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SUMMARY 

Formation and segregation of the cell lineages forming the vertebrate heart have been 

studied extensively by genetic cell tracing techniques and by analysis of single marker 

gene expression both in embryos and differentiating ES cells. However, the underlying 

gene regulatory networks driving cell fate transitions during early cardiogenesis is only 

partially understood, in part due to limited cell numbers and substantial cellular 

heterogeneity within the early embryo. Here, we comprehensively characterized cardiac 

progenitor cells (CPC) marked by Nkx2-5 and Isl1 expression from embryonic days 

E7.5 to E9.5 using single-cell RNA sequencing. By leveraging on cell-to-cell 

heterogeneity, we identified different previously unknown cardiac sub-populations. 

Reconstruction of the developmental trajectory revealed that Isl1+ CPC represent a 

transitional cell population maintaining a prolonged multipotent state, whereas extended 

expression of Nkx-2.5 commits CPC to a unidirectional cardiomyocyte fate. Correlation-

based analysis of cells in the unstable multipotent state uncovered underlying gene 

regulatory networks associated with differentiation. Furthermore, we show that CPC fate 

transitions are associated with distinct open chromatin states, which critically depend on 

Isl1 for accessibility of enhancers. In contrast, forced expression of Nkx2-5 eliminated 

multipotency of Isl1+ cells and established a unidirectional cardiomyocyte fate. Our data 

provides a transcriptional map for early cardiogenic events at single-cell resolution and 

establishes a general model of transcriptional and epigenetic regulations during cardiac 

progenitor cell fate decisions. 
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INTRODUCTION 

Cell fate mapping has revealed that cardiac progenitor cells (CPCs) form at mouse 

embryonic day (E) 7.5 from Mesp1+ cell leaving the primitive streak during gastrulation 

at E6.5. Although cells giving rise to myocardial cells can be defined by their position in 

the primitive streak at E6.5, a stable commitment is only achieved after gastrulation 

when endocardial, epicardial and myocardial progenitor lineages are established. In 

vitro differentiation of cardiac precursor cells derived from embryonic stem cells (ESC) 

or precardiac mesoderm indicates that Brachyury+/Flk1+ cells give rise to Nkx2.5+, Isl1+ 

and Nkx2.5+/Isl1+ cells (reviewed by [1]). At this stage of mouse embryonic development 

(E7.5), Nkx2.5+, Isl1+ and Nkx2.5+/Isl1+ cells still retain a multilineage potential enabling 

them to generate cardiomyocytes, smooth muscle cells, endothelial cells and pericytes 

[2, 3]. Common CPCs labeled by expression of Mesp1 separate at early developmental 

stages into two distinct anatomical heart fields, the first (FHF) and second heart field 

(SHF), which contribute to the left ventricle and atria and the right ventricle, out flow 

tract and atria, respectively [4-6]. Aside from the different anatomical localization and 

contribution to different parts of the heart, the main difference between the FHF and 

SHF is the delayed differentiation of SHF cells, which unlike FHF cells do not 

differentiate immediately into myocardial cells but serve as a reservoir of multipotent 

CPCs during cardiogenesis (reviewed by [1]). 

 

Isl1 is expressed in cardiac progenitor cells (CPCs) of the secondary heart field, 

although a broader, transient expression has been noted in the anterior intra-embryonic 

coelomic walls and proximal head mesenchyme encompassing both the FHF and the 

SHF [7, 8]. However, efficient nGFP labeling of CPCs is only achieved in the SHF 

making the Isl1nGFP/+ knock-in reporter mouse line a reliable source for isolation of SHF 

cells [9, 10]. Moreover, inactivation of the Isl1 gene leads to defects of SHF derivatives 

but does not compromise formation of the primary heart tube [11]. In contrast, Nkx-2.5 

expression marks cells both of the FHF and SHF including the cardiac crescent and the 

pharyngeal mesoderm [1, 7, 12]. The expression of Nkx-2.5 in the pharyngeal 

mesoderm, the FHF and the primary heart tube suggests stage- or context-dependent 

cellular functions. Several lines of evidence indicate that Isl1 and Nkx-2.5 suppress 
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each other thereby allowing expansion of Isl1+ CPCs and differentiation into Nkx-2.5+ 

cardiomyocytes [7, 10].  

 

Differentiated cells (e.g. cardiomyocytes) are assumed to acquire their identity in a 

successive step-wise manner from multipotent cells (e.g. CPCs) but the different 

intermediate states allowing transition from multipotent precursor cells to differentiated 

descendants still await further characterization. Furthermore, differentiation is usually 

not fully synchronized in a precursor cell population in vivo but is accompanied by 

significant cell-to-cell heterogeneity owing to spatial positioning of individual cells and 

temporal differences in the availability of inductive signals. Cellular fate transitions go 

along with gradual remodeling of underlying gene regulatory networks and dynamic 

chromatin landscape. Global analysis of transcriptional changes does not provide the 

resolution to precisely analyze such complexity and to identify specific cellular transition 

states. To obtain a full assessment of the developmental trajectories of precursor cells 

that is not only restricted to single markers but provides a comprehensive overview of 

involved genes, single-cell transcriptional analysis seems necessary. Recent advances 

in single-cell RNA sequencing (scRNA-seq) allows characterization of transcriptomes at 

the single cell level [13]. Analyses of large groups of closely related transcriptomes 

poses specific challenges for computational methods [14, 15] but have been successful 

to characterize mouse lung and early mesoderm development [16, 17]. Essentially, 

scRNA-seq data were used to project data points from the high-dimensional gene 

expression space into a low-dimensional latent space [17-20]. Inclusion of landmark 

genes [21] and microdissection of relevant structures of murine heart have further 

refined this approach [22, 23]. Furthermore, pseudotemporal ordering [24] has been 

adapted for scRNA-seq data [25, 26] allowing to reveal cellular decisions during 

progression of cells through developmental processes and to identify underlying gene 

regulatory networks (GRN) driving cell fate transitions [27]. Transcriptional changes are 

either preceded, followed, or accompanied by changes in chromatin organization [28]. 

ATAC-seq (an assay for transposase-accessible chromatin using sequencing) provides 

a robust means to identify chromatin closure and opening at enhancers and promoters 
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in a limited number of cells [29] but has not been applied yet to characterize chromatin 

accessibility and putative regulatory elements driving cardiogenesis. 

 

Here, we used scRNA-seq to transcriptionally profile FACS-purified Nkx2.5+ and Isl1+ 

cells from E7.5, E8.5 and E9.5 mouse embryos and to monitor changes in transcription 

over closely linked time points for the capture of transiently unstable states. We decided 

to focus on native embryonic cells and not on ESC derivatives, since some in vitro 

results have to be viewed with a certain degree of caution despite some clear 

advantages of ESC-based approaches [30, 31]. By harnessing unsupervised 

bioinformatics analysis, we reconstructed the developmental trajectories of Nkx2.5+ and 

Isl1+ cells and identified a transition population in the second heart field, which became 

developmentally arrested after inactivation of Isl1. We show that forced expression of 

Nkx2.5 primes the cardiomyocyte fate and used ATAC-seq to characterize 

accompanying changes in the chromatin landscape. Our study provides a rich source 

for future studies aiming to dissect the functional role of newly identified genes in 

cardiac development and congenital heart disease. 

 

RESULTS 

Single cell transcriptomics reveals heterogeneity of cardiac progenitor cells 

Isl1 is expressed in common cardiac progenitor cells (CPCs) in the secondary heart 

field, although a broader, transient expression has been noted in the anterior intra-

embryonic coelomic walls and proximal head mesenchyme encompassing both the FHF 

and the SHF [7, 8]. However, efficient nGFP labeling of CPCs is only achieved in the 

SHF making the Isl1nGFP/+ knock-in reporter mouse line a reliable source to isolate cells 

of the SHF [10] (Fig. 1a). In contrast, Nkx2-5 expression marks cells in both the FHF 

and SHF including the cardiac crescent and the pharyngeal mesoderm [1, 7, 12]. The 

expression of Nkx2-5 in the pharyngeal mesoderm, the FHF and the primary heart tube 

suggests stage- or context-dependent cellular functions. Several lines of evidence 

indicate that Isl1 and Nkx2-5 suppress each other thereby allowing expansion of Isl1+ 

CPCs and differentiation into Nkx-2-5+ cardiomyocytes [7, 10]. However, the interplay 

between Isl1 and Nkx2-5 at the singular cell level at different stages of heart 
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development is far from clear. To unravel the molecular composition of either Isl1+ or 

Nkx2-5+ CPCs, we isolated GFP+ cells by FACS from Nkx2-5-emGFP transgenic and 

Isl1nGFP/+ knock-in embryos (Fig. 1a) at E7.5, E8.5 and E9.5 and performed single-cell 

RNA sequencing using the Fludigm C1 workstation (Fig. 1b). At E8.5 and E9.5 we used 

dissected hearts instead of the whole embryo, to avoid contamination of non-

cardiogenic cells that might be marked by Isl1 or Nkx2-5 expression. After removal of 

low quality cells (Supplementary Fig. 1a-g; Methods), we obtained 167 Nkx2-5+ and 254 

Isl1+ cell transcriptomes which cover the whole early heart development stages (Fig. 1b).  

