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Abstract  

Brain connectivity is often considered in terms of the communication between functionally            

distinct brain regions. Many studies have investigated the extent to which patterns of coupling              

strength between multiple neural populations relates to behavior. For example, studies have            

used "functional connectivity fingerprints" to characterise individuals' brain activity. Here, we           

investigate the extent to which the exact spatial arrangement of cortical regions interacts with              

measures of brain connectivity. We find that the shape and exact location of brain regions               

interact strongly with the modelling of brain connectivity, and present evidence that the spatial              

arrangement of functional regions is strongly predictive of non-imaging measures of behaviour            

and lifestyle. We believe that, in many cases, cross-subject variations in the spatial             

configuration of functional brain regions are being interpreted as changes in functional            

connectivity. Therefore, a better understanding of these effects is important when interpreting            

the relationship between functional imaging data and cognitive traits. 
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Introduction 

The organisation of the human brain into large-scale functional networks has been investigated             

extensively over the past two decades using resting state functional magnetic resonance            

imaging (rfMRI). Spontaneous fluctuations in distinct brain regions (as measured with rfMRI)            

show temporal correlations with each other, revealing complex patterns of functional           

connectivity (FC) (Biswal, Yetkin, Haughton, & Hyde, 1995; Friston, 1994, 2011). Extensive            

connectivity between cortical areas and with subcortical brain regions has long been considered             

a core feature of brain anatomy and function (Crick & Jones, 1993), and dysfunctional coupling               

is associated with a variety of neurological and psychiatric disorders including schizophrenia,            

depression, and Alzheimer’s disease (Castellanos, Di Martino, Craddock, Mehta, & Milham,           

2013). Given the great potential neuroscientific and clinical value of rfMRI, it is important to               

determine which aspects of rfMRI data most sensitively and interpretably reflect trait variability             

across subjects. At a neural level, potential sources of meaningful cross-subject variability            

include: i) the strength of the functional coupling (i.e., interactions) between two different neural              

populations (‘coupling’), and ii) the spatial configuration and organisation of functional regions            

(‘topography’). In this study, we aim to identify how these key aspect of rfMRI data influence                

derived measures of functional connectivity and how they relate to interesting trait variability in              

behaviour and lifestyle across individuals. Our findings reveal variability in the spatial            

topography of functional regions across subjects, and suggest that this variability is the primary              

driver of cross-subject trait variability in correlation-based FC measures obtained via group-level            

rfMRI parcellation approaches. These results have important implications for future rfMRI           

research, and for the interpretation of FC findings. 

 

A commonly applied approach used to derive FC measures from rfMRI data is to parcellate the                

brain into a set of functional regions (‘nodes’), and estimate the temporal correlations between              

pairs of node timeseries (‘edges’) to build a network matrix (Smith, Vidaurre, et al., 2013). This                

approach has previously been likened to a fingerprint, enabling the unique identification of             

individuals, and the prediction of behavioural traits such as intelligence (Finn et al., 2015;              

Passingham, Stephan, & Kötter, 2002). Parcellation methods include the use of anatomical,            

functional, and multi-modal atlases (Glasser et al., 2016; Tzourio-Mazoyer et al., 2002; Yeo et              

al., 2011), with functional parcellations often being data driven via techniques such as clustering              
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and independent component analysis (ICA) (Beckmann, DeLuca, Devlin, & Smith, 2005;           

Craddock, James, Holtzheimer, Hu, & Mayberg, 2012). Data-driven approaches such as ICA            

have been used to identify consistent large-scale resting state networks (Damoiseaux et al.,             

2006), and to characterise FC abnormalities in a variety of mental disorders (Littow et al., 2015;                

Pannekoek et al., 2015). A single parcellation is typically defined at the group level (for any                

parcellation method), and hence additional steps are required to map a group-level parcellation             

onto individual subjects’ data in order to obtain subject-specific parcel timeseries and associated             

connectivity edge estimates. Timeseries derived from hard (binary, non-overlapping)         

parcellations are often obtained using a simple masking approach (i.e., extracting the averaged             

BOLD timeseries across all voxels or vertices in a node), whereas ICA parcellations (partially              

overlapping, soft parcellations that contain continuous weights) are mapped onto single-subject           

data using dual regression analysis or back projection (Calhoun, Adali, Pearlson, & Pekar,             

2001; Filippini et al., 2009). Previous work has shown that, in the presence of spatial variability                

or inaccurate intersubject alignment, these common methods for mapping group parcellations           

onto individuals are not able to fully recover accurate subject-specific functional regions, which             

can severely impact the accuracy of estimated FC edges (Allen, Erhardt, Wei, Eichele, &              

Calhoun, 2012; Smith et al., 2011). 

 

Recent work has characterised patterns of spatial variability in network topography across            

subjects (i.e., spatial shape, size and position of functional regions) (Glasser et al., 2016;              

Gordon, Laumann, Adeyemo, Gilmore, et al., 2016; Gordon, Laumann, Adeyemo, & Petersen,            

2015; Laumann et al., 2015; Swaroop Guntupalli & Haxby, 2017; Wang et al., 2015). For               

example, Glasser et al showed that the subject-specific spatial topology of area 55b in relation               

to the frontal and premotor eye fields substantially diverged from the group average in 11% of                

subjects (Glasser et al., 2016). In addition, the size of all cortical areas, including large ones like                 

V1, varies by twofold or more across individuals (Amunts, Malikovic, Mohlberg, Schormann, &             

Zilles, 2000; Glasser et al., 2016). This extensive presence of spatial variability across             

individuals highlights the need for analysis methods that are adaptive and better able to              

accurately capture functional regions in individual subjects. One approach that aims to achieve             

a more accurate subject-specific description of this spatial variability is PROFUMO, which            

simultaneously estimates subject and group probabilistic functional mode (PFM) maps and           

network matrices (instead of separate parcellation and mapping steps) (Harrison et al., 2015). In              
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the present study, we show that the spatial variability across subjects captured in these PFMs is                

strongly associated with behaviour. 

 

Conceptually, network edges are commonly thought of as reflecting coupling strength between            

spatially separated neuronal populations. However, as discussed above, edge estimates are           

highly sensitive to spatial misalignments across individuals. Additionally, correlation-based edge          

estimates are influenced by the amplitudes of localised spontaneous rfMRI fluctuations (Duff,            

Makin, Smith, & Woolrich, 2017), which have been shown to capture trait variability across              

subjects, and state variability within an individual over time (Bijsterbosch et al., 2017). These              

results demonstrate the sensitivity of edge-strength estimates to a wide range of different types              

of subject variability, and highlight the need to identify which aspects of FC tap directly into                

behaviourally-relevant population-level variability. Here, we investigate the complex        

relationships between different features of an rfMRI dataset and also the associations with             

variability across individuals in terms of their performance on behavioural tests, their lifestyle             

choices, and demographic information. Using data from the Human Connectome Project (HCP),            

we provide evidence for systematic differences in the spatial organisation of functional regions.             

