples with higher synonymous diversity must
have been colonized by multiple divergent bacterial lineages that accumulated mutations for
many generations before coming together in the same gut community.

As a plausible alternative, we next asked whether the data are consistent with a large number
of colonizing lineages (nc � 1) drawn at random from the broader population. However,
this process is expected to produce fairly consistent polymorphism rates and allele frequency
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distributions in different samples, which is at odds with the variability we observe even among the
high-diversity samples (e.g., Figs. 1A,B). Instead, we hypothesize that many of the high-diversity
hosts have been colonized by just a few diverged lineages [i.e., (nc − 1) ∼ O(1)]. Consistent with
this hypothesis, the distribution of allele frequencies in each host is often strongly peaked around
a few characteristic frequencies (Fig. 1A-D), suggesting a mixture of several distinct lineages.
Similar findings have recently been reported in a number of other host-associated microbes,
including several species of gut bacteria [4, 35,49,50]. Figures 1A-C show that hosts can vary
both in the apparent number of colonizing lineages, and the frequencies at which they are mixed
together. As a result, we cannot exclude the possibility that even the low diversity samples (e.g.
Fig. 1D) are colonized by multiple lineages that happen to fall below the detection threshold set
by the depth of sequencing. We will refer to samples with a small number of diverged lineages
as an oligo-colonization model, in order to contrast with the single-colonization (nc = 1) and
multiple-colonization (nc � 1) alternatives above.

Quasi-phaseable (QP) samples

Compared to the single- and multiple-colonization models, the oligo-colonization model makes
it more difficult to identify evolutionary changes between lineages. In this scenario, individual
hosts are not clonal, but the within-host allele frequencies derive from idiosyncratic colonization
processes, rather than a large random sample from the population. To disentangle genetic changes
between lineages from these host-specific factors, we must estimate phased haplotypes (or
“strains” ) from the distribution of allele frequencies within individual hosts. This is a complicated
inverse problem, and we will not attempt to solve the general case here. Instead, we adopt an
approach similar to Ref. [35] and others, and leverage the fact that the lineage structure in certain
hosts is sufficiently simple that we can assign alleles to the dominant lineage with a high degree
of confidence.

Our approach is based on the simple observation that two high-frequency variants must
co-occur in an appreciable fraction of cells (Text S3.1). This “pigeonhole principle” suggests
that we can estimate the genotype of one of the lineages in a mixed sample by taking the major
alleles present above some threshold frequency f ∗ � 50%, and treating the remaining sites as
missing data. Although the potential errors increase with the length of the inferred haplotype, we
will not actually require genome-length haplotypes for our analysis here. Instead, we leverage the
fact that significant evolutionary information is already encoded in the marginal distributions
of one- and two-site haplotypes, so that these “quasi-phased” lineages will be sufficient for our
present purposes.

The major challenge with this approach is that we do not observe the true allele frequency
directly, but must instead estimate it from a noisy sample of sequencing reads. This can lead
to phasing errors when the true major allele is sampled at low frequency by chance and is
assigned to the opposite lineage (Fig. S1). The probability of such “polarization” errors can
vary dramatically depending on the sequencing coverage and the true frequency of the major
allele (Text S3.2). Previous approaches based on consensus alleles [35, 37] can therefore induce
an unknown number of errors that make it difficult to confidently detect a small number of
evolutionary changes between samples.

In Text S3.3, we show that by explicitly modeling the sampling error process, the expected
probability of a polarization error in our cohort can be bounded to be sufficiently low if we
take f ∗ = 80%, and if we restrict our attention to samples with sufficiently high coverage
and sufficiently low rates of intermediate-frequency polymorphism. We will refer to these as
quasi-phaseable (QP) samples. In the B. vulgatus example above, Figs. 1C,D are classified as
quasi-phaseable, while Figs. 1A,B are not. Note that quasi-phaseability is separately defined for
each species in a metagenomic sample, rather than for the sample as a whole. For simplicity,
we will still refer to these species-sample combinations as QP samples, with the implicit
understanding that they refer to a particular focal species.

In Fig. 1F, we plot the distribution of QP samples across the most prevalent gut bacterial
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species in our panel. The fraction of QP samples varies between species, ranging from ∼ 50%
in the case of P. copri to nearly 100% for B. fragilis [4], and it accounts for much of the
variation in the average polymorphism rate (Fig. S3). Most individuals carry a mixture of QP and
non-QP species (Fig. S4), which suggests that quasi-phaseability arises independently for each
species in a sample, rather than for the sample as a whole. Thus, although many species-sample
combinations are non-QP, in a cohort of a few hundred samples it is not uncommon to find
≥ 50 QP samples in many prevalent species, which yields ∼ 3000 quasi-phased haplotypes
when aggregated across the different species. Consistent with previous studies of the stability of
personal microbiomes [31, 35, 51], a majority of the longitudinally sampled species maintain
their QP classification at both timepoints, though this pattern is not universal (Fig. S5). We
will revisit the peculiar properties of this within-host lineage distribution in the Discussion. For
the remainder of the analysis, we will take the distribution in Fig. 1F as given and focus on
leveraging the QP samples to quantify the evolutionary changes that accumulate between lineages
in different samples.

We investigate two types of evolutionary changes between lineages in different QP samples.
The first class consists of single nucleotide differences, which are defined as SNVs that segregate
at frequencies ≤ 1 − f ∗ in one sample and ≥ f ∗ in another, with f ∗ ≈ 80% as above (Fig. S1).
These thresholds are chosen to ensure low genome-wide false positive rate given the typical
coverage and allele frequency distributions among the QP samples in our panel (Text S3.4).
The second class consists of differences in gene presence or absence, in which the relative
copy number of a gene, c, is below the threshold of detection (c < 0.05) in one sample, and
is consistent with a single-copy gene (0.6 < c < 1.2, see Fig. S6) in the other sample. These
thresholds are chosen to ensure a low genome-wide false positive rate across the QP samples,
given the typical variation in sequencing coverage along the genome (Text S3.5), and to minimize
mapping artifacts (Text S1.3).

Note that these SNV and gene changes represent only a subset of the potential differences
between lineages, since they neglect other evolutionary changes (e.g., indels, genome rearrange-
ments, or changes in high copy number genes) that are more difficult to quantify in a metagenomic
sample, as well as more subtle changes in allele frequency and gene copy number that do not
reach our stringent detection thresholds. We will revisit these and other limitations in more detail
in the Discussion.

Results
Long-term evolution across hosts
By focusing on the QP samples for each species, we can measure genetic differences between
lineages in different hosts, as well as within hosts over short time periods. Descriptive summaries
of this variation have been reported elsewhere [31,33–35,37,44]. Here, we aim to leverage these
patterns (and the increased resolution of the QP samples) to quantify the evolutionary dynamics
that operate within species of gut bacteria, both within and across hosts.

To interpret within-host changes in an evolutionary context, it will be useful to first understand
the structure of genetic variation between lineages in different hosts. This variation reflects the
long-term population genetic forces that operate within each species, presumably integrating
over many rounds of colonization, growth, and dispersal. To investigate these forces, we first
analyzed the average nucleotide divergence between strains of a given species in different pairs
of QP hosts (Fig. 2A). In the case of twins, we included only a single host from each pair, to
better approximate a random sample from the population.

Figure 2B shows the distribution of pairwise divergence, averaged across the core genome,
for ∼ 40 of the most prevalent bacterial species in our cohort. In a panmictic, neutrally evolving
population, we would expect these distances to be clustered around their average value, d ≈ 2µTc ,
where Tc is the coalescent timescale for the across-host population [52]. By contrast, Fig. 2
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Fig 2. Between-host divergence across prevalent species of gut bacteria. (a) Schematic illustration. For a given pair of hosts (h1, h2),
core-genome nucleotide divergence (d) is computed for each species (s1, s2, etc.) that is quasi-phaseable in both hosts. (b) Distribution of
d across all pairs of unrelated hosts for a panel of prevalent species. Species are sorted according to their phylogenetic distances [33], with
the number of QP hosts indicated in parentheses; species were only included if they had at least 33 QP hosts (> 500 QP pairs). Symbols
denote the median (dash), 1-percentile (small circle), and 0.1-percentile (large circle) of each distribution, and are connected by a red line
for visualization; for distributions with < 103 data points, the 0.1-percentile is estimated by the second-lowest value. The shaded region
denotes our ad-hoc definition of “closely related” divergence, d ≤ 2 × 10−4. (c) The distribution of the number of species with closely
related strains in distinct hosts present in the same or different continents. The null distribution is obtained by randomly permuting hosts
within each species. Though the observed values are significantly different than the null (P < 10−4), the large contribution from different
continents shows that closely related strains are not solely a product of geographic separation. (d) The distribution of the number of
species with closely related strains for each pair of hosts. The null distribution is obtained by randomly permuting hosts independently
within each species (n = 103 permutations, P ≈ 0.9). This shows that there is no tendency for the same pairs of hosts to have more closely
related strains than expected under the null distribution above.
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shows striking differences in the degree of relatedness for strains in different hosts. Even at this
coarse, core-genome-wide level, the genetic distances vary over several orders of magnitude.

Some species show multiple peaks of divergence for high values of d, consistent with the
presence of subspecies [36], ecotypes [53, 54], or other strong forms of population structure.
These coarse groupings have been observed previously and are not our primary focus here. Rather,
we seek to understand the population genetic forces that operate at finer levels of taxonomic
resolution.

From this perspective, the more surprising parts of Fig. 2 are the thousands of pairs of lineages
with extremely low between-host divergence (e.g. d . 0.01%), more than an order of magnitude
below the median values in most species. Similar observations have recently been reported by
Ref. [35], and are often interpreted as strain sharing across hosts. However, the evolutionary
interpretation of these closely strains remains unclear.

Closely related strains reflect population genetic processes, rather than cryptic host relat-
edness

The simplest explanation for a long tail of closely related strains is cryptic relatedness [55],
arising from a breakdown of random sampling. For microbes, this can occur when two cells are
sampled from the same clonal expansion, e.g., when strains are transferred between mothers and
infants [33, 56], between cohabitating individuals [46], or within a hospital outbreak [57]. While
these transmission events have been observed in other studies, they are unlikely to account for the
patterns here. All of the lineages in Fig. 2 are sampled from individuals in different households,
and more than a third of the closely related pairs derive from individuals on different continents
(Fig. 2B).

Of course, there could still be some other geographic variable, beyond household or continent
of origin, that could explain an elevated probability of transmission between two individuals.
Fortunately, our metagenomic approach allows us to rule out these additional sources of cryptic
host relatedness by leveraging multiple species comparisons for the same pair of hosts. If
there was a hidden geographic variable, then we would expect that individuals with closely
related strains in one species would be much more likely to share closely related strains in other
species as well. However, we observe only a small fraction of hosts that share multiple closely
related strains (Fig. 2C), consistent with a null model in which these strains are randomly and
independently distributed across hosts. This suggests that host-wide sampling biases are not the
primary driver of the closely related strains in Fig. 2. Though the rates of nucleotide divergence
are low, the vast majority of these strains are still genetically distinguishable from each other.
The number of SNV differences typically exceeds our estimated false positive rate (Fig. S7A,
Text S3.4), and these single nucleotide variants are typically accompanied by & 10 differences in
gene content between the two strains (Fig. S7B). Furthermore, closely related strains frequently
differed in their collections of private marker SNVs (Fig. S8), which are often used to track strain
transmission events [33, 46]. Together, these lines of evidence suggest that closely related strains
are often genetically distinct, and do not arise from a simple clonal expansion. Instead, the data
suggest that there are additional population genetic timescales beyond Tc that are relevant for
microbial evolution.

This hypothesis is bolstered by the large number of species, particularly in the Bacteroides
genus, with anomalously low divergence rates between some pairs of hosts. However, we note
that this pattern is not universal: some genera, like Alistipes or Eubacterium, show more uniform
rates of divergence between hosts. Apart from these phylogenetic correlations, we cannot yet
explain why some species have low divergence host pairs and others do not. Natural candidates
like sample size, abundance, vertical transmissibility [33], or sporulation score [58] struggle to
explain the differences between Bacteroides and Alistipes.
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Fig 3. Signatures of selective constraint within species as a function of core-genome divergence. Ratio of divergence at
nondegenerate nonsynonymous sites (dN ) and fourfold degenerate synonymous sites (dS) as a function of dS (SI Section S4 Text) for all
species x host1 x host2 combinations in Fig. 2 (grey circles). Crosses (x) denote species-wide estimates obtained from the ratio of the
median dN and dS within each species. The red line denotes the theoretical prediction from the purifying selection null model in SI
Section S4 Text. (inset) Ratio between the cumulative private dN and dS values for all QP host pairs with core-genome-wide synonymous
divergence less than dS . The narrow shaded region denotes 95% confidence intervals estimated by Poisson resampling (Text S4 Text),
which shows that dN/dS . 1 even for low dS .
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Closely related strains have distinct signatures of natural selection

We next examined how natural selection influences the genetic diversity observed between hosts.
Previous work has suggested that genetic diversity in many species of gut bacteria is strongly
constrained by purifying selection, which purges deleterious mutations that accumulate between
hosts [31]. However, the temporal dynamics of this process remain poorly understood. We
do not know whether purifying selection acts quickly enough to prevent deleterious mutations
from spreading to other hosts, or if deleterious mutations typically spread across multiple hosts
before they are purged. In addition, it is plausible that the dominant mode of natural selection
could be different for the closely related strains above (e.g. if they reflect recent ecological
diversification [15]).

To address these questions, we analyzed the relative contribution of synonymous and
nonsynonymous mutations that comprise the overall divergence rates in Fig. 2A. We focused on
the ratio between the per-site divergence at nonsynonymous sites (dN ) and the corresponding
value at synonymous sites (dS). Under the assumption that synonymous mutations are effectively
neutral, the ratio dN/dS measures the average action of natural selection on mutations at
nonsynonymous sites.

In Fig. 3, we plot these dN/dS estimates across every pair of QP hosts for each of the prevalent
species in Fig. 2A. The values of dN/dS are plotted as a function of dS , which serves as a proxy
for the average divergence time across the genome. We observe a consistent negative relationship
between these two quantities across the prevalent species in Fig. 2.