 

We firstly sought to reveal the heterogeneous populations of Nkx2-5+ and Isl1+ CPCs 

that were sampled at successive developmental time-points described above. We 

analyzed the coefficient of variation and drop-out rates to defined heterogeneous genes 

as input for a neuronal network-based dimension reduction strategy (self-organizing 

map, SOM) [32], (Supplementary Fig. 2a & b; Methods). The resulting SOM maps were 

projected into 2D for visualization by t-distributed stochastic neighbor embedding (t-

SNE). This strategy allowed us to identify three major subpopulations of Nkx2-5+ and 

five subpopulations of Isl1+ cells (Fig. 1c). The Nkx2-5+ cluster 3 mainly comprised E7.5 

cells, whereas cluster 1 contained cells from E8.5 and E9.5 implying an intermediate 

cell state. Cluster 2 predominantly contained cells from E9.5 (Fig. 1d). Stage-dependent 

clustering was less evident for the five Isl1+ subpopulations, which might indicate that 

the specific cellular phenotypes of Isl1+ subpopulations are maintained for longer time 

periods even in a changing developmental environment (Fig. 1d). 

 

The existence of discrete clusters of CPCs within the developmental continuum 

suggests that subpopulation-specific genes might regulate proprietary cellular decisions. 

To identify such cluster-specific, differentially expressed genes (marker genes), we 

used MAST [33] and a gene ranking approach implemented in SC3 [34]. The top 269 

and 216 genes that were differentially expressed in the Nkx2-5+ and the Isl1+ lineage, 

respectively, included several established cardiac regulatory genes such as Hand1, 

Tbx3/4/5, Gata2/3, Smarcd3, Rbm24, Wnt5a, Bmp4, Notch1 and Fgf3/15 (Fig. 1e; 

Supplementary Table 1, 2) [22, 23, 35-37]. Importantly, we detected numerous 
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differentially expressed genes that so far had not been linked to cardiogenesis probably 

due to expression in limited cell numbers, which renders them invisible to conventional 

bulk transcriptome analysis (Fig. 1e; Supplementary Table 1, 2). For example, Isl1+ 

cluster 5 expressed several Hox genes including Hoxa7/9/10, Hoxb6, Hoxc8 and Hoxd8 

which were co-expressed with cardiac transcription factor Tbx3/4 and Wnt5a (Fig. 1e; 

Supplementary Fig. 3a) and might contribute to cardiac patterning in the second heart 

field between E7.5 and E8.5. Genes located at the 3'-ends of Hox clusters have not 

been implicated in early heart development before, although mutants of Hoxa1, Hoxa3, 

Hoxb1 genes [38-42], located at 5'-ends of Hox clusters and were expressed more 

broadly across cardiac progenitor cell clusters (Supplementary Fig. 3b), and compound 

deletion of Hox A/B clusters caused cardiac defects [43]. In addition, we newly identified 

several transcription factors (Fig. 1e; Supplementary Table 1, 2), such as Sox7/18, Sall3, 

Ldb3, Zbtb20, Zfp462/512b/711, Klf14; G-proteins including Arhgap1, Adgrf5, Arhgef15; 

and the de novo DNA methyltransferase Dnmt3b in Nkx2-5+ or Isl1+ clusters.   

 

Next, we assigned identities to each cluster based on the expression of key marker 

genes (Fig. 1f, g). Consistent with the gene ontology analysis of differentially expressed 

genes within each cluster, Nkx2-5+ cluster 3 and Isl1+ cluster 2, characterized by cTnt 

and α-smooth muscle actin expression appear to represent a myogenic fate whereas 

Isl1+ cluster 1, expressing Cd31, is characterized by endothelial cell features (Fig. 1f, g; 

Supplementary Fig. 4). Interestingly, expression of Nkx-2.5 and Isl1 varied among 

subpopulations within each lineage: (i) Nkx2-5 shows more pronounced expression in 

late stages (clusters 3 and 1, E8.5 and E9.5) (Fig. 1f, Fig. 2e); (ii) Isl1 expression 

decreases in the cells expressing differentiation markers (clusters 2 and 1) (Fig. 1g, Fig. 

2f). This pattern suggests that Nkx-2.5 is associated with myogenic differentiation while 

Isl1 is linked to the maintenance of progenitor cell multipotency, which is consistent with 

previous models [10, 44, 45].  

 

To test robustness of our approach and to analyze whether we have sequenced 

sufficient numbers of cells to unveil the entire heterogeneity of CPCS, we generated 

single-cell transcriptomes of additional 663 Nkx2-5+ CPCs this time using WaferGen 
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iCell8 system (Fig. 1b). Since the sequencing depth of libraries generated with C1 and 

iCell8 systems (Supplementary Fig. 1a-e) differed, which masks the true biological 

heterogeneity, we corrected the resulting batch effects using the MNN method [46]. 

After successful merging and aligning data from both systems (Supplementary Fig. 5a, 

b), we performed the same analysis as described above. We identified 3 clusters of 

Nxk2-5+ CPCs, essentially mirroring the C1 data (Supplementary Fig. 5c, d). The 

consistent recapitulation of subpopulations when using significantly more cells (663 vs 

167 cells) suggests that even comparatively low numbers are sufficient to unravel the 

heterogeneity among Nxk2-5+ CPCs. Furthermore, we compared genes that were found 

to be differentially expressed among subpopulations using the C1 platform with the 

merged data set. We detected a similar distribution of marker genes in cluster 1 and 3 

but did not fully reproduce the marker gene pattern for cluster 2 (Supplementary Fig. 5e). 

We concluded that sequencing depth rather than cell numbers is the main limiting factor 

for discovery of novel genes in cardiac progenitor cells. Thus, we hereafter focused our 

analysis on the C1 data, which provided substantially deeper sequence coverage 

(Supplementary Fig. 1a-e). 

 

Reconstruction of development trajectories reveals differential developmental 

potential of Isl1+ and Nkx2-5+ CPCs 

Availability of scRNA-seq data allows ordering of cells by “pseudotime” based on cell-to-

cell transcriptome similarity to reveal underlying developmental trajectories. We took 

advantage of diffusion maps to arrange cardiac progenitor cells according to their 

developmental pseudotime [26]. We mapped the cells collected at successive 

developmental stages along the pseudotime and reconstructed the developmental 

trajectories of Nkx2-5+ and Isl1+ CPCs (Fig. 2a, b). Interestingly, cells collected at the 

same embryonic stages aligned to broad pseudotime points, which suggested that 

CPCs are not synchronized at different embryonic stages but follow individual 

developmental traits. Next, we aligned the different Nkx2-5+ and Isl1+ cell clusters to 

developmental trajectories. Nkx2-5+ CPCs showed one continuous trajectory suggesting 

a unipotent differentiation capacity (Fig. 2a). In contrast, the trajectory of Isl1+ CPCs 

bifurcated into two distinct orientations, namely towards endothelial cells and 
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cardiomyocytes, respectively, suggesting the existence of a transition state, which 

separates multipotency of Isl1+ CPCs from acquisition of distinct cellular identities (Fig. 

2b).  

 

Cells undergoing a critical fate decision (such as lineage bifurcation) have been 

postulated to pass transition states [27], which corresponds to a switch between 

different attractor states (i.e. stable states of the underlying gene regulatory network) 

[47]. To delineate such transition states, we calculated the critical transition index of 

Nkx2-5+ and Isl1+ cell clusters [abbreviated as Ic(c) ] [48]. The Ic(c) values of Nkx2-5+ 

clusters showed similar numerical ranges essentially excluding existence of a transition 

state in the Nkx2-5+ cell population, although cells from later stages (cluster 1) were 

characterized by a decrease of Ic(c) indicating stable settlement into an attractor state 

(Fig. 2c, left), characterized by a cardiomyocyte-like expression (Fig. 1e). In contrast, 

computation of IC(c) values of Isl1+ clusters revealed decreased values for cells at the 

bifurcation point (cluster 3 and 4), indicating appearance of a transition state. Cells that 

overcame this point (clusters 1 and 2) exhibited more coordinated changes of gene 

expression changes (Fig. 2c, right). Since the critical transition index only hints to the 

presence of a transition state but does not reveal its stability, we calculated pairwise 

cell-to-cell distances [49] (Supplementary Fig. 6a & b). High cell-to-cell distances in 

seemingly homogeneous populations indicate transcriptional noise, which occurs when 

several gene regulatory networks become active opening new opportunities for cellular 

decisions. As expected, cell-to-cell distances of Nkx2-5+ CPCs did not change 

dramatically while cell-to-cell distances of Isl1+ CPCs in cluster 3 and 4 increased 

substantially (Fig. 2d). Taken together our results show that Nkx2-5+ CPCs follow a 

straight path towards their cardiomyocyte fate whereas Isl1+ CPCs need to overcome a 

transition state with elevated noise levels. 