We then use simulations that manipulate aspects of the data to argue that these differences               

reflect meaningful cross-subject information and drive edge estimates for several common FC            

approaches. 
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Results 

Cross-subject information in fMRI-derived measures 

To determine whether a given rfMRI-derived FC measure contains meaningful cross-subject           

information rather than random variability, we adopted an approach that makes use of the              

extensive set of behavioural, demographic, and lifestyle data acquired in the HCP. Our first              

analysis aims to determine which measures obtained from rfMRI and task data most strongly              

relate to interesting behavioural variability across individuals. Using Canonical Correlation          

Analysis (CCA), we extracted population modes of cross-subject covariation that represent           

maximum correlations between combinations of variables in the subject behavioural measures           

and in the fMRI-derived measures, uncovering multivariate relationships between brain and           

behaviour. For example, previous work has used CCA on HCP data to identify a mode of                

population covariation that linked a positive-negative axis of behavioural variables to patterns of             

FC edge strength (Smith et al., 2015). A specific pattern of connectivity, primarily between              

“task-negative” (default mode) regions (Raichle et al., 2001), was found to be linked to scores               

on positive factors such as life satisfaction and intelligence, and inversely associated with             

scores on negative factors such as drug use. We calculated a CCA score for each subject to                 

represent their position along the population continuum for the latent CCA variable(s), and these              

scores were subsequently used to visualise variation at both the population extremes (see             

Figure 2 below), and across the full population continuum (supplementary movies). 

 

We applied a separate CCA analysis for each of the various fMRI-derived measures. The              

results (Figure 1 and Tables S1 and S2) reveal that highly similar associations with behaviour               

and life factors occur across a wide range of different fMRI-derived measures. In particular, the               

results show that spatial features such as PFM subject spatial maps and subject task contrast               

maps are strongly associated with behaviour. Comparable spatial effects are found when            

looking at subject-specific parcels in a multimodal parcellation (HCP_MMP1.0; Figure S1)           

(Glasser et al., 2016). These findings suggest that a large proportion of behavioural information              

may be represented as cross-subject spatial variability in the functional topography of brain             

regions.  
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Figure 1: Highly similar associations between behaviour and the brain occur across 16 distinct 

measures derived from fMRI. This includes network matrices, spatial maps and amplitudes 

(node timeseries standard deviation) derived from several distinct group-average spatial 

parcellations/decompositions: ICA decompositions at two scales of detail (dimensionalities of 25 

and 200, with “ICA200 partial network matrix” corresponding to the measures used 

previously(Smith et al., 2015)); a PROFUMO decomposition (PFM; dimensionality 50); an 

atlas-based hard parcellation (108 parcels(Yeo et al., 2011)), and task contrast spatial maps (86 

contrasts). Each bar reports a separate CCA analysis, performed against behaviour/life-factors. 

A similar mode of variation is found across most of the parcellation methods and different fMRI 

measures. RUV is the strength of the canonical correlation between imaging and non-imaging 

measures. Error bars indicate confidence intervals (2.5-97.5%) estimated using surrogate data, 

and red lines reflect the p<0.002 significant threshold compared with a null distribution obtained 

with permutation testing (i.e. family-wise-error corrected across all CCA components and 

Bonferroni corrected across a total of 25 CCAs performed, see Tables S1 and S2 for the full set 
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of results). CCA estimates the highest possible Ruv given the dataset; therefore the null 

distribution for low-dimensional brain data (e.g. ICA 25 amplitude) is expected to be lower than 

for high-dimensional brain data.  

 

For correlation-based parcellated FC estimates (network edges), a common assumption is that            

functional coupling is primarily reflected in the edges. However, true network coupling            

information can in theory be manifested anywhere along a continuum of appearing purely in              

spatial maps at one extreme (as is the case when performing temporal ICA, where the temporal                

correlation matrix between components is by definition the identity matrix (Smith et al., 2012)),              

or purely in edge estimates at the other extreme (as is often assumed to be the case when                  

using an individualized hard parcellation, and would truly be the case if the subjects were all                

perfectly functionally aligned to the parcellation and contained no useful information in the node              

timeseries amplitudes). It is likely that the dimensionality of the decomposition may influence             

this; for example, for a low-dimensional decomposition (into a small number of large-scale             

networks), much cross-subject variation in functional coupling is likely to occur between            

sub-nodes of the networks, which is therefore more likely to be represented in the spatial maps,                

whereas in a higher dimensionality decomposition this information is more likely to be             

represented in the network matrix. However, the results in Figure 1 show that this CCA mode of                 

population covariation is significantly present in both spatial maps and network matrices for both              

low and high dimensional decompositions (ICA 25 and 200). Therefore, the potential role of              

dimensionality is not sufficient to explain the common information present in spatial maps,             

timeseries amplitudes, and network matrices. 

 

The presence of this behaviourally meaningful spatial variability is somewhat surprising,           

because these data were aligned using a Multimodal Surface Matching (MSM) approach            

(Robinson et al., 2014, 2017), driven by both structural and functional cortical features (including              

myelin maps and resting state network maps). MSM has been shown to achieve very good               

functional alignment compared with other methods, and particularly compared with volumetric           

alignment approaches or surface-based approaches that use cortical folding patterns rather           

than areal features (Coalson, Van Essen, & Glasser, n.d.). However, residual cross-subject            

spatial variability is still present in the HCP data after the registration to a common surface atlas                 

space (in part due to the constrained parameterisation of MSM and in part due to the                

underestimation of dual regression subject maps used to drive MSM). In line with this,              
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approaches which are expected to better identify residual subject spatial variability (such as             

PFM spatial maps and subject task contrast maps) show strong correspondence between            

spatial variability and behaviour/life-factor measures.  

 

To better understand what spatial features that represent behaviourally-relevant cross-subject          

information, we visually explored what aspects of the PFM spatial maps contributed to the CCA               

result in Figure 1 by calculating representative maps at extremes of the CCA mode of               

population covariation (based on CCA subject scores). The results reveal complex changes in             

spatial topography (Figure 2 and supplementary movies). For example, comparing left versus            

right panels shows the right inferior parietal node of the DMN extending farther into the               

intraparietal sulcus (in the vicinity of area IP1 (Choi et al., 2006; Glasser et al., 2016)) in                 

subjects who score higher on the behavioural positive-negative mode of covariation.  