For large divergence times (dS ∼ 1%), we observe only a small fraction of nonsynonymous
mutations (dN/dS ∼ 0.1), indicating widespread purifying selection on amino-acid replacements
[31]. Yet amongmore closely related strains, we observe amuch higher fraction of nonsynonymous
changes, with dN/dS approaching unity when dS ∼ 0.01%. (We observe a similar trend if we
restrict our attention to singleton SNVs, Fig. S9). Moreover, this negative relationship between
dN/dS and dS is much more pronounced than the between-species variation in the typical values
of dN/dS (black crosses in Fig. 3). While between-species variation may be driven by mutational
biases, the strong within-species signal indicates that there are consistent differences in the action
of natural selection as a function of time.

In principle, the dN/dS increases in the recent past could be driven by interesting biological
processes, like enhanced adaptation or ecological diversification on short timescales, or a recent
global shift in selection pressures caused by host-specific factors (e.g., the introduction of
agriculture). However, the data in Fig. 3 appear to be well explained by an even simpler null
model of purifying selection, where deleterious mutations are purged over a timescale inversely
proportional to their cost (SI Section S4 Text). This dynamical model can explain the varying
signatures of natural selection without requiring that the selective pressures themselves vary over
time. We find reasonable quantitative agreement for a simple distribution of fitness effects, in
which 10% of nonsynonymous sites are neutral, and the remaining 90% have fitness costs on the
order of s/µ ∼ 105. Though the true model is likely more complicated, we argue that this simple
null model should be excluded before more elaborate explanations are considered.

For example, unambiguous proof of recent adaptation could be observed if dN/dS consistently
exceeded one among the most closely related strains, since this can only occur by chance under
purifying selection. While a few of the individual comparisons in Fig. 3A have dN/dS > 1,
the cumulative version in Fig. 3B shows that dN/dS does not significantly exceed one, even for
the lowest values of dS . This suggests that, if positive selection is present, it is not sufficiently
widespread to overpower the signal of purifying selection in these global dN/dS measurements.
However, there is also substantial variation around the average trend in Fig. 3, which could hide
important biological variation among species (or among different genomic regions in the same
species). Resolving the signatures of natural selection at these finer scales remains an important
avenue for future work.
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Quasi-sexual evolution on intermediate timescales

In principle, the large range of genome-wide divergence in Figs. 2 and 3 could arise in a model
with strong population structure, in which all but the most closely related strains are genetically
isolated from each other [59]. Such isolation can be driven by geography as well as ecological
diversification [15]. Here, we leverage our quasi-phasing approach to show that genetic isolation
cannot account for the patterns in Figs. 2 and 3. Instead, we find that the core genomes of many
prevalent gut bacterial species evolve in a quasi-sexual manner, with frequent genetic exchange
among individual strains.

Recombination alters the genealogical relationships between strains in different portions of the
genome [52]. We therefore sought evidence for recombination by searching for inconsistencies
between the genealogies encoded in individual SNVs, and those encoded in the genome-wide
divergences in Fig. 2. To minimize the inherent uncertainties involved in phylogenetic inference,
we developed a new method for quantifying the phylogenetic inconsistency of a given SNV
directly from the pairwise divergence distribution in Fig. 2B (see Fig. S10, Text S5.1). This
method also provides an estimate of the maximum age of each SNV, assuming purely clonal
evolution. By combining these estimates, we can quantify the extent of phylogenetic inconsistency
of SNVs in each species as a function of time (Fig. 4A).

An illustrative example is provided by Bacteroides vulgatus, one of the most abundant and
prevalent species in our cohort. At the highest divergence values, we observe little phylogenetic
inconsistency for this species (blue line in Fig. 4A), consistent with the strong population structure
suggested by the multi-modal divergence distribution in Fig. 2B. For intermediate values of
divergence, in contrast, we find that a large majority of all SNVs are inconsistent with the
genome-wide divergence estimates. Similarly high values of phylogenetic inconsistency are
observed in most of the other species as well (light red lines in Fig. 4A).

While these signals are suggestive of recombination, phylogenetic inconsistencies can also
arise from purely clonal mechanisms (e.g. recurrent mutation), or from statistical uncertainties in
the genome-wide tree. We therefore sought additional evidence of recombination by examining
how phylogenetic inconsistency varies for pairs of SNVs in different locations in the genome. We
quantified phylogenetic inconsistency between pairs of SNVs using a standard measure of linkage
disequilibrium (LD), σ2

d
= E[( fAB − fA fB)2]/E[ fA(1 − fA) fB(1 − fB)] [60], with an unbiased

estimator to control for varying sample size (SI Section S6 Text). The overall magnitude of σ2
d
is

often uninformative, since it depends on demographic factors, the extent of recurrent mutation,
etc. However, relative differences in σ2

d
between different pairs of SNVs reflect differences

in the effective recombination rate. If σ2
d
consistently decreases for SNVs that are separated

by greater genomic distances, then we can conclude that recombination, rather than recurrent
mutation, is responsible for the phylogenetic inconsistency that we observe [61].

With traditional metagenomic approaches, it is difficult to measure σ2
d
unless the SNVs

co-occur on the same sequencing read. By focusing on QP samples, we can now estimate σ2
d

between SNVs that are separated by greater distances along the reference genome. However,
since the synteny of individual lineages may differ substantially from the reference genome, we
only assigned coordinate distances (`) to pairs of SNVs in the same gene, which are more likely
(but not guaranteed) to be nearby in the genomes in other samples; all other pairs of SNVs are
grouped together in a single category (“core-genome-wide”). We then estimated σ2

d
as a function

of ` for each of these distance categories (SI Section S6 Text), and analyzed the shape of this
function.

As an example, Fig. 4B illustrates the estimated values of σ2(`) for synonymous SNVs in the
core genome of B. vulgatus. Similar curves are shown for several other species in Fig. S12. As
anticipated by our analysis in Fig. 4A, it is crucial to account for the presence of strong population
structure. The LD curve among all samples decays only slightly with distance, as expected from
a mixture of genetically isolated sub-populations. However, if we restrict our attention to the
lineages in the largest sub-population, we observe a pronounced decay in σ2

d
(`). To account for

these confounding effects, we manually annotated top level clades for each species using the
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Fig 4. Recombination between strains across hosts. (a) Fraction of phylogenetically inconsistent SNVs as a function of
core-genome-wide divergence d for each of the species in Fig. 2 (see Text S5.1). Phylogenetic inconsistency is assessed for the subset of
fourfold degenerate synonymous sites in the core genome with ≥ 2 minor alleles. Bacteroides vulgatus is highlighted in blue, while the
remaining species are shown in light red. (b) Linkage disequilibrium (σ2

d
) as a function of distance (`) between pairs of fourfold

degenerate synonymous sites in the same core gene in B. vulgatus (SI Section S6 Text). Individual data points are shown for distances
< 100bp, while the solid line shows the average in sliding windows of 0.2 log units. The grey line indicates the values obtained without
controlling for population structure, while the blue line is restricted to QP hosts in the largest top-level clade (Table S2, Text S5.2). The
solid black line denotes the neutral prediction from SI Section S6 Text; the two free parameters in this model are σ2

d
and ` scaling factors,

which are shifted to enhance visibility. For comparison, the core-genome-wide estimate for SNVs in different genes is depicted by the
dashed line and circle. (c) Summary of linkage disequilibrium for QP hosts in the largest top-level clade for all species with ≥ 10 QP
hosts, sorted phylogenetically as in Fig. 2B. For each species, the three dashes denote the value of σ2

d
(`) for intragenic distances of ` = 9,

99, and 2001 bp, respectively, while the core-genome-wide values are depicted by circles. Points belonging to the same species are
connected by vertical lines for visualization.
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genome-wide divergence distribution (Text S5.2), using standard criteria for identifying ecotype
clusters [62].

In Fig. 4C, we plot summarized versions of the σ2(`) curves across a panel of ∼ 40 prevalent
species. In almost all cases, we find that core-genome-wide LD is significantly lower than for
pairs of SNVs in the same core gene, suggesting that much of the phylogenetic inconsistency in
Fig. 2 is caused by recombination. Qualitatively similar results are obtained if we repeat our
analysis using isolate genomes from some of the more well-characterized species (Fig. S13, SI
Section S7 Text). In principle, signatures of recombination between genes could be driven by
the exchange of intact operons or other large clusters of genes (e.g. on an extra-chromosomal
plasmid). However, Figs. 4 and S13 also show a significant decay in LD within individual genes,
suggesting a role for homologous recombination within genes as well.

The magnitude of the decay of LD within core genes is somewhat less than has been observed
in other bacterial species [16], and only rarely decays to genome-wide levels by the end of a
typical gene. Moreover, by visualizing the data on a logarithmic scale, we see that the shape of
σ2
d
(`) is inconsistent with the predictions of the neutral model (Fig. 4A), decaying much more

slowly with ` than the ∼ 1/` dependence expected at large distances [60]. Thus, while we can
obtain rough estimates of r/µ by fitting the data to a neutral model (which generally support
0.1 . r/µ . 10, see Fig. S14), these estimates should be regarded with caution because they vary
depending on the length scale on which they are measured (SI Section S6 Text). This suggests
that new theoretical models will be required to fully understand the patterns of recombination
that we observe.

Short-term succession within hosts
So far, we have focused on evolutionary changes that accumulate over many host colonization
cycles. In principle, evolutionary changes can also accumulate within hosts over time. Longitu-
dinal studies have shown that strains and metagenomes sampled from the same host are more
similar to each other on average than to samples from different hosts [31, 33, 35, 44, 63, 64]. This
suggests that resident populations of bacteria persist within hosts for at least a year (∼ 300− 3000
generations), which is potentially enough time for evolutionary adaptation to occur [7]. However,
the limited resolution of previous polymorphism- [31] or consensus-based comparisons [35, 44]
has made it difficult to quantify the individual changes that accumulate within hosts, and to
interpret these changes in an evolutionary context.

Within-host dynamics reflect a mixture of replacement and modification

To address this issue, we focused on the species in longitudinally sampled HMP subjects that
were quasi-phaseable at consecutive timepoints. This yields a total of 801 resident populations
(host/species timepoint pairs) across 45 of the most prevalent species (Fig. S5). Our calculations
show that the false positives caused by sampling noise should be sufficiently rare that we can
resolve a single nucleotide difference between two of these timepoints in a genome-wide scan
(Text S3.4). In contrast to existing reference-based approaches, we have also imposed additional
filters to minimize false positives from mapping artifacts (Text S1 Text).

We first examined the SNV differences that accumulated within each resident population
(i.e., a particular host / species pair) over time. We considered SNVs in both core and accessory
genes on the reference genome, since the latter are plausibly enriched for host-specific targets
of selection [65]. Consistent with previous work [31, 44], the average number of within-host
differences is ∼ 100-fold smaller than the average number of differences between unrelated
hosts (Fig. S15). However, the within-host changes are distributed across the different resident
populations in a highly skewed manner (Figs. 5 and S16). Visualized on a logarithmic scale, the
data reveal a striking multi-modal pattern, suggesting that the within-host differences arise from
two separate processes.
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Fig 5. Within-host changes across prevalent species of gut bacteria. (a) Within-host nucleotide differences over ∼ 6 months. The
blue line shows the distribution of the number of SNV differences between consecutive QP timepoints for different combinations of
species, host, and non-overlapping time interval (if more than two samples are available), for the 45 prevalent species in Fig. S16. For
comparison, the red line shows a matched distribution of the number of SNV differences between each initial timepoint and a randomly
selected HMP host. Finally, the purple line shows the distribution of the number of SNV differences between QP lineages in pairs of adult
twins. The shaded regions indicate replacement events (light red), modification events (light blue), and no detected changes (grey); these
ad-hoc thresholds were chosen to be conservative in calling modifications. (b) Within-host gene content differences (gains+losses). The
blue lines show the distribution of the number of gene content differences within hosts for the samples in (a), with the putative
modifications highlighted in light blue, the putative replacements highlighted in light red, and the samples with no SNV changes
highlighted in grey. For comparison, the corresponding between-host and twin distributions are shown as in (a). (c) The total number of
nucleotide differences at non-degenerate nonsynonymous sites (1D), fourfold degenerate synonymous sites (4D), and other sites (2D and
3D) aggregated across the modification events in (a). Sites are stratified based on their prevalence across hosts (SI Section S8 Text). For
comparison, the grey bars indicate the expected distribution for random de novo mutations (Text S8.1). (d) The total number of gene loss
and gain events among the gene content differences in (b), stratified by the prevalence of the gene across hosts. The de novo expectation
for gene losses is computed as in (c); by definition, there are no de novo gene gains.
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Most of the resident populations did not have any detectable SNV differences over the ∼ 6
month sampling window (i.e., the median is zero). Yet in a small minority of cases (∼ 3%),
the resident populations accumulated several thousand mutations, comparable to the typical
number of differences between hosts (Fig. 5A). This is consistent with previous notions of
strain replacement [35], in which the dominant resident strain is succeeded by an effectively
unrelated strain from the larger metapopulation. This operational definition includes both the
invasion of a new strain (e.g. from other hosts or body sites), or a sudden rise in frequency of a
previously-colonized strain that had been segregating at low frequency.

In addition to rare replacement events, a larger fraction of resident populations in Fig. 5A
(∼ 10% of the total) have a moderate number of SNV differences (on the order of 20 or fewer).
We will refer to these as modification events, in order to distinguish them from the replacement
events above. In contrast to replacements, modifications preserve most of the genetic information
in a lineage when a new genetic change is added. This is true at the level of nucleotide divergence,
but also for gene content (Fig. 5B) and the sharing of private marker SNVs (Fig. S8B). We
therefore hypothesize that the modification events in Fig. 5 reflect heritable evolutionary changes
that have risen to high frequency within the host.

Given the large census population sizes in the gut [66], we conclude that these rapid allele
frequency changes must be driven by natural selection, rather than genetic drift. However, this
does not imply that the observed SNVs are the direct target of selection: given the limitations of
our reference-based approach, and our aggressive filtering scheme, the observed mutations may
simply be passengers hitchhiking alongside an unseen selected locus. In either case, given the
size of the frequency change (∆ f ∼ 0.5) and the length of the sampling period (∆t ∼ 6 months),
we infer that the selected haplotype must have had an average fitness benefit of at least S ∼ 1%
per day.

