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ABSTRACT 20 

Genetically identical cells exhibit diverse phenotypes, even when experiencing the same 21 

environment. This phenomenon, in part, originates from cell-to-cell variability (noise) in protein 22 

expression. While various kinetic schemes of stochastic transcription initiation are known to 23 

affect gene expression noise, how post-transcription initiation events contribute to noise at the 24 

protein level remains incompletely understood. To address this question, we developed a 25 

stochastic simulation-based model of bacterial gene expression that integrates well-known 26 

dependencies between transcription initiation, transcription elongation dynamics, mRNA 27 

degradation and translation. We identified realistic conditions under which mRNA lifetime and 28 

transcriptional pauses modulate the protein expression noise initially introduced by the promoter 29 

architecture. For instance, we found that the short lifetime of bacterial mRNAs facilitates the 30 

production of protein bursts. Conversely, RNA polymerase (RNAP) pausing at specific sites 31 

during transcription elongation can attenuate protein bursts by fluidizing the RNAP traffic to the 32 

point of erasing the effect of a bursty promoter. Pause-prone sites, if located close to the 33 

promoter, can also affect noise indirectly by reducing both transcription and translation initiation 34 

due to RNAP and ribosome congestion. Our findings highlight how the interplay between 35 

transcription initiation, transcription elongation, translation and mRNA degradation shapes the 36 

distribution in protein numbers. They also have implications for our understanding of gene 37 

evolution and suggest combinatorial strategies for modulating phenotypic variability by genetic 38 

engineering.   39 
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INTRODUCTION 40 

One of the most important tasks cells do is regulate the level of gene expression—the conversion 41 

of genetic information written in DNA into a certain amount of proteins. Interestingly, isogenic 42 

cells in the same environment produce variable amounts of mRNA and protein (1-3). Variability 43 

(noise) in mRNA and protein levels, however, varies among genes. For example, low noise is 44 

expected for genes encoding proteins that are needed in all cells, such as housekeeping proteins. 45 

Consistent with this idea, experiments in Escherichia coli and budding yeast have shown that 46 

genes essential for viability tend to exhibit lower noise than nonessential genes (4-7). For “noisy” 47 

genes, such as some genes involved in stress response, a large variability in protein expression 48 

can lead to beneficial traits for the population by generating different cell phenotypes. Such a 49 

phenotypic heterogeneity is known to offer a “bet-hedging” strategy for bacterial survival in 50 

fluctuating and stressful environments (8-11). It can also be beneficial for cooperative social 51 

adaptations through “division of labor” within the cell population (12). 52 

Multiple sources of protein expression noise exist. Intrinsic noise arises due to the 53 

stochastic nature of gene expression processes. Extrinsic noise can be produced by cell-to-cell 54 

heterogeneity in global factors, including the concentration of RNA polymerases (RNAPs) and 55 

ribosomes, cell size and the cell cycle (13). Previous experimental and theoretical studies have 56 

identified transcription initiation (i.e., the loading of RNAP onto the promoter region) as a major 57 

source of intrinsic noise (e.g., 13-27). Specifically, if transcription initiation occurs randomly at a 58 

certain frequency, a mode known as “nonbursty” initiation, the mRNA number at steady state 59 

follows a Poisson distribution, which characteristically shows an mRNA Fano factor 60 

(variance/mean) equal to 1. In contrast, if the rate of transcription initiation varies over time, 61 

such as in pulsatile transcription from a promoter that cycles between active and inactive states, 62 

the mRNA levels become more variable among cells (mRNA Fano factors > 1). This ON/OFF 63 

model of transcription, referred to as “bursty” initiation, is supported by the observation of 64 

pulsatile transcription events in live E. coli cells (28) and by the grouping of RNAPs along the 65 

rRNA operon in electron micrographs (29). The mRNA Fano factors measured in E. coli span 66 

from 1 to ~10, suggesting that both nonbursty and bursty promoters may operate in vivo (5, 25, 67 

26). 68 

Cell phenotypes are generally dictated at the protein, rather than mRNA, level. Noise in 69 

protein levels is often quantified by the squared coefficient of variation (CV
2
), which is the 70 
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squared standard deviation divided by the squared mean of the protein number distribution (17). 71 

Most current analytical models that calculate the noise in protein levels assume that the kinetic 72 

parameters associated with the promoter architecture are the major contributing factors in protein 73 

synthesis fluctuations, and therefore ignore transcription elongation dynamics and known 74 

dependencies between transcription, translation and mRNA degradation (18-22). Analytical 75 

models that include transcription elongation exist, but they only consider limit cases of low 76 

transcription initiation rate (30) or constant RNAP elongation speed, (31, 32) in order to neglect 77 

RNAP-RNAP interactions (RNAP congestion) during elongation. To examine RNAP traffic, 78 

modelers have turned to stochastic simulation-based models. This approach has shown that 79 

RNAP traffic caused by RNAP pauses can create mRNA and protein bursts from nonbursty 80 

promoters (33-38), highlighting the importance of considering transcription elongation dynamics 81 

when studying protein expression noise. However, including transcription elongation dynamics 82 

in stochastic gene expression models requires many variables and increases the complexity of the 83 

model. For this reason, previous simulation-based models have examined special conditions, 84 

leaving out translation, mRNA degradation, and/or bursty transcription initiation (33-38). 85 