 

 

Figure 2: A: representative maps of the two extreme ends (identified based on the low and high 

extremes along a linearly spaced vector that spans the full range of subject CCA scores) of the 

CCA mode of population covariation continuum are shown for the default mode network (DMN, 

the PFM mode that contributed most strongly to the CCA mode of population covariation). The 

top row shows that the inferior parietal node of the DMN differs in shape and extends into the 

intraparietal sulcus in subjects who score high on the positive-negative CCA mode (left), 

compared with subjects who score lower (right). The bottom row shows that medial prefrontal 
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and posterior cingulate/ precuneus regions of the DMN change in size and shape as a function 

of the CCA positive-negative mode. B: difference maps (positive - negative; thresholded at ± 1) 

are shown to aid comparison. The representative maps at both extremes are thresholded at ± 2 

(arbitrary units specific to the PFM algorithm) for visualisation purposes (the differences are not 

affected by the thresholding; for unthresholded movie-versions of these maps, please see the 

supplementary movies which can be downloaded here to aid the review process: 

https://drive.google.com/drive/folders/0B6J0Q9KXPsNYWmlhTENpa3BKRmc?usp=sharing). 

The grey contours are identical on the left and right to aid visual comparison, and are based on 

the group-average maps (thresholded at 0.75). Spatial changes of all PFM modes can be seen 

in the supplementary movies. 

Spatiotemporal simulations demonstrating potential sources of variability in edges 

Figure 1 showed that functionally-relevant cross-subject variability is represented in a variety of             

different measures derived from both resting state and task fMRI. These widespread similarities             

in correlations with behaviour across a range of measures invite the question of whether the               

same type of trait variability is meaningfully and interpretably reflected in a wide range of rfMRI                

measures, or whether (for example) estimates of network matrices may instead primarily reflect             

trait variability in spatial topography or amplitude (and not coupling strength). Therefore, we             

wanted to determine to what extent correlation-based FC measures derived from rfMRI can be              

influenced by specific aspects of the rfMRI data such as true topography and true coupling. To                

this end, we created simulated datasets based on the original PFM subjects and/or group              

spatial maps and timeseries. However, by holding either the individual (simulated) subjects’            

spatial maps or the network matrices fixed to the group average we eliminated specific forms of                

underlying subject variability from the simulated data (Figure 3). We used PFMs in order to               

generate simulated data because the PROFUMO model separately estimates spatial maps,           

network matrices and amplitudes, thereby allowing each aspect to be fixed to the group average               

prior to generating simulated data using the outer product. The aim of the simulation analyses               

was to determine which features in the rfMRI data are likely to be most strongly reflected in                 

network matrices estimated from rfMRI data. We assess this in terms of the amount of variability                

across subjects that can be explained, as this is the most relevant application in biomarker               

studies and in neuroimaging research more generally.  

 

Timeseries were extracted from both the simulated and original datasets, and network matrices             
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were estimated. Each simulated dataset was assessed using three metrics: i) comparing            

subject-specific simulated and original network matrices (Znetwork matrix in Table 1), ii) comparing             

cross-subject variability in the simulated and original network matrices (Rcorrelation in Table 1), and              

iii) determining how much of the cross-subject variability in simulated and original network             

matrices is behaviourally informative using CCA (see Table 1 legend).  

 

 

Figure 3: Simulated data is generated for each subject by setting one or more aspects (from the 

network matrices, node amplitudes and spatial maps) to the group average. Timeseries 

extraction is performed (using either dual regression against original group ICA maps, or 
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masking against a binary parcellation); network matrices are calculated and compared against 

network matrices estimated from the original data. 

 

The results (Tables 1, S3, and S4) show that, when the subject-varying aspects of the               

simulations were exclusively driven by spatial changes across subjects (with the predefined            

network matrix and amplitudes being identical for all subjects), up to 62% (i.e. square of               

Rcorrelation=0.79 from Table S4 “maps only”) of the cross-subject variance present in the network              

matrices obtained from the original data was regenerated. Hence, this finding reveals that very              

similar network matrices can be obtained for any individual subject even if the only aspect of the                 

rfMRI that is varying across subjects is the topographic information in PFM spatial maps. In               

addition, the variance that can be explained by spatial maps is behaviourally relevant; the CCA               

results were similarly strong (typically having the same permutation-based p-values) from           

simulated network matrices driven purely by spatial changes, compared with those obtained            

from the original dataset.  

 

The influence of amplitudes on FC estimates was relatively minor (less than 2.5% of variance               

was explained by amplitude in all our simulations; i.e. square of Rcorrelation=0.15 from Table 1               

“amplitudes only”), although, when amplitudes were combined with spatial maps feeding into the             

simulations, the amplitudes did in most cases result in an increase in original network matrix               

regeneration.  

 
 Simulation 

driven by true 
subject 

variability in: 

Z 
network 

matrix 

R 
correlatio

n 

CCA 
r U-V 

CCA 
P U-V 

CCA 
r U-Uica 

ICA 
D = 200 
N=819 

 

Nothing 
Amps & maps  

Connectivity only 
Amplitudes only 

Maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

-0.0003  
1.14  
0.47  
0.22  
0.78  

0.03  
0.60  
0.65  
0.15  
0.54  

0.65  
0.71  
0.69  
0.69  
0.72  

0.32017  
0.00001  
0.00028  
0.00052  
0.00001  

0.11  
0.52  
0.40  
0.45  
0.62  

Table 1: Results from simulated datasets in which one or more of the network matrices, 

amplitudes and spatial maps are fixed to the group average to remove any subject variability 

associated with it. Results in each row were driven by variables in which subject variability was 

preserved, as indicated with ✓ (variables with ‘-’ were fixed to the group average). Results are 
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shown for within-subject correlations between simulated and original z-transformed network 

matrices (Znetwork matrix), similarities of cross-subject variability represented in simulated and 

original network matrices (Rcorrelation), and for results obtained from the CCA against behaviour 

(where rU-V is the strength of the canonical correlation between imaging and non-imaging 

measures, PU-V is the associated (family-wise error corrected) p-value estimated using 

permutation testing, taking into account family structure, and rU-Uica is the correlation of a CCA 

mode (subject weights) with the positive-negative mode of population covariation obtained from 

ICA200 partial network matrices as used in (Smith et al., 2015). For brevity, this Table presents 

results from full correlation network matrices obtained from a dual regression of ICA 200 maps 

onto the simulated data (because this approach closely matches previously published findings 

(Smith et al., 2015)), results for other parcellations are in Table S3 and for partial correlation 

network matrices in Table S4. 