To further probe the dynamics of within-host evolution, we pooled the 248 SNV differences
observed across the 75 modification events in our cohort, and we stratified them according to two
additional criteria. We first partitioned the SNVs according to how prevalent the sweeping allele
was among the other hosts in our cohort (Figs. 5C and S17A). By comparing this distribution
against the null expectation for randomly selected sites, we find that there are significantly
more intermediate- and high-prevalence mutations than expected for random de novo mutations
(P < 10−4, Text S8.1).

One potential explanation for this signal could be parallel evolution [67], e.g. if the same
strongly beneficial mutations independently arose and fixed in different hosts. However, we
can rule out this recurrent sweep hypothesis by further partitioning the SNVs into synonymous
and nonsynonymous mutations (Fig. 5C). The relative fractions of the two types are distributed
across the different prevalence classes in a highly nonuniform manner (P < 10−4, Text S8.2).
Among rare alleles (< 1% prevalence), we observe an excess of nonsynonymous mutations
[dN/dS ≈ 1.3 (0.8, 2.4)], consistent with positive selection and hitchhiking. By contrast,
nonsynonymous mutations are depleted and synonymous mutations enriched for alleles with
intermediate prevalence (0.1 < f < 0.9), precisely where the recurrent sweep hypothesis requires
the strongest selection pressures. This low value is surprising even for pure passenger mutations,
since purifying selection should be rendered inefficient over these short timescales [68], similar
to what we observed in Fig. 3.

Together, these observations suggest an alternate hypothesis, in which some of the within-host
sweeps are driven by much older DNA fragments that were acquired through recombination.
This could explain the intermediate prevalence of some sweeping alleles, since standing variants
can arrive through recombination. And it can simultaneously explain their low dN/dS values,
since there is more time for deleterious mutations to be purged (and for synonymous mutations
to accumulate) before the fragment is transferred.

Consistent with this hypothesis, we also found evidence for a small number of gene content
differences between the two timepoints in many of the non-replacement samples (Fig. 5B). Gene
content differences were twice as likely to occur in populations where we observed one or more
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SNV differences (P ≈ 0.025, Fisher’s exact test), though the overall rates are still modest under
our current filtering criteria (∼ 10%). We observed a roughly equal contribution from gains and
losses (Fig. 5D). The gene losses could be consistent with purely clonal processes (e.g. a large
deletion mutation) as well as recombination (e.g. if the incorporated homologous fragment lacks
the gene in question). Gene gains, on the other hand, can only be acquired through recombination.
The genes that are gained and lost tend to be drawn from the accessory portion of the genome
(Figs. 5D and S17C), consistent with the expectation that these genes are more likely to be gained
or lost over time.

Replacement dominates over longer within-host timescales

The successional dynamics in the HMP cohort raise a number of key questions about how these
dynamics play out over longer timescales. For example, does the probability of a replacement
accumulate uniformly with time, so that we would expect most strains to be replaced after
∼ 20 years? Or are replacements concentrated in a few replacement-prone individuals, with a
negligible rate among the larger population? Alternatively, do resident populations eventually
acquire enough evolutionary changes that they become so well-adapted the host that replacements
become less likely to succeed?

To fully address these questions, we would require a large longitudinal cohort with
metagenomes collected over a period of decades. However, we can approximate this de-
sign in a crude way by comparing metagenomes collected from a cohort of ∼ 200 adult twins
from the TwinsUK project [45]. Previous work has shown that twins are often colonized by
nearly identical strains in early childhood [46] (Fig. S18). By comparing quasi-phasable samples
in adult twins, we can gain insight into the changes that have occurred in the ∼ 20 − 40 years that
the hosts have spent in separate households.

The number of SNV and gene changes between the resident populations in each twin pair are
illustrated in Fig. 5A,B. We observe striking departures from the within-host distribution: while
∼ 3% of the resident populations experienced a replacement event in the ∼ 6 month HMP study,
more than 90% of the resident populations in twins have more than ∼ 1000 SNV differences
between them. Compared to the modification events we observed in the HMP study, these highly
diverged twin strains have much lower rates of private marker SNV sharing (Fig. S8), along with
a higher proportion of SNVs with intermediate prevalence (Fig. S19). Together, these lines of
evidence suggest that the highly diverged strains in twins are true replacement events, rather than
an accumulation of many evolutionary changes. The 16 resident populations with fewer than
1000 SNV differences were scattered across 13 twin pairs. All had at least one SNV or gene
difference between the twins (median 29 SNVs and 1.5 genes), which is significantly higher than
the within-host distribution from the HMP cohort. However, a larger sample size is required to
determine what fraction of these SNVs accumulated since colonization.

Together, these data suggest that a vast majority of the resident populations have experienced
a replacement over the ∼ 20 − 40 years that their hosts have spent in different households. This
observation is consistent with a straightforward extrapolation of the short-term estimates from
the HMP cohort, which predicts that replacement should dominate over modification in a typical
population after ∼ 20 years. In other words, replacement is not confined to a few special hosts,
but will eventually occur for most (Western) individuals given enough time. This suggests that
the potential benefits of local adaptation do not compound indefinitely.

The high prevalence of twin replacements also provides insight into the two replacement
mechanisms described in the previous section. If replacements are primarily drawn from a set
of strains that colonized both twins during childhood, then the replacement probability should
saturate at 1 − 1/nc , where nc is the number of colonizing strains. The observed replacement
probability of 90% would then imply that the number of low frequency colonizing strains for
each species must be as large as nc ∼ 10, or that most of the replacements are caused by the
invasion of new strains that arrive after initial colonization. It will be interesting to test these
alternative mechanisms with deeper sequencing and longer time courses.
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Discussion
Evolutionary processes can play an important role in many microbial communities. Yet despite
increasing amounts of sequence data, our understanding of these processes is often limited by our
ability to resolve evolutionary changes in populations from complex communities. In this work,
we quantify the evolutionary forces that operate within bacteria in the human gut microbiome
by characterizing in detail the lineage structure of ∼ 30 species in metagenomic samples from
individual hosts.

Building on previous work by Ref. [35] and others, we found that the within-host lineage
structure of many prevalent species is consistent with colonization by a few distinct strains from
the larger population, with the identities and frequencies of these strains varying from person to
person (Fig. 1). The distribution of strain frequencies in this “oligo-colonization model” is itself
quite interesting: in the absence of fine tuning, it is not clear what mechanisms would allow for a
second or third strain to reach intermediate frequency, while preventing a large number of other
lineages from entering and growing to detectable levels at the same time. A better understanding
of the colonization process, and how it might vary among the species in Fig. 1F, is an important
avenue for future work.

Given the wide variation among species and hosts, we chose to focus on a subset of
samples with particularly simple strain mixtures for a given species, in which we can resolve
evolutionary changes in the dominant lineage with a high degree of confidence. Our quasi-phasing
approach can be viewed as a refinement of the consensus approximation employed in earlier
studies [4,35,37,38], but with more quantitative estimates of the errors associated with detecting
genetic differences between lineages in different samples.

By analyzing genetic differences between lineages in separate hosts, we found that long-term
evolutionary dynamics in many gut bacteria are consistent with quasi-sexual evolution and
purifying selection, with relatively weak geographic structure. Earlier work had documented
extensive horizontal transfer between distantly related species in the gut [69, 70], but our
ability to estimate rates of recombination within species was previously limited by the small
number of sequenced isolates for many species of gut bacteria [71]. The high rates of
homologous recombination we observed with our quasi-phasing approach are qualitatively
consistent with previous observations in other bacterial species [16, 71–75]. However, our
quantitative characterization of linkage disequilibrium revealed interesting departures from
the standard neutral prediction that cannot be captured by simply lowering the recombination
rate. Understanding the origin of this discrepancy is an interesting topic for future work. It
is also interesting to ask how these long-term rates of recombination could emerge from the
oligo-colonization model above, since it would seem to limit opportunities for genetic exchange
among strains of the same species.

In a complex community like the gut, a key advantage of our metagenomic approach is that
it can jointly measure genetic differences in multiple species for the same pair of hosts. By
leveraging this feature, we found that previous observations of highly similar strains in different
hosts [35,44] are not driven by cryptic host relatedness. Instead, the presence of these closely
related strains, and the genetic differences that accumulate between them, may be driven by more
general population genetic processes in bacteria that operate on timescales much shorter than
the typical coalescent time across hosts. It is difficult to produce such closely related strains
in traditional population genetic models of loosely linked loci [76] (or “bags of genes” [77]),
though recent hybrid models of vertical and horizontal inheritance [75, 78] or fine-scale ecotype
structure [79] could potentially provide an explanation for this effect. Further characterization
of these short-term evolutionary processes will be vital for current efforts to quantify strain
sharing across hosts [33, 46, 56], which often require implicit assumptions about how genetic
changes accumulate on short timescales. Our results suggest that these short-term dynamics of
across-host evolution may not be easily extrapolated by comparing average pairs of strains.

The other main advantage of our quasi-phasing approach is its ability to resolve a small number
of evolutionary changes that could accumulate within hosts over short timescales. Previous
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work has shown that on average, longitudinally sampled metagenomes from the same host are
more similar to each other than metagenomes from different hosts [31, 33, 63, 64], and that some
within-host changes can be ascribed to replacement by distantly related strains [35,44]. However,
the limited resolution of previous polymorphism- [31] or consensus-based comparisons [35, 44]
had made it difficult to determine whether resident strains also evolve over time.

Our quasi-phasing approach overcomes this limitation, enabling finely resolved estimates of
temporal change within individual species in individual hosts. This increased resolution revealed
an additional category of within-host variation, which we have termed modification, in which
resident strains acquire modest numbers of SNV and gene changes over time. This broad range
of outcomes shows why it is essential to understand the distribution of temporal variation across
hosts: even though modification events were ∼ 3x more common than replacements in our
cohort, their contributions to the total genetic differences are quickly diluted as soon as a single
replacement is included (Fig. S15). As a result, we expect that previous metagenome-wide [31]
or species-averaged [44] estimates of longitudinal variation largely reflect the rates and genetic
differences associated with replacement events, rather than evolutionary changes.

Though we have interpreted modifications as evolutionary events (i.e., mutations to an existing
genome), it is possible that they could also reflect replacement by extremely closely related
strains, as in Fig. 2. The present data seem to argue against this scenario: modifications are not
only associated with different patterns of SNV sharing (Fig. S8), but we also observe significant
asymmetries in the prevalence distributions in Fig. 5C,D that depend on the temporal ordering of
the two samples (see Text S8.3). This temporal directionality is a natural product of evolution, but
it is less likely to emerge from competition between a fixed set of strains. Unambiguous proof of
evolution could also be observed in a longer time course, since subsequent evolutionary changes
should eventually accumulate in the background of earlier substitutions. Further investigation of
these nested substitutions remains an interesting topic for future work.

The signatures of the sweeping SNVs, along with the presence of gene gain events, suggest
that some of the within-host sweeps we observed were seeded by recombination, rather than de
novo mutation. In particular, many of the alleles that swept within hosts were also present in
many other hosts, yet their dN/dS values indicated strong purifying selection, consistent with an
ancient polymorphism (Fig. 3). Sweeps of private SNVs, by contrast, were associated with a
much higher fraction of nonsynonymous mutations, consistent with adaptive de novo evolution.
Interestingly, we also observe a slight excess of private nonsynonymous mutations between
closely related strains in different hosts (Fig. S9). This suggests that some of the differences
observed between hosts may reflect a record of recent within-host adaptation.

The fact that some sweeps are seeded by recombination stands in contrast to the de novo
mutations observed in microbial evolution experiments [13] and some within-host pathogens
[21, 22]. Yet in hindsight, it is easy to see why recombination could be a more efficient route to
adaptation in a complex ecosystem like the gut microbiome, given the large strain diversity [42],
the high rates of DNA exchange [69, 70], and the potentially larger selective advantage of
importing an existing functional unit that has already been optimized by natural selection [11].
Consistent with this hypothesis, adaptive introgression events have also been observed on slightly
longer timescales in bacterial biofilms from an acid mine drainage system [14], and they are an
important force in the evolution of virulence and antibiotic resistance in clinical settings [80].

While the data suggest that some within-host sweeps are initiated by a recombination event,
it is less clear whether recombination is relevant during the sweep itself. Given the short
timescales involved, and our estimates of the recombination rate (Fig. S14), we would expect
many of the observed sweeps to proceed in an essentially clonal fashion, since recombination
would have little time to break up a megabase-sized genome. If this were the case, it would
provide many opportunities for substantially deleterious mutations (with fitness costs of order
Sd ∼ 1% per day) to hitchhike to high frequencies within hosts [68], thereby limiting the ability
of bacteria to optimize to their local environment. The typical fitness costs inferred from
Fig. 2D lie far below this threshold, and would therefore be difficult to purge within individual
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hosts. In this scenario, the low values of dN/dS observed between hosts (as well as the putative
introgression events) would crucially rely on the competition process across hosts [81]. Although
the baseline recombination rates suggest clonal sweeps, there are also other vectors of exchange
(e.g. transposons, prophage, etc.) with much higher rates of recombination. Such mechanisms
could allow within-host sweeps to behave in a quasi-sexual fashion, preserving genetic diversity
elsewhere in the genome. These “local” sweeps are predicted in certain theoretical models [82,83]
and have been observed in a few other bacterial systems [15, 17, 84]. If local sweeps were
also a common mode of adaptation in the gut microbiome, they would allow bacteria to purge
deleterious mutations more efficiently than in the clonal scenario above.

Although evolution was more common than replacement on ∼ 6 month timescales, our
analysis of adult twins suggest that the rare replacement events eventually dominate on multi-
decade timescales. This suggests that resident strains are limited in their ability to evolve to
become hyper-adapted to their host, since most strains were eventually susceptible to replacement.
Though our results indicate that the long-term probability of replacement is largely uniform
across hosts, it remains an open question whether these events occur more or less uniformly
in time, or whether they occur in punctuated bursts during major ecosystem perturbations (e.g.
antibiotic treatment). This would be an interesting question to address with denser and longer
time-series data.

