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In this paper a formal model of associative learning is presented which model incorporates representational and 

computational mechanisms that, as a coherent corpus, empower it to make accurate predictions of a wide variety 

of phenomena that so far have eluded a unified account in learning theory. In particular, the Double Error model 

introduces: 1) a fully-connected network architecture in which stimuli are represented as temporally distributed 

elements that associate to each other, which naturally implements neutral stimuli associations and mediated 

learning; 2) a predictor error term within the traditional error correction rule (the double error), which reduces 

the rate of learning for expected predictors; 3) a revaluation associability rate that operates on the assumption 

that the outcome predictiveness is tracked over time so that prolonged uncertainty is learned, reducing the levels 

of attention to initially surprising outcomes; and critically 4) a biologically plausible variable asymptote, which 

encapsulates the principle of Hebbian learning, leading to stronger associations for similar levels of element 

activity. The outputs of a set of simulations of the Double Error model are presented along with empirical results 

from the literature. Finally, the predictive scope of the model is discussed. 
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Associative learning aims at understanding the precise mechanisms by which humans and 

animals learn to relate events in their environment. Associative learning has been replicated 

across numerous species and procedures (Hall, 2002; Pearce & Bouton, 2001; Turkkan, 

1989) ; its neural correlates have been extensively studied (Gomez et al., 2001; Kobayashi & 

Poo, 2004; Marschner, Kalisch, Vervliet, Vansteenwegen, & Büchel, 2011; Panayi & 

Killcross, 2014; Roesch, Esber, Li, Daw, & Schoenbaum, 2012); it has proved to be a core 

learning mechanism in high-order cognitive processes such as judgment of causality and 

categorization (Shanks, 1995), and rule learning (Murphy, Mondragón, & Murphy, 2008); it 

underpins a good number of clinical models (Haselgrove & Hogarth, 2011; Schachtman & 

Reilly, 2011);  and its evolutionary origins are beginning to be elucidated (Ginsburg & 

Jablonka, 2010). It is thus paramount that we develop comprehensive, accurate models of 

associative learning. 

In classical conditioning, a fundamental pillar of associative learning, the repeated co-

occurrence of two stimuli (e.g., an odour or tone), S1 and S2, is assumed to result in an 

association between their internal representations, which entails that the presence of S1 (the 

conditioned stimulus, CS, or 'predictor') will come to activate the internal representation of a 

S2 (the predicted stimulus or outcome from now on). When the outcome is a biologically 

relevant stimulus (unconditioned stimulus, US) able to elicit an unconditioned response (UR) 

learning results in the acquisition of a new pattern of behaviour: the sole presence of the CS 

engenders a conditioned response (CR) similar to the UR. The response is assumed to express 

the strength of the association between the CS and the outcome (Pavlov, 1927), revealing that 

the outcome is anticipated or predicted by the CS.  

In the following sections we proceed with a critical review of different models of classical 

conditioning structured around four major features in learning theory, namely, the learning 

rule, the elemental and configural bases of stimulus representation, attentional factors in CS 

processing, and, finally, the elusive nature of neutral and absent cue learning. We shall 

proceed with the description of the Double Error model, which we claim provides a formal, 

coherent corpus for the understanding of classical conditioning. Next, we present a battery of 

simulations of relevant phenomena, and conclude with a discussion of the main contributions 

of model.  
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The Learning Rule: Error Correction 

The acquisition of a conditioned response, assumed to mirror the strength of the CS→US 

link, usually follows a negatively accelerating monotonically increasing curve over trials (but 

see Gallistel, Fairhurst, & Balsam, 2004; Glautier, 2013). The associative link's rate of 

change is thereby proportional to the discrepancy between the expectation and the presence 

of the outcome, i.e., the prediction error. This relation was initially mathematically 

formalised in linear operator models such as Hull's early quantitative theory of learning (Hull, 

1943) and stochastic theories of conditioning (Blough, 1975; Bush & Mosteller, 1955). A 

secular trend in modelling since then has been the expansion of the ontology of internal 

stimulus representations and learning processes governing the formation of associations 

between said representations. This increase in model complexity has expanded the quantity of 

phenomena that can be accounted for by models of learning (Alonso, Sahota, & Mondragón, 

2014; Alonso & Schmajuk, 2012; Balkenius & Morén, 1998; Pearce & Bouton, 2001), and 

has been propelled and refined by experimental data acting as an arbiter of these models. For 

instance, evidence for the hypothesis that cues compete with one another for associative 

strength necessitated advancements from linear operator error terms. The phenomenon of 

blocking (Amundson & Miller, 2008; Kamin, 1968, 1969; Kohler & Ayres, 1979) showed 

that when the acquisition training for a cue A is followed by acquisition training with a 

compound AB, the novel cue B acquires next to no conditioning. Thus, it seems as if the 

associative link formed by cue A to the outcome prevents the formation of an equivalent link 

forming between B and the outcome. This result indicates that the processing of the outcome 

plays a significant role in determining the maximal amount of learning supported between 

itself and the CS. Such cue competition during learning is formalized most prominently by 

the Rescorla-Wagner (RW) model with its 'global' prediction error term (Rescorla & Wagner, 

1972), which incorporates within it a sum of the values of all associative links to the US. This 

is an innovation upon other linear operator error terms, as for instance the Hull error term in 

contrast only incorporates the associative strength of an individual CS. Hence, learning 

between a CS and US in the RW model is driven by the total discrepancy between the US 

presence and the expectation elicited for it by all cues, as seen in Equation 1. 

 

 ( )i i j i j j l

l

lV x z xV     , (1) 
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where iV  is the change in associative strength, i  and i  are respectively the CS and US 

intensities, ix  is the activity of the CS being updated, lx and 
jz  the activity of any present CS 

and the US, respectively, and 
j  the US asymptote determining the maximal supported 

learning. Finally, the summed term is the total extant learning toward the US, calculated as 

the dot product of the CS activities times their associative strength lV  toward the US. The 

RW model thus not only accounts for empirical data, but its formulation implied the 

existence of learning effects not predicted by earlier models or assumed to exist by pre-

existing theory, as can be tested in a wide range of simulations (Alonso, Mondragón, & 

Fernández, 2012; Mondragón, Alonso, Fernández, & Gray, 2013). Primary among these 

predictions is that if two CSs are independently conditioned to an asymptotic level, then their 

reinforcement in compound should lead to a decline in their associative strength. This follows 

from the error term supporting a maximal level of conditioning for all present stimuli on a 

trial, which is different from the maximal level supported for cues presented in isolation. 

Such a phenomenon of overprediction has been confirmed (Rescorla, 1970), along with other 

predictions such as super-conditioning (Rescorla, 1971a), thus strengthening the validity of 

the model as well as other models relying on a summed error term. Though the RW model 

has been successful in this regard (Miller, Barnet, & Grahame, 1995), a summed error term is 

not the only means of predicting cue competition results. Models relying on CS-US specific 

'local', non-competitive error terms are capable of accounting for some of these effects by 

assuming other processes of competition, for instance on attentional competition between the 

predictors, as postulated by the model of Mackintosh (1975). Alternatively, the comparator 

hypothesis model (Miller & Matzel, 1988; Miller & Witnauer, 2016) explains cue 

competition results as a retrieval effect. It assumes that when a previously reinforced CS is 

presented (the target), it re-activates both representations of other CSs paired with the US and 

the US representation itself. The response elicited by the target CS is then proportional to the 

degree to which it predicts the US relative to the associative strength of the comparator CSs. 

Hence cue competition arises from the interference of other CS-US associations upon the 

target-US association. 

The realization of real-time learning models extending the trial-based RW model (and 

other error correction models) by making predictions for learning within a trial allows for the 

modelling of time dependent aspects of learning and temporal relations between stimuli not 

accounted for by trial-level models. The SB model (Sutton & Barto, 1981), extended the delta 

rule used in RW by postulating that the variation in the inputs to a node representing a US 

was the driver of learning. Hence, both changes in the US sensory input (reinforcement) and 
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changes in the CS contribution to this node (temporal difference) influenced the direction of 

learning. In addition to phenomena predicted by RW, SB accounts for inter-stimulus interval 

(ISI) effects and an anticipatory CR build-up (Balkenius & Morén, 1998). It nevertheless 

produces a few erroneous predictions, such as that a co-occurring CS and US should become 

highly inhibitory towards one another. Flaws of the SB model are rectified in the Temporal 

Difference (TD) model (Sutton & Barto, 1987) through the variations in the CS signal to the 

US node being dissociated from the US signal itself, and through the introduction of a time-

discount factor to signal the uncertainty of future predictions. The TD model uniquely 

predicts that learning is being driven by the need of the animal to minimise a time-discounted 

aggregate expectation of future reinforcement. At each time-step, the components of a given 

CS produce a prediction for the moment-by-moment change in US activation at the next 

time-step, termed the temporal difference. The difference between this prediction and the 

actual US activation level results in an error term (like that in the RW model), the prediction 

error, for that time-step. Equation 2 is used for calculating this error. 

 

 
1( ( ))t t t t t t

i i i i

i i

x V x V      , (2) 

 

where 
t
 is the US activation at time t , and the term 

1 t t

i i

i

x V

 

denotes the prediction for 

the US produced through the summation of associative activations of the US (using current 

associative links, but CS activation levels from the previous time-step), and 
t t

i i

i

x V  is the 

equivalent for the current time-step. The current time-step is multiplied by the mentioned 

discount parameter   to reflect that the future is always slightly uncertain and therefore more 

recent stimulus activation carries more weight in calculating errors. The difference between 

these two prediction terms produces an estimate of what the activation of the US is during the 

current time-step. The discrepancy between the TD error and the actual US presence 

produces the overall prediction error for the US. As a real-time rendition of the US-

processing error correction learning found in RW, TD can account for the same phenomena 

as the former on a trial level. In terms of predictive power, the instantiation of the TD model 

in simulators (Mondragón, Gray, & Alonso, 2013) has produced accounts of phenomena 

difficult to analyse a priori. For instance, higher-order conditioning, wherein reinforcement is 

observed in the absence of a US through the reinforcement effects of the temporal difference 
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term itself. It accounts for temporal primacy effects – e.g., Kehoe, Schreurs, & Graham, 

(1987), wherein the presentation of a reinforced serial-compound of the form 

CSA→CSB→US results in a deficit in CR acquisition to CSB. It additionally reproduces the 

retardation effects of ISIs on the level of asymptotic learning (and by extension, CR over 

time) in an emergent fashion (Balkenius & Morén, 1998) through the aforesaid higher-order 

conditioning, which in itself results from the temporal-difference term back-propagating to 

earlier time-points. As the core of the TD model is its distinct error term, variations of TD 

with differing stimulus representations have been proposed. A complete serial compound 

model (Moore, Choi, & Brunzell, 1998) postulated that a CS is represented in time by a series 

of separate units, each of which becomes active following the previous. This extension 

produced a response curve in time with closer correspondence to empirical fact. Work in 

timing as well as hippocampal data inspired the micro-stimulus representation of TD 

(Ludvig, Sutton, Verbeek, & Kehoe, 2009), which instead assumes that the presence of a CS 

produces a cascade of units to become active in a bell-shaped form, with units that peak later 

having a correspondingly lower amplitude and higher variance. The advantage of such a 

stimulus representation is that it reproduces both differential responding early and late during 

a CS presentation, allows for effective trace conditioning due to the persistence of later 

micro-stimuli, and produces generalization of learning in time due to the significant 

activation overlap of said micro-stimuli. Extensions of the classical TD formulation have also 

been motivated by its lack of compound stimuli and configurations in its stimulus 

representation. Formulations of TD such as SSCC TD (Mondragón, Gray, Alonso, Bonardi, 

& Jennings, 2014) offer rules for forming such compounds both when stimuli overlap 

temporally, and when they are presented in succession. Steady evidence has mounted that 

predictions errors akin to the TD error are correlated to mid-brain dopamine function 

(Ludvig, Bellemare, & Pearson, 2011; Montague, Dayan, & Sejnowski, 1996; Niv, 2009; 

Niv, Edlund, Dayan, & O’Doherty, 2012; Schultz, 2004, 2006, 2010; Schultz, Dayan, & 

Montague, 1997).  

In conclusion, although alternative approaches to summed error correction such as the 

comparator hypothesis model exist and are capable of accounting for crucial cue competition 

effects, the fit of the RW and TD error terms to empirical data correlating prediction errors 

and dopamine signalling, as well as a consideration for parsimony, motivate our use of the 

summed error correction rule in the Double Error model we are introducing. 
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The Nature of the Stimulus Representation: Elemental vs. Configural Models 

Causal relations in the world are mostly more complex than the linear CS-US relationship 

encountered in a standard acquisition protocol, being more appropriately described by non-

linear conditional probabilities. Learning models therefore must in some manner involve 

processes of approximating these conditional relations, such as those seen in non-linear 

discrimination learning. Exactly how such causal connections are approximated is highly 

dependent upon how the stimuli themselves are represented by a model. Two benchmarks of 

non-linear discriminative performance of a model have been negative patterning and 

biconditional discriminations. In negative patterning (NP) individual presentations of two 

cues A and B are followed by an outcome (a reinforcer), A+/B+, whereas compound 

presentations of the same cues are not, AB-. Its difficulty and hence importance lies in the 

simple breakdown of linearity on the compound trials. That is, the animal must learn to 

withhold responding on trials when two cues, which individually predict the outcome, are 

presented. Biconditional discriminations involve yet more complex non-linearity. Four cues 

are presented in pairs, with each individual cue being presented in both a reinforced and 

nonreinforced compound (AB+/CD+/AC-/BD-). Therefore, simple summation of the 

individual cues values offers no information for solving the discrimination. 

The Rescorla-Wagner (RW) model, as an elemental model, kept with the assumption of 

Spence, Konorski, and Estes that sets of elements constituting the attributes of individual 

stimuli enter into associations with the US directly (Harris, 2006; Wagner, 2008). As a result, 

in its original formulation, RW was unable to account for both negative patterning (Rescorla, 

Grau, & Durlach, 1985) and biconditional discriminations (Rescorla, 1972; Saavedra, 1975). 

The model assumes that if each individual stimulus is presented in opposite contingencies, 

this amounts to partial reinforcement of the cue and hence the discrimination will not be 

solved. In the case of NP, the model would predict greater responding on the compound trials 

than individual trials, due to the summation of the associative strengths of A and B. That is, 

the model preserves the linearity of summation by positing that the responding elicited by a 

given configuration of cues is directly proportional to the sum of the individual associative 

strengths of the constituent stimuli. The addition of elements common to multiple stimuli to 

RW allowed for the discrimination to be solved as the elements common to both A and B 

acquire superconditioning, super-asymptotic learning (Rescorla, 1971a), while the unique 

elements of both stimuli become inhibitory toward the outcome. Hence simply by assuming 

some similarity between CS representations it is possible to account for some non-linear 
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discriminations within an elemental framework. In the case of more complicated 

discriminations such as bi- and tri-conditional discriminations, common elements are not a 

sufficiently powerful mechanism. The addition of configural elements to the model, which 

become active during the presentation of a specific compound, allows the RW model to avoid 

this issue (Wagner & Rescorla, 1972). That is, it is assumed that the compound is represented 

by the animal as more than the sum of its parts. Hence NP is produced in a contrary fashion 

as compared to when common elements are involved, as the configural elements produce 

inhibitory links toward the outcome, while the unique elements form excitatory associations. 