 

Given the complex information present in PFM spatial maps, the effect of spatial information on               

network matrices can result from cross-subject variability in: i) network size, ii) relative strength              

of regions within a given network, or iii) size and spatial location of functional regions. We                

performed two further tests to distinguish these influences by thresholding and binarizing the             

subject-specific spatial maps used to create the simulated data. Maps were either thresholded             

using a fixed threshold (removing the influence of relative strength), or (separately) using a              

percentile threshold (removing the influence of relative strength and size, as the total number of               

grayordinates in binarised PFM maps is fixed across subjects and PFMs). The role of              

subject-varying spatial maps in driving the resulting estimated network matrices remains strong            

when highly simplified binarized maps are used to drive the simulations (Table S5), further              

supporting our interpretation that the results are largely driven by the shape of the functional               

regions (i.e., variability in the location and shape of functional regions across subjects), rather              

than by size or local strength. 

Unique contribution of topography versus coupling 

The results presented above show that a large proportion of the variance in estimated network               

matrices is also represented in spatial topography. This suggests either that cross-subject            

information is represented in both the coupling strength between neural populations and in the              

‘true’ underlying spatial topography, or that edge estimates obtained from rfMRI data primarily             

reflect cross-subject spatial variability (which indirectly drives edge estimates through the           
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influence of spatial misalignment on timeseries extraction, particularly when group parcellations           

are mapped onto individual subjects in the case of imperfect alignment). To test these              

hypotheses further, we investigated the unique information contained in spatial maps and            

network matrices using a set of 15 ICA basis maps derived from HCP task contrast maps                

(Figure 4A). These basis maps can be thought of as the spatial building blocks that can be                 

linearly combined to create activation patterns for any specific HCP task contrast, and can be               

considered here to be another functional parcellation.  

 

The advantage of using basis maps derived from task data is that the tasks essentially act as                 

functional localisers that allow for the precise localisation of task-related functional regions            

within an individual; results at a single-subject level are not influenced in any way, including               

spatially, by the group results, as they are derived via a temporal task-paradigm analysis, and               

not via group-level maps. Hence, subject-based task basis maps are the most accurate             

description of subject-specific locations of functional regions, at least with respect to those             

regions identifiable from the range of tasks used. Either group-based task basis maps or              

subject-based task basis maps were entered into a dual regression analysis against subjects’             

resting-state fMRI data to obtain network matrices (from dual regression stage 1 timeseries) and              

rfMRI-based spatial maps (from dual regression stage 2) for each subject (Figure 4B).             

Subsequently, CCA was performed to determine how well each of the group-based and             

subject-task-based rfMRI maps and network matrices was able to predict behavioural variability.            

Furthermore, a ‘partial CCA’ was performed to characterise the unique variance that task rfMRI              

maps carry over and above network matrices, and vice versa. 

 

The results from the CCAs against behavioural measures show that task rfMRI spatial maps              

(both subject- and group-based) capture more behavioural information than network matrices           

(and continue to reach significance in the partial CCA), consistent with the PFM spatial results               

presented in Figure 1. The strongest partial CCA result was obtained from subject-task-based             

rfMRI maps (far right in Figure 4C), which are the maps that are expected to contain the most                  

accurate representation of subject-specific functional regions. The results for these spatial maps            

show the smallest difference between the full and partial CCA results (particularly compared             

with the spatial maps obtained from the group-task-based rfMRI maps). This suggests that             

subject variability is more uniquely represented in the spatial information, rather than filtering             

through into the network matrices. Importantly, this interpretation is supported by the fact that              
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subject-task-based rfMRI network matrices explain the behavioural data considerably less well           

than group-based task-rfMRI network matrices (difference: p=0.00052 for full network matrices),           

confirming that spatial information is a significant factor in estimated network matrices.  

 

Taken together, these results show that, while network matrices obtained from dual regression             

against group-level maps do contain behaviourally relevant cross-subject information, this can           

be almost completely explained by variability in spatial topographical features across subjects            

(to the extent that we can detect it). Hence, dual regression network matrices apparently contain               

little unique information regarding coupling strength that is not also reflected in spatial             

topographical organisation. However, it is possible that network matrices obtained using           

parcellation methods and timeseries extraction approaches that are better able to capture            

subject-specific spatial variability (such as the HCP_MMP1.0 parcellation) do contain unique           

cross-subject information; further research is needed to test this possibility. 
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Figure 4: Unique contribution of topography versus coupling. A: Task basis maps are extracted 

from group-averaged task contrasts using ICA to ensure correspondence of basis maps across 

subjects. These maps represent the basic building blocks of any activation pattern, and subject 

task basis maps (obtained by applying the ICA weights to subject task contrast maps) are not 
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influenced by misalignment problems. B: Dual regression against rfMRI data is performed using 

either the (potentially misaligned) group task basis maps or the (functionally localised) subject 

task basis maps. C: CCA results of group-task-based rfMRI maps and network matrices and of 

subject-task-based rfMRI maps and netmats. The results show rUV (i.e., the correlation between 

the first U and V obtained from the CCA analysis describing the strength of association between 

the rfMRI and behavioural measures). The null line (i.e., p=0.05 based on permutation testing) is 

shown as a dotted line at 0.68; results below this line do not reach significance. The blue bars 

show the main CCA results using the complete data, and the red bars show partial CCA results 

computed after regressing out any variance that can be explained by network matrices from the 

spatial maps and vice versa prior to running the CCA. The results show a general decrease in 

rUV for all measures when comparing partial to full CCA results. The strongest partial CCA result 

(red bar on right) is found for maps obtained from subject-task-based rfMRI maps, and the 

associated netmats showed the weakest results (“§”). However, the partial CCA results for the 

spatial maps (i.e., the red bars on the right) still reach significance. All of the partial CCAs also 

showed lower rU-Uica  compared to the full CCAs (not shown here).   
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Discussion 

Here, we have identified a key aspect of rfMRI data that directly reflects interesting variability in                

behaviour and lifestyle across individuals. Our results indicate that spatial variation in the             

topography of functional regions across individuals is strongly associated with behaviour (Figure            

1). In addition, network matrices (as estimated with masking or dual regression against             

group-level parcellations) reflect little or no unique cross-subject information that is not also             

captured by spatial topographical variability (Figure 4). This unexpected finding implies that the             

common interpretation of FC as representing cross-subject (trait) variability in the coupling            

strength of interactions between neural populations may not be a valid inference (although             

within-subject state-dependent changes in coupling may still be reflected in FC measures).            