While we have identified many interesting signatures of within-host adaptation, there are
several important limitations to our analysis. One class concerns the events that we cannot see
with our approach (i.e., false negatives). For example, our reference-based method only tracks
SNVs and gene copy numbers in the genomes of previously sequenced isolates of a given species.
Within this subset, we have also imposed a number of stringent bioinformatic filters, further
limiting the sequence space that we consider. Thus, it is likely that we are missing many of
the true targets of selection, which might be expected to be concentrated in the host-specific
portion of the microbiome, multi-copy gene families, or in genes that are shared across multiple
prevalent species. A further limitation is that we can only analyze the evolutionary dynamics of
QP samples (though the consistency of our results for species with different QP fractions suggests
that this might not be a major issue). Finally, a potentially more important false negative is that
our current method can only identify complete or nearly complete sweeps within individual hosts.
While we observed many within-host changes that matched this criterion, we may be missing
many other examples of within-host adaptation where variants do not completely fix. Given the
large population sizes involved, such sweeps can naturally arise from phenotypically identical
mutations at multiple genetic loci [67,85], or through additional ecotype partitioning between
the lineages of a given species [23,25]. Both mechanisms have been observed in experimental
populations of E. coli adapting to a model mouse microbiome [7].

In addition to these false negatives, the other limitation of our approach concerns potential
false positives inherent in any metagenomic analysis. With short-read data, it is difficult to truly
know whether a paticular DNA fragment is linked to a particular species, or whether it resides in
the genome of another species (perhaps an uncultured one), that is fluctuating in abundance. False
SNV and gene changes can therefore occur due to these read donating effects. The temporally
asymmetric prevalence distributions in Fig. 5C,D suggest that our filters were successful in
eliminating many of these events (Text S8.3). However, isolate or long-read sequences are
required to unambiguously prove that these variants are linked to the population of interest.

Fortunately, two concurrent studies have also documented short-term evolution of gut bacteria
within healthy human hosts using an isolate-based approach [86,87]. Each study focused on a
single bacterial species, E. coli in Ref. [86] and B. fragilis in Ref. [87]. Although E. coli was not
sufficiently abundant in our cohort to be included in our within-host analysis, the observations
in B. fragilis are largely consistent with our findings that within-host evolution can be rapid,
and that it can be mediated by recombination in addition to new mutations. Crucially, since
these observations were obtained using an isolate-based approach, they are not subject to the
same methodological limitations described above, and they therefore serve as an independent
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verification of our results. However, since our statistical approach provides simultaneous
observations across more than ∼ 30 prevalent species, our results show that these general patterns
of within-host evolution are shared across many species of gut bacteria, and they demonstrate a
general approach for investigating these forces in widely available metagenomic data. Future
efforts to combine metagenomic- and isolate-based approaches, e.g. by incorporating long-range
linkage information [41,88, 89], will be crucial for building a more detailed understanding of
these evolutionary processes.
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Data and code availability
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the sequencing pipeline, downstream analyses, and figure generation, will available at GitHub
(https://github.com/benjaminhgood/microbiome_evolution) upon publication.
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Fig S1. Schematic depiction of phasing and substitution errors. (a) An example of a haplotype phasing error, where an allele with
true within-host frequency f [drawn from a hypothetical genome-wide prior distribution, p0( f ), blue] is observed with a sample frequency
f̂ with the opposite polarization. (b) An example of a falsely detected nucleotide substitution between two samples, where an allele with
true frequency f1 = f2 = f [drawn from a hypothetical genome-wide null distribution, p0( f ), blue] is observed with a sample frequency
f̂1 < 20% in one sample and f̂2 > 80% in another. Allele frequency pairs that fall in the pink region are counted as nucleotide differences
between the two samples, while pairs in the grey shaded region are counted as evidence for no nucleotide difference; all other values are
treated as missing data.
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Fig S2. Average genetic distance between B. vulgatus metagenomes. (a) The fraction of fourfold degenerate synonymous sites in the
core genome that have major allele frequencies ≥ 80% and differ in a randomly selected sample (see Text S3.3 for a formal definition). (b)
The corresponding rate of intermediate-frequency polymorphism for each sample, reproduced from Fig. 1B. In both panels, samples are
plotted in the same order as in Fig. 1B.
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Fig S3. Correlation between within-host diversity and the fraction of non-QP samples per species. Circles denote the average rate
of within-host polymorphism (as defined in Fig. 1E) for each species as a function of the fraction of non-QP samples in that species.
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Fig S5. Distribution of quasi-phaseable (QP) samples in longitudinal samples and adult twin pairs. Bars show the number of
sample pairs for each species that are quasi-phaseable for both samples (QP→QP), non-quasi-phaseable for both samples (non→non),
mixed samples (QP→non or non→QP), and pairs where the species did not have sufficient coverage in one of the two timepoints
(dropout). The left panel shows data from longitudinally sampled individuals in the HMP cohort [42, 44], while the right panel compares
contemporary samples from pairs of adult twins [45]. Species are ordered in decreasing order of prevalence in the HMP cohort. Species
are only included if they have at least 10 QP samples and at least 3 QP timepoint pairs.
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Fig S7. SNV and gene content differences between closely related strains. (a) Cumulative distribution of the total number of core
genome SNV differences between closely related strains in Fig. 2. (b) Cumulative distribution of the number of gene content differences
for the closely related strains in panel a (red line). For comparison, the corresponding distribution for all pairs of strains in Fig. 2 is shown
in black, while the grey line denotes a ‘clock-like’ null distribution for the closely related strains, which assumes that genes and SNVs each
accumulate at constant rates.
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Fig S8. Private marker SNV sharing within and between hosts. Given an ordered pair of QP strains, we define private marker SNVs
to be core genome SNVs that (i) are phaseable in both strains, (ii) have the derived allele in strain 1, and (iii) do not have the derived allele
in any other host outside the pair. The marker sharing fraction p is then defined as the fraction of private marker SNVs that also have the
derived allele in strain 2. (a) Private marker SNV sharing between unrelated hosts. Solid lines show the distribution of marker sharing
fraction p between all pairs of strains in Fig. 2 (black) and between the subset of closely related strains (red). Separate sharing fractions
are calculated for both orderings of a given strain pair, and we only include pairs with at least 10 marker SNVs. (b) Distribution of marker
SNV sharing for replacement and modification events in longitudinally sampled HMP hosts (blue lines), using the replacement and
modification thresholds in Fig. 5A. For comparison, the distribution of marker SNV sharing between strains in pairs of adult twins is
shown in purple. For twins, we use modified definitions of replacement (>103 SNV differences) and modification (<103 SNV
differences). As above, sharing fractions are only computed for samples with at least 10 marker SNVs.

33/65

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/210955doi: bioRxiv preprint 

https://doi.org/10.1101/210955


preprint

10-6 10-5 10-4 10-3 10-2

Closest synonymous divergence, d ∗

10-1

100

101

P
ri

v
a
te

 n
o
n
sy

n
o
n
y
m

o
u
s 

ra
ti

o
, 
d
N
/d

S

10-5 10-4 10-3 10-2

Closest synonymous 
 divergence, d ∗S

10-1

100

C
u
m

u
la

ti
v
e
 p

ri
v
a
te

 d
N
/
d
S

Fig S9. Signatures of selective constraint within private SNVs. An analogous version of Fig. 3 computed for private SNVs. For each
QP species x host combination, dN/dS is computed for the subset of alleles that are not found in any other hosts. These private dN/dS
ratios are plotted as a function of d∗S , an estimate of the minimum synonymous divergence from other QP lineages of that species. (inset)
Ratio between the cumulative dN and dS values for all lineages with d∗S less than the indicated value. The narrow shaded region denotes
95% confidence intervals estimated by Poisson resampling. The resampling procedure uses an analogous version of the thinning scheme
employed in Fig. 3 to ensure that the x and y axes are statistically independent (see SI Section S4 Text).

34/65

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/210955doi: bioRxiv preprint 

https://doi.org/10.1101/210955


preprint

m mM M

Inconsistent: dB < dw

dB  

dw

dw

Consistent: dB > dw 

m m M M

m	   M	  

m	  

M	  

Fig S10. Schematic illustration of phylogenetic inconsistency between individual SNVs and core-genome-wide divergence. Two
examples are shown, illustrating phylogenetically consistent and inconsistent SNVs, respectively, in a sample of four lineages. The
lineages at the leaves of each tree are labeled according to whether they have the major (M) or minor (m) allele. Thunderbolts depict the
most parsimonious introduction of the derived allele on the genealogy. Different colors indicate the core-genome-wide divergence
between lineages with different combinations of alleles, as described in Text S5.1. Highlighted in purple is dB, which is the minimum
divergence between two lineages bearing different alleles. Highlighted in red and green are dM

W and dm
W , which are the maximum

divergence between individuals bearing the same allele (major and minor, respectively). In practice, we do not know which allele is
ancestral and which is derived, so we define dW = min(dm

W , d
M
W ). If dW � dB, we say that the SNV is phylogenetically inconsistent.
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Fig S11. Top-level clade structure among lineages in different QP hosts. Core-genome-wide Fst between manually assigned
top-level clades in each species (Table S2, Text S5.2). Species are only included if there are at least two clades with more than two
individuals in each of them.
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A B C

Fig S12. Decay of linkage disequilibrium in three example species. Analogous versions of Fig. 4B for Bacteroides fragilis,
Parabacteroides distasonis and Alistipes shahii.
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A

B

C D E

Fig S13. Recapitulating patterns of between-host evolution from sequenced isolates. (a) An analogous version of Fig. 2B
constructed from the genomes of sequenced isolates in three representative species, as described in SI Section S7 Text. (b) An analogous
version of Fig. 3 constructed from the pairs of isolate genomes in panel a. (c-e) Analogous versions of Fig. 4B for the three species in (a)
with the largest number of isolates.
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Fig S16. Comparable rates of within-host SNV and gene changes across prevalent species. Summary of within-host SNV changes
(top) and gene changes (bottom) across all species with at least 10 QP samples and at least 3 pairs of longitudinal QP samples. Each row
in each bar represents a different longitudinal pair from the HMP cohort, and rows are colored according to the total number SNV changes
(top) and gene changes (bottom), with grey indicating no detected changes. A star indicates that the total number of non-replacement
changes is ≥ 10 times the total estimated error rate across samples from that species (see Text S3.4 and S3.5), where replacements are
defined as in Fig. 5.
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A B C

Fig S17. Prevalence distributions of within-host SNV and gene content differences without binning. (a) The empirical survival
function for the raw prevalence values Fig. 5C. For comparison, the grey line shows the time-reversal symmetric version described in Text
S8.3. (b) Empirical prevalence distributions for synonymous (1D) and nonsynonymous (4D) differences in Fig. 5C. (c) Empirical
prevalence distributions for gene gains and losses in Fig. 5D.
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Fig S18. SNV and gene content differences between younger twins. Analogous versions of Fig. 5A,B for four twin pairs from
Ref. [46], which range from ∼ 5 to ∼ 20 years of age. The results are consistent with the original findings in Ref. [46].
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Fig S19. Prevalence of SNV and gene content differences between adult twins. Analogous versions of Fig. 5C,D computed using the
SNV and gene content differences observed between the adult twins (purple lines in Fig. 5A,B). In contrast to the within-host changes in
Fig. 5C,D, the prevalence distributions and the relative fraction of nonsynonymous differences between twins are more consistent with
replacement by a distantly related strain.
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Table S1. Metagenomic samples used in study. We analyzed a total of 1013 samples from 693 individuals. This included samples from
250 individuals from the Human Microbiome Project (HMP) [42, 44], 250 individuals from Ref. [45], 185 individuals from Ref. [43], and
8 individuals from Ref. [46]. Listed are the subject ids, sample ids, run accessions, country of the study, continent of the study, visit
number, and study (HMP, Xie et al, Korpela et al, or Qin et al, 2012).

Table S2. Top-level clade definitions. This table contains the manually-defined top-level clades described in Text S5.2. Rows list the
various combinations of species and hosts plotted in Fig. 2, along with its corresponding numeric clade label.
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S1 Text

Metagenomic pipeline
S1.1 Overview
We analyzed whole-genome sequence data from a panel of stool samples from 693 healthy human
subjects (Table S1). As described in the main text, this panel includes 250 North American
subjects sequenced by the Human Microbiome Project [42, 44], a subset of which were sampled
at 2 or 3 timepoints roughly 6-12 months apart. We also included a cohort of 125 pairs of adult
twins from the TwinsUK registry [45], 4 pairs of younger twins from Ref. [46], and 185 Chinese
subjects sequenced in Ref. [43].

Previous work has shown that there is little genomic variability between technical and sample
replicates in HMP data [33,44], so we merged fastq files for technical and sample replicates from
the same time point to increase coverage to resolve within-host allele frequencies. We analyzed
the gene and SNV content of these samples using the MIDAS software package [v1.2.2 [33]] as a
foundation, with multiple additional layers of filtering implemented in custom postprocessing
scripts, described below. This postprocessing pipeline was designed to be as inclusive as possible
in the early steps, when hard thresholds are required, so that we can adaptively estimate thresholds
from the data to use in later postprocessing steps. Later rounds of postprocessing impose a set
of progressively more conservative filters, which are designed to rule out mapping artifacts
and other metagenomic ambiguities, at the expense of reduced genome and species coverage.
We ultimately apply this pipeline to estimate SNV and gene content changes in species with
sequencing coverage of 20x or more, so our filters are designed with these numbers in mind.

S1.2 Estimating the panel of reference species for each host
The first step in the pipeline is to determine which species to include in the personalized reference
panel for each host. The goal is to include as many truly present species as possible (to prevent
their reads from being donated to other reference genomes) while leaving out species that are truly
absent (to prevent their reference genomes from stealing reads from other species). To determine
this set, MIDAS first quantifies the relative abundances of species in different metagenomic
samples by mapping sequencing reads to a database of universal single-copy “marker” gene
sequences for each of the species in the default MIDAS database (version 1.2, downloaded on
November 21, 2016 [33]). We include a species in the reference panel for a given sample if it has
an average marker gene coverage ≥ 3 in that sample. This definition leaves out many species that
are present at lower abundances. We note, however, that their coverage would be too low for them
to be included in our downstream analyses, and any donated reads would add only fractional
contributions to the polymorphism frequencies for species in our target coverage range.

For longitudinally sampled individuals, we defined a single reference panel for each host by
including all species with marker coverage ≥ 3 in at least one timepoint. This choice is designed
to reduce potential mapping artifacts by ensuring that all longitudinal comparisons are performed
with the same mapping parameters.