While this configural element leads to the model predicting deviations from summation 

linearity in non-linear discrimination training, it nevertheless preserves linearity in the 

absence of such conditioning. As such, it was unable to account for evidence of linearity of 

summation being broken (Razran, 1939), that is for configurations of stimuli eliciting more or 

less response than expected by summing the response strengths elicited by individual 

presentations of the constituent stimuli. For instance, the observation that the presentation of 

a stimulus compound, after reinforcing the two stimuli separately, does not always produce 

more responding (Pearce, George, & Aydin, 2002) contradicted the RW model. Such 

evidence prompted the conception of the replaced elements model (REM) (Wagner, 2003), 

which manoeuvred around this difficulty by a process whereby some elements of a stimulus 

are added (configural elements), and some are removed (unique elements), when the cue is 

presented in a compound. These added and replaced elements are consistent throughout 

presentations. The added elements correspond to elements representing context-dependent 

features of the stimulus, while the replaced elements are assumed to represent features of the 

cue that are uniquely present when the cue is presented alone. The model postulates a 

replacement parameter r , which determines what proportion of elements are replaced in this 

manner. Thus when 0r  , the model is equivalent to the RW model, while 1r    produces a 

purely configural model (Schultheis, Thorwart, & Lachnit, 2008). The intermediate values 

allow the model to postulate that summation is not absolute. For instance, 0.5r   leads to the 

prediction that no summation is observed, that is the compound of two CSs is no more 

predictive of the outcome than an individual CS. Thus, by assuming that different modalities 

of stimuli undergo different replacement rates depending on their similarity, consistent with 

psychophysical theory (Glautier, Redhead, Thorwart, & Lachnit, 2010), the model can 

explain why summation seems to depend on the types of stimuli used (Wagner, 2003).  

Though the configural elements representation of RW and the REM model account for 

some aspects of deviance from perfect summation, they are less capable of dealing with other 
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observed effects. Both models assume that a redundant cue, X, will facilitate the learning of a 

discrimination, yet the opposite is often observed (Pearce & Redhead, 1993). A further 

difficulty is that an underlying implication of most elemental models is the potential complete 

reversibility of an association between a stimulus and the outcome should the previously 

learned contingency be reversed (e.g., reinforcement followed by non-reinforcement). 

However, experiments displaying retroactive interference in feature negative discriminations, 

in which B+ trials failed to impair previous A+/AB- training, contradict this assumption of 

complete associative reversibility (Wilson & Pearce, 1992). Both the RW model and the 

REM extension have difficulty reproducing this effect. The former, due to its linear 

summation, predicts complete interference of B+ training on the A+/AB- training. That is, it 

expects that after B+ training the AB- compound will display less complete suppression of 

responding. The latter, though it in principle can reproduce the effect, is forced to postulate a 

very high replacement rate of B elements. However retroactive interference in feature 

negative discriminations has been produced by stimuli from different modalities (Pearce & 

Wilson, 1991), which seems to require a low replacement rate of elements. 

An alternative account to the elemental approach is supplied by the model of Pearce 

(Pearce, 1987), which in contrast presumes that nodes representing individual stimuli connect 

to an additional configural node representing their aggregation. This node in return forms 

associations with the outcome. Its configural stimulus representation, wherein the 

presentation of a compound activates a configural node representing it, produces many non-

linear discriminations simply through learning between a configural node and the outcome 

not directly interfering with other configurations. Non-linear discriminations are often 

difficult for animals to learn. Pearce’s model accounts for this difficulty by postulating that 

responding to a configuration of stimuli is affected by its similarity to other configurations (as 

measured by a similarity index). Hence, it anticipates that the difficulty of a non-linear 

discrimination is directly proportional to the similarity of the constituent compounds. In the 

case of biconditional discriminations, the complexity of the discrimination arises from each 

compound being similar to another compound undergoing opposite reinforcement (e.g., AB+ 

and AC-). The model naturally accounts for the fact that summation between stimuli is not 

always being observed. As a result, it faces a challenge explaining evidence that summation 

does sometimes occur. Further, the model predicts a symmetrical deficit in responding 

(generalization decrement) when a stimulus is added in compound to a previously 

conditioned stimulus (external inhibition) or when a stimulus is removed from the training 

compound (overshadowing). Yet, it has been confirmed that overshadowing produces a larger 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 28, 2017. ; https://doi.org/10.1101/210674doi: bioRxiv preprint 

https://doi.org/10.1101/210674
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

deficit in responding than external inhibition (Brandon, Vogel, & Wagner, 2000). Finally, 

evidence has accumulated that familiarity with the constituent stimuli of a discrimination can 

facilitate the learning of the discrimination (Hall, 1991; Mondragón & Hall, 2002). This 

phenomenon of perceptual learning (PL) seems to suggest that the animal’s perception of the 

similarity of two stimuli is learned rather than given a priori as through Pearce model’s 

similarity index. Hence, some form of attentional or learning-based process seems to be 

necessary to dichotomize unique and redundant elements of stimuli when they are preexposed 

together, such as elements shared by the preexposed stimuli losing associability. 

Configural models have been further critiqued from a theoretical perspective. In terms of 

parsimony, they require representations of both individual stimuli as well as configurations, 

thus making them more complex than purely elemental models – though Ghirlanda (2015) 

has demonstrated that a mapping between elemental and configural representations can be 

constructed analytically. Furthermore, they seem to take for granted representational 

information that is usually postulated by purely associative means, namely that a combination 

of stimuli co-occurred. Finally, they require some limiting process on the quantity of 

configurations that can form to avoid an infinite generation of different configural 

representations.  

Harris (2006) and Harris and Livesey (2010) introduced a purely elemental model utilizing 

a unique attentional process to avoid the aforesaid problems of the elemental approach. In the 

model a finite 'attentional buffer', which makes the activation of elements stronger and more 

persistent (and therefore contribute more towards responding), is proposed. Entry into this 

buffer is regulated by the change in activation of a given element when it is presented or 

predicted, and is proportional to the salience of that element (with the saliences of elements 

of a stimulus assumed to be normally distributed). That is, elements that undergo a strong 

increase in their activation can enter the attentional buffer. If the buffer is at full capacity, 

elements with larger changes in activation displace elements with smaller changes in 

activation. Further, the extent of reinforcement by a US is proportional to the number of US 

elements that are pushed into the buffer. However, in general, the quantity of CS elements in 

the buffer does not influence the direction of learning. The buffer simply speeds up learning 

as the activation of an element functions as a de facto salience. An important implication is 

that when a stimulus compound is presented, only the most salient elements can enter the 

buffer. Hence the model can account for partial summation. This partial summation, together 

with an assumption of common elements equips the model with the capability of predicting 

various non-linear discriminations. It additionally predicts that these discriminations are 
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solved more slowly when a redundant cue is present, as the redundant cue leaves less 

capacity in the attentional buffer for relevant cues. The facilitation of discriminative learning 

by preexposure, i.e., perceptual learning, arises through a process of common elements losing 

associability through self-prediction hindering their entry into the buffer. Crucially, the model 

can explain both the lack of retroactive interference in feature negative discriminations 

(Wilson & Pearce, 1992), as well as the discrepancy between external inhibition and 

overshadowing (Brandon et al., 2000). In the case of the former, it postulates that during the 

B+ presentations, the elements of B that entered the attentional buffer on AB- trials are more 

inhibitory than the ones which did not. Thus, the elements that did not enter the buffer 

acquire more excitation than the ones that did. Consequently, when the AB compound is once 

again presented, much of the increase in B’s associative strength will not be manifested due 

to the most excitatory elements not entering the buffer. In the latter case, the model explains 

that in the case of external inhibition, the novel stimulus pushes elements of the compound 

out of the buffer. However, these elements nevertheless remain active at a lesser level, thus 

still contributing towards responding. When a cue is removed as in an overshadowing test, its 

elements are completely inactive, and hence the asymmetry between the phenomena is 

accounted for. Thus, the Harris model shows that many of the apparent pitfalls of elemental 

models can be avoided using a richer stimulus representation and a process of selective 

attention; though the exact nature and substratum of the attentional buffer remains to be 

validated by empirical data. Further, many of the unique predictions of the model could be 

explained also for instance by the simpler assumption of the salience of a cue directly 

influencing the strength of its activation. 

In conclusion, both elemental and configural approaches to stimulus representations have 

distinct advantages in explaining non-linear discrimination learning. Configural models can 

offer a solution on how animals learn complex discriminations, generalization between them, 

as well as for partial summation. Elemental models must postulate additional learning and 

representational mechanisms to account for many of these effects. For instance, configural 

elements or the attentional buffer of Harris significantly extend the reach of elemental 

analysis. They nevertheless have the advantage of maintaining representational simplicity as 

well as encapsulating more information in terms of pure associative learning. That is, in many 

formulations they avoid the problem of how configural representations emerge in the first 

place. As such, we have favoured an elemental approach for the current model. 
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Attentional Factors: CS Processing  

As the Harris model assumes that any excitatory link from one stimulus to another induces 

activation in the recipient stimulus, it can explain various preexposure and habituation 

phenomena as well. In effect, the associability of a cue, all else being equal, is therefore 

directly proportional to its novelty. In addition, the model's prediction that the effective 

associability of stimuli decreases in relation to how many further stimuli are active has been 

experimentally validated (Lachnit, Schultheis, König, Üngör, & Melchers, 2008). This sets it 

in opposition to other paradigms of selective attention. For instance, the Mackintosh model 

assumes that animals attend to cues that are relatively better predictors of outcomes than 

other cues (Mackintosh, 1975). It models the attention to a cue, i , as changing in proportion 

to the relative predictiveness of the cue (in relation to other cues) for the outcome. The 

implication is that selective attention is learned, retained for future learning, and presumably 

aids in reducing proactive interference between stimuli, thereby speeding up learning as 

discussed in (Kruschke, 2011). Cue competition effects are thereby explained by purely 

attentional means and thus the model only requires the linear operator delta rule familiar from 

Hull’s model. The Mackintosh model’s unique assumption that the selective attention paid to 

a cue has direct reinforcing effects has allowed it to predict phenomena that pose a problem 

for other models. For example, it can explain unblocking, wherein the surprising partial 

omission of reinforcement during a blocking treatment attenuates the blocking of a cue 

(Dickinson, Hall, & Mackintosh, 1976). It thus avoids the prediction of overprediction 

pushing the blocked cue towards becoming inhibitory, which the RW model predicts in some 

circumstances for this treatment. An alternative explanation to that offered by the Mackintosh 

model for this effect is however that differential reinforcement is represented by the animal as 

different reinforcers. As such, this result can be accounted for by the RW model. The 

Mackintosh model also accounts for the learned irrelevance effect (Bonardi & Hall, 1996; 

Mackintosh, 1973), whereby a CS uncorrelated with US presentations shows poorer 

subsequent acquisition, due to the best relative predictor accruing the most associability, and 

hence conditioning more quickly than competing cues. A well-known difficulty faced by the 

model is however the phenomenon of Hall-Pearce negative transfer (Hall & Pearce, 1979), 

wherein reinforcing a CS with a weak US, thus making it a better predictor, hinders 

subsequent conditioning between the same CS and a stronger US. In this case, it erroneously 

predicts greater excitatory learning between the previous best predictor of the outcome and 
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the outcome. The model also is unable to account for superconditioning (Rescorla, 1971a, 

2004), wherein presenting a conditioned inhibitor of an outcome together with a novel cue 

leads to stronger excitatory conditioning to the novel cue than if it were conditioned 

individually. As the Mackintosh model does not assume a competitive error term, it cannot 

account for this effect. Superconditioning is however predicted by Le Pelley’s extension of 

the Mackintosh model (Le Pelley, 2004), owing to the use of a combined error term. 

The Hall-Pearce negative transfer effect is easily accounted for by the Pearce and Hall 

(PH) model (Pearce & Hall, 1980), which postulated that attention rises when the outcome is 

uncertain. That is, the associability of a CS rises in accordance to the general uncertainty of 

the outcome instead of tracking the relative predictiveness of the cue. By implication, in the 

Hall-Pearce negative transfer effect, prior training with a weaker US produces a decline in 

associability which delays subsequent learning with the stronger US. In contrast to the 

Mackintosh model, the Pearce and Hall model has trouble explaining learned irrelevance, as 

the predictor in a learned irrelevance procedure will accrue more associability due to their 

lack of correlation with the occurrence of an outcome. In the context of a standard acquisition 

and extinction protocol the PH model predicts a sudden increase in associability when the 

contingency is changed (i.e., the beginning of acquisition or extinction), with a gradual 

decline thereafter. Further, a great success of the model has been predicting latent inhibition 

(LI) (Channell & Hall, 1983), wherein preexposure of a CS attenuates subsequent acquisition 

training with the same CS. It predicts this effect as arising from the preexposure leading to a 

decline in the associability of the CS, which subsequently rises again during acquisition 

training. Empirical evidence exists for the hypothesis that prediction errors increase the 

associability of cues, however a confounding factor is the difficulty of disentangling 

increases in associability (speed of learning) from direct reinforcement (extent of learning) 

produced by prediction errors (Holland & Schiffino, 2016). Uncovering and formalizing the 

precise nature of modulating factors of attention, and their relation to the dopamine system 

(Ahveninen et al., 2000; Nieoullon, 2002), is hence critical in determining the plausibility of 

the associabilities of the Mackintosh and PH models. It has been noted that the attentional 

mechanisms underlying these two models are not necessarily in opposition. The existence of 

evidence supporting each model has fostered the proposal of dual-factor attentional models. 

One such model is the Le Pelley model (Le Pelley, 2004), which combines both the 

associability of the Mackintosh model and of the PH model (with the latter given more 

influence). According to Le Pelley’s model, both the general uncertainty of the outcome, as 

well as the relative predictiveness of a cue determine the overall associability of the cue. As 
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such, the Le Pelley model can explain phenomena that have proven difficult for either model 

in isolation. It predicts, for instance, Hall-Pearce negative transfer as well as the learned 

irrelevance effect simultaneously. It however introduces further complexity, as the two rules 

can often cancel the influence of one another. Thus, it is also difficult to isolate their 

respective effects empirically.  

It is worth noticing that the PH attention rule, when instantiated in a real-time model, can 

produce an increase in associability for the best predictor of the outcome if said predictor 

produces a prediction error for the US before the US onset. That is, the rule produces more 

complicated emergent behaviour when instantiated in a real-time model. Further, it has been 

found that even trial-level models based on the PH attention rule can produce Mackintosh-

like effects under certain conditions (Le Pelley, Haselgrove, & Esber, 2012). 

The assumption that novelty of cues is crucial to how learning unfolds, pioneered by the 

Mackintosh and PH models, was expanded upon by the SLGK model (Kutlu & Schmajuk, 

2012). It postulates that the novelty of every stimulus affects its speed of learning towards 

other stimuli. Further, this novelty is modelled through stimuli learning to predict each other 

through associative links (expectancy). Therefore, not only reinforced, but also non-

reinforced (i.e., ‘neutral’ or ‘silent’) learning is incorporated.  The model is configural in the 

sense that it postulates a layer of units intermediate between the sensory units and the US 

unit. These configural units have non-modifiable random incoming connections from all CS 

representations, and their connection to the outcome is adjusted through a delta rule. Their 

associability or associative rate is taken to be very low initially, however if the US 

expectancy remains high during training (i.e., the animal is unable to learn a given 

contingency), then the associability of the configural units rises. It hence accounts for the 

difficulty of animals to solve non-linear discriminations. This mechanism of detecting, 

through a persistent outcome error, when a purely linear approach has failed offers a robust 

approach for introducing non-linearity into models of conditioning while pre-empting a 

combinatorial explosion. It can be utilized to change the associability of other 

representational elements besides configural cues (e.g., common elements) to reflect when 

the animal cannot solve a learning problem. 

Learning between non-reinforcing cues, i.e., ‘silent learning’ incorporated by the model 

endows it with the capacity to account for various preexposure effects. For example, it 

explains the attenuated positively accelerating response curve of a latent inhibited stimulus 

during subsequent acquisition. This response curve further approaches the standard learning 
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asymptote after a sufficient number of reinforced trials (Lubow, 1965). In this regard, it 

shares similarities with two other models that postulate both silent learning and novelty-based 

associability, SOP (Wagner, 1981) and the McLaren and Mackintosh (2000) models. In all 

three models, latent inhibition emerges from the preexposed CS losing novelty by being 

predicted by the context and itself (unitization). This loss of novelty slows down subsequent 

acquisition training in a way different from that proposed by the aforementioned PH model 

and its Hall-Rodriguez extension (Hall & Rodriguez, 2010). These predict that the repeated 

preexposure of a cue reduces the attention paid to it, thus decreasing its associability. Hall 

and Rodriguez (2010) further predict the formation of a CS→noUS link, which thereafter 

interferes with the response elicited by the CS→US link formed in the subsequent acquisition 

training. This latter mechanism bears a similarity to the explanation offered by the 

comparator model (Miller & Matzel, 1988), which also stresses processing during retrieval, 

although in this case, unlike in Hall and Rodriguez’s, the effect is specific to a given US. 