 

To identify genes that are potentially required to determine and/or maintain 

correspondent cell states, we generated a list of 108 genes for Nkx2-5+ cells and 130 

genes for Isl1+ cells positively correlated with pseudotime across clusters 

(Supplementary Fig. 7a & b) (Spearman rank correlation coefficient > 0.5; 
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Supplementary Table 3). Gene expression levels were plotted along the Nkx2-5+ 

trajectory and along the two branching trajectories of the Isl1+ lineage to visualize the 

establishment of stage-specific gene expression patterns (Supplementary Fig. 7c & d). 

Furthermore, we classified correlated genes expressed in multipotent progenitor cells at 

early stages into a “priming” category or as “de novo” genes when expressed at fate-

restricted stages. Transcription factors (TFs) and their chromatin-modifying partners 

play pivotal roles in during heart development [36]. To understand the mechanism 

regulating cardiogenesis in CPCs, we focused on “priming” and “de novo” TFs (Fig. 2e 

& f). We note that along Nkx2-5+ developmental trajectories, the expression of de novo 

DNA mthyltransferase Dnmt3b, Gata2/3, Hand1 and Msx1 were increased, serving as 

“priming” genes. By contrast, the expression of Nkx2-5, Ankrd1, Asb2, Cdkn2d, Hopx, 

Mef2c, Myocd, Smyd1, Tgfb1i1 and Tbx20 were down-regulated during Nkx2-5+ CPC 

differentiation (Fig. 2e). Moreover, the “priming” TFs for Isl1+ CPCs include Hox-family 

genes (Hoxa7, Hoxa9, Hoxb6, Hoxc8 and Hoxd8), cardiac TFs (Gata2, Hand1, and 

Tbx3/4), Hhex, Msx1, Pitx1, Nkx1-2, Ets2, Sall4 and Snai1. The “de novo” TFs for Isl1+ 

CPCs are Mef2c, Nkx2-5, Tgfb1i1, Asb2, Ankrd1, Myocd and Smyd1 (Fig. 2f). Overall, 

the distinct expression pattern of “priming” and “de novo” TFs in Nkx2-5+ compared to 

Isl1+ cells implies that different gene regulatory networks are active in either cell 

population. 

 

Isl1 is indispensable to overcome a stable attractor state prior to bifurcation 

The loss of Isl1 results in absence of outflow tract and right ventricle and early 

embryonic lethality [11], which prevents dissection of Isl1 dependent molecular 

processes in the SHF. To address the role of Isl1 in cell fate determination, we 

inactivated the Isl1 gene by generating Isl1nGFP/nGFP embryos (serving as Isl1−/−) and 

isolated Isl1-GFP+ cells by FACS for scRNA-seq analysis at E9.5 (Fig. 3a). Projection of 

Isl1-KO single cells on the trajectory of the developing SHF revealed that Isl1-KO cells 

are stalled/trapped in the previously identified stable attractor state (Fig. 3b). We next 

asked whether the stalled/trapped state of Isl1-KO cells are resulted from cell 

proliferation defects. We scored each KO and WT cell for its likely G1/S and G2/M cell 

cycle phase (Supplementary Fig. 8a-c; Methods), and found cycling cells of Isl1-KO 
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were marginally, although not significantly, less comparing to wild type cells (χ2 test: p= 

0.062) (Fig. 3c). This hints that proliferation defects partially resulted in attractor state of 

Isl1-KO cells. To get biological function hints from deregulated genes of Isl1-KO cells, 

we performed gene ontology analysis and found regulation of cell differentiation genes 

(GO: 0045595) were deregulated upon inactivation of Isl1 (Fig. 3d). Consistent with that 

Isl1-KO cells failed to differentiate towards either endothelial or cardiomyocyte fates, 

GO term “endothelial cell migration” and “muscle organ development” were enriched in 

differentially expressed genes in WT cells comparing to Isl1-KO (Fig. 3d). Taken 

together, our results indicate the molecular mechanisms how Isl1 plays the crucial role 

for CPC fate bifurcation and transition. 

 

Nkx-2.5 establishes a unidirectional fate for CPCs towards cardiomyocytes  

Our pseudotime-based analysis of developmental trajectories revealed one continuous 

trajectory of Nkx2-5+ CPCs suggesting that Nkx2-5+ cells are exclusively committed to 

become cardiomyocytes. Of course, such a conclusion is not compatible with previous 

lineage tracing studies suggesting that Nkx2-5+ cells contribute to other cell types such 

as smooth muscle cells [50]. We reasoned that Nkx2-5 expression is essential to 

maintain the ability of multipotent progenitor cells to differentiate into cardiomyocytes 

but that Nkx-2.5 expression is quickly terminated in cells, which acquire a stable smooth 

muscle cell fate thereby escaping Nkx2-5-emGFP based FACS-sorting. scRNA-Seq 

analysis indicated that Nkx2-5+ cells at E8.5 express α-SMA as well as several other 

smooth muscle markers such as Caldesmon, Tagln and Cnn1 but also cardiac markers 

such as cTNT (Fig. 1f, g; Supplementary Fig. 9), which clearly suggest the ability to 

differentiate into cardiomyocytes and smooth muscle cells. Cardiac priming at E8.5 due 

to continued expression of Nkx2-5 might overcome smooth muscle identity and induce a 

stable cardiomyocyte fate. To directly test this hypothesis, we pursued both loss of 

function and gain of function approaches. First, we re-analyzed the published scRNA-

seq data of Nkx2-5 null embryonic hearts at E9.5 [22] and found significantly increased 

numbers of smooth muscle cells raising from 14.5% (138/949 cells) in wildtype to 31.2% 

(39/125 cells) in Nkx2-5 mutant hearts (Fig. 4a). Second, we specifically expressed 

Nkx2-5 fused EGFP in the Isl1+ lineage using Isl1-Cre to initiate transcription from the 
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Rosa26 locus (hereafter named Isl1+/Nkx-2.5OE) [10]. Isolation of GFP+ cells by FACS 

from E12.5 embryonic hearts and scRNA-seq (Fig. 4b) revealed that Isl1+/Nkx-2.5OE 

cells align to the Nkx2-5+ trajectories and the cardiomyocyte-like branch of the Isl1+ 

trajectory (Fig. 4c, d). Importantly, Isl1+/Nkx-2.5OE cells did not contain any endothelial 

cell- or smooth muscle cell- like populations, although by E12.5 Isl1+ cells have given 

rise to multiple endothelial cells in wildtype conditions (Fig. 4d). Taken together our 

results indicate that Nkx2-5 is required and sufficient to induce cell fate bifurcation and 

to resolve the multipotent differentiation capacity of CPCs.   

 

The landscape of chromatin accessibility in cardiac progenitor cells 

To assess changes in genome-wide chromatin accessibility during early heart 

development, we performed ATAC-seq on 2,000–50,000 of FACS-sorted Nkx2-5+ and 

Isl1+ cardiac progenitor cells sampled at E7.5, E8.5 and E9.5 (Fig. 1b). For each 

condition and time-point, at least two biological replicates were sequenced to obtain an 

average of 36 million paired-end reads per sample (Supplementary Table 4) 

(Supplementary Fig. 10a). In addition, we obtained transcriptional profiles of each 

corresponding developmental stage by bulk RNA-seq using SMART-seq2 [51]. Only the 

biological replicates of high reproducibility were retained for further analysis 

(Supplementary Fig. 10a & b). Using edgeR [52] for sequential pairwise comparisons of 

the Nkx2-5+ and Isl1+ samples separately, we detected a total of 5,866 differential 

chromatin accessibility peaks (log2[fold changes]>2 or <-2, FDR <0.05) in Nkx2-5+ cells 

and Isl1+ cells at different developmental stages. Interestingly, many differentially 

accessible regions in in Nkx2-5+ cells represented chromatin-opening events, although 

chromatin closure was fairly abundant. In contrast, chromatin-closing events 

represented the vast majority of chromatin accessibility changes in Isl1+ cells (Fig. 5a) 

implying distinct chromatin states in either cell population. We observed robust closing 

chromatin peaks from E8.5 to E9.5 in the Nkx2-5 and the Isl1 lineage, suggesting that 

cell-fate restriction is associated with global loss of chromatin accessibility (Fig. 5a).  