S1.3 Quantifying gene content
We next quantified the gene content for each species present in each sample. In downstream
analyses, gene content information was used to estimate the prevalence of genes in the broader
population, and to quantify gene content differences between QP samples (SI Section S3.5).

MIDAS estimates gene copy number for each species by mapping reads to a database of
gene families (or pangenome) constructed from genes in sequenced isolates [33]. This approach
has been adopted in a number of related methods [90, 91], along with similar methods based
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on co-occurence or binning [43, 92, 93]. Briefly, pre-computed pangenomes are supplied for
each species in the default MIDAS database, and a host-specific database is constructed by
concatenating pangenomes from each species in the personalized reference panel. Sequencing
reads are aligned to this host-specific database using Bowtie2 [94] with default MIDAS settings
(local alignment, MAPID ≥94.0%, READQ ≥20, and ALN_COV ≥0.75), and the average
coverage is estimated by dividing the total number of mapped reads in a gene family by the total
target size. We note that with these settings, reads with multiple best-hit alignments will be
distributed among these targets according to their proportional representation on the pangenome
reference sequence; these reads were retained to ensure consistent estimates of average coverage
within a gene family, which might contain multiple highly similar genes [33].

For each species, average coverage was reported for each gene, as well as for a panel of
universal, single-copy marker genes [33, 95]. The copynumber of a gene (c) is then estimated
as the ratio between its coverage and the (median) marker gene coverage. We used these raw
copynumber values to estimate the prevalence of genes in the broader population, defined as the
fraction of samples with c ≥ 0.3 (conditioned on the marker coverage being ≥ 5x). Ref. [33]
have previously shown that these thresholds yield accurate gene presence estimates. We then
used these prevalence estimates to define a core genome for each species, defined as the set of
genes with prevalence ≥ 0.9.

In addition to quantifying gene prevalence, we also used MIDAS’s copynumber estimates to
detect changes in gene content between QP samples (SI Section S3.5). The QP methodology
was designed to eliminate spurious gene content differences that arise from sampling noise, e.g.
when a host is colonized by multiple strains of the same species. However, another well-known
limitation of the pangenome approach used by MIDAS and others is that linkage between a gene
and its species is not observed directly, but is only inferred by the presence of that gene in a
previously sequenced isolate. This can lead to spurious copynumber changes if a target gene
is actually linked to a different species in a particular host, and the relative abundance of the
species are simply changing over time. To guard against this scenario, we implemented a number
of additional filters described below.

First, we only considered gene content differences that were consistent with a single copy
gene transitioning to zero copynumber, or vice versa. We used a permissive definition of potential
single copy genes (0.6 ≤ c ≤ 1.2, with marker coverage ≥ 20x) in order to capture normal
coverage variation along the genome in growing cells [96], see Fig. S6. Similarly, we defined a
zero copynumber to be c ≤ 0.05, so that a small fraction of cells could still retain the gene. (For
simplicity, these copynumber thresholds are also used for the sampling error calculation in SI
Section S3.5.) We implemented this copynumber restriction because, if a gene is truly linked to a
different species, it is less likely to have both a “normal” and “absent” copynumber by chance.
For this to happen, it would require that the two species that share the gene in a given host (a
rare event) have similar relative abundance at one timepoint and ≥ 10-fold different abundance
at the other (another rare event). Although this approach omits many biologically interesting
copynumber differences among multi-copy genes (e.g. transporter genes in Bacteroides [97]),
we do not study them here because they are much harder to disentangle from mapping artifacts.

To supplement these copynumber filters, we also created a blacklist of genes that are potentially
shared across species. This is helpful for some highly promiscuous genes, e.g. transposons
in Bacteroides [98], where the probability of cross-species sharing cannot be assumed to be
low. We constructed this blacklist by searching for gene families in the MIDAS database that
had sequence similarity ≥ 95% with a gene family in another species (SI Section S1.5). These
families constitute a gold standard for gene sharing events, since they imply that highly similar
genes have been observed in isolates from different species. However, this approach can also
miss cases of gene sharing for species with poor phylogenetic coverage in the MIDAS isolate
database. We therefore supplemented the isolate-based blacklist with gene sharing candidates
that were identified directly from the metagenomic data. In particular, we defined a putatively
shared gene to be one with c ≥ 3 in at least one sample in our cohort, since this could indicate
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read donating by a shared gene in a more abundant species. This does not constitute proof of gene
sharing, but it is conservative for the purposes of constructing a blacklist. The metagenomic and
isolate-based methods identified many common gene sharing candidates, but for many species,
there were also many genes that were only identified by one of the two approaches.

All genes in the combined blacklist were excluded from downstream analyses of gene content
estimation and SNV calling. As with our copynumber filters above, this likely omits many
biologically interesting regions of the genome, since shared genes are arguably more likely to
play a role in short-term evolutionary dynamics. We ignore them here in order to minimize false
positives created by read donating.

Even with these various filters, it is important to note that the pangenome approach employed
by us and others is at best an inferential method, which relies on an out-of-sample estimate of
linkage to the correct species background. While we have included these gene content differences
to supplement our SNV-based analysis, isolate sequences [98] or long read data [41] are required
to definitely prove that any specific gene content difference is linked to the species of interest.

S1.4 Quantifying SNVs
We next quantified single nucleotide variants (SNVs) for each species in each sample. In
downstream analyses, these calls were used to quantify SNV prevalence across our cohort, to
identify QP samples, and to quantify SNV differences between QP samples.

Similar to our pipeline for identifying gene content, MIDAS uses a standard reference based
approach to identify SNVs in metagenomic data. Briefly, sequencing reads were first aligned
to the host-specific panel of reference genomes using Bowtie2, with default MIDAS mapping
thresholds: global alignment, MAPID ≥94.0%, READQ ≥20, ALN_COV ≥0.75, and MAPQ
≥20. Species were immediately excluded from further analysis if ≤ 40% of the genome (the
typical core genome fraction) recruited any reads; these excluded cases likely correspond to
scenarios where the species is not truly present, but reads from some accessory genes are instead
recruited from a different species. Gene annotations for each reference genome were lifted over
from the PATRIC database [99], and protein coding sites were classified as 1-fold, 2-fold, 3-fold,
or 4-fold degenerate based on the codon reading frame of each annotated gene.

Based on these raw alignments, MIDAS reports the total read coverage D for each site in the
reference genome for each given sample [100]. We used this distribution of coverage across the
genome to obtain a measure of the “typical” coverage, D, defined as the median of all protein
coding sites with nonzero coverage. All samples with D < 5 were excluded from further analyses.
Additional coverage requirements for QP samples are imposed below.

We then used the sample-specific estimates of D to refine the alignment step above, since D
helps to calibrate our expectation for the coverage at a given site in the genome (D). In particular,
sites with D � D could arise due to mapping errors or read donating from less abundant species,
if the reference genome contains regions that are not present in a given sample. Similarly, sites
with D � D could arise from multi-copy genes, or read donating from more abundant species.
To exclude these cases, we masked sites in a given sample if D < 0.3D or D > 3D. This
constitutes a slightly more permissive version of our single-copy criterion above, due to the larger
uncertainties inherent in estimating D. As above, we only considered sites in coding sequences
of annotated genes, and sites that were unmasked in fewer than 4 samples were excluded from all
further analyses.

For each of the retained sites, MIDAS reports reference and alternate allele counts using
samtools mpileup [100]. (In a minority of cases where multiple alternative alleles were present,
these are merged into a single class.) We used these raw allele counts to estimate the prevalence
of SNVs in the broader population, defined as the fraction of samples where the alternate allele
comprises the majority of reads. Since the reference allele is arbitrarily defined by the choice
of reference genome, we used these prevalence estimates to polarize each SNV based on the
consensus across the cohort. Polarized within-sample allele frequencies were then defined as the
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fraction of reads supporting the allele with the lower prevalence across the cohort.
These allele frequencies are used to identify QP samples (SI Section S3.3) and to ultimately

quantify SNV differences between QP samples (SI Section S3.4). As with the gene content
estimates above, these SNV differences are also susceptible to false positives that occur if the
two alleles are actually linked to different species that are simply fluctuating in abundance. We
have implemented a number of filters to guard against these events.

First, the global alignment and the MAPQ settings in Bowtie2 already ensure that reads must
have a particularly unique match to their assigned reference genome. We only considered sites
in protein coding genes, and we excluded all putatively shared genes in the blacklist above. In
contrast to previous polymorphism- [31] or consensus-based approaches [35, 44], we considered
only extreme changes in allele frequency (≤ 0.2 to ≥ 0.8, or vice versa) to ensure that the SNV
difference is supported by the vast majority of the reads at both timepoints, rather than a fraction
of reads donated from other species. Combined with the coverage requirement in both samples
(0.3D ≤ D ≤ 3D and D ≥ 20), this eliminates most opportunities for SNV differences to arise
from abundance fluctuations: large fluctuations will typically violate the coverage requirement,
while small fluctuations will not produce a sufficient change in allele frequency.

In cases where we compare longitudinal samples from the same host, we imposed an even
stronger version of this filter to be more conservative with respect to calling SNV changes. Under
the reasonable assumption that genome synteny is preserved among very closely related strains,
we expect the relative coverage of a site (D/D) to be more similar in longitudinal samples than
the maximum 10-fold range allowed by the coverage condition (0.3 ≤ D/D ≤ 3). Thus, in
addition to the requirements above, we only called a SNV difference between two samples if the
successive values of D/D were within a factor of 3.

S1.5 Identifying orthologous genes in different pangenomes
The species-specific pangenomes in the MIDAS database were constructed by clustering all
genes found in the isolate genomes of each species using a 95% identity threshold [33]. However,
this clustering approach leaves open the possibility that a gene in one species’ pangenome may
have sequence similarity ≥ 95% to a gene in another species’ pangenome. We identified these
cross-pangenome orthologs as follows.

First, for computational efficiency, we focused on human-relevant bacterial species in the
MIDAS database by identifying those isolates with the keywords ’human’ or ’Homo sapiens’ in
the host column of the PATRIC database. We also included species that had a universal single
copy gene marker coverage ≥ 1x in at least one sample in our cohort. This resulted in 1002
human-relevant species.

Next, we ran USEARCH [101] on the set of genes belonging to the pangenomes of these
human-relevant bacterial species. Based on this approach, we identified a total of 890,058 genes
across these 1002 species that had ≥ 95% sequence identity with at least one other gene in a
different species’ pangenome. These genes were excluded from further analysis as described
above.
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S2 Text

Quantifying within-species diversity in individual samples
Estimating rates of core-genome polymorphism
To estimate the overall levels of nucleotide polymorphism for a given species in a given sample
(Fig. 1E), we calculate the fraction of synonymous sites in core genes with intermediate allele
frequencies (0.2 ≤ f ≤ 0.8). In other words, the polymorphism rate r is defined by

r = E[θ( f − 0.2) · θ(0.8 − f )] , (S2.1)

where θ(z) is the Heaviside step function. This measure is similar to the traditional population
genetic measure of heterozygosity, H = E[2 f (1 − f )], which places the most weight near
intermediate allele frequencies. The thresholded version in Eq. (S2.1) is preferable in our case,
as it is more robust to low-frequency sequencing errors that can overwhelm the average in H.

To obtain the approximate confidence intervals for the rates in Fig. 1E, we used a standard
Bayesian procedure based on a poisson approximation. If we let L denote the total number of
sites examined and let n denote the number of “successes” (i.e., the number of intermediate
frequency polymorphisms), then we assume that n is drawn from a Poisson

n ∼ Poisson(rL) , (S2.2)

where r is the per site rate plotted in Figs. 1E. Since r is a positive quantity that varies over many
orders of magnitude, we use a uniform prior over log r . After applying Bayes’ rule, this yields a
standard conjugate Gamma posterior distribution for r:

p(r |n, L) =
Ln

(n − 1)!
rn−1e−rL . (S2.3)

whose posterior mean is just ∫
rp(r |n, L) dr =

n
L
, (S2.4)

as expected. For all n > 0, we define a 1 − α confidence interval to be the α/2 and 1 − α/2
percentiles of this posterior distribution. In the case where n = 0, the posterior distribution is
improper:

p(r |0, L) ∝ r−1e−rL . (S2.5)

In this case, we define the lower limit of the confidence interval to be 0, and the upper limit to be
the point where e−rL ∼ α/2.

S2.1 Within-host evolution in a single-colonization model
In this section, we further explain the assumptions made in computing the expected within-host
polymorphism rate for a given species under a simple, single-colonization model. As described
in the text, we make conservatively high estimates for the per site mutation rate (µ ∼ 10−9

per generation), generation times (λ ∼ 10 generations per day), and time since colonization
(∆t ∼ 100 years). We define the within-host polymorphism rate P as the fraction of fourfold-
degenerate synonymous site mutations with allele frequencies in the range 0.2 ≤ f ≤ 0.8. In the
single-colonization model, the mutations that contribute to P must have reached intermediate
frequencies after starting as a de novo mutation at some time after colonization.

We assume that the synonymous mutations are effectively neutral over the timespans
considered (sλ∆t � 1). Under this assumption, one of these mutations can only contribute
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to P if it hitchhiked along with a lineage that rose to a frequency in the range 0.2 ≤ f ≤ 0.8.
This can happen either due to neutral drift (i.e., the lineage randomly fluctuated to intermediate
frequencies) or selection (i.e., the lineage reached intermediate frequencies because it contains a
beneficial mutation). However, if synonymous mutations are neutral, their presence or absence
in a lineage is independent of the processes that drive it to intermediate frequency [102]. The
probability that a particular neutral mutation arose along the line of descent is simply the product
of the per-site mutation rate µ and the total number of generations since the lineage diverged
from the common ancestor between it and the rest of the population. By assumption, the latter is
bounded by the total number of generations since colonization (λ∆t). This yields the conservative
estimate for the within-host polymorphism rate,

P ≤ µλ∆t ≤ 10−3 , (S2.6)

quoted in the main text.
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S3 Text

Quasi-phasing metagenomic samples
In this section, we describe the methods used to estimate one of the dominant haplotypes for a
given species in a subset of metagenomic samples (the so-called quasi-phaseable or QP samples),
and to quantify genetic differences between these lineages. The method is similar in spirit to
recent work by Ref. [35], but with a greater emphasis on estimating the associated false positive
rates.