Nevertheless, the neutral-learning based account of SLGK, SOP and McLaren-Mackintosh 

seems to hold a categorical advantage in explaining latent inhibition, as they do not need to 

assume such a noUS representation or the existence of an extant associative link to it. Hence 

they avoid predicting inhibitory properties of the preexposed CS towards the US, which have 

not been found in summation tests (Rescorla, 1971b). Additionally, assuming a noUS 

representation by implication would lead to generalization of inhibition to another outcome. 

The evidence seems to contradict such an assumption, as learning with a reinforcer has been 

demonstrated to be outcome specific, for instance in outcome devaluation experiments 

(Colwill & Motzkin, 1994). 

In conclusion, models that assume selective attention is acquired by the most predictive 

cue, such as the Mackintosh model, offer a robust account of effects such as unblocking and 

learned irrelevance. They however are unable to offer a convincing explanation of 

preexposure effects. Similarly, alternative explanations for unblocking and learned 

irrelevance can often be produced by error correction models. In the former case by assuming 

that differences in US presentations imply differences in the asymptote of learning; in the 

latter case by postulating that uncorrelated CS-US exposure results in inhibitory learning. In 

contrast, models that postulate a loss in associability as the outcome error declines (PH) or 

when a cue becomes less novel (SLGK, SOP, and McLaren-Mackintosh) are uniquely 

capable of explaining both the result and mechanisms behind the loss in associability 

occurring during preexposure. The latter models can also predict the context specificity of LI 

observed when preexposure is conducted in a context different from that of conditioning. 
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Moreover, as above-mentioned, when instantiated in a real-time model, the uncertainty-

driven variable associability of the PH model could produce emergent Mackintosh-like 

effects through the best predictor of an outcome yielding a larger prediction error before the 

onset of the outcome, thus increasing its own associability towards the outcome. We have 

hence chosen to incorporate a similar mechanism, with important changes involving 

revaluation of persistent uncertainty, to account for learned attentional bias in the Double 

Error model. 

 

Neutral and Absent-Cue Learning   

If an animal is learning the contingencies governing events, does it revaluate the presumed 

most probable contingency when it is contradicted by subsequent learning? If so, how? Since 

it is assumed that prior learning is stored as associations, this revaluation by implication 

involves the modification of previously formed associations. Behavioural data exists, which 

demonstrates that a present cue can retrieve the representation of another cue and thereby 

invoke revaluation of the latter's previously formed associations towards a reinforcer 

(Dickinson, 1996; Holland, 1983; Holland & Forbes, 1982). In addition, neural data indicates 

that the left hippocampus is involved in mediated learning in humans (Jie, 2008) and the 

dorsolateral prefrontal cortex has been tied to violations of previously formed expectations 

(Corlett et al., 2007). These so called mediated learning effects are of interest as they allow 

for an understanding of processes governing learning between representations of stimuli 

which are present and ones which are absent yet associatively invoked. Of cardinal 

significance are backward blocking (BB), un-overshadowing/retrospective revaluation (RR) 

(Le Pelley & McLaren, 2001; Miller & Witnauer, 2016; Urushihara & Miller, 2010), and 

sensory preconditioning (SPC) (Brogden, 1939; Ward-Robinson & Hall, 1996). Explaining 

these effects with a simple associative learning rule has been elusive, as they seem to result 

from opposite learning directions between the cues, retrieved and present.  

For instance, in BB and RR designs, a compound of events, AB, is first associated to a 

motivational outcome. Once this association is established, presentations of one of its 

components alone, A, follows. While in a backward blocking procedure A is also reinforced, 

in a RR procedure, subsequent A training is not. Testing of the other element of the 

compound, B, afterwards, the BB treatment results in B losing associative strength compared 

to the first phase of learning, whereas in the RR treatment the excitatory strength of B 

increases. That is, strengthening the association between one of the elements of the 
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compound and the outcome, results in a reduction in strength of the concomitant stimulus and 

the outcome, whereas lowering it rises the strength of its associated stimulus.  

In a sensory preconditioning procedure, two non-reinforced stimuli, AB, are initially 

paired. In a second phase, A is reinforced. Subsequent test trials show that B, which has never 

been paired with the outcome, has nevertheless gained associative strength. Thus, an absent 

cue B undergoes a change in its associative strength as a consequence of the reinforcement 

treatment given to its associated cue. One possible mechanism for this phenomenon relies on 

the idea of mediated conditioning: during conditioning to A, an associative activation of 

stimulus B, which was linked to A during the initial compound training, is produced. This 

associatively activated representation of B acquires associative strength towards the present 

reinforcer. Of note is that learning between the absent cue, B, and the present outcome in 

SPC and BB proceeds in opposite directions. That is, while in SPC the absent cue acquires 

strength, in BB it loses strength.  

Different models have been proposed to explain specific sets of mediated phenomena that 

can be ascribed to a single learning rule, either an increase or a decrease in strength in the 

same design conditions, but so far, no model can account for all of them. It would thus seem 

evident that a comprehensive model of learning should be able to predict these apparent 

contradictory results.  

In the McLaren-Mackintosh model (McLaren & Mackintosh, 2000) stimuli are 

represented by sets of mutually overlapping elements in a connectionist network.  Each node 

in the network has both an external (sensory) input, as well as a modifiable internal 

(associative) input, both of which contribute to its level of activity. The difference between 

these two inputs is considered the prediction error for that node, and thus determines the 

amount of associative learning from other nodes to it, as well as acting as a modulator of the 

associability from that node to other nodes. The internal input is precisely what allows for the 

retrieval of absent cues and therefore mediated conditioning in the model. McLaren and 

Mackintosh postulate that in sensory preconditioning, the preexposure of the compound AB 

results in the formation of bidirectional excitatory associations between the two CSs. 

Subsequently, when A is presented together with reinforcement, A associatively retrieves the 

representation of B. This associatively retrieved representation in return is capable of 

supporting learning towards the present outcome. Therefore, mediated conditioning is treated 

equivalently to learning between present stimuli. It is uncertain however whether the model 

can account for the revaluation effects of backward blocking and retrospective revaluation. 
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For instance, in the case of backward blocking the delta rule employed would suggest that the 

retrieved cue B could potentially gain additional excitatory strength rather than losing it, as 

its prediction for the outcome would be lower than if it were directly present. That is, the 

delta error term would still support further excitatory learning, predicting and increase rather 

than the observed decrease in strength.  

Another partially successful model in accounting for mediated phenomena is SOP 

(Wagner, 1981). SOP postulates that inactive (I) stimulus representations are activated from 

long-term storage into short-term memory through either stimulus presentation or associative 

retrieval. The short-term memory system consists of an elemental network of processing units 

containing elements in primary (A1) and secondary, weaker (A2) states of activation for each 

stimulus centre/unit, as seen in panel a) of Figure 1. Direct stimulus presentation results in the 

activation into A1 of a given proportion (p1) of its elements. Active elements (or 

associatively retrieved elements) decay in time into A2 according to a pd1 proportion. As 

with previous models such as RW, it is assumed that the total quantity of all stimulus A1 

elements is limited. Therefore, increasing the number of A1 elements increases the speed at 

which these elements decay into the A2 state. Over time, elements in the A2 state of 

activation decay back into the inactive state. The model specifies that the direction of 

learning (excitatory or inhibitory) depends on the ratio of A1 to A2 elements of the outcome. 

Thus, a more novel outcome supports more excitatory learning, whereas an over-predicted 

outcome supports only inhibitory learning. These processes are summarized as learning rules 

in panel b) of Figure 1. 
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Figure 1. a) SOP activation states: I, A1, and A2 are respectively inactive, active, and associatively activated or 

decayed activation states; p1 and p2 are respectively rates by which inactive elements can be activated into A1 

or A2 states; pd1 and pd2 are respectively rates at which A1 elements decay into the A2 states, and A2 elements 

decay into the inactive state. b) SOP learning rules. The arrow () describes the direction of an excitatory link, 

whereas (  ) represents an inhibitory link vector. c) Dickinson & Burke SOP learning rules. d) Holland SOP 

learning rules. 

  

SOP and its extensions (CSOP (Wagner & Brandon, 2001), and AESOP (Brandon, Vogel, 

& Wagner, 2003)) assume excitatory conditioning between fully active elements, and the 

formation of bidirectional inhibitory links between a present CS and an absent outcome  

(Figure 1, panel b), but do not offer further associative rules.  Such rules are introduced by 

Holland (Holland, 1983), and Dickinson and Burke (Dickinson & Burke, 1996). The former 

(Figure 1, panel c) accounts for mediated conditioning and predicts that two stimuli in the A2 

state undergo inhibitory learning. The latter (Figure 1, panel d) predicts backwards blocking 

as well as mediated conditioning between two A2 stimuli. As is evident, these rules are in 

multiple instances (e.g., A2:CS A2:US and A2:CS A1:US rules) the reverse of one another. 

Indeed, experimental data has been collected to support each model (Dwyer, 1999), leaving 
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the problem unresolved from the point of view of these two SOP extensions.  That is, whether 

A2-A2 learning should be either excitatory or inhibitory is unclear. Hence, there exist 

conditions under which A2-A1 learning appears to lead to both excitation and inhibition.  

Nonetheless, it is conceivable to explain mediated learning through mechanisms different 

from alterations in the associative learning rules. For instance, the comparator model 

produces retrospective revaluation through the competition of associative links during 

retrieval. That is, the B→US link is relatively larger than the A→US link after the latter has 

lost associative strength in the second phase. However, a formal analysis of various 

comparator models has cautioned that such revaluation effects might be harder to reproduce 

than originally conjectured (Ghirlanda & Ibadullayev, 2015, p. 18). Though the TD model 

does not presume learning between neutral stimuli, the Predictive Representations (Ludvig & 

Koop, 2008) extension of it accounts for mediated conditioning by proposing that present 

cues retrieve representations of stimuli with which they have been previously presented. 

These retrieved cues condition equivalently to present cues, save for having lower levels of 

activation. The formulation of the model however seems to preclude explaining backward 

blocking without further assumptions, as learning between a retrieved CS and a present 

outcome will tend to be excitatory. Hence the model conceptualizes mediated learning as a 

form of reasoning about causal relations between events, yet does not seem to capture 

reasoning occurring when prior learning is contradicted by subsequent learning in such a 

manner that previously formed links should be weakened. 

A unique account of mediated learning is conceived of in the 'replayed experience' model 

of Ludvig, Mirian, Kehoe, and Sutton (2017). It in contrast postulates that the animal re-

processes previous learning during the inter-trial interval (ITI), thereby consolidating 

contradictory learning contingencies. It can account for a wide variety of mediated learning 

effects including mediated conditioning and backward blocking in this manner. In a sense, it 

accounts for mediated learning by assuming that specific contingencies are intermixed as 

replay experiences in the mind of the animal, and for instance backward blocking is therefore 

explained in the same way as intermixed standard blocking. However, the model relies on the 

assumption that such post hoc revaluation indeed occurs during the ITI, and must assume that 

representations of different outcome-contingencies have already been learned by the animal 

for them to be replayed. 

In summary, if mediated phenomena are to be explained purely through learning rules, 

what seems to be needed is therefore a learning rule that subsumes both sets of rules. This 
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supra-rule should reverse the direction of learning between present and absent cues in a 

principled manner depending on the prior reinforcement history. For instance, through a 

learning process, which can be justified as a form of approximate Bayesian inference. This is 

precisely the approach we follow in the Double Error model. 

To conclude, a plethora of models have been developed to account for wide varieties of 

classical conditioning phenomena. However, the sets of phenomena explained by models are 

quite distinct. Latent inhibition is predicted by diverse models, nevertheless the accounts 

given by the SLGK, McLaren-Mackintosh, and SOP models excel due to their ability to 

incorporate context modulation. Similarly, solving various non-linear discriminations, such as 

negative patterning, and modelling exposure effects on stimulus generalization, seem to 

necessitate a more elaborated stimulus representation than standard elemental and configural 

approaches. In terms of mediated learning, most of the models incorporating neutral stimulus 

associations can account for some but not all effects, with different models displaying 

different strengths.  

The Double Error (DE) model introduced next aims at accounting for all the highlighted 

classes of learning effects through a general framework of real-time error correction learning, 

instantiated as an elemental connectionist network. It integrates most prominently a unique 

second error term denoting the expectancy of an outcome predictor, a revaluation alpha 

which turns outcome uncertainty into a source of information, and critically, a dynamic 

asymptote of learning regulated by the similarity/discrepancy in the levels of activation of the 

elements of the association. 

 

The Double Error Model 

The Double Error (DE) model introduced in this paper conceptualizes a formal, 

computational model of classical conditioning. It is instantiated as a connectionist network, 

within which nodes representing elements of stimuli enter into associative learning with one 

another (including between non-US elements, and elements of the same stimulus). It utilises 

an error correction learning framework, thereby inheriting the properties of extant error 

correction models. Elements can be unique to a stimulus or shared between two stimuli. Its 

associative learning rule includes a prediction error term for both the predicting and predicted 

stimuli, with both influencing the associability of a CS with an outcome. That is, a more 

novel predictor will undergo faster conditioning toward an outcome. Crucially, the asymptote 
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of learning between any two elements measures the similarity of their activity. Hence, 

elements correlated in their activity patterns form stronger associative links. Finally, a 

process governing changes in attention-based associability of reinforcers and non-reinforcers 

is introduced, and operates based on the time-discounted uncertainty in the occurrence of 

these classes of stimuli being revaluated as a source of information.  

The time-dependent activity of elements, clustered into 'time-waves', allows the model to 

predict differential responding early and late during a CS presentation. The learning between 

motivationally neutral elements explains the influence of learning between non-US stimuli on 

learning between a stimulus and the US. Thus, the model accounts for preexposure effects 

such as latent inhibition. The predictor error term, which produces the so called 'double error' 

learning rule, along with the unique asymptote of learning used, endows the model with the 

capability of accounting for apparently contradictory mediated learning phenomena (e.g., BB 

and mediated conditioning). It does so by positing that the crucial factors influencing the 

direction of mediated learning are the strength of retrieval of the retrieved cue and the prior 

strength of the link between the retrieved cue and the outcome. Lastly, the attentional 

processes of the model contribute towards the model’s capability of predicting a wide range 

of phenomena including preexposure, non-linear discriminations, and learned irrelevance 

effects. 

 

Stimulus Representation 

In the DE model, a stimulus is constituted by a set of elements that are related to the 

physical attributes of the stimulus. These elements can be unique to the stimulus, or shared 

with other stimuli. These common elements (Figure 2) are probabilistically sampled 

whenever one of their 'parent' stimuli is active.  
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Figure 2. A stimulus consists of elements unique to it, common elements shared with other stimuli, and the 

elements’ respective activation levels. 

 

Each element of each stimulus is capable of developing associative links to each other 

element (including elements of the same stimulus). Therefore, the model’s ontology 

presumes an elemental connectionist network structure (Figure 3) of the total stimulus 

representation, with bidirectional (not necessarily symmetric) links between each pair of 

elements. 

Figure 3. The elemental network structure of the model. 
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It is assumed that the stimulus representation varies through time, with various elements 

being differentially active early or later on during the presentation of a stimulus. Hence, 

elements form clusters that are differentially active throughout the stimulus presentation, 

which we term 'time-waves'. A stimulus is set to have one time-wave for each time-unit of 

duration of the stimulus. Each time-wave of a given stimulus follows an 'approximately' 

Gaussian distribution, calculated through Equation 3, with 
,

t

j pY  denoting the probability that a 

given element belonging to the time-wave will be directly activated at that moment in time. 