 

K-means clustering of the genome-wide distribution of differential peaks revealed 7 

chromatin accessibility clusters for the three investigated developmental stages at 
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locations proximal and distal to transcriptional start sites (TSS) (Fig. 5b). Cluster 1 and 7 

showed increased chromatin accessibility from E7.5 to E8.5 whereas clusters 2-6 

represented closing chromatin, probably associated with differentiation of CPCs (Fig. 5b, 

Supplementary Fig. 11a). Between E8.5 and E9.5, we observed both a substantial loss 

of chromatin accessibility (cluster 6) and a gain of chromatin accessibility (cluster 7). 

Thus, we identified the combinatory patterns of distinct chromatin accessibility patterns 

that represent cell fate transition and terminal differentiation. 

 

Next, we explored whether changes in proximal chromatin accessible peaks regulate 

gene expression and which genes were subject to regulation. In support of a functional 

role for transcription regulations, the proximal peaks are highly enriched at transcription 

start sites (TSS) (Fig. 5c). We selected the differential chromatin accessibility peaks 

located in the promoters and the changes of which is positively correlated with 

differential gene expression (DE genes) across all the conditions, and generated 805 of 

differential-peak/DE-gene pairs (Fig. 5d). Gene ontology (GO) analysis of this set of 

genes revealed enrichment for the terms cell signaling, regulation of cell signaling and 

cell communication. A minor group of genes was associated with heart-specific term 

such as heart process, heart contraction or cardiac muscle cell action potential (Fig. 5e). 

The genes involved in cell signaling comprised the Wnt, BMP, FGF, Notch, TGF-β and 

Ras-MAPK families suggesting that the dynamic changes in chromatin accessibility 

renders such cells responsive to environmental stimuli during development. For 

example, canonical Wnts like Wnt8a maintains proliferation of CPCs proliferation while 

non-canonical Wnts (e.g. Wnt11) promote differention [53, 54]. Correspondingly, the 

ATAC-seq analysis demonstrated that the promoter of Wnt8a is closing from E7.5 to 

E9.5 during Isl1+ CPCs differentiation while the promoter and gene body of Wnt11 are 

more accessible from E7.5 to E9.5 in Nkx2-5+ CPCs (Fig. 5f, g).  

 

ATAC-seq provides an excellent tool to identify transcription factor (TFs) binding regions 

that become accessible due to nucleosome eviction and/or chromatin remodeling [29] 

by interrogating enrichment of TF motifs. Such hotspots for transcription factor binding 

are potential enhancers. H3K4me1 and H3K27ac are the predominant histone 
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modifications found at enhancer elements [55]. Concordantly, we noted that H3K4me1 

and active mark H3K27ac showed enriched distributions with distal ATAC-seq peaks 

but not the repressive mark H3K27me3 or random peaks (Fig. 5h). 

 After exclusion of transcription factors that are not expressed in corresponding 

development stages based on our RNA-seq results, we scanned accessible peaks in 

chromatin for clusters 4-7 (distal peaks) at E7.5-E9.5, using the motifs from a set of 364 

transcription factors and the motif analysis package HOMER [56]. Gata family TFs were 

enriched in cluster 6 both in Isl1+ and in Nkx2-5+ cells at E7.5 and 8.5 but not at E9.5, 

suggesting they play roles in cell fate transition but not in differentiation (Fig. 5i). 

Interestingly, although Gata1/3/4 are expressed, they are not significantly enriched in 

clusters 4/5/7 at E7.5 and 8.5, suggesting the uneven genome distribution of 

developmental enhancers contributes to deployment of TF functions. In contrast to 

Gata-family TFs, Mef2a/b/c are enriched at E9.5 in cluster 7 in both Isl1+ and in Nkx2-5+ 

cells, suggesting Mef2 family TFs play role in CPC differentiation. Notably, we observed 

abrupt closure of sites containing motifs for several TFs including Zfx, Tcf12/21, Zfp809, 

POU3F1 and Nr2c2 from E7.5 to E8.5 in Isl1+ cells (cluster 6) indicating that binding of 

such TFs has to be abrogated quickly once CPC fate is established and before CPC 

specification occurs. Consistent with the loss of chromatin accessibility in cluster 6 from 

E8.5 to E9.5 (Fig. 5b), most TFs found at E8.5 (cell transition state identified by our 

scRNA-seq as above) were completely absent at E9.5 in both Isl1+ and in Nkx2-5+ cells 

(Fig. 5i). Some TF motif patterns were conserved between Isl1+ and Nkx-2.5+ cells, 

such as the pattern for Gata1/3/4, but the majority was different, suggesting that the 

same TF binds in a cell-type specific manner at different developmental enhancers to 

direct the fate of CPCs. Taken together our newly established open chromatin atlas in 

combination with RNA-seq identified a set of transcription factors that seems to 

orchestrate early heart development through distinct developmental enhancers, which 

are differentially active in either Isl1+ or Nkx2-5+ cells.  

 

Isl1 and Nkx2-5 shape chromatin accessibility during cardiogenesis 

To analyze how the lack of Isl1 expression affects chromatin accessibility, we performed 

ATAC-seq on Isl1 mutant CPCs at E9.5. Inactivation of the Isl1 gene resulted in 
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comparable numbers of opening and closing peaks (386 opening and 345 closing) (Fig. 

6a). Since our scRNA-seq analysis at E9.5 indicated arrest of Isl1 mutant CPC 

development, essentially converting the transcriptional profile of E9.5 into an E8.5 state 

(Fig. 3), we compared the landscape of chromatin accessibility of both populations. 

Surprisingly, we found that E8.5 Isl1+ cells and E9.5 Isl1 mutant cells show significantly 

different open chromatin signatures (432 opening and 728 closing), although they share 

similar positions at the developmental pseudotime trajectory (Fig. 6a), which indicates 

that Isl1-dependent changes in chromatin accessibility occur ahead of transcriptional 

divergence.  

 

Loss of Isl1 led to more robust opening than closing of chromatin regions as identified 

by k-means clustering (cluster 1 peaks depend on Isl1 for opening as they are closed 

upon Isl1 knock-out; cluster 2 peaks depend on Isl1 for closing) (Fig. 6b, Supplementary 

Fig. 11c), which suggests that Isl1 primarily maintain an open chromatin state. 

Annotation of opening and closing peaks by GREAT analysis [57] showed that 96.2% of 

the peaks (1,256) located in distal regions (> ±5 kb to the TSS sites) representing 

enhancer regions affecting cardiac progenitor cell decisions (Fig. 6c). In support of their 

enhancer occupies, the active mark H3K27ac and H3K4me1 for enhancers showed 

enriched distributions in both cluster 1 and 2 peaks comparing to repressive mark 

H3K27me3 or random peaks (Fig. 6d). Investigation of transcription factor motifs 

enriched in either opening or closing peaks using the motif analysis package HOMER 

[56] revealed that binding sites for GATA family factors and Tbx20 are enriched in both 

opening and closing peaks, suggesting an Isl1-independent mode of action. In contrast, 

binding sites for Mef2-family members were only enriched in Isl1-dependent opening 

peaks while binding sites for Forkhead box family TFs were enriched in Isl1-dependent 

closing peaks (Fig. 6e). We concluded that Isl1 acts together with Mef2 factors but 

prevents binding of Forkhead factors to guide cardiac progenitor cell fate decision. The 

enrichment of CTCF and CTCFL in open peaks implied that Isl1 alters the topology of 

the chromatin to achieve chromatin opening. Surprisingly, Isl1 binding motifs were not 

significantly enriched in either opening or closing peaks suggesting that Isl1 changes 
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chromatin accessibility not directly but by secondary effects, e.g. CTCF/CTCFL 

mediated-chromatin reorganization. 

 

In contrast to the inactivation of Isl1, which led to a comparable number of opening and 

closing peaks, forced expression of Nkx2-5 resulted in more accessible chromatin, 

compared to either Nkx2-5+ or Isl1+ cardiac progenitor cells, and few closing peaks 

(opening peaks: 556 for Nkx2-5+ and 1,526 for Isl1+; closing peaks: 73 for Nkx2.5+ and 

86 for Isl1+) (Supplementary Fig. 11c). Interestingly, forced expression of Nkx2-5 

resulted in dramatic open chromatin state at E9.5 comparing to E12.5 and Nkx2-5+ or 

Isl1+ CPCs at E9.5 (Fig. 6f, g). We noted that such transient opening chromatin state 

was not stable and could not be sustained upon CPC differentiation, indicating a 

epigenetic plasticity (Fig. 6f). We speculated the opening chromatin state resulted from 

Nkx2-5 overexpression was reconfigured to closed state during cell differentiation.  