Specifically, we show that up to 62% of the variance in rfMRI-derived network matrices (a               

measure commonly taken as a proxy for coupling) can be explained purely by spatial variability.               

These findings have important implications for the interpretation of FC, and may contribute to a               

deeper mechanistic understanding of the role of intrinsic FC in cognition and disease (Mill, Ito, &                

Cole, 2017).  

 

Our findings are consistent with previous research that has highlighted the presence of             

structured cross-subject spatial variance in both functional and anatomical networks (Glasser et            

al., 2016; Gordon, Laumann, Adeyemo, Gilmore, et al., 2016; Noble et al., 2015; Sabuncu et al.,                

2016; Tong, Aganj, Ge, Polimeni, & Fischl, 2017; Xu et al., 2016). Furthermore, recent work has                

shown that resting state spatial maps can be used to predict task activation maps from               

individual subjects very accurately (Tavor et al., 2016). Therefore, the presence of behaviourally             

relevant cross-subject variance in maps of functional (co-)activation in itself is not surprising.             

However, the fact that the these variations in spatial topographical features capture a more              

direct and unique representation of subject variability than temporal correlations between           

regions defined by group parcellation approaches (coupling), was unexpected. The implication           

of this finding is that the cross-subject information represented in commonly adopted            

‘connectivity fingerprints’ largely reflects spatial variability in the location of functional regions            

across individuals, rather than variability in coupling strength (at least for methods that directly              

map group-level parcellations onto individual data). Specifically, our partial CCA results (Figure            
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4) show that network matrices (as often estimated) contain little unique trait-level cross-subject             

information that is not also reflected in the spatial topographical organisation of functional             

regions.  

 

How the functional organisation of the brain is conceptualised and operationally defined is of              

direct relevance to the interpretation of these findings. Some hard parcellation models of the              

human cortex (such as the Gordon and Yeo parcellations (Gordon, Laumann, Adeyemo,            

Huckins, et al., 2016; Yeo et al., 2011)) aim to fully represent connectivity information in the                

edges (i.e. correlations between node timeseries). Thus, hard parcellations of this type assume             

piecewise constant connectivity within any one parcel (i.e. each parcel is assumed to be              

homogeneous in function, with no state- or trait-dependent within-parcel variability in functional            

organisation). In contrast, the HCP_MMP1.0 multimodal parcellation presumes within-area         

uniformity of one or more major features, but overtly recognizes within-area heterogeneity in             

other features, including connectivity, most notably for distinct body part representations           

(‘sub-areas’) of the somatomotor complex. Soft parcellation models (such as PROFUMO           

(Harrison et al., 2015)) allow for the presence of multiple modes of (potentially overlapping)              

functional organisation. Therefore PFMs represent connectivity information through complex         

interactions between amplitude and shape in the spatial maps, and through network matrices.             

Our findings show that both the PROFUMO and the multimodal parcellation models successfully             

capture behaviourally-relevant cross-subject spatial variability (Table S2), but that the precise           

location of where this spatial variability is represented overlaps only modestly between the two              

approaches (Figure S1). Given the differences in the key assumptions made by the two models               

(i.e. binary parcellation versus multiple modes of functional organisation), this is not unexpected.             

However, it does highlight the need for further research into the optimal representation of              

(subject-specific) functional organization in the brain. 

 

For most of the results presented in this work, we estimated spatial information using functional               

data (either resting or task fMRI data). While a comprehensive investigation of related             

anatomical features is beyond the scope of this work, we did identify significant correlations              

between fractional surface area size and subject CCA weights (Figure S1). This result suggests              

that anatomical variability in the cortical extent of a number of higher level sensory and cognitive                

brain regions may contribute to the overall findings presented here. Further research into the              

relationship between structural features and functional connectivity measures, and their          
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contribution to trait-level subject variability is needed to test this hypothesis.  

 

The results presented are of relevance to a large variety of approaches used to study               

connectivity. For example, our simulation results (Tables 1, S3, and S4) reveal similar results              

regardless of whether we adopt a dual-regression or a masking approach to obtain timeseries,              

and the findings also do not differ qualitatively according to whether full or partial correlation is                

used to estimate network matrices. Therefore, our findings are relevant to any approach that is               

based on timeseries extracted from functional regions defined at the group-level (including            

graph theory methods and spectral analyses). The implications of this work may also extend              

beyond resting-state fMRI. For example, generative models such as dynamic causal modelling            

(DCM) are increasingly used to stratify patient populations (Brodersen et al., 2014), and to              

achieve predictions for individual patients (Stephan et al., 2017). Previous work has shown that              

including parameters for the position and shape of functional regions in individual subjects into              

the model improves DCM results and better differentiates between competing models (Woolrich,            

Behrens, & Jbabdi, 2009). At the moment, it is unknown to what extent cross-subject variability               

observed with these timeseries-based fMRI metrics reflects true coupling between neural           

populations, rather than being indirectly driven by spatial variability and misalignment. Going            

forward, it is important to disambiguate the influence of spatial topography, to enable the              

estimation of fMRI measures that uniquely reflect coupling strength between neural populations.  

 

Significant advances have already been made in recent years in order to tackle the issue of                

spatial misalignment across individuals. For example, the HCP data used in this work were              

spatially aligned using the multimodal surface mapping (MSM) technique, which achieves very            

good functional alignment by using features that are more closely tied to cortical areas (although               

note that, since the time of the HCP release, refinements to the [regularisation of the] MSM                

algorithm have resulted in further improvements in the observed functional alignment of HCP             

data (Robinson et al., 2014, 2017)). Therefore, gross misalignment is unlikely to play a role in                

our results. In fact, some of the behaviourally relevant variability may have been ‘corrected’ in               

the MSM pipeline prior to our analyses (indeed, the same positive-negative mode of population              

covariation is identified when running the CCA on MSM warp fields; Table S1; and the fractional                

surface area results in Table S2 and Figure S1A reflect the full variability from native space, and                 

is therefore not affected by the alignment accuracy). Therefore, it is possible that the degree to                

which spatial information may influence FC estimates varies considerably across studies,           
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depending on the spatial alignment algorithm that was used, and the amount of subject spatial               

variability this has removed. It is encouraging that significant efforts have recently gone into the               

methods for more accurately estimating the spatial location of functional parcels in individual             

subjects in recent years (Chong et al., 2017; Glasser et al., 2016; Gordon, Laumann, Adeyemo,               

Huckins, et al., 2016; Hacker et al., 2013; Harrison et al., 2015; Varoquaux, Gramfort,              

Pedregosa, Michel, & Thirion, 2011; Wang et al., 2015). The present results highlight the              

importance of such advances, and call for the continued development, comparison, and            

validation of such approaches. 