Here, we explore how various scenarios of transcription elongation dynamics and mRNA 86 

degradation affect the noise initially set by bursty and nonbursty promoters. We developed an 87 

integrative stochastic model of bacterial protein expression that includes transcription initiation, 88 

transcription elongation, mRNA degradation and translation as well as established dependencies, 89 

such as the coupling between transcription and translation (39-41), co-transcriptional mRNA 90 

degradation (42, 43), and the ribosome effect on mRNA degradation (44) (Fig. 1A). Simulations 91 

of this model identified new regimes of post-transcription initiation dynamics that modify the 92 

protein expression noise initially set by the promoter. 93 

 94 

METHODS 95 

Modeling transcription, translation, and mRNA degradation 96 

All steps described in this section (Fig. 1B) were stochastically simulated using the Gillespie 97 

algorithm (45). For stochastic transcription initiation from a bursty promoter, we generated a 98 

series of time points when the promoter was ON or OFF, assuming that the ON and OFF periods 99 

follow exponential waiting time distributions with average τON and τOFF, respectively. In the case 100 

of a nonbursty promoter, the promoter was assumed to be always ON. Next, we determined a  101 
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 102 

FIGURE 1 Integrated model of gene expression. (A) Schematic showing the current view on the temporal 103 
coordination between transcription, translation, and mRNA degradation in E. coli. RNAP loads onto the promoter. 104 
Once the ribosome-binding site (RBS) is transcribed, ribosomes load and translocate. mRNA degradation by RNase 105 
E can start on the nascent mRNA. The first ribosome maintains contact with the RNAP throughout elongation. In 106 
our model, the first full-length protein is produced from an mRNA almost immediately after the RNAP reaches the 107 
end of the DNA template. (B) Schematic showing the different steps included in our TASEP-based model of 108 
bacterial gene expression. Transcription starts at the first base pair of the template, and transcription elongation 109 
occurs by RNAP stepping along the 3,000-bp template. Translation initiates at the first base of the mRNA template 110 
(considered here as the RBS), and translation elongation occurs by ribosome stepping on each nucleotide along the 111 
mRNA template. mRNA degradation starts from the 5’ end of the mRNA and continues concomitant to the motion 112 
of the last ribosome on the transcript. Degraded ribonucleotides are shown in red. Input parameters of our model are 113 
indicated. 114 
 115 

series of time points for RNAP loading attempts during ON periods, assuming exponentially 116 

distributed waiting times between loading attempts (average rate kloading). Transcription 117 

elongation was modeled by stochastic 1-base pair (bp) stepping, based on the totally asymmetric 118 

exclusion process (TASEP) algorithm (46-48). The DNA templates were considered as one-119 

dimensional lattices, where each lattice site corresponded to 1 bp. The stepping rate as a function 120 

of template position was provided as an input. For pause-free elongation, we used an average 121 

speed of kelongation. When appropriate, a different stepping rate (inverse of the pause duration, 122 

tpause) was assigned at a pause site (xpause) for all or a fraction of RNAPs (pausing probability, 123 

ppause). We assumed an exponential dwell time distribution at each nucleotide position based on 124 

previous experimental observations (49-51). Steric hindrance between RNAPs was checked 125 

before each stepping, assuming an RNAP footprint of 35 bp (52). Similar to previous elongation 126 

models (33, 34, 53), we did not include RNAP cooperation upon collision (54) because the 127 
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kinetics of this process remain unknown. We assumed transcription termination at the end of the 128 

template to be instantaneous, though, if desired, slower RNAP release can be modeled by using a 129 

slower stepping rate at the last position of the template. After RNAP trajectories were simulated, 130 

the spacing between adjacent RNAPs was calculated as time “headways” at every nucleotide 131 

position along the gene. Headway is defined as the time interval between two consecutive RNAP 132 

exit events at every nucleotide position. Mathematically, it is the subtraction of trajectories of 133 

two subsequent RNAPs at a given position (tN(x)-tN-1(x), where tN(x) is the trajectory of the N-th 134 

RNAP along the gene). The distribution of headways is considered as an important characteristic 135 

of traffic flow (55) and has previously been used to analyze RNAP traffic (48). 136 

 To model the coupling between transcription and translation, the first ribosome was 137 

loaded upon transcription of the first 33 nucleotides (nt). This accounts for the footprint sizes of 138 

the RNAP and the ribosome, 35 bp and 30 nt, respectively (52, 56). The first ribosome then 139 

moved on the nascent mRNA in concert with the RNAP to maintain contact throughout 140 

transcription elongation (39-41). Additional ribosomes were stochastically loaded based on an 141 

exponential waiting time distribution (average rate kriboloading). These ribosomes made stochastic 142 