Similar to Isl1, most effects of forced Nkx2-5 expression were confined to distal regions 

(96.7% of 3,374 peaks) probably representing enhancers (Supplementary Fig. 6e). We 

performed motif analysis in these peaks and found most of the peaks corresponded to 

Sox family factor binding sites, although Nkx2-5 motif were not significantly enriched 

suggesting the altered chromatin accessibility upon Nkx2-5 overexpression is through 

secondary effects (Supplementary Fig. 11f).  

 

Our analysis unveiled that Nkx2-5 and Isl1 mainly act at distal gene regions 

representing putative developmental enhancers to evoke dramatic effects on chromatin 

accessibility. Although more refined experiments are required to determine the impact of 

different TFs and individual enhances on cell fate decisions of CPC, our study provides 

a basic framework to understand the dynamic changes in Nkx2-5- and Isl1-driven 

chromatin accessibility that shape the early heart.  

 

DISCUSSION 

The long-lasting question in developmental biology is when and how the multipotent 

progenitor cells are restricted to final cell fates in a stepwise manner. Besides, it is still a 

challenge to capture the transition states in which time the fates of progenitor cells are 
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specified to their terminally differentiated descendants. In this study, we took an 

unprecedentedly detailed and closer glimpse into the transcription and epigenetic 

regulations of early heart development whereby we specifically focused on cardiac 

progenitor cells. Using single-cell RNA sequencing approach, we carried out deep 

sampling of more than 1,100 CPCs altogether at successive time points, revealed the 

heterogeneity of CPCs and reconstructed their developmental trajectories. Of note, we 

uncovered the bifurcation and transition state of Isl1+ CPCs. Moreover, we performed 

both gain and loss of function study to demonstrate our conclusions. The analyses of 

big data pose significant challenges towards single-cell sequencing field [13]. Here, we 

applied a comprehensive analysis based on self-organizing maps, which mitigates the 

presence of dropouts by aggregating metagenes from highly similar individual genes in 

an unsupervised manner. Besides visualization of cellular transcriptomes, the lower 

dimensional representation of SOMs allowed us to employ advanced clustering 

strategies, like t-SNE and HDBSCAN, and uncover the presence of subpopulations 

irrespective of cell collection time-point.  

 

Our scRNA-seq analysis provides a database of rich resource for novel gene discovery 

in the heart development study. For example, by comparing transcriptomes within cell 

subpopulations, we surprisingly found that homeobox genes Hoxa7, Hoxa9, Hoxa10, 

Hoxb6, Hoxc8, and Hoxd8 are temporally expressed during early induction of the 

second heart field (Fig. 1). Hox genes are well known to establish anterior–posterior 

axis positioning during embryogenesis [58]. Interestingly, accumulating evidence has 

shown anterior Hox genes (Hoxa1, Hoxb1, and Hoxa3) are involved in cardiac 

development [39, 41, 42]. On the other hand, our analysis revealed posterior Hox genes 

are specifically expressed in cardiac progenitor cells as well. Taken together, we 

speculate that Hox family transcription factors contribute to patterning of heart.  Gene 

disruption of some Hox genes identified by our analysis e.g. Hoxb6 was not reported to 

show cardiac phenotypes, although there are other phenotypes such as hematopoietic 

and skeletal muscle defects [59]. We speculate that it is likely the heart development 

was not comprehensively studied in such models due to lacking their temporal 

expression profiles in early heart development. Another possibility is due to the 
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compensation effects, since as many as 39 murine Hox genes are of highly conserved 

and they can mutually compensate each other by overlapping protein expressions in a 

defined embryonic segment [60]. Consistently, deletion of either HoxA or HoxB gene 

cluster results in embryonic lethality but does not show cardiac defects, yet a compound 

deletion of HoxA and HoxB blocks cardiac morphogenesis before heart looping [43]. 

Signaling pathway retinoic acid regulates both heart development [36] and Hox 

expression [61]. Therefore, although there is no direct evidence, it implies that retinoic 

acid regulates Hox expression in cardiogenesis. Hox gene expression can be stimulated 

by histone H2B monoubiquitination in RNF20-dependent manner [62]. Interesting, de 

novo mutations of RNF20 have been identified in congenital heart disease (CHD) [63], 

which opens the possibility that de novo mutations of epigenetic-modifying enzyme 

RNF20 result in decreased level of H2B monoubiquitination which consequently 

influences Hox gene expression and eventually leads to abnormal heart development 

and CHD. Such candidate genes and hypothesis can be further tested in functional 

experiments in future. 

Lineage tracing and clonal analysis shown Nkx2-5+ cardiac progenitor cells contribute to 

cardiac endothelium and smooth muscle [50]. By reconstruction Nkx2-5+ cell 

development, we found Nxk2-5 is not expressed outside of cardiomyocytes upon 

differentiation, which is consistent with previous studies that Nkx2-5 expresses 

principally in cardiomyocytes [23]. We reasoned that it is due to the differences of 

lineage tracing and reporter-based sorting approaches, since here we only focused on 

the cells that express Nkx2-5 at the sampling time point. In coincidence, our analysis 

revealed that once the progenitor cells differentiate to smooth muscle cells, Nkx2-5 

expression is terminated rapidly. Furthermore, the forced expression of Nkx2-5 

completely skewed bipotent fate of Isl1+ cells to unipotent cardiomyocyte fate. Taken 

together, it suggests the Nkx2-5 guides cardiomyocyte differentiation as a master 

regulator at the hierarchical top of gene regulatory network. We believe the 

reassessment of the pivotal role of Nkx2-5 in cardiomyocyte benefits refinement of 

generation of stem-cell-derived cardiomyocyte which can be used to treat heart failure 

using cell-transplantation therapy. In addition, the cells in the cardiac crescent have 

started to express cardiomyocyte genes such as Myl7 [11, 64], suggesting they are 
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proceeding to cardiomyocyte at this stage, accompanying with increasing Nkx2-5 

expression (Fig. 1f, 2e). In contrast to unidirectional cardiomyocyte fate maintained by 

Nkx2-5, our analysis showed that Isl1 essentially maintain the multipotency of 

progenitor cells, and once they differentiate to terminal cell fates, the expression of Isl1 

decreases. 

Although chromatin remodeling has been linked to heart development and BAF 

chromatin-remodeling complex is known to regulate heart development by permitting 

binding of cardiac transcription factors to cardiac genes [64, 65], the genome-wide 

accessible chromatin dynamics during early heart development was almost blank, while 

our ATAC-seq analysis in cardiac progenitor cells provides the first open chromatin 

atlas and new insight into understanding such important unsolved question. We 

characterized distinct chromatin accessibility modules at different developmental stages, 

suggesting unique open chromatin patterns are associated with cell fates and identities. 

It is worth noting that only ~1.5% of the mouse genome is surveyed by our ATAC-seq 

(data not shown), which theoretically covers most of the cis-regulatory elements. Thus, 

it enables our analysis as being highly informative and sensitive by merely focusing on 

active regulatory elements. Interestingly, we observed that the binding of CTCF and 

CTCFL in open peaks is altered upon Isl1 knock-out, which opens new avenues that 

chromatin dynamics during heart development is regulated by chromatin loops in 

addition to known Baf60c mediated remodeling. Since ATAC-seq peaks contain all cis-

genomic elements such as enhancers, insulators as well as promoter, which leads to 

ambiguous correlations when we compare gene expression with chromatin open states. 

We therefore assigned and specifically selected the proximal peaks that positively 

correlate with gene expression, and revealed two gene categories which are regulated 

by open chromatin.  

 

Of all the differential accessible peaks we identified, 55% are in distal regions, which 

enables us to analyze putative enhancer dynamic changes that are integration hubs of 

transcription factor occupancy [55]. By motif enrichment analysis approach, we 

identified several novel TFs such as POU3F1 and Nr2c2 that regulate heart 

development through putative enhancers. In addition, by loss/gain of function studies, 
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we demonstrate that two cardiac transcription factors Nkx2-5 and Isl1 execute their 

functions through synergetic TF networks on putative enhancers. Interestingly, although 

our scRNA-seq suggests Hox family genes are expressed in the early development 

stage, their binding motifs are identified in the late one. As the development and 

differentiation of cardiac progenitor cell occurs within a narrow window (E7.5-E9.5, 48 

hours), it is likely that the Hox proteins can be sustained and play roles until CPC 

terminal differentiation. We compared the putative enhancers identified by our ATAC-

seq with fetal heart enhancers identified based on distal P300 binding and H3K4me1 

presence [66], and surprisingly found only limited chromatin regions overlap to each 

other (data not shown). We speculated that such differences are resulted from following 

reasons: (i) purified cardiac progenitor cells were used in this study, whereas fetal heart 

enhancer map was generated based on heterogonous heart cells; (ii) developmental 

enhancers undergo dramatic dynamics in different developmental stages. It is 

consistent with the latter speculation that we observed substantial different enrichment 

of many TF motifs at E8.5 and E9.5, including Gata4. Concordantly, ChIP-seq of 

GATA4 indicates that it binds to markedly different chromatin regions at different 

development stages [67]. Our ATAC-seq data in cardiac progenitor cells therefore 

conclude with a dynamic, development stage-specific transcription factor and enhancer 

interaction network that regulates cell fate decisions. 