 

In conclusion, we have demonstrated that spatial topography of functional regions are strongly             

predictive of variation in behaviour and lifestyle factors across individuals, and that            

timeseries-based methods (as often estimated based on group-level parcellations) contain little           

unique trait-level information that is not also explained by spatial variability.  
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Materials and Methods 

Dataset 

For this study we used data from the Human Connectome Project S900 release (820 subjects               

with fully complete resting-state fMRI data, 452 male, mean age 28.8 ± 3.7 years old) (Van                

Essen et al., 2013). Data were acquired across four runs using multiband echo-planar imaging              

(MB factor 8, TR = 0.72 sec, 2mm isotropic voxels) (Moeller et al., 2010; Ugurbil et al., 2013).                  

Data were preprocessed according to the previously published pipeline that includes tools from             

FSL, Freesurfer, HCP’s Connectome Workbench, multimodal spatial alignment driven by myelin           

maps, resting state network maps, and resting state visuotopic maps (“MSMAll”), resulting in             

data in the grayordinate coordinate system (Fischl, Sereno, & Dale, 1999; Glasser et al., 2013,               

2016; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; Marcus et al., 2013; Robinson             

et al., 2014; Smith, Beckmann, et al., 2013). ICA-FIX-cleanup was performed on individual runs              

to reduce structured noise (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).  

Data Availability 

HCP data are freely available from https://db.humanconnectome.org. The version of MSMAll           

that is compatible with the approach implemented for the alignment of HCP data can be found                

here: http://www.doc.ic.ac.uk/~ecr05/MSM_HOCR_v2/ (Robinson et al., 2017). Matlab code        

used in this work can be found here: https://github.com/JanineBijsterbosch/Spatial_netmat.  

Inferring functional modes 

In order to obtain estimates of the spatial shape and size of functional networks for every                

subject, we decompose the HCP data into a set of probabilistic functional modes (PFMs) via the                

PROFUMO algorithm (Harrison et al., 2015). A set of PFMs describe each subject’s data (         M       G

grayordinates; time points; ) in terms of a set of subject-specific spatial maps ( T    ∈RDs V ×T           

), amplitudes ( ) and timecourses ( ), all of which are linked via the∈RP s V ×M   ∈Rhs M    ∈RAs M×T         

outer product model: 

 

 P  diag(h ) A  ε Ds =  s *  s *  s +   [1] 
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These subject-specific decompositions are linked by a set of hierarchical priors. In the spatial              

domain, the group-level parameters encode the grayordinate-wise means, variances and          

sparsity of the subject maps, while in the temporal domain, the group-level priors constrain the               

subject-level network matrices (note that the component amplitudes and hierarchical priors are            

recent extensions to the PFMs model and were not included in the original PROFUMO paper               

(Harrison et al., 2015)). The PROFUMO framework gives us sensitive estimates of key             

subject-level parameters, while ensuring that there is direct correspondence between PFMs           

across subjects. 

 

PROFUMO was run on the rfMRI data from all 820 subjects with a dimensionality of 50 PFMs.                 

Importantly, the signal-subspace of any given subject’s dataset can be straightforwardly           

reconstructed from a set of modes via equation [1], and this can be used to generate the                 

simulated data as described below. 

Canonical Correlation Analysis (CCA) 

For the ICA decompositions, amplitudes were estimated for each subject and component as the              

temporal standard deviation of the timeseries obtained from stage 1 of a dual regression              

analysis. Full and regularised partial correlation matrices were also calculated from these            

timeseries. The Tikhonov regularisation rho used during estimation of the partial correlation            

matrices was set to 0.01 for the ICA 25, 200 and PFM data (according to previous optimisation                 

results). For high dimensional parcellations (Yeo and HCP_MMP1.0), the rho was optimised by             

finding the maximum correlation between subject and group-average (using rhoe = 0.01)            

network matrices across a range of rho (0.01:0.5), leading to rho=0.03 for Yeo and rho=0.23 for                

HCP_MMP1.0 results. Lastly, the subject spatial maps obtained from stage 2 of a dual              

regression analysis were used. Similarly, for the PROFUMO decomposition, the PFM           

amplitudes, subject spatial maps and timeseries were used. For the HCP_MMP1.0 spatial            

results, either group-level or subject-specific node parcellations were used(Hacker et al., 2013).            

The subject-specific parcellations contain missing nodes (parcels) in some subjects (Glasser et            

al., 2016). Hence, for partial network matrices, the rows and columns in the covariance matrix               

were set to the scaled group average prior to inverting the covariance matrix. In the resulting                

network matrices, the rows and columns relating to missing nodes were set to the group               

average (for both partial and full network matrices). Before performing CCA, missing nodes             

were accounted for by estimating the subject-by-subject covariance matrix one element at a             
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time, ignoring any missing nodes for any pair of subjects. The nearest valid positive-definite              

covariance matrix was subsequently obtained using nearestSPD in Matlab         

(http://uk.mathworks.com/matlabcentral/fileexchange/42885-nearestspd), prior to performing    

singular value decomposition as described below. 

 

Each CCA analysis finds a linear combination of behavioural and life-factor measures (V) that is               

maximally correlated with a linear combination of rfMRI-derived measures (U) (Hotelling, 1936):            

. Y is the set behavioural measures, and X are the rfMRI-derived Y * A = U ~ X * B = V              

measures (i.e. spatial maps, or network matrices, or signal amplitudes). A and B are optimised               

such that the correlation between U and V is maximal. Summary measures from CCA include               

the correlation between (paired columns of) U and V, and the associated p-values (derived from               

permutation testing over n=100,000 permutations) for the first one or more CCA modes.  

 

To create the inputs to the CCA, a set of nuisance variables were regressed out of both the                  

behavioural measures and the amplitudes, network matrices and spatial maps, as done            

in(Smith et al., 2015). Subject covariance matrices were subsequently estimated for the            

amplitudes, network matrices and for all spatial maps (by summing the covariance matrices of              

individual spatial maps). Then a singular value decomposition was performed on the subject             

covariance matrices and the first 100 eigenvectors were entered into the CCA (either against              

100 eigenvectors obtained from behavioural variables as explained in (Smith et al., 2015), or to               

compare PFM spatial maps directly to ICA partial correlation matrices).  