1-nt steps at the average speed (kelongation) to reflect the experimental evidence that the average 143 

speed of RNAP and ribosomes match (40, 57). During ribosome translocation, the same steric 144 

hindrance principle as for RNAP translocation was used: ribosomes were unable to bypass each 145 

other on an mRNA, and the first ribosome was unable to bypass the transcribing RNAP on the 146 

nascent mRNA.  147 

In our model, mRNA degradation began at the 5’ end of each mRNA, assuming an 148 

exponential waiting time distribution between initial synthesis and degradation (with an average 149 

lifetime, τmRNA). Once the first nucleotide degraded, further ribosome loading was prevented, and 150 

the remaining nucleotides on the mRNA were removed concomitant with the movement of the 151 

last ribosome on the transcript (58). This model is consistent with experimental observations of 152 

5’-to-3’ net directionality of mRNA degradation (42, 59, 60) and for the ribosome shielding 153 

effect (44). In most simulations, protein degradation was considered negligible because most 154 

bacterial proteins are very stable (61). However, in some cases, protein degradation was added to 155 

the model, assuming first-order kinetics and an average protein lifetime of  τprotein, as previously 156 

done (e.g., 36). The whole gene expression process (transcription, translation and mRNA 157 

degradation) was simulated for a total duration of 40 min. mRNA levels reached steady state 158 
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within 10 min of the simulation time under the parameters we used. We performed a total of 159 

1000 simulations for each scenario. 160 

 161 

Analysis of the simulated data 162 

We counted 1 mRNA when the first nucleotide (5’ end) was present, unless noted otherwise. To 163 

obtain steady-state distributions of mRNA numbers, we counted the number of mRNAs made 164 

but not yet degraded at t = 30 min of simulation time (an arbitrary choice of time when mRNA 165 

levels were in steady state). We used this distribution to calculate the mean and Fano factor 166 

values for each mRNA distribution. 167 

 Protein number increased by 1 every time a ribosome reached the end of a transcript. To 168 

obtain distributions of protein numbers, we summed all proteins made from a DNA template 169 

between t = 20-30 min of simulation time, which ensures steady state in mRNA levels. This 170 

method of counting proteins is equivalent to measuring protein accumulation over a period of 171 

time. Means and CV
2
 of protein numbers were calculated from these distributions. 172 

 All error bars indicate an estimation of the standard error of the mean calculated by 173 

bootstrap resampling of the original sample size (1,000 simulations) 3,000 times. 174 

 175 

RESULTS 176 

Comparison between nonbursty and bursty promoters with similar effective 177 

transcription initiation rates  178 

While our integrated model of gene expression (see Methods) can be applied to any gene, we 179 

modeled the expression of the 3075-nt lacZ gene of E. coli, which is a popular model in 180 

quantitative gene expression studies. Given an average RNAP speed (kelongation) of 30 nt/sec on 181 

the lacZ region (Fig. S1A in the Supporting Material) (40), the input average RNAP dwell time 182 

at each base position x was 1 nt/kelongation = 1/30 sec. We used the experimentally determined 183 

mean lacZ mRNA lifetime of 90 sec (Fig. S1B) as the first-order rate constant for 5’-end 184 

degradation (τmRNA). For transcription initiation, we varied the RNAP loading rate on the DNA 185 

template to achieve a range of expression levels seen in experiments (25). For translation 186 

initiation, we used an experimentally-derived average rate of ribosome loading (kriboloading) of 0.2 187 

sec
-1

 (62, 63).  188 
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To build on previously known promoter properties, we considered two different types of 189 

promoters: nonbursty and bursty. While the lac promoter is thought to be bursty (25, 64), we also 190 

considered nonbursty conditions for comparison and to expand our approach to other promoters. 191 

The complex, multi-step kinetics of transcription initiation (65, 66) was approximated as one 192 

rate-limiting step, as previously done (e.g., 25, 26). Transcription initiation from nonbursty 193 

promoters was modeled as a Poisson process with an RNAP loading rate, kloading, which is the 194 

inverse of the loading interval, τloading (Fig. 2A). This parameter was varied to obtain an output 195 

RNAP loading interval between 3 and 500 sec, reflecting the decreasing strength of a 196 

constitutive promoter. For the bursty case, the promoters cycled between ON and OFF states, 197 

with rate constants kON (rate of switching from OFF to ON state, 1/τOFF) and kOFF (rate of 198 

switching from ON to OFF state, 1/τON). RNAPs loaded only during the ON state at an interval 199 

of τloading (RNAP loading interval during the ON state) (Fig. 2A) (22-25). This model resulted in 200 

multiple RNAP loading events clustered in time in a pulsatile manner. We used experimentally 201 

derived τOFF = 143 sec and τloading = 2.2 sec (25), and varied the fraction of time spent in the ON 202 

state (fON = τON/(τON + τOFF)) from 0.005 to 0.99 to achieve an output average RNAP loading 203 

intervals between 3 and 500 sec.  204 

When we compared nonbursty and bursty promoters of similar strength (i.e., yielding 205 

similar effective transcription initiation rates and numbers of mRNAs at steady state), we found 206 

expected differences at intermediate RNAP loading intervals (e.g., 7, 15 and 30 sec in Fig. 2B-D). 207 

First, bursty promoters showed pronounced bursts of RNAP loading events followed by notable 208 

OFF periods, resulting in temporal profiles of RNAP trajectories that were very different from 209 

those obtained from a nonbursty promoter of similar strength (Fig. 2B). Second, the distribution 210 

of RNAPs on the DNA templates was wider for bursty promoters than for nonbursty promoters, 211 

with a noticeable peak close to zero due to the stochastic occurrence of OFF and ON states (Fig. 212 