 

 

 
2

, 2

( )
exp( )

2

t

j p

t i s
Y

c


  , (3) 

 

where 2
c   , s   is a skew parameter which multiplies the enclosed term when t i , 

and  i  is the mean of the corresponding time-wave. The curve is not normalized by the usual 

2 c   factor: we desire the peak of the curve to have a maximal value of 1, as this works 

with the asymptote used in the error term of the learning equation. Its shape is approximately 

of the following form (Figure 4): 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 28, 2017. ; https://doi.org/10.1101/210674doi: bioRxiv preprint 

https://doi.org/10.1101/210674
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Figure 4. Time-waves are skewed to the right, have a specified peak t = i and denote the probability that a given 

element belonging to this temporal cluster is active at a given time-point. 

 

For instance, with a 10 time-unit stimulus, the constituent time-waves of the stimulus 

follow the shape seen in Figure 5. 

 

 

Figure 5. The presence of a stimulus produces a series of time-waves in proportion to its duration. Each time-

wave peaks at a subsequent time-point and its standard deviation is proportional to its mean. A given time-wave 

gives the activation probability of elements 'belonging' to the wave. 

 

Time-waves are used to represent the idea that the stimulus representation varies in time, 

so that its elements are differentially active during the presentation of a stimulus. Thus, 

earlier time-waves elements can learn differential associations from later ones. Similarly, 

significant generalization through time occurs as the long-tails of the time-wave activations 

overlap, allowing the model more flexibility than afforded by step-functions or non-

generalizing stimulus activity functions as seen in the original TD model or its CSC 

extension. These time-waves are hence closely related to the ‘micro-stimuli’ representation of 

TD (Ludvig et al., 2009). The persistence of the time-wave activations also allows for 

effective trace conditioning. Thus, the DE model does not rely on separate eligibility traces to 

be able to produce trace conditioning as in other models of learning. 
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Associative Activation 

 

Whenever a given element is active (including associatively active), it produces 

predictions for other elements in proportion to the weights from itself to these elements. This 

amounts to a process of associative retrieval if the predicted element is not directly active. 

Thus, when no training has occurred all weights are presumed to be zero and no associative 

retrieval takes place yet. If the element producing a prediction is associatively active (i.e., not 

actually present, only cued), its prediction is discounted by a factor  . Theta avoids infinite 

reverberating loops as discussed in (Wagner, 1981, p. 13). At a given time-point, the 

aggregate of the predictions for an element m  of a stimulus o  is the total prediction for it, 

and is denoted ,
ˆ t

m oY , and consists of the contribution of each other predicting element j  of 

each stimulus p  active at that time-point, that is the link from the predicting element times 

its overall activation at that moment in time. This is calculated per Equation 4. 

 

 , , , ,
ˆ t t t

m o j p m o j p

p j

Y w    (4) 

 

Overall Stimulus Activity 

The overall activation of an element m  of a stimulus o  is taken to be whatever is larger: 

its direct activation 
,

t

m oY , or its associative activation ,
ˆ t

m oY , as given by Equation 5. 

 

 , , ,
ˆmax( , )t t t

m o m o m oY Y   (5) 

 

That is, the associative and direct activations of a given element do not compete directly, 

but rather act complimentarily in terms of invoking activity of an element. Hence predictions 

formed by one stimulus to another do not inhibit the activation of the predicted stimulus as in 
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models such as SOP (Wagner, 1981), but rather simply reduce the novelty of the predicted 

stimulus. The motivational value of a US is represented by a US intensity parameter that 

multiplies both the overall activity of the US elements and the salience of the US. That is, 

less intense USs have a lower maximal activity level, which further leads to such USs 

possessing lower learning asymptotes for present CSs. 

 

Learning and the Dynamic Asymptote 

Learning occurs in the model whenever two elements are concurrently active either 

through sensory experience or associative retrieval. The direction of learning (excitatory or 

inhibitory) between the elements is dependent on the dynamic asymptote, which is a measure 

of closeness between the activation of the two elements, as well as the associative strength of 

other cues in the error term. That is, if two elements have similar activities they will undergo 

more rapid conditioning towards one another and eventually reach higher asymptotic link 

strength. Hence, two temporally overlapping present stimuli will undergo strong excitatory 

learning, while a retrieved and a present cue will support a significantly lower maximal level 

of conditioning. This mechanism derives from the idea that elements (seen as attributes of 

stimuli) with a similar activation level are equally probable of being present at that moment, 

and hence belong in the same 'causal modality'. The power of the dynamic asymptote is that it 

predicts the same A1→A1 and A2→A2 learning (though it does not presume SOP activation 

states) as the Dickinson and Burke SOP learning rules in most cases, while being able to 

produce A2→A1 learning governed by both Dickinson and Burke's and Holland's rules 

depending on the preceding training (i.e., the A2 stimulus' associative strength towards the 

A1 stimulus prior to A2→A1 conditioning). To reiterate however, the model’s behaviour in 

terms of excitatory and inhibitory learning derives from the error term of the outcome; thus 

no 'learning rules' are used. As the retrieved A2 stimulus will usually have a lower activation 

than if it was directly present, its dynamic asymptote towards the A1 stimulus will have a 

lower value as compared to A1→A1 conditioning. Therefore, its associative strength will 

approach this intermediate value. If its prior associative strength is lower than this 

intermediate value (e.g., as in a mediated conditioning design) it will gain associative 

strength, and if its prior associative strength was higher (e.g., as in a backward blocking 

design) it will lose associative strength. Hence by presuming that the maximum supported 

extent of learning is in fact dynamic and proportional to the degree to which two stimuli are 

equi-present either directly or through associative retrieval, various learning phenomena can 
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be explained in a parsimonious and emergent manner. Further, the strength of a retrieved 

association is crucial for the extent of excitatory learning between a retrieved cue and a 

present stimulus. Neural data for stronger retrieved representations tending to be more 

associable has been gathered by Zeithamova, Dominick, and Preston (Zeithamova, Dominick, 

& Preston, 2012). They found that the degree to which a cue was associatively reactivated 

was correlated with subsequent performance on a predictive inference task involving the 

retrieved cue and a present outcome. 

The asymptote of learning used in the outcome error term is an inverse measure of the 

distance in activity (with direct activation above zero translated to a value of 1), between the 

predictor element and the predicted element (a small constant is added to each to avoid 

division by zero). It is calculated through Equation 6 and Equation 7. 

 

   (6) 

 

   (7) 

 

The result is an asymptote based on a linear distance function, with two cues with highly 

dissimilar activations supporting less learning than if their activations at a given time-point 

were more similar. This rule is not a strict inverse distance function however, as the absolute 

value being subtracted from the outcome activity breaks symmetry and allows for differential 

learning between a present predictor and absent outcome (extinction), and an absent predictor 

and present outcome (mediated conditioning). As seen in Figure 6, the asymptote's values 

range between -1 and 1. The former is produced when the outcome representation is 

completely inactive, while the predictor has an activity level of 1. The latter is produced 

when the outcome and predictor have the same activity level. As the absolute value is 

subtracted from the outcome's total activity level, this dynamic asymptote is anti-
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symmetrical, i.e., the outcome activity is more determinant of whether the asymptote is 

positive or negative. 

 

 

Figure 6. Asymptote of learning as a distance measure of the activities of the predictor and outcome. 

 

 

The Double Error Term and Weight Update 

The outcome-error (i.e., prediction error) from an element j of a given predictor p  to an 

element m  of a given outcome o  is calculated, per Equation 8, by the discrepancy between 

the asymptote of learning , ,j p m o   and the total prediction for the outcome 
  
Ŷ

m,o

t
. 

 

 , , , , ,
ˆt t

j p m o j p m o m oY      (8) 

 

As the asymptote of the model operates through a distance function of element activities, 

and these activities persist through time, the model does not utilize the form of gradient 

learning incorporated by the error term of the TD model. Links between elements 
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approximate the activation of other elements at a given moment in time instead of predicting 

the change in these activities. 

Uniquely in the model, per Equation 9, the predicting element itself has an error term 

denoting how expected it is.  

 

   (9) 

 

These predictor and outcome error terms are then used in the weight update, Equation 10, 

for a given element, along with the salience s of the predicting and predicted element, their 

respective activations , as well as the adaptive revaluation rate, n  or r (see next 

section), for a respectively non-reinforced or reinforced outcome: 

 

   (10) 

 

That is, the direction of learning is determined by the outcome prediction error and its 

variable asymptote, while the prediction error for the predictor itself, along with other 

modulating factors (the fixed salience s , adaptive  , and activations ) influence the 

extent and speed of learning. As such, the novelty of the predicting element plays a crucial 

role in determining the rate of learning. That is, more novel cues are more readily associated 

with an outcome. The source of this novelty, namely the extent to which other cues have 

formed associative links to it, is fully accounted for by the model. This crucially allows the 

DE model to explain preexposure effects such as latent inhibition in a parsimonious manner. 

 

Attentional Modulation: The Stimulus Associability 

The revaluation alpha (denoted by r  or n ) of the model works by the principle that 

attention to reinforced or non-reinforced cues increases when there is uncertainty in the 

occurrence of stimuli of that respective class. It further postulates that if the uncertainty 
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remains high over a sufficient period of time (as tracked by the moving average), the animal 

uses this persistent uncertainty as a source of information, and reduces its level of attention to 

such classes of cues. Hence, when the occurrence of reinforcers is uncertain, the speed of 

acquisition of excitatory or inhibitory links from elements of any stimulus to elements of a 

reinforcer increases. Likewise, uncertainty in the occurrence of non-reinforcing stimuli 

similarly increases the learning speed towards them. If this uncertainty however remains 

high, the level of attention decays again. The change in the attentional modulation is in 

proportion to the time-dependent activation ,

t

j p  of the element as well as  , which is an 

adaptation rate parameter determining how quickly the revaluation alpha changes. In terms of 

notation /r n  and /US CS  denote that one or the other is meant. The overall direction 

towards which the   changes is determined by the overall moving-average error of its 

respective class of cues, 
US/CS| |t , as seen in Equation 11. 

 

   (11) 

 

Here   is a moving average of the error terms of respectively all active reinforced or non-

reinforced elements, and  is a decay that kicks in if the moving average crosses a 

threshold. For instance, during partial reinforcement it leads to the r  decaying after 

sufficiently many trials when the learner realises that the contingency is inherently random 

and therefore warrants less attention. Thus, the crux of the introduced alpha is that an animal 

can turn a lack of certainty over the occurrence of cues into a source of information in itself. 

Now, the overall error of its respective class of cues, 
US/CS| |t , is updated per the formulas of 

Equation 12 and Equation 13. Here o  and m  respectively denote the stimuli and their 

constituent elements of the given class (reinforced or non-reinforced) of cues over which the 

errors are aggregated. 

 

   (12) 
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   (13) 

 

Hence, the DE model assumes that selective attention, and therefore associability, towards 

reinforced and non-reinforced outcomes is proportional to the overall uncertainty of these 

classes of stimuli. The r is thus similar to the Pearce-Hall rule but the DE model goes 

significantly beyond it by postulating a similar process for non-reinforced cues (using n ), 

as well as assuming that sustained attention declines if uncertainty remains high. It further 

predicts that changes in associability induced by uncertainty in one outcome will influence 

the associability of cues towards other outcomes, both for reinforced and for non-reinforced 

learning. In psychological terms this implies that uncertainty in the occurrence of reinforced 

or nonreinforced stimuli increases the processing of such classes of cues, and that the relative 

processing of non-reinforced and reinforced classes of cues depends on the relative 

uncertainty of reinforcers when compared to non-reinforcing cues. Thus, the effects of extant 

reinforced learning (i.e., the extent to which a stimulus is predicted by other stimuli) upon the 

rate of further reinforced learning is mediated both through the outcome error term being 

more minute, as well as through the variable associability to a reinforcer decreasing 

proportionally to learning. However, unlike the Pearce-Hall rate, the effect of the DE model 

associability is generalized over many trials and its value is dependent upon a moving 

average of uncertainty that conveys an end of the sustained attention when a sustained 

consistent high error endures after long training. Thus, the effects of these different 

approaches to associability only overlap partially. 

 

Computation of Trial Values 

To calculate the response elicited by stimuli on a given trial, Equation 14, the total 

prediction on a time-point of the trial (equivalent to the associative activation of the US 

elements divided by their number) is averaged over each time-step of the trial. 
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trial length #USelements

Trial ,

1 1

1 1 ˆ
trial length # USelements

t

m o

t m

R Y
 

     (14) 

 

 

Model Summary  

In summary, the DE model instantiates a connectionist network consisting of elements 

(nodes), which belong to individual stimuli or are shared in common between pairs of stimuli. 

At each time-point within a trial or ITI period, the model calculates the direct (sensory) 

activation of an element according to a semi-Gaussian function with a specified mean 

(determined by which time-wave the element is sampled from). Next, the associative 

activation of elements is calculated based on the predictions generated for said element on the 

previous time-point by all other elements. The overall activation of an element is then taken 

to be whichever is larger: the direct activation or the discounted associative activation. 

The model next calculates the revaluation alphas individually for each element. This 

occurs in proportion to the activity of the element (such that more active elements experience 

faster changes in their alpha values). The value that the alphas change towards is the time-

averaged mean error of all reinforced ( r ) or non-reinforced ( n ) elements. If this time-

averaged mean error value crosses a threshold, the model decays the respective alpha value at 

each time-point on which this condition remains true. 

Finally, the DE model calculates the learning between each pair of elements (in both 

directions). First, the asymptote of learning is calculated. This asymptote is higher for two 

elements that have more similar overall levels of activation. This dynamic asymptote enters 

into the error term of the predicted element, along with the summed predictions from all other 

elements for this predicted element. Similarly, the predictor error term is calculated as the 

discrepancy between the predictor element's overall activity and predictions made for it by 

other elements. 

The weight from the predictor element to the predicted element is then calculated as the 

product of the two error terms mentioned (with the absolute value of the predictor error term 

being taken), along with the saliences of the two elements, the overall activations of the two 

elements, and the revaluation alpha from the predictor to the outcome (i.e., r  or n  if the 

outcome is respectively a reinforcer or a non-reinforcer). 
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Although the DE model may seem formally complex, its essence is rather simple. 

Elements of the CS, context, and US are treated for the most part equivalently in that their 

learning of associations at each time-point is calculated using the same equation. The overall 

activation of an element is simply a factor of its sensory input and predictions made for it by 

other elements. The revaluation alphas of a given element track the overall uncertainty of 

reinforced and non-reinforced events in a straightforward manner. Finally, the direction of 

learning in the model between two elements is dictated by the activation similarity of the two 

elements along with cue competition; with other factors simply modulating the magnitude of 

this learning. 

 

Results 

 This section presents a set of simulations aimed at demonstrating that the DE model’s 

unique features enable it to account for a wide variety of the learning effects discussed in the 

introduction. Simulations were carried out with a universal design simulator (DE Simulator 

Ver.1, available at https://www.cal-r.org/index.php?id=DE-sim). Results are grouped in three 

different blocks. The first block tested the contribution of attentional revaluation and the 

formation of neutral associations to model preexposure effects, namely, latent inhibition 

effects, the Hall-Pearce effect, learned irrelevance and perceptual learning. The second block 

of experiments assessed the impact of the model’s dynamic asymptote in predicting the 

individuals’ capability to revaluate past associations through retrieved representations of 

cues. Thus, mediated learning procedures were simulated, specifically, backward blocking, 

unovershadowing, mediated conditioning in a backward sensory preconditioning procedure, 

and mediated extinction. Lastly, a third block of simulations examined the competence of the 

model in coping with complex stimuli and non-linear discriminations such as negative 

patterning and biconditional discriminations, along with experiments that tested stimulus 

generalization decrement. This block of simulations was intended to make evident that, with 

only the assumption of common elements, the DE model can learn to approximate so called 

configural learning. For each phenomenon, we present both the design and the trial-by-trial 

response values of interest. Simulations are presented with a response measure matching the 

experimental output. Thus, when required to parallel experimental results, that is when the 

analysed response increased inversely to the associative strength, such as in suppression of 

baseline responding in a conditioned emotional response procedure, or suppression of fluid 
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consumption in a taste aversion learning paradigm, a simulated suppression ratio (r) was 

computed following (Mondragón et al., 2014), as seen in Equation 15. 