S3.1 Theoretical motivation
To gain intuition for how within-host lineage structure is reflected in the distribution of allele
frequencies, it is useful to start by considering the simplest version of the phasing problem, in
which the metagenomic reads for a given species in a particular sample are derived one of two
clonal lineages mixed in a proportion fmix ≥ 50% (representing the proportion of cells from
the more abundant lineage). Within-sample polymorphisms will arise from fixed differences
between the two lineages and will segregate at frequency fmix or 1 − fmix, depending on which
lineage the mutation arose in and the choice of reference allele. Since this choice is arbitrary, we
work with the major allele frequency in each sample. In this case, the distribution of major allele
frequencies, p( f ), will then have the simple form

p( f ) = (1 − d) · δ(1 − f ) + d · δ( f − fmix) , (S3.1)

where d is the average nucleotide divergence between the two lineages and δ(z) is the Dirac
delta function. Note that this theoretical distribution is only obtained in the limit of infinite
coverage; in practice, the observed distribution of major allele frequencies will be blurred due to
sampling noise (see Text S3.2 below). Nevertheless, in the the limit of high coverage, Eq. (S3.1)
suggests that we can infer fmix and d by looking for a peak in the distribution of major allele
frequencies (e.g., Fig. 1E). Again, in the idealized case, the two haplotype sequences are easy to
recognize: major alleles are assigned to the dominant lineage, while the minor alleles belong to
the subdominant type.

This basic idea also extends to mixtures of more than two lineages, but the potential
genealogical relationships between them make the problem much more complicated. For
example, in a mixture of three strains with frequencies f1, f2, and f3, the distribution of major
allele frequencies will now have three characteristic peaks (corresponding to min{ fi, 1 − fi}
for each i = 1, 2, 3). This time, however, alleles that segregate at the same frequency do not
necessarily belong to the same lineage, since they could also be ancestral to two of the three strains.
There are three possible genealogies relating the three strains, which can vary from site-to-site
in the presence of recombination. Haplotype estimation then becomes a complicated inference
problem, which only grows more difficult as additional lineages are added. Consideration of the
combined allele frequency distribution may be helpful for deriving error models for algorithms
that attempt to deconvolute strains from metagenomes.

Rather than trying to infer the exact mixture proportions and the haplotypes of each lineage,
we developed a set of heuristic rules to identify the haplotype of just one of the dominant lineages
while controlling the probability of misassigning variants to this haplotype. Suppose that there
are within-sample polymorphisms at two sites, with major allele frequencies f1 and f2. We
denote the four (unobserved) two-locus haplotype frequencies by fMM , fMm, fmM , and fmm,
where M and m denote the major and minor allele at each site. If f1 = f2 = 0.5, then there
are no constraints on the possible haplotype frequencies, other than the marginal constraints
fMM + fMm = f1 and fMM + fmM = f2. However, in the opposite extreme where f1 = f2 = 1,
then normalization constraints require that fMM = 1 (i.e., the major alleles are on the same
haplotype). In between these two extremes there is a more general rule that, whenever the allele
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frequencies satisfy fi ≥ f , with log( f /1 − f ) = c & 1, the minimum possible frequency of the
M M haplotype is

fMM ≥ 2 f − 1 ∼ 1 − 2e−c . (S3.2)

Equation S3.2 represents a worst case scenario in which the haplotypes are specifically assigned
to prevent major alleles from segregating together. In practice, a more realistic lower bound for
the fMM is attained when the alleles are in linkage equibrium:

fMM = f 2 ∼ 1 − 2e−c , (S3.3)

which happens to have the same asymptotic behavior in this two-locus example. In either case,
these bounds show that an appreciable fraction of cells in the host must possess both major alleles.

This argument can also be extended to larger collections of sites. In the pessimistic case of
linkage equilibrium between all polymorphic sites, the number of major alleles per individual is
binomially distributed with success probability f . In the limit of a large number of sites, this
means that the vast majority of the cells will have the major allele at a fraction f of the possible
sites. However, while the haplotype consisting of all major alleles is the most likely haplotype
under linkage equilibrium, its expected frequency can grow quite small, to the point where the
haplotype may not even be present in a finite sample. Fortunately, our analysis will primarily
focus on one- and two-locus statistics where the stronger bounds in Eq. (S3.2) can be applied.

S3.2 False positive rate for SNV phasing
The arguments above suggest that, for many downstream purposes, we can effectively estimate a
portion of one of the haplotypes in a metegenomic sample by taking the major alleles present
above some threshold freuqency, f ∗ � 50%, and treating sites with intermediate frequencies as
missing data. This is a simple generalization of the consensus method (i.e. taking the haplotype
formed by all major alleles) that has been used in previous metagenomic studies [4, 35], and it is
similar to methods used to genotype clonal isolates from whole-genome resequencing data [103].

The major difficulty with this approach is that we do not observe the true frequency f directly,
but rather a sample frequency f̂ that is estimated from a finite number of sequencing reads.
Polarization errors (i.e. errors in determining the major allele) can therefore accumulate when the
allele supported by the most reads differs from true major allele in the sample. When sequencing
clonal isolates, such false positives are primarily caused by sequencing errors. These occur at a
low rate per read (perr ∼ 1% per bp), and become increasingly unlikely at moderate sequencing
depths. However, in a metagenomic sample, polarization errors will also arise due to finite
sampling noise, when an allele at some intermediate frequency (e.g. 25%) happens to be sampled
in a majority of the sequencing reads. As we will show below, for moderate sequencing depths,
this will often be the dominant source of error.

To model this process, let (A`,D`) denote the number of alternate alleles and total sequencing
depth at a given site ` in the genome, and let f̂` = A`/D` denote the corresponding sample
frequency. We assume that the number of alternate reads follows a binomial distribution,

Pr[A` |D`, f`] =
(
D`

A`

)
f A` (1 − f )D`−A` , (S3.4)

for some true frequency f` , so that the probability of observing f̂` ≥ f ∗ is simply

Pr[ f̂` ≥ f ∗ |D`, f`] =
∑

k≥ f ∗D`

(
D`

k

)
f k(1 − f )D`−k . (S3.5)

A polarization error will occur when we observe f̂` ≥ f ∗ even though f` < 50%. Equation (S3.5)
shows the probability of such an error will strongly depend on f` . For a sequencing depth of
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D = 10 and a frequency threshold of f ∗ = 80%, the error probability ranges from essentially
negligible (∼ 10−14) when f is on the order of the sequencing error rate (∼ 1%), to ∼ 1 per
bacterial genome when f ≈ 10%, to an error rate of 5% when f ≈ 50%.

The average false positive rate across the genome will therefore depend on an average over
the possible values of f and D:

Pr[error] =
∫

Pr[ f̂ ≥ f ∗ |D, f ]p0(D, f ) dD df , (S3.6)

where p0(D, f ) is the prior distribution of D and f at a randomly chosen site (Fig. S1A). In
the absence of any additional information, this joint distribution with the product of empirical
distributions,

p0(D, f ) ≈ p̂(D)p̂( f ) , (S3.7)

which we estimate for a given sample by binning the observed values of D and the allele
frequencies across the L sites under consideration (blue distribution in Fig. S1A). The expected
number of polarization errors in a given sample across all L sites is given by

Nerr = Pr[error] × L . (S3.8)

This calculation holds for any large collection of sites where the empirical distribution, p̂( f ),
provides a reasonable approximation to the prior distribution, p0( f ). For example, in the
following section, we consider the set of all synonymous sites in the core genome.

S3.3 Quasi-phaseable (QP) samples
The basic idea behind our approach is that we wish to restrict our attention to samples where
Nerr is small compared to the total number of sites under consideration. This number will
vary depending on the particular analysis that we wish to carry out. But for population-genetic
purposes, it will always be related to the number of sites that actually vary between samples. As
a simple proxy for this number, we therefore consider a measure of the average genetic distance
between the dominant haplotype in a given sample and the lineages in the remainder of our panel.

Specifically, we focus on fourfold-degenerate synonymous sites in the core genome. For each
sample, let N< denote the number of such sites with major allele frequencies less than f ∗, and
conversely, let N> denote the number of sites with f̂ ≥ f ∗. For the sites in the latter group, let
f ` denote the corresponding allele frequency across the entire panel. Then the quantity

Nd =

L∑̀
=1

(1 − f `) (S3.9)

approximates the expected number of differences at these sites for an “average” individual drawn
from the panel. A normalized version (Nd/L) is illustrated for the B. vulgatus samples in Fig. S2.
We declare the sample to be a quasi-phaseable (QP) sample if it passes the coverage thresholds
in SI Section S1 Text and N</Nd < 0.1.

To see why this is a reasonable definition, we return to our error formula in Eq. (S3.8)
and plug in conservative estimates for p0(D, f ). For example, we expect that the number of
truly polymorphic sites in the sample will also be of order ∼ Nd, with the remaining sites
having frequencies near the sequencing error threshold, f ∼ 1%. We then divide the remaining
polymorphic sites into the fraction N</Nd . 0.1 with major allele frequencies below f ∗, and the
remaining fraction (∼ 100%) with major allele frequencies above f ∗. If we make the conservative
approximation that all of the sites in the latter group have minor allele frequencies f ≈ 1 − f ∗,
and all of the sites in the former group have f ≈ 50%, then we obtain an approximate prior
distribution for f :

p̂0( f ) ≈
N> − Nd

N> + N<
δ( f − 0.01) +

Nd

N> + N<
δ( f − 1 + f ∗) +

N<
N> + N<

δ( f − 0.5) . (S3.10)
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If we make a similarly conservative approximation for the coverage distribution,

p̂(D) ≈ δ(D − 10) , (S3.11)

where δ is the Dirac function, then for a threshold of f ∗ = 80%, the realized false positive rate is

Nerr

Nd
≈

N> − Nd

Nd
Pr[ f̂ ≥ f ∗ |10, 0.01] + Pr[ f̂ ≥ f ∗ |10, 1 − f ∗] +

N<
Nd

Pr[ f̂ ≥ f ∗ |10, 0.5]

. 0.01 .

(S3.12)

Thus, with these thresholds, we expect that only a small fraction of informative sites (as defined
by the average distance between samples) will be susceptible to polarization errors.

S3.4 False positive rate for SNV differences
Although the QP sample classification is a good rule of thumb for determining when polarization
errors are more or less likely to happen, there are scenarios where we wish to measure genetic
distances between samples (e.g. longitudinal samples from the same individual) that are much
more closely related than an average pair of individuals in our panel. In these cases, the realized
false positive rate can be much higher than the estimate in Eq. (S3.12). To obtain more accurate
estimates of the error in these cases, we extend our calculation above to the specific problem of
detecting the number of nucleotide differences between two samples.

Generalizing from the phasing problem above, we would conclude that the haplotypes in
two samples share the same allele at a given site if that allele is present above frequency f ∗ in
both samples. To observe a difference between the two samples, the allele would have to be
present above frequency f ∗ in one sample and below 1 − f ∗ in another. If the allele lies between
1 − f ∗ and f ∗ in one of the samples, the site is treated as censored data. Under this definition, a
nucleotide difference requires a change in allele frequency of at least

∆ f = f ∗ − (1 − f ∗) = 2 f ∗ − 1 . (S3.13)

If we rewrite everything in terms of ∆ f , a nucleotide difference requires the allele frequency to
lie below (1 − ∆ f )/2 in one sample and above (1 + ∆ f )/2 in another (pink shaded regions in
Fig. S1B). We will adopt the latter notation here, as it allows us to easily consider more stringent
thresholds for which ∆ f > 2 f ∗ − 1.

Under the null hypothesis, we assume that the true allele frequency f is the same in the two
samples. If we let D1 and D2 denote the coverage of the site in the two samples, then a simple
generalization of Eq. (S3.6) shows that the false positive rate for a randomly chosen site is given
by

Pr[error] =

∫ {
Pr[ f̂1 ≥ (1 + ∆ f )/2 |D1, f ]

(
1 − Pr[ f̂2 ≥ (1 − ∆ f )/2 |D2, f ]

)
+

(
1 − Pr[ f̂1 ≥ (1 − ∆ f )/2 |D1, f ]

)
Pr[ f̂2 ≥ (1 + ∆ f )/2 |D2, f ]

}
× p0(D1,D2, f ) dD1dD2df ,

(S3.14)

where Pr[ f̂ ≥ f ] is defined in Eq. (S3.5) and p0(D1,D2, f ) is the prior distribution for D1, D2,
and f at a random site. As in Eq. (S3.7) above, we estimate this prior distribution as a product of
empirical distributions,

p0(D1,D2, f ) ≈ p̂(D1)p̂(D2)p̂( f ) (S3.15)

which we estimate by binning the observed values of D1, D2, and f̂i across the genomes of the
two samples (the blue distribution in S1B). The expected number of false positive substitutions is
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then given by

Nerr = Pr[error] × L . (S3.16)

where L is the total number of sites compared between the two samples. This will vary depending
on the application (e.g. synonymous sites, sites in core genes, all coding sites, etc. are used at
various times in the main text).

The error estimate in Eq. (S3.16) is an implicit function of the threshold ∆ f . Given the
typical sequencing coverage and allele frequency distributions of the QP samples in our analyses,
we usually obtain sufficiently low error estimates (i.e., Nerr � 1) if we take ∆ f = 1 − 2 f ∗ = 0.6,
so that an allele transitions from less than 20% to greater than 80% frequency between the two
samples, or vice versa. To limit the influence of outliers, we excluded all pairs of samples with
Nerr > max {0.5, 0.1Nobs}, where Nobs is the observed number of SNV differences.