S2A). Third, the steady-state distributions of mRNA numbers for bursty initiations were broader, 213 

despite having similar mean mRNA numbers (Fig. 2C and Fig. S2B). Fourth, the distribution of 214 

“headways”, which is defined by the time interval between two adjacent RNAPs passing a given 215 

DNA position (55), appeared largely exponential for nonbursty promoters (Fig. S2C). In contrast, 216 

RNAPs from bursty promoters displayed either small headways arising from loading events 217 

within an ON period, or large headways arising from loading events separated by an OFF period 218 

(Fig. S2C).  219 
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 220 

FIGURE 2 Effect of nonbursty and bursty promoters on RNAP traffic and mRNA number distribution. 221 
(A) Schematics for two modes of transcription initiation. The promoter states are shown in cyan, and RNAP loading 222 
events are represented by orange bars. (B) Example trajectories of RNAP loading and translocating on individual 223 
DNA templates over 10 min based on different transcription initiation conditions: for nonbursty transcription 224 
initiation, the input τloading was varied as 500, 30, 15, 6, 2.5 sec (from left to right) and for bursty transcription 225 
initiation, fON was varied as 0.005, 0.1, 0.25, 0.5, 0.99 (from left to right). The average loading interval (grey box) 226 
was calculated from the simulation model output. (C) Steady-state distributions of mRNA numbers per DNA 227 
template under the transcription initiation conditions used in (B). mRNAs were counted based on the presence of the 228 
first base. See Fig. S2B for the results using an mRNA counting method that better reflects how mRNAs are often 229 
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quantified in fluorescence in situ hybridization experiments. (D) Fano factors calculated from the 5’ and 3’ends of 230 
the mRNAs under the various transcription initiation conditions used in (B-C). 231 
 232 

In both promoter cases, the headway set at transcription initiation was conserved until the 233 

end of transcription, as shown by the near-perfect overlap in distributions between headways at 234 

initiation and termination (Fig. S2C). The conservation of the promoter-dependent “burstiness” 235 

until the end of transcription elongation was also shown by comparing the Fano factors 236 

calculated from the 5’ and 3’ ends of the mRNA. For both promoter types, the 3’-end mRNA 237 

Fano factor remained the same as the 5’-end mRNA Fano factor (1 for nonbursty promoters and 238 

greater than 1 for bursty promoters) (Fig. 2D). While a previous modeling study (34) suggested 239 

that RNAP bursts set by a bursty promoter can completely disappear during transcription 240 

elongation (i.e., 3’-end mRNA Fano factor = 1), we found that such a phenomenon appears when 241 

(i) RNAPs are loaded back-to-back during the ON period, and (ii) the RNAP footprint size is 242 

modeled as 1 bp (as in ref. 34), instead of 35 bp (Fig. S3). With the smaller RNAP size, many 243 

RNAPs load back-to-back during a given ON period, augmenting RNAP congestion and 244 

headway separation due to extensive interactions (Fig. S4). We expect that, under realistic 245 

parameter values, the memory of a bursty promoter’s ON/OFF switch is largely maintained 246 

throughout transcription elongation, at least in the absence of RNAP pauses. 247 

At transcription initiation frequencies that were either very low or very high (e.g., 248 

average loading interval ≈ 500 sec or 3.5 sec), bursty promoters were virtually indistinguishable 249 

from nonbursty promoters (Fig. 2B-D and Fig. S2). At very low initiation frequencies, the ON 250 

period was too short to accommodate enough RNAP loading events to exhibit transcriptional 251 

bursts. This is consistent with the experimentally determined mRNA Fano factor of 1 for the 252 

repressed lacZ promoter (25). At very high initiation frequencies, the OFF period was so short 253 

that it became negligible (3). These results suggest that transcriptional bursts are unlikely for 254 

genes at either side of the expression spectrum. 255 

Importantly, our simulations identified a dynamic range of transcription initiation rates 256 

for which our model produced a clear difference between nonbursty and bursty promoters (Fig. 2 257 

and Fig. S2). When we examined protein production under this range of transcription initiation 258 

rates, the temporal profile of protein production was largely dictated by the temporal profile of 259 

RNAP loading onto the promoter. Nonbursty transcription initiations yielded a relatively 260 

constant number of proteins made from a DNA template over time (Fig. 3A). In contrast, bursty 261 
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transcription initiations resulted in bursty protein productions, showing periods of time without 262 

any new protein production from the DNA template (Fig. 3A). As a result, bursty promoters 263 

produced the expected broader protein number distribution in comparison to nonbursty 264 

promoters, despite having the same mean protein production (Fig. 3B). We also verified that the 265 

noise in protein levels increased with increasing RNAP loading intervals (i.e., decreasing 266 

transcription initiation rates) from both promoter types (Fig. S5A), consistent with analytical 267 