 

 
(max CR CR)

((max CR CR) + max
r

 CR)



  (15) 

  

 Here, the baseline normalization constant, max CR rounded to the nearest five, denotes the 

maximal level of responding elicited during the test condition, that is, normalized to a scale 

commensurate to the axis units of the empirical data. Values of r closer to 0.5 indicate poor 

conditioning whereas values near 0 correspond to high levels of conditioning.  

 The parameters of the simulations are displayed in Table 1 and the design for each 

experiment is displayed in Table 2. Simulating Experiment 6 requires, due to the large 

number of cues involved in the design, more RAM than is available on most personal 

computers. As such, simulating this design needs either the manual disabling of the code for 

many data arrays normally stored during the running of the simulator or that it be run on a 

machine with substantially more RAM (e.g., a super-computer). 

 

Preexposure Effects 

 The following set of experiments involves the presentation of one or multiple stimuli prior 

to conditioning. Stimulus preexposure treatments are said to entail variations in the 

processing of the stimulus, which results in a slow rate in subsequent conditioning of the 

preexposed stimulus to a reinforcer (e.g., latent inhibition effects, Hall-Pearce negative 

transfer). When the treatment encompasses uncorrelated CS and US presentations 

conditioning is retarded more than would be expected just by the combined effects of the 

preexposed stimuli (learned irrelevance), thus suggesting that animals are able to learn an 

explicit negative correlation between events. Moreover, evidence suggests that this type of 

learning could also emerge under conditions that may entail a retrospective evaluation of the 

correlation, that is, under schedules in which the events are experienced separately in time 

(Baker, Murphy, & Mehta, 2003). Additionally, exposure treatments often result in a 

reduction of generalization between stimuli (perceptual learning). As such, these phenomena 

offer the ideal testing ground to demonstrate the model’s mechanism of revaluating the 
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associability rate as well as the modulatory effect fostered by neutral cue associations, 

namely, context→CS and CS→CS associations on subsequent conditioning to a US. 

 

Experiment 1: Latent Inhibition and Context Specificity  

 An arbiter of a model’s ability to fully explain the effect of latent inhibition (LI) is 

whether the model can also reproduce the fact that LI shows context specificity. Models such 

as Pearce and Hall (Pearce & Hall, 1980) can account for the deceleration observed in latent 

inhibition, yet fail to explain the effect that latent inhibition is weaker when subsequent 

conditioning takes place in a different context than that in which preexposure occurred.   

 In Experiment 3 (Channell & Hall, 1983) two groups of rats were given preexposure 

training to a stimulus in a distinctive context ( and then in a subsequent phase received 

appetitive conditioning trials to this stimulus. For half of the subjects (Group Exposed Same) 

conditioning occurred in the same context that was used in preexposure whereas for the 

remaining animals conditioning training was given in a different context ( )(Group Exposed 

Different). Two further groups of animals (Group Control Same and Group Control 

Different) received identical conditioning training but did not received preexposure to the 

stimulus. Table 2, Experiment 1, shows the design.  

 The results of this experiment are displayed on the left panel of Figure 7.  The 

conditioning rate was retarded displaying a sigmoidal acquisition shape when the stimulus 

was preexposed (Group Exposed Same and Group Exposed Different) in comparison to non-

preexposed animals. (Group Control Same and Group Control Different). However, this 

retardation effect was attenuated when conditioning occurred in a context other than that used 

during preexposure. Thus, Group Exposed Same displayed significantly more latent 

inhibition, i.e., slower conditioning, than Group Exposed Different, which in return showed 

slight attenuated learning compared to the control groups. 
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Figure 7: Empirical (original measurement units) and simulated results during the conditioning phase of 

Experiment 3, Channel and Hall (1983). The left panel is an adaptation of the published data showing 

acquisition of a CR in groups Exposed Same, Exposed Different, Control Same and Control Different. The right 

panel displays the corresponding simulated results generated by the DE model. 

 

 The results of the corresponding simulation are displayed on the right panel of Figure 7. 

The duration of the CSs, US and ITI was 5, 1 and 50 time-units, respectively. The values of 

the remaining parameters were set as per Table 1, Experiment 1. Preexposure consisted of 

100 trials in groups Exposed Same and Exposed Different. Group Control Same and Group 

Control Different received no training in Phase 1. Phase 2 consisted of 66 trials in all four 

groups, with the Different groups’ training programmed to occur in a different context. The 

results of this simulation (Figure 7, right panel) closely matched the empirical pattern. 

Conditioning in Group Exposed Same was delayed in comparison to the other groups. In 

particular, the effect of preexposing the stimulus, latent inhibition, although initially evident 

was considerably reduced with training when the context was changed from conditioning 

(Group Exposed Different).  

 During preexposure, repeated presentations of the exposed stimulus in isolation results in a 

loss of its associability to the reinforcer, . As no outcome is expected, there is no 

uncertainty, which, following the DE model, would be critical in sustaining the associability 

of a stimulus. Consequently, during subsequent acquisition trials, the stimulus associability to 

the reinforcer is higher in groups Control Same and Control Different, which have not 

undergone preexposure and therefore keep their initial associability intact, than in the 

r
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preexposure groups for which  has decayed. In other words, preexposure reduces the 

associability of cues to future reinforcers as they have a history of not being causative of, or 

correlated with reinforcement.  Hence, the control groups display faster acquisition partly due 

to the stimulus’ relatively higher associability towards the US. The model also postulates that 

the error in predicting the outcome is reduced when the CS is predicted by other stimuli. 

Thus, in the groups in which preexposure and conditioning occur in the same context, the 

associations between the context and the stimulus and between the CS elements (unitization), 

which are formed during preexposure, reduce the speed of the CS→US learning; a decrease 

which is proportional to the loss of novelty of the CS. As the CS is predicted more strongly in 

Phase 2 in Group Exposed Same than in Group Exposed Different in which conditioning 

occurs in a novel context, the rate of learning is further reduced in the former in comparison 

to the latter, thus resulting in a greater latent inhibition effect when compared to the 

corresponding non-preexposed control group (Group Control Same). In fact, the degree of 

latent inhibition is postulated to be proportional to the net effect of unitization, prediction by 

the context, and loss of selective attention due to lack of reinforcement.  

 In summary, the DE model’s associability accounts for the decelerated learning rate 

observed in LI. Just as importantly, the predictor error term in the model’s learning equation 

endows it with the ability to predict context modulation of learning, because the CS becomes 

expected through training in a single context in comparison to when this context is no longer 

present. 

 Given that these effects can be disassociated, the model can further predict that latent 

inhibition would be attenuated (yet not completely abolished) should the preexposure 

treatment be followed by exposure to the context alone, as this would extinguish the context 

to CS link. This effect would be slightly mitigated since changes in the preexposure regime 

would raise the uncertainty of neutral cues, thereby increasing  of both the CS and the 

context. As a consequence of the increase in the neutral cues’ associability, stimulus 

unitization and context to CS learning would presumably be facilitated, thus lessening the 

attenuation of latent inhibition. Following the same argument, the model can advance a 

further prediction: preexposing the CS in multiple contexts should result in stronger latent 

inhibition, as this would reduce the variable associability of the CS, while retaining the 

strength of the context to CS links.  

 

 

r

n
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Experiment 2: Compound Latent Inhibition 

 Recent results by Leung, Killcross, and Westbrook (2011) have found evidence of a novel 

prediction derived from Hall and Rodriguez's model (2010), according to which when a 

preexposed target stimulus is further exposed in compound with another stimulus latent 

inhibition accrued by the target is larger than if the target is additionally preexposed in 

isolation. Hall and Rodriguez’s prediction derives from the assumption that preexposure to a 

CS leads to an association between the CS and an unspecific noUS centre. This association 

would interfere with the formation of links between that CS and any given US. Unlike 

isolated CS exposure, additional compound preexposure would result in a reduction of the 

error due to summation of the two CS→noUS predictions, causing a decline in attention to 

the target CS. As a consequence, conditioning would proceed more slowly.  

 Experiment 3 in Leung et al. (2011) used an aversive conditioning procedure in rats. In 

Phase 1, the two groups of animals were presented with non-reinforced random presentations 

of A, B, and C. Phase 2 consisted of non-reinforced presentations of a compound AB and C. 

In Phase 3, Group Element received a single reinforced presentation of C (the elemental 

control), while Group Compound received a reinforced presentation of A (the target). The 

experiment found that preexposing A in compound with B led to a more pronounced 

attenuation of subsequent conditioning, that is, to a more robust latent inhibition effect 

between A and the outcome when compared to stimulus C, which was preexposed in 

isolation. Figure 8, left panel, shows that animals in Group Element displayed a higher mean 

percent of freezing, i.e., faster acquisition, than animals in Group Compound during the test 

phase. 
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  Figure 8: Empirical (original measurement units) and simulated results of Experiment 3 in Leung et al. (2011). 

The left panel is an adaptation of the published data showing the mean percent freezing in the test phase. The 

right panel displays the corresponding simulated results generated by the DE model. 

 

 The temporal parameters used to simulate this experiment were a 5 time-units CS, 1 time-

unit US, and 50 time-units ITI. A US intensity of 2.5 was used. The remaining parameters 

were set to the values in Table 1, Experiment 2. Both groups of the design were programmed 

to receive 10 randomly presented non-reinforced trials of each stimulus (A, B, C) in Phase 1. 

In Phase 2, both groups were programmed to receive 10 randomly presented AB and C trials. 

In Phase 3, Group Compound received a reinforced presentation of stimulus A, while Group 

Element received a reinforced C trial. The programming of the subsequent test phase 

presented respectively 8 non-reinforced A and C trials for groups Compound and Element. 

The full experimental design is presented in Table 2.  

 The simulation reproduced the pattern observed in the experiment. Figure 8, right panel, 

shows that the predicted responding strength to A in Group Compound was lower than to C 

in Group Element during the test trials of the last phase, thereby displaying more latent 

inhibition. 

 The DE model’s account of this effect is simple and does not require extra assumptions as 

those in (Hall & Rodriguez, 2010).  Neutral associations between the constituent elements of 

the compound AB are formed during preexposure, so that the two CSs become predictors of 

one another. This leads to A retrieving B elements during conditioning in Group Compound, 
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which in return produces a second-order prediction for A elements. Thus, A in Group 

Compound is predicted by both the context and the retrieved B. Since the DE model assumes 

a predictor error term within the error determining the change in the associative weight of a 

stimulus, it predicts that A would condition at a slower rate in comparison to the speed of 

acquisition of C in the Group Element, which is predicted only by the context.  

 This is of considerable interest, as it implies that the DE model does not require to 

postulate acquisition of an arbitrary and unspecific CS→noUS association during 

preexposure (Hall & Rodriguez, 2010) to account for these effects. The DE model’s unique 

learning rule, which incorporates the unexpectedness of a predictor (in this case the CS) in 

the learning equation, thus modulating the rate of conditioning between a predictor and the 

outcome, suffices.  

 The suggested mechanism permits the model to make a further prediction: the potentiation 

of the LI effect observed in this experiment should be considerably attenuated should B 

undergo a series of non-reinforced presentations after being paired with stimulus A, but 

before the reinforcement of A. This treatment would weaken the associative connection 

between B and A, thereby reducing the proportion of A elements cued by B during 

conditioning, accelerating the rate of acquisition. 

 

Experiment 3: Hall-Pearce Effect 

 The acquisition of a CS→US link does not always proceed monotonically in relation to 

only the pre-existent associative strength. For instance, preexposing a CS with a weak US has 

been proved to attenuate subsequent acquisition with a stronger US (the Hall-Pearce effect). 

The error correction and revaluation alpha processes of the DE model can reproduce this 

observation. 

 In Hall and Pearce (1979) Experiment 2 two groups of rats received presentations of a tone 

(Group Tone-shock) or a light (Group Light-shock) followed by a weak shock. A third group, 

Group Tone-alone, received non-reinforced presentations of the tone in isolation. In Phase 2, 

all three groups of rats received presentations of the tone followed by a strong shock. The 

design of this experiment is displayed in Table 2. The experiment found that reinforcing a CS 

with a weak shock retarded subsequent acquisition towards a more intense shock. This 

attenuation of learning was however less pronounced than that produced by preexposure of a 

CS. The results of this experiment are displayed in the left panel of Figure 9. Group Tone-
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alone showed a higher suppression ratio than Group Tone-shock, which in return produced a 

higher suppression ratio than Group Light-shock.  

 To simulate this experiment, the temporal parameters used were a 5 time-units CS, 1 time-

unit US, and 50 time-units ITI. Aside from these values, the parameters corresponded to 

those in Table 1. In Phase 1, each trial-type was programmed to occur 66 times with a US 

intensity of 0.1. Likewise, Phase 2 consisted of 66 reinforced trials, with a US intensity of 

1.0.  

 The simulated results (Figure 9, right panel) paralleled empirical data. Group Tone-alone 

showed the largest suppression ratio over the second phase, followed by Group Tone-shock. 

Group Light-shock produced the lowest suppression ratio, thus displaying faster learning. 

 

 

 

Figure 9: Empirical (original measurement units) and simulated results of Experiment 1 in Hall and Pearce 

(1979). The left panel is an adaptation of the published data showing the acquisition of a CR in groups Tone-

shock, Light-shock, and Tone-alone. The right panel displays the corresponding simulated suppression ratios 

generated by the DE model. 

 

 The DE model accounts for this result in the following manner: in Phase 1, exposure to the 

target stimulus results in a loss of the tone’s novelty in Group Tone-alone and Group Tone-

shock. This loss of novelty has a two-folded effect. On the one hand, the tone is predicted by 
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the context at the time of conditioning, which reduces the predictor error term and therefore, 

the rate of conditioning to US; on the other, there is a decline in the tone’s associability rate 

to the reinforcer. Due to the presence of the shock in Group Tone-shock, this decline in the 

tone’s associability rate is less pronounced than in Group Tone-alone. In contrast, in Group 

Light-shock the tone has not been preexposed by itself and therefore is neither predicted nor 

affected by a loss of associability.  

 Since the effect of the delay in conditioning under these conditions is, according to the DE 

model, a product of a decrease in the error and a loss of the stimulus associability, one could 

predict that would the experiment be modified to have the second phase treatment occur in a 

novel context, the Hall-Pearce effect would be significantly attenuated. 

 

Experiment 4: Learned Irrelevance and Retrospective Negative Correlations 

 So far, we have seen effects that can potentially be ascribed to a simple loss in the 

associability of a stimulus. In a learned irrelevance procedure however the uncorrelated 

presentation of a CS and a US results in an attenuation of the rate of conditioning that is 

larger than the delay resulting from the cumulative effect of each exposed stimulus by itself 

(Bonardi & Hall, 1996; Mackintosh, 1973). Unlike the phenomena previously described, this 

effect seems to imply that animals learn that two events can in fact be negatively correlated, 

i.e., that a stimulus predicts a reduction in the probability of the occurrence of another one. 

Moreover, evidence has been produced that such learning could also appear in schedules that 

may require revaluating retrospectively the correlation between the CS and the US, producing 

inhibitory learning from the CS to the US. In this section, we simulate an experiment 

showing exactly such retrospective revaluation of inhibition. 

 In Baker et al. (2003) Experiment 1, the effect of uncorrelated CS-US presentations upon 

subsequent acquisition was studied. Specifically, the experiment sought to uncover whether a 

CS presented in an uncorrelated fashion with an outcome would become a conditioned 

inhibitor of the outcome as compared to a control in which stimuli were presented separately 

in two blocks of trials. The authors argue that this control, used in other experiments that 

failed to obtain support for uncorrelated learning, could in fact be inadequate because it might 

also promote uncorrelated learning, thus rendering the CS inhibitory. 