 

METHODS 

Timed mating and sampling of single cells 

All animal experiments were carried out following regulations of the Committee for 

Animal Rights Protection of the State of Hessen (Regierungspraesidium Darmstadt, 

Darmstadt, Germany). The transgenic mouse lines used in this study have been 

described previously [9, 10]. C57BL/6 mouse embryos were dissected at E7.5, E8.5, 

E9.5 or E12.5, and the embryonic hearts at E8.5-E12.5 were further dissected under the 

dissection microscope to remove other non-heart tissue. The samples were digested 

into single cells with 0.25% trypsin-EDTA after PBS wash, stained with DAPI for viability, 

and live GFP+ cells were purified by BD FACSAria II. To obtain Isl1−/− or Isl1+/Nkx2-5OE 

cells, timed matings were set up between Isl1nGFP/+ mice or Isl1-Cre and Rosa26Nxk2-5-
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IRES-GFP mice, and genotyping PCR was performed using other non-heart tissue of the 

same embryos as previously described [10]. 

 

Single-cell RNA sequencing library preparation  

Single-cell capture, lysis, reverse transcription, and pre-amplification were processed 

with C1 chips (#100-5763, 10-17 μm) in the C1 single-cell Auto Prep System (Fluidigm) 

or the ICELL8™ Single-Cell System (Wafergen) following the manufacturer’s protocol. 

Libraries were sequenced on the Illumina NextSeq 500.  

 

Single-cell RNA-seq data analysis 

1. Raw data processing 

Low quality bases were trimmed off the raw sequencing reads using Reaper with a 

minimum median quality of 53 in a window of 20 bases, omitting the first 50 bases of the 

read. Additionally, the -dust-suffix 20/AT option was used to trim remaining polyA or 

polyT stretches at the end of reads as well as stretches of B (a special Illumina Quality 

Score indicating non-thrustworthy bases) with the –bcq-late option.  

The STAR alignment tool was used with default parameters to map trimmed reads to 

the mouse genome (version mm10) and transcriptome (--quantMode 

TranscriptomeSAM, together with the Gencode annotation in version vM10). 

Mapping quality and statistics was assessed using Qualimap in rnaseq mode, setting 

the protocol to strand-specific-forward and using the same Gencode annotation. The 

Qualimap output was used later for single-cell filtering (see below).   

RSEM was used with gene annotations from Gencode vM10 as well as a single-cell 

prior to assign reads to genes and extract gene-centered counts. 

 

2. Cell quality and filtering 

A SingleCellExpression-Set object (SCESet, R package scater) was created in R from 

all available metadata, cell quality data, gene annotations and the gene-centered count 

table. For each sequencing platform (Fluidigm C1 (C1) and Wafergen (WG)), an initial 

cell-quality map was generated with t-SNE (R package Rtsne), by grouping cells with 

similar quality metrics together (Supplementary Figure 1). The (per-cell) quality metrics 
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used as input were: number of features (genes) detected with at least 10 counts, the 

percentage of gene dropouts, the number of alignments, the number of alignments to 

exons, introns and intergenic regions, the number of secondary alignments, the 

expression of Rplp0 (also known as 36B4) as housekeeping gene, the percentage of 

read counts to mitochondrial genes, as well as the percentage of genes detected. 

To define cells as low quality, we formulated and evaluated five criteria for each cell: 

The percentage of counts to mitochondrial genes is 1.5 median-absolute-deviations 

(MADs) above the median, the number of detected features is 2 MADs above or below 

the median, the percentage of gene dropouts is 2 MADs above the median, the Rplp0 

expression is 2 MADs below the median and the percentage of genes is 1.5 MADs 

above or below the median. Cells failing more than one criterion were considered low 

quality and excluded from further analysis. See Supplementary Figure 1 for a graphical 

representation of the cell filtering. 

 

3. Gene filtering and expression normalization 

Similar to cell filtering, we defined two criteria for gene filtering: (1) A genes aggregated 

expression across all cells of a lineage (excluding cells from knockout and 

overexpression experiments) exceeds 2000 counts and (2) at least 10 cells from a 

lineage show a gene expression above 10 counts. A gene was filtered if it failed at least 

one criterion in both lineages. After filtering, count data of 12053 genes across 498 cells 

remained for further downstream analysis. 

  

We normalized remaining count data by applying the sum factor method, as 

implemented in the R package scater, to cells from the two lineages separately. 

 

4. Preprocessing of single-cell data from Li et. al [22]. 

We combined obtained count tables from wildtype cardiac single cells across time 

points E8.5, E9.5 and E10.5, as well as from Nkx2-5 knockout cells from E9.5 into a 

single SCESet object and filtered out cells that were marked as low-quality by the 

authors.  
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After filtering, count data from 11781 genes across 2358 cells was used to cluster cells 

using the quickCluster command from the R package scran and sum factor 

normalization was applied with deconvolution of size factors within obtained clusters.  

 

5. Definition of heterogeneous genes 

Sum factor normalized counts were used to define heterogeneous genes within 

lineages as well as within individual time points. Specifically, we calculated the 

coefficient of variation as well as the dropout-rate per gene and investigated their 

relationship to the mean expression of that gene. We next binned both (ordered) 

statistics into windows of size 200 and scaled values (zscore transformation) within 

windows. Genes for which one of the scaled statistics exceeded a 99-percentile within 

its window where called heterogeneous. 

 

6. Clustering 

We scaled normalized expression values of heterogeneous genes and used them as 

input to dimension reduction by self-organizing maps (SOMs) for each lineage, 

respectively. Briefly, SOMs or Kohonen Networks are a special case of neuronal 

networks, where no target vector containing class labels is necessary for training. 

Instead, a map is initialized randomly for each cell, consisting of fewer map tiles than 

input genes, effectively representing meta genes. During training, genes are 

subsequently placed onto map tiles with the most similar meta gene representation. 

Importantly, a gene ends up on the same map tile of all cell maps, therefore creating a 

lower dimensional representation of the cell’s transcriptome using meta genes. After 

2000 training epochs, cell maps were further projected into two dimensions by t-SNE 

(perplexity value of 15, 2000 epochs of convergence) and clustered with HDBSCAN 

using a minimum cluster size of 7 and min_samples 9 (Fig. 1 c, d and Supplementary 

Fig. 2 a, b). 

 

7. Differential expression and lineage dynamics 

We next assessed differentially expressed genes between cell clusters using MAST on 

sum factor normalized counts (log2 scale). Briefly, the MAST framework models gene 
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expression in a two-component generalized linear model, one component for the 

discrete expression rate of each gene across cells and the other component for the 

continuous expression level, given the gene is expressed. Additionally, we used a gene 

ranking approach (SC3) to define marker genes specific for each cluster 

(Supplementary Table 1, 2). 

 

To define lineage dynamics, we used all protein coding genes that were marker genes 

for a cluster (AUROC > 0.8, FDR < 0.01) and differentially expressed in any cluster 

(lower bound of LFC > 2 or higher bound of LFC < -2, FDR < 0.01) as input to destiny 

(Figure 2 a, b). 

 

8. Cell transition states and transcriptome noise 

For the critical transition index (IC(c)), we computed the absolute marker gene-to-gene 

and cell-to-cell correlations for each cluster and calculated the ratio of their means 

(Supplementary Figure 6 a, b). To reduce influence from differing cell numbers in 

clusters, we applied a bootstrapping procedure, randomly selecting 30 (20) cells from a 

given Nkx2-5 lineage cluster (Isl1 lineage cluster), repeating 1000 times.  

Pairwise cell-to-cell distances were calculated as proposed by Mohammed and 

colleagues[49].  

 

9. Gene correlation analysis 

We next sought to define gene networks that play a role in lineage development. We 

reasoned that a genes expression will either increase or decrease with lineage 

progression and therefore calculated the (global) Spearman’s Rank correlation of every 

genes expression to the diffusion pseudotime from destiny.  Since it is also possible that 

a gene exhibits its expression dynamics only within discrete states (clusters), we also 

calculated the (local) Spearman’s Rank correlation of gene expression to pseudotime 

within clusters. We defined a gene as correlated gene, if it shows a global correlation of 

at least 0.7 or a local correlation of at least 0.5 (Supplementary Table 3).  
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We next used the lineage-specific correlated genes to identify gene networks. Genes 

within the same sub-network show a high correlation (measured as Pearson’s 

Correlation), but a lower correlation between sub-networks (Supplementary Figure 5). 