models (18-22).  268 

 269 

FIGURE 3 Bursty promoters result in bursty protein synthesis and greater noise in protein levels when 270 
the mRNA lifetime is short. (A) Temporal profiles of protein production. The number of new proteins made per 271 
DNA template was quantified every 10 sec. Example trajectories were from three independent simulations for 272 
nonbursty and bursty promoters with average RNAP loading intervals of ~15 sec. The mean mRNA lifetime was 90 273 
sec. The number of proteins accumulated from expression of the DNA template is shown in dotted lines. Only the 274 
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accumulation of proteins occurring within the time frame was calculated. (B) Distributions of the number of proteins 275 
made per DNA template over 10 min. (C) Temporal profiles of protein production under the same conditions as in 276 
(A), except that the mRNA lifetime was 10 min. (D) Distributions of the number of proteins made per DNA 277 
template over 10 min when the mRNA lifetime was 10 min. (E) Variability in protein numbers for a nonbursty and 278 
bursty promoter, depending on the mRNA lifetime. (F) Mean durations of zero protein production in the temporal 279 
profiles shown in (A) and (C).  280 
 281 

Short mRNA lifetimes facilitate production of protein bursts 282 

Once we had established parameter conditions that clearly distinguish bursty and nonbursty 283 

transcription initiations, our goal was to examine how post-transcription initiation processes may 284 

affect the burstiness (or lack thereof) set by the promoter. First, we considered mRNA 285 

degradation. While the lifetime of the mRNA is known to impact the amount of protein produced 286 

(the mean), its effect on the noise in protein levels (CV
2
) is less clear. If both the mRNA lifetime 287 

and the transcription initiation rate were changed to maintain the same average protein level, the 288 

change in transcription initiation is the dominant factor affecting noise (Fig. S5B), consistent 289 

with a previous report (37). But does the CV
2
 vary when the mRNA lifetime changes 290 

independently of the transcription initiation rate? When we applied analytical solutions that 291 

consider mRNA degradation, we found that they give different answers; some (19, 20) predict a 292 

negative effect while others (21, 22) predict no effect at all (Fig. S6A-B). 293 

Simulations of our model showed that the observation of a bursty promoter leading to 294 

bursty protein production (Fig. 3A) was dependent on the use of a 90-sec mRNA lifetime. When 295 

the lifetime of the mRNA was increased without changing other parameters, protein bursts 296 

generated from bursty promoters became less apparent, as illustrated with a 10-min mRNA 297 

lifetime (Fig. 3C). While bursty promoters still produced broader protein number distributions 298 

than nonbursty promoters (Fig. 3D), the CV
2
 from both types of promoters was reduced by the 299 

increase in mRNA lifetime (Fig. 3E). In both cases, the reduction in protein expression noise was 300 

correlated with an overall attenuation of temporal fluctuations of protein synthesis, as evidenced 301 

by the virtual disappearance of periods of no protein production (Fig. 3F).  302 

We reasoned that the reduced temporal fluctuations of protein synthesis stemmed from 303 

the mRNA lifetime being much longer than the RNAP loading interval, resulting in increased 304 

protein production between transcription events. Consistent with this idea, the noise in protein 305 

expression for both nonbursty and bursty promoters increased either by shortening the mRNA 306 

lifetime for a given average RNAP loading interval or by increasing the average RNAP loading 307 

interval for a given mRNA lifetime (Fig. 4A-B). In these simulations, protein degradation was  308 
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 309 

FIGURE 4 Temporal fluctuations in protein production and variability in protein number are 310 
modulated by the RNAP loading interval and the mRNA lifetime. (A and B) Variability in protein numbers as a 311 
function of mRNA lifetimes and RNAP loading intervals from nonbursty (A) and bursty (B) promoters. (C) 312 
Example temporal profiles of protein production from a nonbursty promoter with an average RNAP loading interval 313 
of 500 sec, which is much longer than the 90-sec mRNA lifetime. (D) Mean durations of zero protein production 314 
calculated from the temporal profiles of protein production shown in (C) and Fig. 3A. (E) Variability in protein 315 
numbers for the conditions described in (D). 316 
 317 

neglected because most bacterial proteins are long-lived (61). However, we obtained similar 318 

trends when we included protein degradation in our model and simulated an arbitrary average 319 

protein lifetime of 20 min (Fig. S6C-D). 320 

When the mRNA lifetime was much smaller than the average RNAP loading interval 321 

(e.g., 90 sec vs. 500 sec), a nonbursty promoter was able to produce protein bursts (Fig. 4C and 322 

4D), resulting in higher protein production noise (CV
2
) than when the mRNA lifetime was 323 
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longer than the average RNAP loading interval (e.g., 90 sec vs. 15 sec) (Fig. 4E). This is 324 

consistent with in vivo observations that occasional firing of the repressed lac promoter (average 325 

RNAP loading interval of 40-150 min under the experimental condition used in the cited studies) 326 

causes spikes of protein production (62, 67). This is because each mRNA is degraded before the 327 

next one is made, resulting in well-separated bursts of protein production.  328 

These results suggest that short mRNA lifetimes (in the minute time scale), a common 329 

characteristic of bacterial mRNAs (42, 59, 68), facilitate bursty protein synthesis and increase the 330 

variability in protein levels across the population for both bursty and nonbursty promoters. 331 