 The experiment was split into two sub-experiments. Experiment 1a was designed to assess 

inhibitory properties by means of a retardation test. Experiment 1b was intended to evaluate 

inhibition with a summation test. During Phase 1 of Experiment 1a animals did not receive 
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any treatment. In Phase 2, Group N/Sh received uncorrelated presentations of a noise and a 

shock. In Group N+Sh a block of noise trials followed by a block of shock trials were 

scheduled. In Phase 3, both groups received conditioning trials to the noise followed by the 

shock (retardation test). In Experiment 1b a light was conditioned to the shock in Phase 1. 

Group N/Sh and Group N+Sh received identical treatment as their counterparts in 

Experiment 1a. In Phase 3, all animals were given non-reinforced trials with the noise and a 

compound noise-light (summation test). During Phase 4 a saving test consisting of reinforced 

noise trials intermixed with the compound noise-light was carried out.  

 The retardation test in Experiment 1a showed that uncorrelated presentations of the noise 

and the outcome (Group N/Sh) produced a smaller deficit in subsequent acquisition than the 

scheduled presentations in Group N+Sh did. The left panel of Figure 10 shows the retardation 

test results in Experiment 1a: Group N/Sh displayed a lower suppression ratio (and hence 

faster learning) than Group N+Sh.  

 Figure 11 left panel shows the results of the summation test. Animals trained under a 

blocked schedule of presentations (Group N+Sh) showed a stronger summation effect, visible 

as a larger differential responding to the stimulus and the compound. The summation effect 

was also evident, but to a lesser degree for animals trained in the uncorrelated treatment of 

Group N/Sh. These results suggest the formation of an inhibitory association between the 

noise and the shock, inhibition that was stronger in Group N+Sh.  

 

Figure 10: Empirical (original measurement units) and simulated results of Experiment 1a in Baker et al. (2003). 

The left panel is an adaptation of the published data showing suppression ratios for the retardation test trials to 
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the noise in Phase 3. The right panel displays the corresponding simulated suppression ratios generated by the 

DE model. 

 

 

Figure 11: Empirical (original measurement units) and simulated results of Experiment 1b in Baker et al. 

(2003). The left panel is an adaptation of the published data showing suppression ratios for the summation test 

trials. The right panel displays the corresponding simulated suppression ratios generated by the DE model. 

 

 For the simulation, temporal parameters consisted of a 5 time-units CS, 1 time-unit US, 

and 50 time-units ITI. The remaining parameters were set to the values in Table 1. For 

Experiment 1a no event was programmed to occur in Phase 1. In Phase 2, Group N/Sh 

received random presentations of N and of the US, such that both stimuli coincided on 16 

trials. Half of these US presentations occurred before N, and half following it. Group N+Sh 

received a block of 24 N trials followed by a block of 24 US trials. In Phase 3 both groups 

received 36 reinforced N presentations. In Experiment 1b, Phase 1 consisted of 8 reinforced L 

trials. Phase 2 was programmed identically to that in Experiment 1a. In Phase 3, non-

reinforced randomly presented trials of a compound NL and two of L were programmed in 

both groups. Finally, Phase 4 was programmed to deliver 40 non-reinforced NL and 20 

reinforced L trials randomly presented. The full experimental design is depicted in Table 2. 

    The simulation results match empirical data. In the retardation test (Figure 10, right panel), 

Group N+Sh showed a lower suppression of responding than Group N/Sh.  
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Results for the summation test (Figure 11, right panel) closely matched the experimental 

results. Group N+Sh showed a larger difference in simulated suppression between the NL 

and L trials than Group N/Sh, suggesting that the noise had become a stronger conditioned 

inhibitor of the outcome in Group N+Sh. 

 The DE model accounts for this result by assuming that an animal learns to approximate 

the CS-US relationship, which in the case of the N+Sh groups would imply retrospectively 

assessing the information in the following manner: in this group, there will be many US trials 

in which N is predicted by the context, yet is not present. Thus, the context associatively 

retrieves N but its activation is weak. The discrepancy between the activation levels of N and 

the US would yield a minute or negative asymptote, engendering inhibitory learning between 

N and the US, which combined with competition by the context would allow the model to 

replicate the result. In contrast, N in N/Sh groups sometimes coincides with the US, therefore 

forming a slightly less inhibitory link toward it. Additionally, the difference between the 

degree of inhibition attained in each group is further enlarged by the fact that in N/Sh groups 

the random ordering of the trials bounds the maximal extent to which the context predicts the 

US in comparison to the prediction following the blocked presentations in N+Sh groups, thus 

limiting context competition and therefore acquisition of inhibition. In other words, a further 

source of difference between the groups is due to context-mediated inhibitory learning 

between the CS and the US.   

 

Experiment 5: Perceptual Learning 

 Perceptual learning (PL) is an effect whereby exposure of stimuli reduces generalization 

between them or, equivalently, improves subsequent discrimination. The phenomenon is 

highly relevant in learning theory because it is in apparent conflict with latent inhibition: 

whereas stimulus exposure delays acquisition, it also facilitates discrimination learning. 

Amelioration in discrimination has been found to be more profound when the preexposed 

cues are intermixed (strictly alternated), as compared to being presented in blocks of trials 

(e.g., Hall & Honey, 1989); Mackintosh, Kaye, & Bennett, 1991); Mondragón & Murphy, 

2010); Symonds & Hall, 1995). 

 Blair & Hall (2003), Experiment 1a, employed a within-subjects design to further control 

for a differential effect of common stimulus features in assessing the influence of the 

schedule of exposure. Their experiment, in a flavour aversion preparation, tested PL in a 

generalization test. In Phase 1, rats received non-reinforced exposure to three flavours, 
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compound stimuli AX, BX, and CX. The first half of trials consisted of alternated 

presentations of AX and BX, followed by a block of CX trials in the second half. This 

schedule was counterbalanced across animals, such that half of the animals experienced first 

a block of CX and then the alternated AX and BX trials. In Phase 2, AX trials were followed 

by a LiCl injection to induce flavour aversion to AX. In the test phase thereafter (Figure 12, 

left panel), consumption of BX was higher than consumption of CX, implying that the 

aversive learning to AX generalized more to CX than to BX, that is, that the animals 

discriminated better between the alternated stimuli AX and BX than between AX and the 

blocked CX. The complete design is displayed in Table 2. 

 

 

Figure 12: Empirical (original measurement units) and simulated results of Experiment 1a in Blair and Hall 

(2003). The left panel is an adaptation of the published data showing mean fluid consumption. The right panel 

displays the corresponding simulated mean consumption for BX and CX test trials. 

 

 A simulation of this experiment was conducted with the following temporal parameters: 5 

time-units compound CSs, 1 time-unit US, and 75 time-units ITI. All other parameters are 

shown in Table 1. During Phase 1, each compound was presented 10 times in accordance 

with the experimental schedule. Conditioning in Phase 2 consisted of 10 trials. In Phase 3, 2 

generalization trials to BX randomly interspersed with 2 CX trials were programmed.  
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 The simulated results (Figure 12, right panel) reproduced the empirical data. The 

simulated response strength as a direct measure of consumption was higher on BX than CX 

test trials. Consequently, the model was able to predict that intermixed exposure facilitates 

discrimination when compared to equally exposed blocked presentations.  

 According to the DE model, intermixed AX and BX preexposure results in: 1) slightly 

higher associability in C than B, such that both neutral associations and subsequent reinforcer 

associations develop at a higher rate; and 2) a stronger A→C association than the A→B 

association. Thus, during the AX acquisition trials, mediated conditioning to B will be 

weaker than to C.  Lastly and importantly, intermixed presentations lead to weaker B→A 

than C→A links. Thus, during the test phase, the associative chain B→A→US is weaker in 

comparison to C→A→US, contributing towards the disparity between the intermixed and 

blocked conditions.  

 

Mediated Learning 

 A key feature of the DE model is its ability to account for the way associations change 

between cues when one or both may be associatively retrieved yet physically absent. It 

accomplishes this through both its fully connected network and its dynamic asymptote. The 

latter works on the assumption that the similarity in the level of activation of the predictor 

and predicted cue dictates the maximal strength of the association that will form between 

them. Accordingly, a discrepancy in the levels of activity of the stimuli limits their ability to 

enter into association. This simple idea of adaptability of the asymptote of learning is critical 

in explaining the apparent contradictory results of mediated related effects that have given 

origin to conflicting models.  

 For instance, in a retrospective revaluation experimental setting, two stimuli, a paired-CS 

and a target-CS, undergo reinforced training in compound. After this training is completed, 

the paired-CS is further trained (either reinforced or non-reinforced) independently. As a 

consequence of this treatment, the associative strength of the paired-CS is adjusted, but more 

importantly, the strength of the target stimulus that does not receive further training is also 

modified. 

 Backward blocking and unovershadowing (often referred to as retrospective revaluation) 

are exemplary cases of mediated phenomena. In a backward blocking procedure, following 

reinforced compound training, the paired cue is subsequently trained with the same 
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reinforcer. As a result, the target cue losses some of its initial strength. In an 

unovershadowing design, the paired cue is presented in extinction instead. Following the 

extinction trials, the associative strength of the non-present target is found to increase when 

subsequently tested. At a face value, these results seem to suggest an inverse (or inhibitory) 

relationship between active and retrieved cues.   

 Formally identical treatments such as sensory preconditioning (SPC) and mediated 

extinction (ME), in which the initial compound training is giving in the absence of a 

reinforcer, have produced results that opposed the hypothesis above. That is, they suggest a 

direct or excitatory connection between retrieved and present cues.  For instance, in SPC 

subsequent reinforced training of the paired cue results in the target acquiring associative 

strength, rather than losing it as in the backward blocking procedure. In a ME procedure, 

following non-reinforced training of a compound pair-target, the target is conditioned. In a 

subsequent phase, the paired stimulus receives extinction training. When the target stimulus 

is next tested, a reduction in strength compared to that attained earlier is observed. This result 

contradicts the predictions of theoretical approaches that are able to account for retrospective 

revaluation experiments, unovershadowing designs in particular, in which an increase in 

strength is obtained instead.  

 

Experiment 6: Unovershadowing and Backward Blocking 

 In Experiment 3 (Le Pelley & McLaren, 2001), mediated learning effects were studied in a 

causal judgement task using human participants, comprised of a series of mediated learning 

conditions and controls (see Table 2 for details). All participants received the whole set of 

conditions. In condition A2-A2, Phase 1 consisted of non-reinforced presentations of 

compound AB, followed by reinforced presentations of C. In Phase 2 the subjects received 

non-reinforced presentations of a compound AC. In condition A2-A1, Phase 1 consisted of 

non-reinforced presentations of a compound DE followed by non-reinforced F presentations. 

Phase 2 consisted of reinforced DF presentations. In condition Control non-reinforced 

presentations of a compound GH were followed by reinforced presentations of I in Phase 1, 

whereas in Phase 2 non-reinforced GJ trials were given.  The Unovershadowing condition 

consisted of reinforced KL presentations in Phase 1 followed by non-reinforced presentations 

of K in Phase 2.  In the Backward Blocking condition reinforced MN presentations were 

given in Phase 1, and Phase 2 consisted of reinforced presentations of M.  In the RR Control 

condition subjects received reinforced OP trials in Phase 1, and O was partially reinforced in 
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Phase 2. In condition Fillers, Phase 1 consisted of non-reinforced Q trials, and reinforced QR 

trials were given in Phase 2.  

 The most interesting results of this experiment (see Figure 13, left panel) show that 

responding to the target cue in the Unovershadowing condition L was higher than that of the 

Backward Blocking condition N. The difference in ratings between L and P, indicative of 

unovershadowing, was larger than that between N and P. However, no differences were 

found in the ratings between P and N, failing to replicate backward blocking, found in their 

previous experiments. Additionally, no differences were found either between the target cues 

in the A2-A2, the A2-A1 and the Control conditions (cues B, E, and H respectively) showing 

no evidence of mediated learning. These results pose a challenge to models such as Holland 

(1983) and SOP, which cannot predict unovershadowing or backward blocking. These can be 

considered as post-acquisition effects resulting from memory interference rather than new 

learning (McLaren, 1993).  

 

 

Figure 13: Empirical (original measurement units) and simulated results of Experiment 3 in Le Pelley and 

McLaren (2001). The left panel is an adaptation of the published data showing mean ratings in a food allergic 

reaction task during test. Positive ratings indicate high likelihood of a given food resulting in an allergic 

reaction. Negative ratings indicate that the food would prevent allergic reaction. The right panel displays the 

corresponding simulated ratings for each cue. 
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 The temporal parameters of the simulation used a 1 time-unit CS, 1 time-unit US, and 20 

time-units ITI. All other parameters were set as per Table 1. Phase 1 of the experiment was 

programmed to consist of 8 trials of each trial-type. Phase 2 was conducted with 8 trials for 

each condition. In Phase 3 each cue was tested in a single trial in a random order. To 

calculate simulated ratings, the weights were normalized such that the highest weight 

corresponded to a rating of 10.  

 The simulations matched the empirical data closely (Figure 13, right panel). Crucially, 

simulated ratings to the Unovershadowing target cue L were higher than those observed for 

the Backward Blocking condition N. Simulated data showed differences in the ratings 

between P and N, thus exhibiting backward blocking, and between the target cues in the A2-

A2, the A2-A1 and the Control conditions (cues B, E, and H, respectively) which were 

however rated negatively as in the published experiment. 

 The DE model predicts that the associative links of cues B, E and H have such low ratings 

towards the outcome, because during Phase 1 they are presented in the context of reinforced 

trials of other conditions, resulting in the context acquiring a mild excitatory strength thus 

fostering inhibition to B, E and H, therefore counteracting mediated acquisition. Furthermore, 

the low amount of trials in Phase 1 does not allow for significant within-compound links to 

form between the CS compounds, which impedes Phase 2 mediated learning by leading to a 

lower level of retrieval of the target cue.  

 In the Unovershadowing Condition, reinforcement of K and L is followed by non-

reinforcement of K. This leads to excitatory revaluation of the L link, as the relative 

probability of K being a predictor of the outcome diminishes. Specifically, the links K→L 

and K→+ from Phase 1 of the experiment result in K retrieving L and the US to a similar 

level of activation in Phase 2. As the K→+ link extinguishes over these presentations, and as 

the asymptote in the model supports a high level of learning from L to the US due to their 

similar level of activity, the net result is a growth of the link L→+. In the case of Backward 

Blocking, a similar revaluation takes place, but in the opposite direction. The link M→N that 

forms in Phase 1 of the design leads to M retrieving N in Phase 2. As the asymptote of 

learning in the model between the retrieved N and the present US would be lower than when 

both cues were present in Phase 1 (due to the disparity in the level of activations), this would 

result in a decrease of the strength of the association between N and the US.  

 Further, since this decrease is dependent on how strongly N is retrieved by M, as well as 

on the extent to which N contributes towards predicting the outcome, the model predicts that 
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a larger number of compound trials in the first phase should result in more backward 

blocking being observed. 

 

Experiments 7a and 7b: Backward Sensory Preconditioning (BSP) and Mediated 

Extinction (ME) 

 In SPC, pre-training of a target-paired stimulus compound (XA) is followed by 

conditioning being given to the paired stimulus (A) and by a subsequent test of the strength of 

the target (X). With a preparation of aversive conditioning in rats, Experiment 2 (Ward-

Robinson & Hall, 1996) aimed to uncover the mechanism underlying SPC, that is, whether 

sensory preconditioning operated by means of an associative chain X→ A→ US or whether a 

direct link X→US was formed through mediated learning. To do so, they employed 

backward serial presentations of the compound stimuli during the initial training, that is 

A→X, with the intent of preventing the chain of association from occurring. Simulating the 

result of this experiment is an important validator of the capability of the DE model to 

reproduce conflicting mediated phenomena. The model postulates that although weak, an 

excitatory link would indeed be formed between X and A during backward conditioning. 

Thus, during test, X would still be able to associatively activate the chain X→A→US. 