S3.5 False positive rate for gene content differences
The false positive rate for gene content differences can be estimated with a similar procedure. In
this case, the canonical generative model is one in which a gene g with average copy number per
cell cg,i in sample i recruits Ng,i reads, which we assume follows a Poisson distribution:

Ng,i ∼ Poisson
(
cg,iLgFi

)
, (S3.17)

where Lg is the length of gene g and Fi is a sample- and species-specific constant that reflects
the total number of reads aligned to that species (e.g., by the MIDAS pipeline). The coverage of
gene g is then defined as

Dg,i =
Lr,i

Lg
· Ng,i ≡

Ng,i

`g,i
, (S3.18)

where Lr,i is the average length of reads that align to that gene (typically . 100bp), which
can vary in a sample-specific manner. The quantity `g,i ≡ Lg/Lr,i then serves as a conversion
factor between the raw number of reads and the coverage. Finally, we assume (as in the MIDAS
pipeline) that there is a known panel of marker genes (g = m) with fixed copy number per cell of
cm ≈ 1 and a large target size, such that Nm,i ≈ E[Nm,i] = LmFi . This allows us to eliminate Fi

and rewrite Eq. (S3.17) in terms of the marker coverage Dm,i and the coverage-to-read conversion
factor `g,i:

Ng,i ∼ Poisson
(
cg,i`g,iDm,i

)
, (S3.19)

The variables Ng,i , Dg,i , and Dm,i are all reported by MIDAS, which allowed us to estimate cg,i
and `g,i for each gene in each sample:

cg,i =
Dg,i

Dm,i
, `g,i =

Lg

Lr,i
≈

Ng,i

Dg,i
. (S3.20)

Based on the above error rate calculations, the gene copy number change events we are interested
in are those in which a gene transitions from a typical single-copy value (0.6 ≤ c ≤ 1.2, see
Fig. S6) in one sample to a value close to zero (c < 0.05) in another. This does not cover all
possible copy number change events, but focuses on the subset that are likely to be (i) statistically
significant and (ii) less susceptible to other bioinformatic errors (e.g. read stealing or donating
from other species), see Text S1.3.

Given this definition, the probability of an apparent copy number change happening by chance
will again depend on the “true” copy number of the gene, c, as well as its effective coverage, `D.
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Similar to Eq. (S3.14), the expected false positive rate for a randomly chosen gene is given by

Pr[error] =

∫ {
FP(0.05`Dm,1; c`Dm,1)

[
FP(1.2`Dm,2; c`Dm,2) − FP(0.6`Dm,2; c`Dm,2)

]
+

[
FP(1.2`Dm,1; c`Dm,1) − FP(0.6`Dm,1; c`Dm,1)

]
FP(0.05`Dm,2; c`Dm,2)

}
× p0(`, c) d` dc ,

(S3.21)

where FP(k; λ) is the Poisson CDF and p0(`, c) is the null distribution of ` and c. Once again,
we estimate this joint distribution with the product of empirical distributions,

p0(`, c) ≈ p̂(`)p̂(c) , (S3.22)

which are estimated by binning the observed values of `g,i and cg,i across the two samples.
To reduce mapping artifacts, we only bin `-values from genes with copy number in the range
0.6 ≤ c ≤ 1.2, which accounts for the bulk of the copy number distribution in a given sample
(S6). The expected number of false positive gene changes is therefore given by

Nerr = Pr[error] × npangenome , (S3.23)

where npangenome is the total number of genes tested (typically of order ∼ 104). For the typical
coverages in our dataset, this number is usually very small (� 10−2). As above, we excluded all
pairs of samples where Nerr ≤ max {0.5, 0.1Nobs}, where Nobs is the observed number of gene
content differences differences between those samples.

S3.6 Validation with synthetic data
As a sanity check on our calculations above, we validated our method using synthetic metagenomic
data generated by Grinder [104]. To simulate the null hypothesis, we generated synthetic
sequencing reads from two Bacteroides vulgatus isolates mixed at a 9:1 ratio at both timepoints.
We performed these simulations for target coverages of 20x, 50x, and 100x. Two replicate
simulations were performed for each coverage value for two difference combinations of isolate
genomes, resulting in 4 independent experiments per coverage group. After running these
synthetic metagenomic samples through the steps of our pipeline, we found zero SNV or gene
changes between the two timepoints for all 12 experiments across the coverage values. This
provides further support for the claim that the false positive rate from sampling error is .0.1
per genome, and it suggests that this claim is robust to additional noise introduced during the
mapping and thresholding steps in SI Section S1 Text.
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S4 Text

Population genetic null model of purifying selection for pair-
wise divergence across hosts
In this section, we present a minimal model of purifying selection that can account for the
varying dN/dS levels in Fig. 2D as a function of dS . The basic idea is that purifying selection is
less efficient at purging deleterious mutations that are very young (in particular, younger than
the inverse of the associated fitness cost). To the extent that synonymous divergence can be
associated with a characteristic timescale, this line of reasoning implies that anomalously low
values of dS would be associated with less efficient purifying selection (i.e., higher values of
dN/dS), while typical values of dS would be associated with more efficient purifying selection
(i.e., lower values of dN/dS). Similar ideas have been employed in previous studies [105, 106].

To make this idea more concrete, suppose that the age of a given mutation is bounded by a
time T , so that it occured at some point in the last T generations. This will result in a genetic
difference between two randomly sampled lineages with probability

d = E
[∫ T

0

2N(−t)µ f (0;−t)(1 − f (0;−t)) dt
]
, (S4.1)

where N(t) is the effective size of the across-host population, and f (t; t0) is the prevalence of
an allele that was created at time t0 and sampled at time t, and the expectation is taken over
all possible realizations of f (t, t0). If T is much smaller than the typical coalescence timescale
across hosts, then the mutation cannot rise to a very high prevalence by the time of sampling, and
we can neglect the f 2 term above to obtain

d(T) ≈ 2µ

∫ T

0

E[N(−t) f (0,−t)] dt . (S4.2)

By definition, the newmutation will enter at prevalence 1/N(−t). If the mutation has a deleterious
fitness cost s, then its average size is simply

E[N(−t) f (0,−t)] = e−st , (S4.3)

and we have

d(T, s) ≈ 2µT ·
1 − e−sT

sT
, (S4.4)

If synonymous mutations are assumed to be neutral, then

E[dS |T] = d(T, 0) = 2µT , (S4.5)

as expected. If we assume that the nonsynonymous sites have a distribution of deleterious fitness
costs ρ(s), then the nonsynonymous divergence rate satisfies

E[dN |T]
2µT

=

∫
d(T, s)
2µT

ρ(s) =
∫

1 − e−sT

sT
ρ(s) ds . (S4.6)

In the simplest case, ρ(s) will contain a mixture of truly neutral mutations and a fraction fd with
deleterious fitness cost s, for which

E[dN |T]
2µT

= (1 − fd) + fd ·
1 − e−sT

sT
. (S4.7)
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To connect this model with the observed data, we must find a way to estimate T . Motivated by
the fact that E[dS |T] = 2µT , we assume that for anomalously low core-genome-wide divergence
rates (T � Tc), the method-of-moments estimator T̂ = dS/2µ provides a reasonable estimate
of the maximum mutation age T at most polymorphic loci (otherwise, we would expect a more
typical value of dS). However, a complicating factor is thatT is present on both sides of Eq. (S4.7).
Using the same estimator for the x and y axes in Fig. 3 can lead to spurious correlations that
arise from measurement noise, which mimic the true biological signal in Eq. (S4.7). To avoid
this issue, we partition the synonymous sites into two artificial categories, which produces two
divergence estimates dS,1 and dS,2. By the Poisson thinning property, these are conditionally
independent given T . Thus, we can use one value of dS to estimate T on the left-hand side of
Eq. (S4.7) and one value of dS to estimate T on the right-hand side of Eq. (S4.7), yielding the
empirical relation between dN , dS,1, and dS,2,

dN

dS,1
≈ (1 − fd) + fd ·

1 − e−
sdS,2
2µ

sdS,2

2µ

, (S4.8)

which should be valid for dS much smaller than the population median. For small dS , this ratio
will start to deviate from unity when dS & 4µ/s f . At large dS , the ratio approaches 1 − fd , and
will start to deviate from this value when dS . 2µ fd/s(1 − fd). These landmarks allow us to
obtain approximate estimates of fd and s by rough inspection of the data in Fig. 3. To obtain the
confidence intervals the inset of Fig. 3, we generated bootstrapped datasets by Poisson resampling
the synonymous and nonsynonymous counts between each pair of lineages, and applying the
same thinning procedure as above.

We note that qualitatively similar behavior is expected in recent models of bacterial evolution
proposed by Ref. [75], in which the core genome of closely related strains consists of an
asexual ”backbone” or “clonal frame” (where synonymous mutations occur at rate µ) interrupted
by highly diverged segments of length `r acquired through recombination. The introgressed
segments would enter with low values of dN/dS associated with the average dS value. If the
common ancestor of the asexual backbone is younger than the typical deleterious fitness cost,
we would again expect a transition from essentially neutral behavior (dN/dS ≈ 1) to the typical
between-host value (dN/dS ≈ 0.1) as a function of dS , where the transition is now informative
of the horizontal transfer rate. A formal analysis of this model remains an interesting avenue for
future work.
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S5 Text

Phylogenetic inconsistency and clade structure across hosts
S5.1 Phylogenetic inconsistency
In this section, we describe the methods used to assess phylogenetic inconsistency in Fig. 4A.
Traditionally, phylogenetic consistency is measured by first obtaining a genome-wide estimate
of the genealogical relationships between lineages, and then asking whether individual SNVs
can be explained by a single mutation event on this fixed tree [107,108]. SNVs that cannot be
explained this way are said to be homoplasic or phylogenetically inconsistent.

The major drawback with this approach is that it requires an accurate estimate of the genome-
wide phylogeny. Statistical uncertainties or model misspecification in the genealogical inference
step can lead to inflated estimates of inconsistency. More importantly, in cases where significant
portions of the genome are phylogenetically inconsistent, it is also difficult to pinpoint the source
of the inconsistencies, since they can bias the genome-wide phylogeny in unknown ways. To
avoid these issues, we developed a non-parametric approach for quantifying the phylogenetic
inconsistency of SNVs directly from the core-genome-wide divergence values in Fig. 2, which
eliminates the need to first infer a genome-wide tree.

The idea behind our method is simple. In an infinite sites model, partial information about
the genealogy of an individual SNV is encoded in the allelic states of different individuals. In
particular, all of the individuals with the derived allele must be more closely related to each
other than to individuals with the ancestral allele. Under asexual evolution, the distribution of
coalescence times between pairs of individuals (ti j) also encodes information about the genealogy
at the SNV site. In particular, the descendents of a coalescent event must have smaller values of
ti j among themselves than they do with individuals in other parts of the tree.

To connect these two pieces of information, we note that all individuals that share a mutation
by descent must have coalesced more recently than the age of the mutation. Similarly, individuals
with different allelic states must have coalesced further back in time than the age of the mutation
(otherwise they would share the mutation by descent). This also implies that the minimum ti j for
individuals with different allelic states must be an upper bound on the age of the mutation, and
conversely, the maximum ti j between derived individuals is a lower bound. If this lower bound
exceeds the upper bound, then the SNV is phylogenetically inconsistent (Fig. S10).

To connect this mathematical intuition with the data, we note that the coalescence time is
related to the total divergence through the method-of-moments estimator,

ti j ≈ Cdi j , (S5.1)

for some species-dependent clock constant C. If we let M denote the set of individuals with
the major allele, and m denote the set of individuals with the minor allele, we can then define a
critical divergence

dB = min
i∈M, j∈m

{
di j

}
, (S5.2)

which can be used to infer the upper bound on the age of the mutation:

Tmax
m ≈ CdB (S5.3)

Similarly, we can define a second set of critical divergences for each allele,

dM
W = max

i, j∈M

{
di j

}
, (S5.4)

dm
W = max

i, j∈m

{
di j

}
. (S5.5)
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If we knew which allele was the ancestral one, and which was the derived, we could use the
corresponding value of dW to estimate the lower bound on the age of the mutation. Since we do
not have this information, we have to take the minimum of these two values,

dW ≡ min
{
dM
W , dm

W

}
, (S5.6)

so that

Tmin
m ≈ CdW . (S5.7)

If the ratio between dW and dB,

dW
dB
≈

Tmin
m

Tmax
m

(S5.8)

is substantially greater than one, then there is evidence that the SNV is phylogenetically
inconsistent.

To implement this logic in Fig. 4A, we chose a threshold divergence d∗B and looked for all
SNVs that occured more recently than this (i.e., those with dB ≤ d∗B) and which had at least
two minor alleles (so that dW is well-defined). We defined the net amount of phylogenetic
inconsistency at d∗B to be the fraction of SNVs in this set with dW ≥ d∗W , for some threshold d∗W .
To be conservative, we chose

d∗W = max
{
2d∗B, 2 × 10

−4
}
, (S5.9)

which ensures that all inconsistent SNVs have dW ≥ 2dB. The factor of 2 was chosen to match
traditional notions of sequence similarity clusters (or “ecotypes”) [62].

S5.2 Clustering and identification of top-level clades
In some species, we observed very high levels of phylogenetic consistency for SNVs that separate
the most distantly related strains, and a sudden transition to high levels of inconsistency for
intermediate levels of divergence. In these species, there is often a second mode in the distribution
of core-genome-divergence at the high end of the spectrum. This suggests that the lineages may
represent a mixture of two genetically isolated populations, e.g. different subspecies or ecotypes.
Given the purely operational species definition used by MIDAS (95% ANI), it is not surprising
that genetically isolated populations can sometimes fall below this species threshold and their
metagenomic reads can map to the same reference genome.

Mixtures of genetically isolated populations can confound traditional SNV-based estimates
of recombination within species, since more SNVs will have accumulated between genetically
isolated populations than within them. To account for these biases, we manually partitioned
each species into a few “top-level” clades, which we hypothesized could better approximate a
genetically cohesive population. Note that this partitioning scheme is conservative for detecting
recombination: subsetting individuals cannot create evidence for recombination where there is
none, but the lack of evidence for recombination could simply indicate that we chose the clades
poorly.