 332 

Sequence-dependent pauses can attenuate RNAP bursts and reduce protein 333 

expression noise  334 

So far, our simulations considered pause-free elongation. In in vitro experiments, RNAPs can 335 

pause seemingly randomly along the DNA template (49, 69, 70). Modeling studies have shown 336 

that long stochastic (sequence-independent) pauses can produce RNAP bursts from nonbursty 337 

promoters, because RNAPs can pile up behind the paused RNAP and form a convoy that travels 338 

together once the pause ends (33-36). RNAPs are also known to pause at specific DNA sites for 339 

durations that generally range from seconds to ~1 minute (49, 51, 71-80). Pause sites are 340 

common in E. coli based on RNAP profiling experiments (81, 82). Previous modeling work has 341 

shown that sequence-dependent pauses of 100 or 500 sec generate protein bursts from nonbursty 342 

promoters due to ribosome piling behind the paused RNAP (37). However, such long-lived 343 

RNAP pauses are expected to be rare, and it is unclear whether shorter pauses at specific DNA 344 

sites can still affect the noise in protein levels. Furthermore, to our knowledge, the role of 345 

sequence-dependent RNAP pauses has only been reported in the case of nonbursty promoters. 346 

Whether pause-prone sites affect gene expression noise from bursty promoters is unknown.  347 

In our model of sequence-dependent pausing, RNAPs resided at each nucleotide on 348 

average for 1/30 sec, as before, except at the pause site (xpause), where we varied the average 349 

RNAP dwell (tpause). The probability of a pause at the particular site (ppause) was also considered, 350 

such that if a pause occurred, the dwell time was randomly chosen from an exponential 351 

distribution with a mean dwell time of tpause (49-51). For illustration purposes, we modeled a 352 

single pause site in a 3-kbp gene, driven by either a nonbursty or bursty promoter with an 353 

average RNAP loading interval of ~15 sec. Even at ppause = 100%, pauses shorter than the RNAP  354 
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 355 

FIGURE 5  Sequence-dependent RNAP pauses affect gene expression dynamics and steady-state 356 
distributions of mRNA and protein numbers. (A) Example trajectories of RNAPs along a DNA template from a 357 
simulation with a pause duration tpause = 10 sec at xpause = 1500 nt with ppause = 80% for a nonbursty promoter with 358 
average RNAP loading interval of ~15 sec. (B) Distributions of Δheadways for all simulated RNAPs using the same 359 
conditions as in (A). (C) Fano factors calculated based on either the 5’ or 3’ end of the mRNA, considering three 360 
different pause conditions for the nonbursty promoter: no pause (0 sec), 1-sec pause at xpause = 1500 nt with ppause = 361 
100%, and 10-sec pause at xpause = 1500 nt with ppause = 80%. (D) Protein noise (CV

2
) of the nonbursty promoter, 362 

considering three different pause conditions as in (C). (E) Example trajectories of RNAPs along a DNA template 363 
with the same pause condition as in (A) but with a bursty promoter and an average RNAP loading interval of ~15 364 
sec. (F) Distributions of Δheadways from all simulated RNAPs using the same conditions as in (E). (G) 5’- and 3’-365 
end mRNA Fano factors for the bursty promoter with different pause conditions, as used in (C). The blue dotted line 366 
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denotes a Fano factor equal to 1, representing a nonbursty process. (H) Protein noise (CV
2
) for the bursty promoter, 367 

considering three different pause conditions used in (C). (I) Effect of a pause on temporal fluctuations in protein 368 
production from a bursty promoter with an average RNAP loading interval of ~15 sec. While the temporal profiles 369 
of protein production in the absence of a pause show bursty protein production (left), those in the presence of a 10-370 
sec pause at xpause = 1500 nt with ppause = 80% show a reduction in bursty protein production. In particular, the pause 371 
smoothens the temporal profile of protein accumulation (dotted lines). 372 
 373 

loading interval, such as tpause = 1 sec, had a negligible effect on RNAP traffic regardless of the 374 

promoter type, as shown by the near-perfectly overlapping distributions of Δheadways (headway 375 

at the end of elongation - headway at the start for two consecutive RNAPs) between the 1-sec 376 

pause and the no-pause cases (Fig. S7).  377 

When the pause was similar to (e.g., tpause = 10 sec) or longer than the RNAP loading 378 

intervals and the probability of pausing was high (e.g., ppause ~ 80%, as for the his and ops pauses 379 

(51, 76, 79)), the pause resulted in two effects on RNAP traffic: (i) RNAP piling upstream of the 380 

pause site and (ii) a change in RNAP headway downstream of the pause. In the case of a 381 

nonbursty initiation, these effects (Fig. 5A) resulted in a broader distribution of Δheadways 382 

between subsequent RNAPs, but the Δheadway distribution remained centered around zero, with 383 

no net change (Fig. 5B). The nonbursty conditions remained until the end of the template 384 

because the headway between subsequent RNAPs either increased or decreased with similar 385 

probabilities. As a consequence, the Fano factor was maintained at ~1 at both the 5’ and 3’ ends 386 

of the mRNA (Fig. 5C), and the noise in protein levels (CV
2
) was not affected (Fig. 5D). Unlike 387 

a 100-sec pause (37), a 10-sec pause did not provide sufficient time for ribosomes to pile up 388 