However, during conditioning of A, the target X would also be active, and mediated 

conditioning A→US would occur. Despite that the DE Model advances two sources able to 

produce the effect, mediated conditioning would nonetheless be weak given that the 

discrepancy between the levels of activation of the stimuli involved would bear a low 

asymptote of learning. The conjunction of both mechanisms would therefore be needed to 

produce the effect.   

 In Experiment 2 (Ward-Robinson & Hall, 1996) two groups of rats received random 

presentations of two serial compound trial-types, A followed by X, and B followed by Y in 

Phase 1. In Phase 2, presentations of A were followed by an outcome whereas presentations 

of B were not. Thus, B and its paired Y acted as a within-subjects control for BSP. In Phase 

3, Group Ext received non-reinforced presentations of each A and B, intended to extinguish 

their association between A and the US, while Group VI received none. The test phase, Phase 

4, consisted of X and Y trials for both groups (see Table 2). If the association between A and 

the US were critical to the effect, BSP would only to be expected in Group VI. 

 Results (Figure 14, left panel) showed that in Group VI, suppression to X, paired with A, 

which was reinforced in Phase 2, was greater than to Y, paired with B, which in turn was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 28, 2017. ; https://doi.org/10.1101/210674doi: bioRxiv preprint 

https://doi.org/10.1101/210674
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 
 

presented without reinforcement. That is, a BSP effect was shown in Group VI but not in 

Group Ext, for which extinction training following conditioning was given. In this group, 

suppression to X did not reliably differ, indicating that the effect in Group VI relied on the 

strength of the association between A and the reinforcer. In other words, the extinction 

treatment to A abolished the BSP effect as observed in Group VI. 

 The temporal parameters used for this simulation were a 5 time-units CS, 1 time-unit US, 

and 50 time-units ITI, with remaining parameters presented in Table 1. In Phase 1, all groups 

were programmed to receive 12 random presentations of serial-compounds A→X and B→Y. 

In Phase 2, both groups received 4 presentations each of trace conditioning A→+ and non-

reinforced B trials, presented in the following order MNNM. In Phase 3, Group Ext received 

44 random non-reinforced presentations of cues A and B, while Group VI was programmed 

to receive no training. Finally, both groups were programmed to receive 3 random non-

reinforced presentations of cues X and Y in Phase 4.  

 Simulated results (Figure 14, right panel) replicated the empirical pattern of responses. In 

the test phase, suppression to X in Group VI was greater than suppression to Y. However, 

unlike the empirical results, a smaller but clear difference between X and Y was also present 

in Group Ext. This difference could just be attributed to a more complete extinction of the 

association between A and the US during the simulated Phase 3 in comparison to the 

observed empirical levels, in conjunction to a lesser stimulus generalization. It is worth 

noticing that, despite not being significant, a similar tendency can be observed in the 

empirical data in the last test trial, after further extinction occurred. 
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Figure 14: Empirical (original measurement units) and simulated results of Experiment 2 in Ward-Robinson and 

Hall (1996). The left panel is an adaptation of the published data showing mean suppression ratios to X and Y 

during the test phase for Group VI and Group Ext. The right panel displays the corresponding simulated 

suppression ratios. 

 

 Ward-Robinson and Hall’s Experiment 3 (Ward-Robinson & Hall, 1996) tested (forward) 

mediated extinction in a within-subjects design that paralleled the one above (see Table 1). 

Animals received serial A→X and B→Y trials in Phase 1, followed by conditioning to X in 

Phase 2 in which Y was also presented but in extinction. Phase 3 consisted of presentations of 

A in extinction and finally, during Phase 4, test trials to X and Y were given.  

 If mediated extinction occurred during Phase 3, conditioning to X associatively retrieved 

by A should be reduced in comparison to that of Y. Results of this experiment (Figure 15, left 

panel) showed that indeed this was the case. During test, suppression to X was lower than to 

Y.  

 The parameters and design used in this simulation are displayed in Table 1. The simulation 

used a US intensity of 2.0. During Phase 1, animals received identical training to those in 

Experiment 7a. In Phase 2 however, X and Y (rather than A and B) were both reinforced. In 

Phase 3, A was extinguished and responding to X and Y tested in Phase 4.  

 The simulated results showed mediated extinction of X, that is, a loss of the associative 

strength of X as a consequence of extinguishing its paired stimulus A, when compared to the 
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strength attained by Y whose paired stimulus B did not undergo extinction (Figure 15, right 

panel). 

 

Figure 15: Empirical (original measurement units) and simulated results of Experiment 3 in Ward-Robinson and 

Hall (1996). The left panel is an adaptation of the published data showing mean suppression ratios to X and Y 

during the test phase. The right panel displays the corresponding simulated suppression ratios. 

 

 The DE model predicts that in Experiment 7a, presentations of A→X and B→Y in Phase 

1 would result in bidirectional excitatory learning between the two CSs of the serial 

compound, as the CS that is presented first is presumed to leave a persistent memory trace 

even after its offset and excitation occurs whenever two similarly active elements co-occur. 

In the subsequent conditioning to A in Phase 2, A retrieves X. Although the lesser activation 

of X implies a lower asymptote of learning towards the present US, this nevertheless 

increases the associative strength of X. The extinction A trials in Group Ext lead to: (1) a 

decrease in the association between A and X; (2) a reduction in the association between A 

and the reinforcer; and (3) a mediated loss in the US expectation elicited by X, as A retrieves 

the US more strongly than X. This discrepancy in the levels of activation would foster the 

development of inhibitory learning between the weakly retrieved X and the strongly retrieved 

US on the basis of the dynamic conceptualization of the asymptote in the DE model. The 

absence of extinction trials in Group VI would preclude the effects described above from 

occurring, and thus X would still sustain the level of prediction of the US attained during 

conditioning to A. However, since the DE model assumes that bidirectional links will be 
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formed despite the serial stimulus presentation, the contribution of the associative chain 

X→A→US cannot be diminished. Nonetheless, the extinction treatment in Group Ext would 

prevent A eliciting the US representation, thus countering the BSP effect. Further, if the 

model is accurate, it would imply that should the first and second phases of the experiment be 

respectively longer and shorter, it could in fact reverse the effect such that mediated 

conditioning would take place in Group Ext between X and the US. This would occur as 

elongating the first phase would strengthen the A→X link to a level rivalling the more 

speedily acquired A→US association, while shortening the second phase would achieve a 

similar result by weakening the A→US association. This would subsequently lead to X and 

the US being retrieved to an equally active level on the A- trials, in which case the dynamic 

asymptote of the model would predict a strong excitatory association from X to the US.  The 

mediated extinction hypothesis was further validated by the results of Experiment 7b. The 

experiment consisted of an equivalent Phase 1 treatment as experiment 7a, and hence the 

model predicts equivalent X→A and Y→B links forming in this phase.  During the second 

phase, the DE model predicts that, due to the aforesaid links, both X and Y would strongly 

retrieve a representation of A and B respectively. The high level of activation of these 

representations would produce a high asymptote of learning from these cues to the present 

US, and thus would undergo mediated conditioning. During the crucial third phase, non-

reinforced presentations of A would retrieve X and the US, but the retrieved representation of 

the US would be weaker than that of X (reflecting the link strength from A to these cues). 

Therefore, the asymptote of X toward the US would be smaller than its prediction, and hence 

the error of X would become negative, resulting in X losing strength (mediated extinction). 

Additionally, the associative chain X→A→US would weaken due to extinction of the 

A→US link in Phase 3. Hence, in the test phase, X would elicit less responding than Y, 

which did not undergo such mediated extinction.  

 

Non-linear Discriminations  

 Non-linear discriminations are those in which a linear summation of the associative 

strengths of the constituent CSs is insufficient to accurately predict when reinforcement will 

or will not occur. Solving these discriminations therefore requires the use of additional 

representational, learning, and attentional processes to introduce non-linearity in the system. 

Despite its elemental nature, the DE model is able to solve complex non-linear 

discriminations primarily through its assumption of elements being able to be activated by 
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multiple stimuli. This effect is accentuated by both the alpha and the predictor error term of 

the model. The former leads to elements active on reinforced trials having higher 

associability. Further, the persistently high error, produced by partial reinforcement, 

eventually triggers a decay mechanism of the revaluation alpha that disproportionately affects 

common elements. The latter operates through the network of neutral element associations to 

reduce the learning rate of cues that are predicted well by other cues, thereby allowing stimuli 

that are predictive of reinforcement or non-reinforcement to learn faster. 

 

Experiment 8: Negative Patterning (NP) 

 Whitlow and Wagner's  (1972) Experiment 1, studied a NP discrimination in eyeblink 

conditioning. In Phase 1, rabbits were presented with reinforced presentations of A, B, and C.  

Phase 2 consisted of random presentations of reinforced stimuli A and B, as well as the non-

reinforced compound AB trials. In Phase 3, training continued as in Phase 2 with the addition 

of reinforced C trials. Finally, in Phase 4 isolated stimulus presentations and all combinations 

of the three cues were tested in a random order, that is it consisted of A, B, C, AB, AC, and 

BC presented in extinction. Stimulus C was used to assess the contribution of simple 

summation in the responding elicited by a compound in comparison to putative configural 

components emerging from training a stimulus compound. 

 Results of this experiment showed that the animals learned to discriminate between the 

stimuli and the compound AB (Figure 16, left panel), withholding responding on AB trials. 

Also, test showed that this suppression of the response was only evident for AB trials, that is, 

the animal’s response to the other compounds tested, i.e., AC and BC was sustained (Figure 

17, left panel).  
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Figure 16: Empirical (original measurement units) and simulated results of Experiment 1 in Whitlow and 

Wagner (1972). The left panel is an adaptation of the published data showing responses to A, B, and AB during 

a negative patterning discrimination. The right panel displays the corresponding simulated responses. 

 

 

Figure 17: Empirical (original measurement units) and simulated results of Experiment 1 in Whitlow and 

Wagner (1972). The left panel is an adaptation of the published data showing test data following a negative 

patterning discrimination. The right panel displays the corresponding simulated responses. 
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 The temporal parameters for this simulation were a 1 time-unit CS, 1 time-unit US, and 20 

time-units ITI. The parameters of the experiment are found in Table 1. Phase 1 consisted of 

180 reinforced trials of A, B, and C presented in a random manner. Phase 2 consisted of 

random 560 presentations of reinforced A and B trials and 1120 non-reinforced AB trials. In 

Phase 3, 40 reinforced random presentations of A and B were programmed, together with 20 

reinforced presentations of C, and 80 non-reinforced presentations of the compound AB. 

Finally, the test phase consisted of a single, non-reinforced presentation of trial-types A, B, 

C, AB, AC, and BC.  

 The simulation visibly reproduced the experimental data. Figure 16, right panel, shows the 

acquisition of the NP discrimination where responding to stimuli A and B progressively 

increased across trials, while responding to AB steadily declined. The right panel of Figure 

17 displays the test results. These parallel the empirical data, that is, suppression of 

responding to AB was larger than to all other stimuli or compounds.  

 According to the DE model, during discrimination training redundant cues (the elements 

common to A and B as well as the context) become excitatory toward the US, while elements 

unique to A or B become highly inhibitory. Moreover, on AB trials the common elements 

between A and B can only be sampled once. Thus, they contribute relatively less to 

responding than in A or B trials, thereby leading to a lower response being elicited on such 

trials by these elements than would be expected by linear summation. Two unique 

mechanisms of the DE model strengthen this effect. First, unique elements of A and B in AB 

trials strongly predict the common elements, thereby delaying the speed of learning by 

decreasing their associability. This would contribute to sustain a high the expectation for the 

reinforcer thus leading to a high negative error term for the unique elements. Secondly, the 

associability rate to the reinforcer, which is initially sustained due to the inconsistent 

outcome, is revaluated. The DE model predicts that when training under inconsistent 

outcomes is prolonged (e.g., A being reinforced and non-reinforced through training) and the 

error term remains high, animals come to learn that the outcome is inconsistently attained and 

a mechanism to cease sustained attention is activated. This mechanism would become active 

sooner for the common elements than for unique elements because these elements are active 

in more trials, therefore accruing evidence faster for the contingency being inherently 

random. As a consequence, the associability of the common elements is further reduced, 

pushing the unique elements to become more inhibitory. The net effect is that in compound 

trials, the inhibitory strength of the unique A and B elements is of higher magnitude than the 

excitatory strength of common elements, thereby leading to a with-holding of response. 
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When the stimuli are experienced in isolation, the contribution of the inhibitory strength of 

the unique elements is reduced by half, yet the same quantity of excitatory strength is 

provided by the common elements. Hence, generating a higher net reinforcer prediction, and 

thus a higher rate of responding. 

 

Experiment 9: Biconditional Discrimination 

 In a biconditional discrimination four compounds of two stimuli are reinforced in a 

manner such that each individual cue receives both reinforced and non-reinforced training 

(AB+/CD+/AD-/BD-). This discrimination, from the elemental perspective, is difficult to 

solve due to each stimulus receiving equal partial reinforcement. It therefore seems to require 

the existence of configural nodes, which enable the discrimination to be solved through non-

linear means. However, the assumption of pairwise common elements in the stimulus 

representation in the DE model, a mild assumption, circumvents this difficulty, enhancing the 

power of this and other elemental models to predict ‘configural’ learning without the 

assumption of configural representations. 

 To prove it, we simulated the biconditional discrimination experiment in (Lober & 

Lachnit, 2002), which used an aversive skin-conductance conditioning procedure in human 

participants. For the biconditional treatment, participants received random presentations of 

reinforced (AB+/CD+) and non-reinforced (AD-/BD-) compounds. The participants learned 

the discrimination, progressively increasing responding on the reinforced trials and 

withholding responding on non-reinforced trials (Figure 18, left panel).  
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Figure 18: Empirical (original measurement units) and simulated results of a biconditional experiment in Lober 

and Lachnit (2002). The left panel is an adaptation of the published data showing second-interval responses 

(SIR) for combined AB+/CD+ trials and AD-/BC-. The right panel displays the corresponding simulated 

responses. 

 

 The simulation’s temporal parameters consisted of a one time-unit CS and US, and a 50 

time-units ITI. The remaining parameter values are presented in Table 1. Training consisted 

of 50 randomly presented trials of each reinforced compounds AB+ and CD+, and of the non-

reinforced compounds AC- and BD-. The full design is in Table 2.  

 The simulation matched the empirical pattern of responding. Figure 18, right panel, shows 

an initial increase in responding on both reinforced and non-reinforced trial-types. This was 

followed by a gradual decrease in responding on non-reinforced trials, with responding on 

reinforced trials remaining high.  

 The DE model predicts that initially, the context and the unique elements of the four 

compound stimuli would gain some excitatory strength. In parallel, the elements common to 

the stimuli would also gain modest excitatory strength. However, as training progresses the 

elements common to the two pairs of reinforced trials (i.e., the elements common to A and B 

and to C and D) would progressively become inhibitory, promoting super-excitation of their 

unique elements. On reinforced trials, e.g., AB, both A and B would recall their mutual 

common elements, but they could only be sampled once and therefore their activation would 

be comparatively lower than that of the unique elements and the US. Thus, due to the 
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dynamic asymptote mechanism, the discrepancy in the level of activation would preclude the 

common elements from gaining excitatory strength. On the next non-reinforced trial, the 

prediction error would turn negative (as the US is not present but there is a general excitatory 

prediction), and all elements would lose strength, but because these common elements would 

have weaker strengths than other elements, they would reach negative values earlier. At that 

point, they would foster acquisition of the unique elements excitatory strength on subsequent 

reinforced trials (by increasing the prediction error). On the next non-reinforced trial, these 

boosted excitatory elements would produce a larger negative prediction error, engendering 

more inhibition in the common elements. This cycle would recur, adjusting the strengths 

through training. 

 Given that in each reinforced trial (AB and CD) their respective inhibitory common 

elements are only sampled once the inhibitory impact would be less significant than in the 

non-reinforced trials (e.g., AC) in which A would retrieve the elements common to AB and C 

would retrieve the inhibitory elements common to CD. Thus, duplicating the contribution of 

the inhibitory strength.  