To show the dynamics of correlated genes, we additionally smoothed their expression 

along pseudotime by calculating the mean expression in windows of 11 consecutive 

cells (Supplementary Fig. 7 c, d). 

 

10. Integration with Wafergen data 

To join data sets from the two different sequencing platforms, normalized expression 

values from heterogeneous genes were used as input into the mnnCorrect function from 

the R package scran. Briefly, mnnCorrect finds cells from different platforms that have 

mutually similar expression profiles. This is done by identification of pairs of cells that 

are mutual nearest neighbors, and can be interpreted as belonging to the same cell 

state.  For each MNN pair, the method estimates a pair-specific correction vector. 

Those vectors are in turn averaged with nearby MNN pair vectors from the same 

hyperplane using a Gaussian-Kernel to obtain more stable cell-specific correction 

vectors.  Importantly, this procedure also allows the correction of cells that are not part 

of any MNN pair, e.g. data set specific cells that were sampled only on one platform. 

 

Corrected expression values were used for clustering and differential expression 

analysis analogous to steps 6 and 7 of this document (Supplementary Fig. 5). 

 

11. Cell cycle scores of single cells 

Cell cycle scores were calculated for each known cell cycle stage (G1/S, S, G2, G2/M, 

M/G1) using gene sets from Whitfield et. al. Specifically, a raw score was calculated as 

the average expression of genes in each set. To refine the score, we determined genes 

that correlated (rank correlation > 0.4) well with the raw score and calculated the cell 

cycle score using those genes. Cell cycle scores were z-score transformed (scaled) 

before plotting. A test of equal proportions was then conducted for cycling cells among 

Isl1+ and Isl1-/- cells. 
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ATAC-seq library preparation and sequencing 

2, 000-20,000 of GFP+ cardiac progenitor cells were FCAS-purified and used for ATAC-

seq. The ATAC-seq libraries were prepared as previously described [29], and 2×50 

paired-end sequencing was performed on Illumina NextSeq500 to achieve on average 

36 million reads/sample. 

 

ATAC-seq data analysis 

1. Raw data processing 

Raw ATAC-seq paired-end reads were trimmed and filtered for quality, and then aligned 

to the mouse genome GRCm38 (mm10) using STAR [68] with the following parameter: 

--outFilterMismatchNoverLmax 0.2 --outFilterScoreMinOverLread 0 --

outFilterMatchNminOverLread 0 --outFilterMatchNmin 20 --alignIntronMin 2 --

alignIntronMax 1 --outFilterMultimapNmax 1 --alignMatesGapMax 2000 --

alignEndsProtrude 10 ConcordantPair. Reads that were unmapped, non-uniquely 

mapped, mapped to repetitive regions and chromosome M, and PCR duplicates were 

removed.  

 

2. Normalization, peak calling and open chromatin atlas generation  

For downstream analysis, the read counts were normalized to 1× depth (reads per 

genome coverage, RPGC) using “bamCoverage” function of deepTools2 [69]. Peak 

calling was performed using “callpeak” function of MACS2 [70] with following parameter: 

--nomodel --shift -100 --extsize 200 -q 0.05. Peaks in each sample were merged as 

union peaks for calculation of peak counts and quality control purpose. The normalized 

number of reads mapped to each peak of the union peaks in each sample was 

quantified using bigWigAverageOverBed (https://github.com/ENCODE-DCC/kentUtils). 

Peak counts of all samples were then merged to obtain a data matrix and normalize 

with edgeR [52]. To remove the not-reproducible replicates, we calculated pearson 

correlation using the log2 normalized counts, and removed the pairs whose pearson 

correlation is below 0.8, resulting in at least two replicates for each developmental stage. 

Differential accessible peaks were pairwise-compared sequentially across each 
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developmental stage using reproducible samples, and combined as a genome-wide 

atlas of accessible chromatin landscape in cardiac progenitor cells. 

 

3. Genome-wide distribution of differential peaks 

The normalized read counts in each developmental stage across replicates were 

merged, binned around all differential peak summit in 50 bp bins spanning ±1 kb region, 

clustered by k-means algorithm and visualized by heat map using deepTools2 [69].  

 

4. Assignment of proximal and distal ATAC-seq peaks 

The proximal and distal peaks are defined by the distance of differential ATAC-seq 

peaks towards annotated promoters (Gencode annotation):  at least 2.5 kb away from 

promoters were selected as distal peaks, and the others were assigned as proximal 

peaks. 

 

Bulk RNA-seq 

5,000-20,000 of cardiac progenitor cells were sampled using the same protocol as 

described above for scRNA-seq. The bulk RNA-seq libraries were prepared using 

Smart-seq2 according to the manufacturer’s protocol (#634889, Clontech), and 

sequenced on Illumina NextSeq500. The raw reads were processed using the same 

method for scRNA-seq as described above. The quantification and identification of 

differentially expressed genes were carried out using DEseq2 [71].  

 

Analysis of ChIP-seq data 

The ChIP-seq data of histone modification of mouse E10.5 embryonic heart was 

downloaded from ENCODE project (GEO: GSE86753, GSE86693, GSE86723, 

GSE86752). Metagene analysis was performed using HOMER [56]  and random peaks 

of nearly same size were used as control. 

 

Data and computation code availability 

GEO Accession XXX 
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 Figure Legend 

 

Figure 1. Single-cell RNA-seq of cardiac progenitor cells and identification of 

heterogeneous subpopulations and maker genes. (a) Schematic representation of 

Nkx2-5-emGFP transgenic reporter and Isl1nGFP/+ allele (top). Expression patterns of 

Nkx2-5-emGFP and Isl1-nGFP at E8.5 in mouse embryonic hearts. (bottom). (b) 

Sampling time points for scRNA-seq, bulk RNA-seq, ATAC-seq. The table shows cell 

numbers of scRNA-seq. QC: quality control. (c) t-SNE visualization of Nkx2-5+ and Isl1+ 

cardiac progenitor cells reveal subpopulations. Colors denote corresponding clusters, 

and (d) development stages. (e) Hierarchical clustering of expression heatmap showing 

differentially expressed marker genes (AUROC > 0.8, FDR < 0.01; and lower bound of 

LogFC > 2 or higher bound of LogFC < -2, FDR < 0.01) across different clusters in 

Nkx2-5 (top) and Isl1 (bottom). (f) Expression of individual genes in Nkx2-5+ and Isl1+ (g) 

cells. The color represents expression level of cells that are plotted in t-SNE as (c). 

(Scale bars: 300 μm). 

 

Figure 2. Reconstruction of developmental trajectories of cardiac progenitor cells 

and computation of transition states. (a) t-SNE plots show diffusion pseudotime of 

Nkx2-5+ and (b) Isl1+ CPCs. The clusters and development stages of individual cells are 

colored as the label. (c) Boxplots represent the distribution of IC(C) values from all 

marker genes of each cluster of Nkx2-5+ (left) and Isl1+ (right) cells. P-value for 

comparison between clusters (Kolmogorov–Smirnov test and Wilcoxon rank sum test). 

(d) Boxplots showing pairwise cell-to-cell distances across each cluster of Nkx2-5+ (left) 

and Isl1+ (right) cells. (e and f) Expression levels different transcription factors and key 

genes along pseudotime in Nkx2-5+ (e) and Isl1+ (f) cells.  

 

Figure 3. scRNA-seq of cardiac progenitor cells upon Isl1 knock-out. (a) 

Schematic illustration showing generation of Isl1 KO embryos and scRNA-seq. (b) 

Predicted diffusion pseudotime of Isl1 KO CPCs is plotted to t-SNE plot of Isl1+ cells. (c) 

The proportion of cycling and non-cycling cells of Isl1 KO and Isl1+ wild type CPCs. (d) 
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Heatmap showing expression of deregulated genes compared among Isl1 KO, Isl1+ 

E8.5 and E9.5 (cluster 1, 2 and 5) wild type cells.  