behind the paused RNAP to create substantial protein bursts (Fig. S8). In the case of bursty 389 

promoters, the frequent back-to-back loading of RNAPs (i.e., small initial headway) caused the 390 

majority of RNAPs to catch up with each other at the pause site (Fig. 5E). As most RNAPs in the 391 

pile will also stop at the pause site, they will resume traveling with a new headway dictated by 392 

the pause duration. As a result, the headway between RNAPs showed a net increase after the 393 

pause site (Fig. 5F). This situation is analogous to car traffic near a tollbooth. The congested 394 

traffic before the tollbooth becomes fluid after the cars pay the toll. The pause-dependent 395 

increase in headway led initial RNAP clusters to largely dissipate into a nonbursty-like situation 396 

after the pause, as seen in the example RNAP trajectories (Fig. 5E) and in the large decrease in 397 

mRNA Fano factor between 5’ and 3’ ends (Fig. 5G). In other words, pauses similar to or longer 398 

than RNAP loading intervals diminished the effect from the bursty promoter’s ON/OFF switch 399 

by increasing the RNAP headway after the pause. This memory loss of initial conditions lowered 400 
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protein expression noise (Fig. 5H) by smoothing the temporal profile of protein production (Fig. 401 

5I). Pauses also resulted in a noise-attenuating effect when we considered protein degradation 402 

(see Fig. S9 for a protein lifetime of 20 min). 403 

When we examined the effect of imposing two pause sites (tpause = 10 sec, ppause = 100% 404 

and xpause = 1,500 and 2,500 bp) on a gene driven by a bursty promoter, we found that the second 405 

pause did not affect the RNAP headway as much as the first pause (Fig. S10, scenarios (ii) vs. 406 

(i)). We reasoned that the headway increase generated by the first pause reduced the number of 407 

RNAPs that pile at the second pause site. However, when the second pause was longer than the 408 

first (e.g., tpause = 10 and 15 sec, respectively), it further increased RNAP headways (Fig. S10, 409 

scenarios (iii) vs. (i)), suggesting that multiple long-lived pauses can have additive effects on 410 

RNAP traffic. 411 

 412 

DISCUSSION 413 

In this study, we highlight the role of post-transcription initiation processes, such as mRNA 414 

degradation and RNAP pausing, in altering the intrinsic noise in protein expression dictated at 415 

transcription initiation by the promoter.  416 

While the lifetime of mRNA is well known to alter the amount of proteins produced, its 417 

potential effect on protein noise was less clear based on previous theoretical studies (Fig. S6A-B). 418 

We found that mRNA lifetimes longer than the OFF period of a bursty promoter dampen the 419 

temporal fluctuations of protein synthesis (Fig. 3A vs. 3C). Because one mRNA typically 420 

generates more than one protein, longer mRNA lifetime reduces the effect of the bursty 421 

promoter’s ON/OFF switch (Fig. 4B). mRNA expression from nonbursty promoters also 422 

fluctuates over time due to the stochastic nature of transcription initiation. Hence, the mRNA 423 

lifetime also smooths temporal fluctuations of protein production in the case of nonbursty 424 

promoters (Fig. 3C and 4A). Altogether, this suggests that mRNA degradation is a factor to 425 

consider when studying noise in gene expression, especially given that the lifetimes of bacterial 426 

mRNAs can vary over an order of magnitude (42, 59, 68). 427 

RNAP pausing is another important post-transcription initiation event that can affect 428 

noise. So far, pauses have been viewed as noise-generating factors (33-38). This work suggests 429 

that RNAP pauses can also attenuate noise by modulating RNAP traffic downstream of the pause 430 

(Fig. 5E-I). The RNAP headway, which shapes the temporal fluctuations in mRNA and protein 431 
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production, can be altered by a pause (Fig. 5E-F) to the point that the memory of a bursty 432 

promoter’s ON/OFF switch can be lost after the pause site (Fig. 5G).  433 

Whether transcriptional pausing attenuates or generates mRNA and protein bursts 434 

depends on the probability of RNAPs to stop at a particular DNA site. If an RNAP pause occurs 435 

stochastically at a random position along the gene (i.e., low probability of pausing at any given 436 

position), it can create a line of RNAPs behind the pause that travels as a convoy when the pause 437 

ends (33-36). This is akin to a traffic light situation in which all cars stopped at a red light move 438 

together when the light turns green. The size of the RNAP convoy, which dictates the size of 439 

mRNA and protein bursts, increases with the duration of the pause, the RNAP loading rate and 440 

the RNAP translocation speed. A similar noise-generating effect on RNAP traffic is expected if a 441 

low-probability pause occurs at a specific DNA sequence (36, 38). However, if a pause has a 442 

high probability of occurring, it has an opposite noise-attenuating effect. Here, as mentioned 443 

before, the traffic analogy is with a tollbooth where all cars must stop, one by one, before 444 

resuming travel with a new headway. RNAPs accumulated behind the pause have to stop at the 445 

pause site before being released one RNAP at a time (Fig. 5E). Emergence from the pause site 446 

results in more fluid traffic, diminishing any promoter-induced noise effects (Fig. 5G-H).  447 