 

In addition to reporting the CCA results for the strength of the canonical correlation between               

imaging and non-imaging measures and the associated p-value (rU-V and PU-V), we also report              

the correlation between the CCA subject weights and the weights for the ICA 200 partial               

network matrices (rU-Uica). The reason for including this correlation is to facilitate direct             

comparison to previously published CCA results from HCP data (Smith et al., 2015). However,              

this earlier finding should not be taken as the gold standard CCA result. The rU-Uica correlation we                 

report is the maximum correlation found between the first CCA mode from the ICA 200 partial                

network matrices, and any of the 100 modes of population covariation obtained for the              

comparison CCA result (i.e., the maximum correlation may not be with the strongest CCA              

mode). 
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Confidence intervals for CCA results in Table 1 were obtained using surrogate data for both the                

brain-based CCA input matrix and the behaviour CCA input matrix. To generate the surrogate              

data, row and column wise correlations of the original CCA input matrices were maintained              

using a multivariate normal random number generator (mvnrnd.m in Matlab). A total of 1000              

instances of surrogate data were used to obtain 2.5-97.5% confidence intervals around rU-V. 

 

For visualisation and interpretation purposes, we created movies of the spatial variability along             

the axis of the behavioural CCA mode of population covariation. For this, we took the U                

resulting from the CCA between PFM spatial maps and behaviour, and created a linearly              

spaced vector that spans just over the full range of U (extending beyond the lowest and highest                 

measured subject score by 10% of the full range). As the CCA is linear, it is straightforward to                  

project a set of U values back to form a rank-one reconstruction of the original space, which in                  

this case is a set of spatial maps. This sequence of spatial maps is an approximation to the                  

spatial variability that is encoded along the previously reported positive-negative axis. These are             

used as the frames for supplementary movies 1-9, and for the illustrative examples shown in               

Figure 1 in the main manuscript (and Figure S2 based on the CCA mode obtained from a CCA                  

performed on PFM spatial maps against ICA partial correlation matrices).  

Creating simulated data 

In order to create simulated datasets for each subject, we took the outer product between PFM                

spatial maps and timeseries. Compared with data that is completely simulated, this approach             

has the advantage of keeping many features in the data (such as the types of structured noise                 

that are present, the signal-to-noise ratio, and the autocorrelation structure), while still achieving             

investigator control of specific aspects of interest. Data from each run (1200 time points) was               

processed separately through the simulation pipeline, including the following steps: 

 

Timeseries processing: 

Variance normalisation: Each original PFM subject timecourse was set to unit variance, and the              

variances were retained.  ar(A ); B iag(v )vs = v s
T  s = As * d s

−1/2  

Whitening: The ZCA whitening transform (Bell & Sejnowski, 1997) was used to remove any              

correlations between timeseries:  ov(B ) ; CZs = c s
−1/2  s = Bs * Zs  

Network matrix application: Timeseries were modified such that the induced correlation matched            
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a pre-specified structure. : . In the simulations that use a fixed group network matrix,    Ds = Cs * α            

this pre-specified correlation structure was estimated by projecting the S900 group average            

HCP dense connectome (following Wishart Rolloff) onto the group PFM spatial maps.  

Restore variances: At this stage the variances of the original timeseries are restored:             

. This gives a set of simulated timeseries which have all the samediag(v )Es = Ds *  s
1/2         Es       

properties as the reference timeseries ( ), except for their correlation structure.As  

 

Pseudo-PFM generation: We modify the inferred PFMs by selectively setting some of the             

parameters to their group averages. For example, if we set , where is the mean          P sˆ = P g   P g     

over all 820 subject maps, then we can eliminate any spatial variability across subjects.              

Similarly, we can set the temporal correlations to a fixed group mean using the procedure               

described above to remove any variability in FC across subjects. In order to remove amplitude               

variability across subjects, we add in group averaged variances instead of the subject             

variances. These simulated PFMs are then described by the simulated maps, amplitudes and             

timeseries, namely  ,   and  .P̂ s ĥs Âs  

 

Data reconstruction: Finally, the full data can be reconstructed as per [1]:            

. Spatio-temporally white-noise (with variance matched to the P diag(h ) A  ε D̂s =  ˆ s *  ˆs *  ˆ s +          

original data) is added to the activity described by the simulated modes to give a dataset that                 

preserves the properties of the original data, but, crucially, one where we have direct control               

over where in the model subject variability can appear. 

 

Once the simulated data is generated for each run, we extracted timeseries from both the               

simulated and original data using two different approaches that are commonly adopted in the              

literature. Dual regression analysis was performed using the group ICA maps that were             

estimated using the (original) HCP group data, and that are freely available with the S900 data                

release (www.humanconnectome.org). Two dimensionalities were tested, so for each simulated          

dataset dual regression was performed against 25 and against 200 group ICA components             

(Figure 5B). The timecourses estimated in stage 1 of the dual regression analysis were used to                

compute network matrices (Filippini et al., 2009; Nickerson, Smith, Öngür, & Beckmann, 2017).             

Mean timeseries were also extracted from a set of 109 binary regions of interest (ROIs) based                

on the Yeo parcellation, and from the HCP_MMP1.0 group parcellations and individual subject             
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parcellations (Glasser et al., 2016). The 109 Yeo ROIs were obtained from the 17-network              

parcellation(Yeo et al., 2011), by separating each of the 17 networks into individual contiguous              

regions that had a surface cluster area of at least 20 mm2. Timecourses were used to estimate                 

full and regularised partial correlation network matrices using FSLnets         

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). Z-transformation was applied to the network       

matrices before further comparisons. The network matrices derived from simulated data are            

compared against network matrices calculated from the original data as described below. 

 

Firstly, we compare the simulated network matrix to the original network matrix for each subject,               

to determine how similar the measured FC is. For each subject the node-by-node full or               

regularised partial network matrix estimated from the simulated data is reshaped into a single              

column after removing the diagonal and is correlated against the reshaped original estimated             

network matrix. Prior to reshaping the simulated and original network matrices, the respective             

group average network matrix (simulated or original) is subtracted from the subject network             

matrix, so that the subsequent correlation is sensitive to the unique subject variability instead of               

being driven by the group connectivity patterns. As such, a correlation coefficient between             

demeaned simulated and original network matrices is estimated for each subject. The Fisher             

r-to-z transform was applied to these correlations before averaging across subjects. This first             

test assesses how different a subject is from the group (and the similarity of this difference                

between original and simulated network matrices), and therefore does not test for cross-subject             

variability. 

 

Secondly, the subject-by-subject correlation matrix was estimated from the subject-wise          

simulated network matrices. Again, this matrix was reshaped into a vector after discarding the              

diagonal and was correlated against the reshaped subject-by-subject correlation matrix obtained           

from the original network matrices. The aim of this test was to directly compare the               

cross-subject variability present in the simulated and original data, which is very important given              

that variability across subjects is typically of primary interest in FC research. Hence, this              

analysis aims to compare the cross-subject variability in original or simulated network matrices,             

as opposed to comparing the similarity of original and simulated network matrices within an              

individual subject (as is the case for the preceding approach). 