 

Figure 4. scRNA-seq of Isl1+/Nkx2-5OE cells. (a) Plot of re-analyzed published data 

showing the proportion of smooth muscle cell in unbiased-sampled embryonic heart at 

E9.5 in wild type and Nkx2-5 KO. The smooth muscle cells are “scored” by evaluating 

the expression of Nkx2-5 (LogTPM < 1, null expression), while the expression of the 

other genes Tagln, Cnn1, Acta2, Cald1, Mylk, Hexim1 and Smtnl2 are moderate to high 

(LogTPM >2) for at least 5 of these 7 genes. χ2 test: p < 2.37e-6. (b) Schematic 

illustration of forced expression of Nkx2-5 in Isl1+ cells and scRNA-seq. (c) t-SNE plots 

showing the prediction of diffusion pseudotime of Isl1+/Nkx2-5OE cells in Nkx2-5+ and 

Isl1+ (d) CPCs. 

 

Figure 5. Accessible chromatin dynamics and gene expression of cardiac 

progenitor cells. (a) Number of differential chromatin accessibility peaks in each 

transition state (log2(FC)>2, false discovery rate [FDR]<0.05). (b) Genome-wide 

distribution of differential open chromatin peaks grouped first by distance to the 

promoters and then by K-means. Each row represents one of 5,866 selected peaks in 

sequential comparisons (log2[FC]>2, FDR<0.05). (c) Metagene plot of proximal ATAC-

seq peaks. (d) Plot showing accessible chromatin levels and gene expression levels of 

805 selected differential-peak/DE-gene pairs. (e) Bubble chart showing enrichment of 

gene ontology terms of selected genes. (f) ATAC-seq signal profiles across Wnt8a and 

Wnt11 loci in Isl1+ and Nkx2-5+ CPCs, respectively. (g) Boxplots showing gene 

expression of Wnt8a and Wnt11 in Isl1+ and Nkx2-5+ CPCs. (h) Plot showing ChIP-seq 

intensity of histone modifications at E10.5 in embryonic heart across distal ATAC-seq 

peaks. (i) Heatmap showing enrichment of transcription factor motifs in each accessible 

chromatin cluster of Isl1+ and Nkx2-5+ CPCs across E7.5 to E9.5. 

 

Figure 6. Putative enhancer dynamics in Isl1 KO and Isl1+/Nkx2-5OE cardiac 

progenitor cells. (a) Number of differential chromatin accessibility peaks in Isl KO cells 

comparing to wild type Isl1+ cells at E8.5 and E9.5 (log2[FC]>2, FDR<0.05). (b) 
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Heatmap showing genome-wide distribution of differential open chromatin peaks 

grouped by K-means in Isl1 KO and Isl1 WT CPCs. Each row represents one of 

differential peaks in pairwise comparison (log2[FC]>2, FDR<0.05). (c) Bar plot showing 

the distance of differential peaks to their nearest promoters. (d) Plot showing ChIP-seq 

intensity of histone modifications at E10.5 in embryonic heart across cluster 1 (left) and 

2 (right) ATAC-seq peaks. (e) Bubble chart showing the enrichment of transcription 

factor motifs in each cluster of differential peaks. The color and area of circles represent 

the p-value. (f) Venn diagram showing overlap of genome coverage of open chromatin 

peaks between E9.5 and E12.5 Isl1+/Nkx2-5OE cell. (g) Heatmap showing genome-

wide distribution of differential open chromatin peaks grouped by K-means in 

Isl1+/Nkx2-5OE at E9.5 and E12.5 comparing with Nkx2-5+ and Isl1+.  
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Supplementary Figure Legend 

 

Supplementary Figure 1. Cell quality filtering procedure. (a-e) Distributions of relevant 

quality criteria for single cells from the C1 platform (left panel) and Wafergen platform 

(right panel). Shown are (in order) the number of detected features (genes, log2 scale) 

per cell, gene dropout rates per cell, percentage of counts to mitochondrial features, 

percentage of reads aligned to genes, Rplp0 counts (expression, log10 scale). A t-SNE 

projection based on quality criteria aggregates cells with similar number of detected 

features in close proximity (f) and can be used to identify low quality cells (marked in 

red) (g).  

 

Supplementary Figure 2. Single cell SOM mapping and clustering. (a) Exemplification 

of SOM mapping and clustering for Nkx2-5+ data. For each cell, an individual SOM 

(right panel) is created, effectively summarizing the cells transcriptome in reduced 

dimensionality. Reduced individual cell representations are then clustered and 

visualized using t-SNE (Figure 1c,d). Aggregated signals from individual SOMs in 

clusters resemble key characteristics from individual SOMs (left panel). (b) Key 

characteristics of aggregated and individual SOMs for Isl1+ data.  

 

Supplementary Figure 3. Expression of posterior (a) and anterior (b) Hox genes in 

Isl1+ CPCs.  

 

Supplementary Figure 4. Gene Ontology enrichment analyses of heterogenours 

clusters of Isl1+ (a) and Nkx2-5+ (b) CPCs. Gene enrichment was performed using the R 

package clusterProfiler.  

 

Supplementary Figure 5. Single cell alignment and batch correction between two 

sequencing platforms for Nkx2.5+ data. Principle component analysis (PCA) of (a) 

unaligned single cells shows a batch effect between sequencing platforms (right), which 

is diminished after (b) alignment of single cells using MnnCorrect. (c) t-SNE/HDBSCAN 

clustering of aligned single cells from two sequencing platforms identifies three clusters 
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that aggregate by (d) capture time point, not sequencing platform. The clustering 

resembles the clustering using data from the C1 platform alone (Figure 1c and 1d, left). 

(e) Expression of the top 30 differentially expressed genes between clusters from Figure 

1c, shown for cells from both sequencing platforms. Cells in cluster 2 that have been 

processed on the Wafergen system fail to show a consistent expression signature for 

cluster 2, as compared to cells that have been processed on the C1 system. (f) Those 

cells inevitably influence the differential expression analysis using cells from both 

sequencing platforms, as there are no differentially expressed genes for cluster 2 from 

(c). 

 

Supplementary Figure 6. Gene-to-gene and cell-to-cell correlations reveal different 

characteristics of heart development. (a and b) Pearson coefficients of pairwise gene-

gene and cell-cell correlations for clusters from Nkx2.5+ (a) and Isl1+ (b) data. 

 

Supplementary Figure 7. Genes correlated with developmental pseudotime. (a and b) 

Gene-gene correlation matrices for genes playing a role in Nkx2.5+ (a) and Isl1+ (b) 

developmental trajectories. (c and d) Heatmap showing the expression of genes 

positively correlated with pseudotime (Spearman rank correlation coefficient > 0.5) in 

Nkx2-5+ cells (c) and Isl1+ cells (d). Two bifurcation trajectories of Isl1+ cells are shown 

separately (d).  

 

Supplementary Figure 8. Determination of cycling Isl1+ and Isl1-/- cells. (a) Cells 

ordered by the maximum of their G1/S and G2/M cell cycle score. Cells with a maximum 

score lower than -0.1 where considered non-cycling and marked in red. The cutoff was 

determined empirically. (b) Scatterplot showing G1/S cell cycle score vs. G2/M cell 

cycle score. Cells identified as cycling in (a) accumulate in the first quadrant, indicating 

their cell cycle status. (c) Gene-to-gene correlation of G1/S and G2/M phase genes 

shows distinct cell cycle signatures for cycling cells identified in (a). 

 

Supplementary Figure 9. Expression of individual smooth muscle cell markers in 

Nkx2-5+ CPCs. 
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Supplementary Figure 10. Reproducibility of biological replicates of ATAC-seq and 

bulk RNA-seq. Scatter plots show Spearman correlation coefficient of ATAC-seq 

samples (a) and bulk RNA-seq samples (b).  

 

Supplementary Figure 11. (a, b) Boxplots showing the accessible chromatin level of 

each clusters. P-value for comparison between clusters are based on Kolmogorov–

Smirnov test and Wilcoxon rank sum test. (c) Volcano plots showing differential 

chromatin accessible peaks of Isl1+/Nkx2-5OE comparing with Nkx2-5+ (left) and Isl1+ 

(right). Each dot represents one differential peak and the colored ones were filtered as 

log2[FC]>2 or < -2, FDR<0.05. (d) Boxplots showing the accessible chromatin level of 

Isl1+/Nkx2-5OE CPCs at E9.5 and 12.5. (e) Bar plot showing the distance of Isl1+/Nkx2-

5OE differential peaks to their nearest promoters. (f) Enrichment of known transcription 

factor motifs in Isl1+/Nkx2-5OE differential peaks. The height of logo represents 

frequency of each nucleobase in the cognate motif.  
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Supplementary Tables 

Supplementary Table 1. Top genes that were differentially expressed across each 

cluster in the Nkx2-5+ CPCs. 

Supplementary Table 2. Top genes that were differentially expressed across each 

cluster in the Isl1+ CPCs. 

Supplementary Table 3. List of genes for Nkx2-5+ and Isl1+ cells that are positively 

correlated with developmental pseudotime. 

Supplementary Table 4. Number of raw and processed reads of ATAC-seq. 
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