In vitro single-molecule experiments have shown that the probability of an RNAP pause 448 

at a given location correlates with its duration (51). Therefore, sequences that generate pauses 449 

long enough to alter RNAP traffic are likely to be efficient at pausing RNAPs, favoring the 450 

“tollbooth” noise-attenuating mechanism that we report. That said, low-probability pauses that 451 

are long-lived are also likely to occur inside cells. For instance, in E. coli, RNAPs occasionally 452 

retain the initiation sigma factor, σ
70

, during elongation (83-93), and these σ
70

-associated RNAPs 453 

can pause at promoter-like sequences within genes for very long periods of time (minutes) (85, 454 

88, 91, 92, 94). Since a minority of the RNAPs retain σ
70

 after initiation (83-92), only a fraction 455 

of the RNAP population will pause, effectively triggering the “traffic-light” noise-generating 456 

mechanism described above (Fig. S11). Furthermore, because of the coupling between 457 

transcription and translation in bacteria, these long-lived RNAP pauses may also affect the traffic 458 

of ribosomes, resulting in sharper protein bursts (Fig. S11). 459 

Location is yet another important pause property to consider. In the E. coli genome, 460 

RNAP pause sites are often located near promoters (81, 83, 85, 86, 91, 95). RNAP piling behind 461 

the pause site may extend to the promoter and prevent the loading of additional RNAPs (53, 95-462 
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97). Since the transcription initiation rate inversely scales with CV
2
 (Fig. 4A-B) (15, 16, 19), this 463 

promoter blockage can indirectly increase noise (Fig. S12A-B). Furthermore, RNAP stalling near 464 

the promoter can also result in reduced translation initiation rates (Fig. S12C) when ribosomes 465 

piling on the nascent transcript reach and block the ribosome-binding site (RBS) (Fig. S12D). 466 

This second effect on protein expression rate stems from the temporal coupling between 467 

transcription and translation in bacteria.  468 

Thus, transcriptional pausing can create opposite effects on noise depending on the pause 469 

probability, duration and location. Interestingly, the longevity of a pause site in a Salmonella 470 

magnesium transporter gene has been shown to change in response to varying concentrations of 471 

magnesium (79). This example raises the possibility of environmental regulation of noise by 472 

modulating pause duration. Overall, our study stresses the importance of a comprehensive model 473 

of gene expression when estimating noise, including for the analysis of genome-wide trends in 474 

gene expression noise (3) since promoter architectures and pause properties vary among genes..  475 

As congested traffic dynamics of RNAPs and ribosomes have yet to be solved 476 

analytically, a simulation-based model, such as ours, provides a convenient tool for testing 477 

different scenarios and for estimating the combinatorial effect of noise modulators. For this 478 

purpose, we provide our MATLAB-based simulation code and detailed guidelines in the 479 

Supporting Text. Simulations generate mRNA and protein distributions, as well as RNAP and 480 

ribosome traffic dynamics. While we tested the model using the τON, τOFF, and τloading parameter 481 

values reported for the lacZ promoter, our model is generalizable and can be extended to genes 482 

with different promoter architectures by simply varying τON, τOFF, and τloading. A limitation of our 483 

current model is that it does not include processes, such as physical “pushing” between RNAPs 484 

(54) and potential premature termination of transcription and translation at RNAP and ribosome 485 

congested sites (98, 99), which may mitigate pause-dependent effects on protein expression noise. 486 

Determining the kinetic parameters of these processes will facilitate their integration in future 487 

models.  488 

  mRNA lifetimes and RNAP pauses are evolvable features at the gene-specific level 489 

because they are sequence-dependent and can change through mutations. Our work predicts that 490 

mutations altering pause conditions (e.g., duration and probability) or mRNA lifetime (e.g., by 491 

altering mRNA secondary structure at the 5’-untranslated region) will affect protein expression 492 

noise at the level of individual genes. Our work also suggests possible ways by which protein 493 
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expression noise may change globally. For example, mutations that render RNAP less prone to 494 

pausing (e.g., rpoB5101 mutation in E. coli (76)) are expected to affect the protein expression 495 

noise of pause-sensitive genes.  496 

In summary, by comparing bursty and nonbursty transcription initiations under a variety 497 

of scenarios, we highlight conditions under which bursty promoters produce nonbursty protein 498 

production and nonbursty promoters generate bursty protein profiles. These findings underscore 499 

the combinatorial origin of protein expression noise. Noise-modulating factors can have opposite 500 

effects depending on parameter conditions. The combinatorial effect of these factors may affect 501 

how genome sequences evolve by modulating phenotypic variability within a population. 502 

Combinatorial approaches could also be exploited for genetic engineering in synthetic biology. 503 

For instance, our findings suggest conditions to maximize protein expression noise and 504 

phenotypic diversity: a bursty promoter, a short mRNA lifetime, and an absence of long RNAP 505 

pauses. The opposite conditions are expected to minimize phenotypic heterogeneity. 506 

 507 

SUPPORTING MATERIAL 508 

Supporting Material contains Supporting Text, Supporting Materials and Methods, twelve 509 

figures and one table. The source code can be found in 510 

http://github.com/JacobsWagnerLab/TASEPnoise.  511 
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