Our approach for identifying clades is based on traditional notions of sequence similarity
clusters [62, 79]. We first constructed core-genome dendrograms by hierarchically clustering the
matrix of pairwise divergence rates averaged across the core genome, using the UPGMA method
from SciPy [109]. Based on these dendrograms, lineages were assigned to one or more “top-level”
clades using a manual procedure, loosely designed to maximize the difference between inter- and
intra-clade divergence at the most deeply diverged branches (Table S2). We adopted this manual
procedure to capture clade structure that is inconsistent with a single cut through the dendrogram
at a given level of divergence.
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In Fig. S11, we plot the fixation index, Fst for these manually defined clades:

Fst = 1 −

∑
clade,c

∑
i, j∈c di j∑

clade,c

∑
i, j∈c 1

∑
i, j 1∑
i, j di j

, (S5.10)

where c indexes the clades and di j is the average nucleotide divergence across core genes in hosts
i and j. Several of the prevalent species have top-level clades with high Fst . B. vulgatus serves as
one of the more extreme cases, owing to the fact that the B. vulgatus and B. dorei clades are both
clustered to the B. vulgatus reference genome. However, this is not a universal pattern across
gut bacteria: some species, even other Bacteroides like Bacteroides xylanisolvens, have lineage
phylogenies and recombination patterns that are more consistent with a single clade (Fig. 4C).
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S6 Text

Population genetic null model for the decay of linkage disequi-
librium
In principle, the rate of decay of linkage disequilibrium in Fig. 4 contains information about
the average recombination rate between pairs of loci [16]. For example, in a neutral panmictic
population of size N , Ref. [60] have shown that

σ2
d =

10 + 2NR
22 + 26NR + 4(NR)2

, (S6.1)

where R is the recombination rate between two loci. Similar functional forms are expected for
related measures of linkage disequilibrium (e.g. r2 [110]). To obtain a relation between the
recombination rate R and the genomic distance ` between two loci, we assume that recombination
occurs through the exchange of DNA fragments of with average length `r , which are exponentially
distributed around this mean value and occur uniformly across the genome. Two loci undergo a
recombination event when there is a genetic exchange that involves only one of the two loci. This
happens with probability

R(`) = r`r
(
1 − e−`/`r

)
, (S6.2)

where r is a rate constant. Thus, for distances much shorter than `r , this recombination model
resembles a linear chromosome with a crossover rate r per site. For larger distances, Eq. (S6.2)
shows that the effective recombination rate saturates at r`r . Substituting R(`) into Eq. (S6.1), the
decay of linkage disequilibrium will have the characteristic shape

σ2
d ∼


5
11 if ` � 1

Nr ,
1

2Nr` if 1
Nr � ` � `r ,

1
2Nr`r

if ` � `r .
(S6.3)

To estimate σ2
d
(`) for a given species, we focused on lineages from the largest top-level

clade defined in Table S2. Since Fig. 2D suggests that evolutionary forces may be different for
closely related strains, we chose only a single lineage from each subclade defined by cutting the
core genome tree at divergence d = 10−3. For pairs of SNVs in the same gene, we assigned a
coordinate distance ` based on their relative position on the reference genome. For a given value
of `, we then estimated σ2

d
(`) via

σ̂2
d (`) =

∑ �( fAB − fA fB)2∑ �fA(1 − fA) fB(1 − fB)
(S6.4)

where the sum runs over all pairs of synonymous siteswith distanceswithin the range (`−∆`, `+∆`),
as described in Fig. 4. Here, fA = fAb + fAB, and fB = faB + fAB, where fAB, fAb, and faB
denote the frequencies of the gametic combinations in the across-host population. The hat
symbols denote unbiased esimators for the respective quantities underneath, based on the observed
gamete counts nAB, nAb, naB, and nab in our sample of hosts. We assume that the counts are
sampled from the frequencies through the multinomial distribution,

Pr[®n| ®f ] =
n!

nAB!nAb!naB!nab!
f nAB

AB
f nAb

Ab
f naB

aB f nab

ab
, (S6.5)

where n = nAB + nAb + naB + nab is the total sample size. The estimate for the hat symbols
above are constructed via linear combinations of polynomials in the n’s chosen to have the same
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expected value as the quantity underneath the hat. These expressions are somewhat unwieldy,
but are provided in the associated computer code.

After applying this method, we obtain estimates of within-gene σ2(`) as a function of `,
and a core-genome-wide value estimated from SNVs in different genes (Fig. 4), which can be
compared with the theoretical prediction in Eq. (S6.3). Because the core-genome-wide value of
σ2
d
is usually much lower than its intragenic counterpart, we assume that `r is much larger than

the ∼ 3000bp intragenic window we consider, so we formally set `r = ∞. However, it is also
clear from Fig. 4 that σ2

d
(`) does not always approach the neutral expectation as ` → 0. As is

common practice, we therefore consider an expanded class of models of the form

σ2
d (`) = C ·

10 + 2Nr`
22 + 26Nr` + 4(Nr`)2

(S6.6)

for some arbitrary normalization constant C, which must be jointly estimated from the data.
(The introduction of C is equivalent to focusing on the percentage change in σ2

d
, rather than its

absolute value.)
This model has two free parameters (Nr and C), which can be estimated from the observed

values of σ2
d
at any two values of `. We fix one of these at a reference location `1 = 9bp, which

was chosen to balance the desire to have `1 � 1/Nr, but also to be as large as possible to
minimize contamination from compound mutation events. For the second value of σ2

d
(`), we

focus on distances of the form

`p = min

{
` :

σ2(`)

σ2(`1)
≤ p

}
(S6.7)

for some fraction p (e.g., p = 1/2, p = 1/4, etc.). In other words, `p is the distance at which the
observed value of σ2(`) first falls to a percentage p of its value at `1. According to the model in
Eq. S6.6, these distances should satisfy

p ≡
σ2
d
(`p)

σ2
d
(`1)
=

10 + 2Nr`p
22 + 26Nr`p + 4(Nr`p)2

·
22 + 26Nr`1 + 4(Nr`1)2

10 + 2Nr`1
(S6.8)

which depends only on Nr, in addition to the observed values of p, `1, and `p. Solving this
function numerically, we obtain estimates for Nr for different values of p.

In the neutral model that leads to Eq. S6.1, the population size N can be estimated from the
average pairwise divergence, dS = 2Nµ. Thus, we normalize the estimated values of Nr by dS/2
to obtain an estimate of the ratio r/µ for different values of p. As long as the model is a good
description of the data, these estimates should be approximately independent of the choice of p.
The observed deviations in r/µ as a function of p (Fig. S14) point to fundamental deviations
from the model in Eq. (S6.6) that cannot be accounted for by simply varying the parameters. This
suggests that the decay of σ2

d
(`) may hold power for investigating departures from the simple

neutral model above (e.g. to include hitchhiking, population structure, variation in recombination
rate within genes, etc.).
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S7 Text

Validation of between-host patterns using isolate sequences
A major practical advantage of our metagenomic approach is that it can resolve a large number
of quasi-phased genomes across many species, using data from a much smaller number of host
metagenomes (Fig. 1F). These large sample sizes enabled our between-host population genetic
analyses in Fig. 2-Fig. 4. In principle, many of these analyses could be performed equally well
using traditional isolate-based approaches, in cases where comparably large numbers of isolates
have been sequenced. However, as noted by Ref. [35], there are currently few isolate sequences
available for many of the most prevalent human gut bacteria. To validate our approach, we
therefore repeated our between-host analyses for the handful of species in Fig. 1F where larger
sample sizes are available.

We downloaded isolate genomes from the PATRIC database [99] (as of May 1, 2018) that
were annotated as belonging to one of three bacterial species: Bacteroides vulgatus (n = 15
genomes), Bacteroides fragilis (n = 107), and Parabacteroides distastonis (n = 17). Of these,
only B. fragilis has a sample size approaching those available in our metagenomic study. We
simulated metagenomic reads from each these isolate genomes at 100x coverage using the
software Grinder [104]. These synthetic metagenomes therefore constitute simple versions of
the QP samples we have analyzed above. We processed these synthetic metagenomes using the
same MIDAS-based pipeline described in SI Section S1 Text, and we repeated our between-host
analyses using the same code that we used to analyze the true metagenomic samples in the main
text. The results largely recapitulate our findings in the main text (Fig. S13), particularly the
observation of recombination within genes (compare Figs. S13D and S12A). This provides an
important validation of our quasi-phasing approach.

We note, however, that we observe a somewhat larger number of closely related strains among
the B. fragilis isolates than among the quasi-phased samples in Fig. 2. This could arise from the
fact that many of the isolates in the PATRIC database were collected from a study in the same
hospital [57], where they are more likely to have arisen from the same clonal expansion. This
highlights the benefits of the large cohort studies that we have utilized (e.g., Refs. [42,44, 45]),
which were designed with an eye toward obtaining a representative random sample from a
population.
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S8 Text

Quantifying prevalence of within-host SNV and gene changes
S8.1 Excess of high-prevalence SNVs
To interpret the SNV prevalence distribution in Fig. 5C, we compared the observed data to a null
model of random de novo mutation. In such a model, within-host SNVs are assumed to occur
uniformly along the genome of the resident population. If the resident population is fixed for
the cohort-wide consensus allele, than the derived allele of the within-host sweep will be the
cohort-wide minor allele, whose prevalence we denote by pi . On the other hand, if the resident
population is fixed for the cohort-wide minor allele, than the derived allele of the within-host
sweep will be the cohort-wide consensus, which has prevalence 1 − pi . To a first approximation,
a random resident population can be formed by replacing the consensus genotype at each site
with the cohort wide minor allele with probability p. Thus, under a model of random de novo
mutation, the null distribution of prevalence is given by

f (p) =
1

L

L∑
i=1

[piδ(p − (1 − pi)) + (1 − pi)δ(p − pi)] , (S8.9)

where δ(·) is the Dirac delta function, and the sum is over all L sites in the genome.
To compare this model with the observed data, we generated null expectations for the

prevalence bins in Fig. 5C, using the database of private SNVs to populate the first and last
bins. Different species genomes were weighted according to the number of within-host SNV
differences observed in each species. Under the null hypothesis, the observed counts follow a
multinomial distribution with these expected weights. We quantified deviations from this null
model using the log-likelihood of the observed data as our test statistic:

T({nk}) = − logΛ({nk}) = −
∑
k

nk log fk , (S8.10)

where nk denotes the observed number of SNVs in prevalence bin k, and fk denotes the expected
weight in that bin. Significance was assessed numerically by resampling the null distribution for
n = 104 bootstrap iterations, and calculating the fraction of bootstrap samples with T greater
than or equal to the observed value.

Null distributions for the prevalence of gene gains and losses are obtained using a similar
procedure. We assume that de novo mutations cannot produce a gene gain by definition, so we
only consider the distribution of prevalence within the set of gene losses. We assume that random
de novo gene losses occur uniformly throughout the genome of the resident population, and that
a given gene is present in the resident population with probability proportional to its prevalence
pi . The null distribution for gene loss prevalence is therefore given by

f (p) =
∑

i piδ(p − pi)∑
i pi

, (S8.11)

where the sum is over all genes in a species’ pangenome. The null expectations in Fig. 5D are
obtained by summing this null distribution within each prevalence bin, and multiplying by the
same total number of losses.

S8.2 Non-uniform distribution of synonymous and nonsynonymous mu-
tations

To quantify the relationship between prevalence and the inferred strength of natural selection, we
examined the differences in the relative fraction of synonymous (4D) and nonsynonymous (1D)
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in the different prevalence bins in Fig. S16C. We compared the observed distribution against a
null model prevalence and amino acid impact are independent of each other. The null model is
chosen so that it has the same overall prevalence distribution and fraction of nonsynonymous and
synonymous mutations as the observed data. If we let pn denote the fraction of nonsynonymous
mutations across all prevalence bins, then under the null model, the number of nonsynonymous
mutations in bin k (nn

k
) should be binomially distributed with success probability pn. As above,

we quantified deviations from this model using the log-likelihood as a test statistic,

T({(nnk, n
s
k}) = − logΛ{(n

n
k, n

s
k} = −

∑
k

log

[(
nn
k
+ ns

k

nn
k

) (
pn

)nn
k (1 − pn)

ns
k

]
. (S8.12)

Significance was assessed numerically by resampling the null distribution for n = 104 bootstrap
iterations, and calculating the fraction of bootstrap samples with T greater than or equal to the
observed value.

To demonstrate this result is robust to the choice of prevalence bins, we directly compared the
raw prevalence values of synonymous and nonsynonymous mutations using the Kolmogorov-
Smirnov (KS) test [111]. In particular, we calculated the KS distance D between the empirical
prevalence distributions of synonymous and nonsynonymous mutations (Fig. S17B). To assess
significance, we compared the observed value of D against a null model where the synonymous
and nonsynonymous labels are randomly permuted across the different prevalence values. We
performed n = 104 bootstrap iterations, and calculated a P-value as the fraction of bootstrap
samples with D greater than or equal to the observed value.

S8.3 Time-reversal asymmetry
To provide further support for the hypothesis that modification events represent evolutionary
changes, we examined the temporal asymmetry of the prevalence distributions in Fig. 5C,D. If
these genetic differences were primarily driven by equilibrium processes like (i) replacement by
extremely closely related strains or (ii) bioinformatic artifacts like read donating described in
SI Section S1 Text, then the statistical features of these changes should be independent of the
labeling of the initial and final timepoints. This is a form of time-reversal symmetry [112]. In
contrast, evolutionary processes often violate time-reversal symmetry, particularly when natural
selection is involved, since less-fit ancestors are continually replaced by fitter descendents (and
only rarely the other way around).

To see how time-reversal symmetry applies in the context of Fig. 5, we note that if we
reverse the intial and final timepoints, then gene gains become gene losses and vice versa, while
their prevalence values (and the overall number of gene changes) are preserved. Similarly, for
within-host SNV differences, reversing the order of time switches the roles of the ancestral and
derived alleles, so that the prevalence of the derived allele switches from p → 1 − p. Thus,
reversing the order of time reflects the distributions in Fig. 5C,D across the central axis of
each panel. Time-reversal symmetry therefore requires that these prevalence distributions are
symmetric about this central axis.

We tested for violations of time-reversal symmetry using a Kolmogorov-Smirnov (KS)
procedure [111], similar to the one employed in Text S8.2. For the SNVs in Fig. 5C, we calculated
the KS distance D between the observed distribution of (unbinned) prevalence values, and a
corresponding symmetrized version, in which every prevalence value p is duplicated with its
time-reflected value 1 − p (Fig. S17A). To assess significance, we compared the observed value
of D against a null model in which the initial and final timepoints of each resident population
are randomly permuted. We carried out this procedure for n = 104 bootstrap iterations, and
calculated a P-value as the fraction of bootstrap samples with D greater than or equal to the
observed value. We used a similar procedure to test for deviations of time-reversal symmetry
for the gene gains and losses in Fig. 5C, except with the KS distance D calculated using the
prevalence distributions of gains and losses (Fig. S17C). For both SNV and gene changes,
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we observed significant deviations from the null model of time-reversal symmetry (P < 10−4

and P ≈ 2 × 10−3, respectively). This suggests that evolutionary processes, rather than strain
replacement or bioinformatic errors, provide a better explanation for the data.
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