 

Experiment 10: Generalization Decrement Overshadowing vs. External Inhibition 

 A significant hurdle for configural models of learning is the observation that removing a 

cue from a previously reinforced compound stimulus (overshadowing test) produces a greater 

decrement in learning than when a novel cue is added to the compound (external inhibition 

test). As an elemental model, the DE model inherits an advantage in explaining this effect: 

training a stimulus compound, e.g., AB, and then testing a single stimulus (e.g., A) should 

lead to a strong generalization decrement because the summation rule would imply that the 

total associative strength of the compound is distributed in the individual stimulus strength. 

Thus, testing a single stimulus removes one source of predictive value and necessarily 

reduces the total prediction.  In contrast, training a single stimulus A implies that the total 

amount of available prediction is accrued by A. Consequently, testing a compound AB 

should result in no decrement, provided that B has no inhibitory value itself. 

 Precisely this difference between external inhibition and overshadowing was studied in 

Brandon et al. (2000), using a rabbit eyeblink conditioning procedure. In their experiment, 

Group A, Group AB, and Group ABC received respectively reinforced A, AB, and ABC 

trials. Subsequently, all groups received test trials of randomly presented reinforced and non-

reinforced presentations of A, AB, and ABC (see Table 2). The experiment found that adding 
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a cue to a previously reinforced compound produced a smaller decrement in responding than 

removing a cue from a previously reinforced compound. As it is apparent in the left panel of 

Figure 19, the decrement of generalization produced by adding one or two cues (AB and 

ABC) in Group A was comparatively smaller, although clearly present, than that observed 

when B was removed in Group AB, and when one or two cues were omitted in Group ABC.   

 

Figure 19: Empirical (original measurement units) and simulated results of a generalization decrement 

experiment in Brandon et al. (2000). The left panel is an adaptation of the published data showing responses 

during test to A, AB, and ABC. The right panel displays the corresponding simulated responses. 

 

 The experiment was simulated using the following temporal parameters: a 5 time-units 

CS, 1 time-unit US, and 50 time-units ITI. In Phase 1 groups A, AB, and ABC received 20 

programmed reinforced trials of type A, AB, and ABC, respectively. Phase 2 was 

programmed to present 20 randomly presented trials of types A, AB, and ABC. Each of these 

trial-types was reinforced on half of the presented trials.  

 Simulated results are an accurate reproduction of the empirical pattern. That is, the 

generalization decrement adjusted to the incremental change from the conditioned cue to the 

testing cue in testing, and this decrement in generalization was larger when the cues were 

removed than when they were added (Figure 19, right panel).  
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 The DE model produces such a result due to its elemental ontology leading to the 

summation assumption of constituent associative strengths of a compound. The effect 

observed by the addition of extra cues can be ascribed to the presence of common elements. 

Since the test was conducted including reinforced trials, the unique features of the stimuli 

added could have undergone some inhibitory learning, thus reducing the net compound 

strength.  
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General Discussion 

 

In this paper, we have introduced a real-time computational model of associative learning, 

the Double Error (DE) model. Its ontology is founded upon a connectionist network, wherein 

nodes representing the attributes of any stimulus (elements), whether reinforced or not, enter 

into association with one another in proportion to their level of activity and are distributed as 

subsets of shared and unique elements to the stimuli involved. The defining algorithmic 

characteristics of the DE model are threefold. First, it extends traditional error correction 

learning, familiar from models such as RW, TD, and SOP, by modulating learning by a 

predictor error term. This new error term measures the extent to which a predictor of an 

outcome is in return itself predicted by other stimuli (e.g., the context). An immediate 

implication is that more predictable predictors associate at a slower rate than less predictable 

ones. Secondly, the model conceptualizes a revaluation associability that adjusts 

independently for motivationally relevant and neutral outcomes. Thirdly, the model 

introduces a novel variable asymptote of learning that encapsulates more closely the principle 

of Hebbian learning, by postulating that elements with similar activity levels form stronger 

associations with one another. Hence the direction of learning between two cues at a given 

time can differ, in an otherwise equivalent condition, based on whether the prior link strength 

from one to the other is above or below the momentary level of this asymptote. This process 

critically allows the DE model to predict seemingly contradictory mediated learning effects. 

The associability of a cue operates by keeping track over a window of time, through a 

moving average, of uncertainty in the occurrence of a given category of outcome, 

reinforcement or otherwise, and thence modulating its respective rate of association. Thus, 

for instance, when the occurrence of reinforcement following a stimulus is uncertain, learning 

of associations between the latter and the reinforcer proceeds more rapidly. However, the 

stimulus associability is revaluated in the face of persistent uncertainty and a decay 

mechanism is triggered under such conditions. This revaluation in the cue associability 

operates based on whether a slower updating moving average of prediction errors crosses a 

threshold. Once this threshold is crossed, a decay mechanism kicks in that reduces the 

associability progressively. Though the Mackintosh model’s attentional rule seems opposed 

to that used in the DE model (as the latter resembles the PH alpha), the DE model revaluated 

alphas can in fact produce effects whereby the best predictor of an outcome captures the most 

selective attention, due to it producing the highest US prediction error before the onset of US. 
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This, however, is dependent upon sufficiently long CSs being used. Similarly to the 

McLaren-Mackintosh, SLGK, and SOP models, learning between motivationally neutral cues 

allows the DE model to reproduce various 'silent learning' and preexposure effects. It predicts 

these effects as arising from both learning between neutral CSs, and through the constituent 

elements of a CS forming unitized nodes during preexposure. Thus, the model does not 

require arbitrary memory states for producing an account of stimulus exposure and it 

postulates the same learning rules and processes both for reinforced and non-reinforced 

learning, thereby maintaining parsimony. That is, only one learning rule and one type of 

element are used in the model, i.e., we maintain that reinforced outcomes should be treated 

simply as a subset of normal stimuli, as opposed to having a completely unique ontology in 

terms of their stimulus representation and learning. The intensity of a conditioned response to 

a motivationally relevant stimulus (or to a neutral one, e.g., an orienting response to a light 

when predicted by a tone) is simply a function of its associative strength. The model’s 

integration of its unique alpha conceptualization together with its distinctive second error 

term results in it accounting for preexposure effects as arising from the expectancy of a cue 

decreasing due to learning. It hence avoids difficulties faced by other models, such as those 

derived from proposing that a noUS link forms during preexposure; a suggestion contradicted 

by evidence denoting US-specificity of inhibition. The model predicts both context 

specificity and the sigmoidal shape of latent inhibition, with the latter resulting from the 

exponential changes in learning speed produced by the revaluation associability. It uniquely 

assumes, due to these processes being dissociable, that increasing the uncertainty of 

reinforcers in general should attenuate this sigmoidal shape, while not completely removing 

the latent inhibition effect. Furthermore, exposing the context by itself after CS exposure 

should likewise diminish the latent inhibition effect, as this would weaken the context-CS 

prediction during subsequent acquisition. In a similar manner, the model reproduces the 

effect observed by Leung et. al. whereby latent inhibition is enhanced by a preexposure of a 

CS compound. As this effect is explained in the model by the cue that undergoes 

reinforcement being predicted by the associative representation of the cue it retrieves, the 

implication is that presenting this retrieved cue in isolation before the acquisition phase 

should attenuate the observed effect. These preexposure related learning mechanisms also 

carry over to offering an account of the Hall-Pearce effect, by maintaining that the 

reinforcement of a CS, using a weak reinforcer, acts in many ways as a form of preexposure 

treatment from the point of view of the model, due to the lower intensity of the US in the first 

phase treatment. Therefore, the model’s explanation of this phenomena deviates from more 
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traditional accounts like that of the Pearce-Hall model, which explains negative transfer as 

arising due to the CS fully predicting the US in the first phase, and thereby becoming less 

associable in later training. In contrast, the DE model assumes that the negative transfer effect 

will persist even with few acquisition trials with the weak outcome, as the decay in the 

associability of the CS to the reinforcer is influenced more by the weak intensity of the US 

than by CS-US learning. This explanation for the Hall-Pearce effect additionally implies that 

conducting the second phase of the procedure in a novel context should lessen the observed 

effect. Lastly, for the effect of perceptual learning, differential CS-CS learning and variable 

attention shifts between intermixed and blocked presentations of CS preexposure trials allow 

the model to account for the effect being more pronounced with intermixed CS compounds. 

Specifically, weaker within-compound associations lead to differential rates of mediated 

conditioning in later stages of the procedure. 

The DE model’s dynamic asymptote of learning produces either excitatory or inhibitory 

learning depending on the causal connection between stimuli as tracked by the distance 

between the activations of the predicting and predicted stimulus. Through the interplay of this 

asymptote and its mechanism of associative retrieval the model accounts for learned 

irrelevance and mediated conditioning. In the case of retrospective conditioned inhibition and 

learned irrelevance, the claim is made that the poor correlation between the activity of the US 

representation and that of the CS representation interacts with the dynamic asymptote to 

induce the CS to form a slight inhibitory link towards the US through context-mediated 

revaluation. Accordingly, this explanation differs from the account given by the Mackintosh 

model, which assumes that learned irrelevance arises as an attentional effect and predicts 

stronger inhibition following uncorrelated than blocked stimulus presentations. As 

revaluation conditioned inhibition and learned irrelevance are dependent upon context 

retrieval of the US, the model predicts that strong context-US learning would strengthen the 

effects.  

Mediated conditioning of a CS is produced in the DE model through the combined effects 

of the aforesaid asymptote and associative retrieval by a second (previously paired) CS. Due 

to the asymmetry of the dynamic asymptote, learning between the associatively retrieved 

outcome of this CS and the US tends to be excitatory and proportional to the degree to which 

the CS representation is retrieved. Consequently, the DE model assumes that the strength of 

mediated conditioning is proportional to the strength of within-compound associations, i.e., 

the length of CS-CS training. It is additionally predicted that the observed direction of 

learning in mediated learning will vary based on prior learning towards the outcome. For 
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instance, though the asymptote of the retrieved CS in backward blocking and mediated 

conditioning is the same, the direction of learning in the DE model follows an opposite 

direction for these phenomena due to the initial associative strength of the retrieved cue 

differing in the designs. Further, the extent of backward blocking, we claim, should be 

proportional to the amount of reinforced compound trials in the first phase of a retrospective 

revaluation treatment. This prediction supersedes the static learning rules between A1 and A2 

stimuli formulated in the extensions of SOP – Dickinson and Burke (1996) and Holland 

(1983) – or the negative learning rate used in many models for mediated learning, which 

would each expect mediated learning to follow the same direction for the retrieved CS in both 

procedures. The model rather proposes that learning between an absent and present cue is 

dependent upon how strongly the absent cue is retrieved, as well as on the prior link the 

absent cue has towards the present cue. This account of mediated learning occurs completely 

within the confines of an associative learning rule, thus not relying on non-associative 

mechanisms such as a comparator or re-playing of past experiences. 

Finally, while retaining an elemental nature, the DE model can also reproduce a variety of 

non-linear discriminations without assuming that an animal has access to de novo configural 

information. It does so through a multi-factorial approach. The fully-connected network 

architecture of the model, which allows for elements common to multiple stimuli, produces 

effects such as negative patterning and biconditional discriminations similarly to the 

Rescorla-Wagner model with common elements. Unlike the REM and Harris models, the DE 

model does not propose that elements are differentially sampled or active depending on their 

context. Rather, common elements exert their effect in the DE model through their 

redundancy on compound trials (i.e., the same common element cannot be sampled twice at 

the same time). The DE model’s variable revaluation alpha can amplify discrimination 

learning through a unique decay process, which lowers the associability of cues presented 

with a persistently uncertain outcome. Silent learning and attentional processes, as mentioned 

before, produce unitization of common and unique elements, as well as latent inhibition and a 

greater loss of associability of common elements. In this latter aspect, it bears similarities to 

the CS-CS learning of the McLaren-Mackintosh and SLGK models. The model also explains 

the discrepancy between external inhibition and overshadowing without reference to 

additional representational structures such as the attentional buffer used in the Harris model. 

These common elements and learning processes also furnish an account of non-linear 

discrimination effects, including negative patterning, biconditional discriminations, and 

perceptual learning using a completely elemental representation. 
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Table 1: Simulation parameters 

 

  

Fixed Model Parameters 

Element 

Representation 

CV  20 

Curve right skew 20 

Set size 10 

Common elements 

proportion  0.4 

Activation discount 

CV CS element 

activation 2 

Associative activated 

discount 0.75 

   

Memory Discounts 
Backward discount 0.75 

Eligibility Trace discount 0.95 

 
 

 Model Associability Recency 0.1 

    

 

Variable Parameters 
  

Exp. 1 Exp. 2 Exp.3 Exp. 4 Exp. 5 Exp. 6 Exp. 7a Exp. 7b Exp. 8 Exp. 9 Exp. 10 

Associability (α) 

αr 
CS 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Ctx 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

αn 
CS 0.40 0.80 0.40 0.80 0.40 0.80 0.80 0.80 0.40 0.40 0.80 

Ctx 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

α+ US 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

  
  

 

  

 

  

 

   

Salience 
s 

CS 0.10 0.35 0.30 0.05 0.50 0.15 0.80 0.50 0.30 0.10 0.03 

Ctx 0.10 0.20 0.07 0.01 0.10 0.015 0.07 0.07 0.07 0.07 0.01 

β US 0.15 0.90 0.75 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 
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Table 2: All experimental designs that are to be simulated 

n Experiment Group / Condition Phase 1 Phase 2 Phase 3 Phase 4 

1 
Latent Inhibition and Context 

Specificity. 

Hall & Channel, 1983 

Exposed Same ϕ : A- ϕ:A+   

Exposed Different ψ: A+ ϕ:A+   

Control Same ϕ ϕ:A+   

Control Different ψ ϕ:A+   

2 
Compound latent inhibition. Leung, 

Killcross, & Westbrook, 2011 

Element A-/B-/C- AB-/C- C+ C- 

Compound A-/B-/C- AB-/C- A+ A- 

3 
Hall-Pearce Effect. 

Hall & Pearce, 1979 

Tone-shock T+ T++   

Light-shock L+ T++   

Tone-alone T- T++   

4 
Learned Irrelevance and Retrospective 

Correlation. 

Baker, Murphy & Mehta, 2003 

N/Sh (1A)   N-/+/N+ N+  

N+Sh (1A)  N- + N+  

N/Sh (1B) L+  N-/+/N+ L-/NL- L+/NL- 

N/Sh (1B) L+ N- + L-/NL- L+/NL- 

5 
Perceptual Learning. 

Blair & Hall, 20013 
 AX-/BX- & CX- AX+ BX-/CX-  

6 
Mediated Learning. 

LePelley & McLaren, 2001 

A2-A2 AB-/C+ AC- 

A/B/C/D/E/F/G/H/I/J/K
/L/M/N/O/P/Q/R 

 

A2-A1 DE-/F- DF+  

Control GH-/I+ GJ-  

Unovershadowing KL+ K-  

B. Block MN+ M+  

RR Control OP+ O+/O-  

Fillers Q- QR+  

7a 
Backward Sensory Preconditioning. 

Ward-Robinson & Hall (1996) 

Ext AX/BY AUS/B A-/B- X-/Y- 

VI AX/BY AUS/B  X-/Y- 

7b 
Mediated Extinction. 

Ward-Robinson & Hall (1996) 
 AX/BY X+/Y+ A- X-/Y- 

8 
Negative Patterning. 

Whitlow & Wagner (1972) 
 A+/B+/C+ A+/B+/AB- A+/B+/AB-/C+ A-/B-/C-/AB-/AC-/BC- 

9 
Biconditional Discrimination. 

Lober & Lachnit, 2002 
 AB+/CD+/AC-/BD-    

10 
External inhibition vs. overshadowing. 

Brandon, Vogel, & Wagner, 2000 

A A+ A+/A-/AB+/AB-/ABC+/ABC-   

AB AB+ A+/A-/AB+/AB-/ABC+/ABC-   

ABC ABC+ A+/A-/AB+/AB-/ABC+/ABC-   
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