 

The last test of the simulated network matrices was to perform a CCA against the set of                 
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behavioural and life-factor measures (Smith et al., 2015). A CCA was performed on the              

simulated network matrices against the subject behavioural measures as described below. To            

asses the CCA results, we report the correlation between U and V (for the first, strongest mode                 

of population covariation), the associated permuted p-value (n=100,000 permutations,         

respecting family structure), and the maximum correlation between any of the simulated U and              

the first U obtained when using the original ICA 200 dimensionality partial network matrices              

describing the positive-negative mode of covariation (Smith et al., 2015). 

Simulations with further spatial map modulations 

The PFM subject spatial maps contain a relatively complex set of information. This may include               

relative differences in amplitude in different brain regions that are part of the same mode, which                

effectively reflect connectivity rather than spatial shape and size. In order to exclude these              

potential connectivity-related aspects of the spatial maps and isolate the role of spatial shape,              

we simplified the spatial maps for some of the simulations presented. For this, the spatial maps                

were thresholded at a very liberal threshold of 1 (arbitrary units specific to the PFM algorithm)                

and binarized. The sign was retained such that grayordinates in the subject PFM maps with               

values >1 were set to 1 and grayordinates with values <-1 were set to -1 and all others to zero.                    

A liberal threshold was purposefully used as we wanted to retain extended (broad, low) shape               

information, and just remove any information encoded in the (relative) grayordinate amplitudes.            

Using a fixed threshold across subjects retains cross-subject variability in the size of networks.              

To further remove this source of information and focus purely on the shape of networks, we                

applied a percentile threshold such that the size of networks is fixed across subjects              

(grayordinates > 95th percentile set to 1 and grayordinates < 5th percentile set to -1, leading to                 

each individual PFM map having the same size of 4564 1s and 4564 -1s across all subjects).                 

The results of simulations where the maps were modulated in this way prior to calculating the                

simulation’s space-time outer product are presented in supplementary Table S5, including           

results for which the maps were both thresholded and binarized, percentile thresholded and             

binarized, and also results for maps that were thresholded (at 1) but not binarized.  

Comparing cross-subject similarities between different types of imaging measures  

Given that variability between subjects is of primary interest in rfMRI research, this analysis              

aimed to directly compare the cross-subject variability present in a range of measures obtained              

from the original data. Between-subject correlation matrices were calculated from network           
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matrices (ICA25, ICA200 and PFM50), from PFM amplitudes and from spatial maps (ICA25 and              

ICA200 dual regression stage 2 spatial maps, and PFM50 spatial maps). These subject by              

subject correlation matrices were reshaped after discarding the diagonal, and full and partial             

correlations were calculated between the subject correlation matrices (Figure S3). 

Unique contribution of topography versus coupling 

To obtain a basis set of spatial maps based on task contrast data, we performed a spatial ICA                  

(with a dimensionality of 15) on the concatenated group-averaged task contrast maps (a total of               

86 maps, 47 of which are unique). Spatial ICA was performed on the group-average task               

contrasts maps to avoid the correspondence problem that would arise if ICA were applied              

separately to individual subject task contrast maps. This resulted in a set of ICA weights               

(15*86), which describe the contribution of each task contrast map to each extracted ICA              

component. The outer product of these weights with either the group-averaged contrast maps or              

the corresponding subject-specific contrast maps was used to obtain maps to drive subsequent             

dual regression analysis. Dual regression analysis (driven by either group-averaged or           

subject-specific task basis maps after normalising the maximum of each subject and component             

map to 1) was run against subject resting state data to obtain timeseries and maps. CCA                

against behaviour was performed separately on the resulting network matrices and spatial maps             

as described above. Additionally, partial CCA was performed to determine the unique            

information contained in network matrices and in spatial maps. For this, any variance explained              

by network matrices was regressed out of the spatial maps and vice versa (i.e. was ‘partialled                

out’), before running the “partial CCA”. Specifically the 100 eigenvectors used as the input              

matrix to the CCA (as explained above and following (Smith et al., 2015)) for partial network                

matrices were regressed out of the 100 eigenvectors for the spatial maps before running CCA,               

or conversely the 100 eigenvectors for spatial maps were regressed out of the 100 eigenvectors               

for the network matrices before running CCA. 
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Supplementary Material 

Cross-subject information in fMRI-derived measures 

Figure 1 in the main manuscript shows results from separate canonical correlation analyses             

between the set of lifestyle and behavioural measures and a variety of different fMRI-derived              

features. Table S1 below shows a more detailed and complete version of Figure 1.  

 

  rU-V rU-V CI 
2.5-97.5%  

PU-V rU-Uica 

ICA 
d=25 
N=819 

Full correlation network matrix 

Partial correlation network matrix 

Amplitudes 

Spatial maps 

0.73  

0.72  

0.56  

0.77  

0.71-0.75 

0.71-0.74 

0.54-0.59 

0.76-0.80 

0.00001 

0.00001 

0.00002 

0.00001 

0.43 

0.42  

0.37  

0.78 

ICA 
d=200 
N=819 

Full correlation network matrix 

Partial correlation network matrix 

Amplitudes 

Spatial maps 

0.73  

0.79  

0.72  

0.77 

0.72-0.75 

0.78-0.82 

0.70-0.74 

0.75-0.79 

0.00001 

0.00001 

0.00001 

0.00001 

0.56 

≜1 

0.64  

0.78 

PFM 
d=50 
N=819 

Full correlation network matrix 

Partial correlation network matrix 

Amplitudes 

Spatial maps 

0.67  

0.67  

0.69  

0.80 

0.66-0.69 

0.65-0.69 

0.67-0.71 

0.78-0.82 

0.00482 

0.01774 

0.00006 

0.00001 

0.31 

0.34  

0.29  

0.81 

Yeo 
d=108 
N=819 

Full correlation network matrix 

Partial correlation network matrix 

Amplitudes 

0.73  

0.77  

0.67  

0.71-0.75 

0.76-0.79 

0.65-0.68 

0.00001  

0.00001  

0.05546  

0.60  

0.69  

0.37  

Task 
N=790 

Contrast spatial maps (d=86) 0.81 0.79-0.83 0.00001 0.57 

Warp 
N=819 

Warp field from native space to 

MSMAll alignment 

0.72 0.70-0.74 0.00001 0.53 
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Table S1: Highly similar associations between behaviour and the brain can be found across a 

wide range of different measures derived from fMRI. We included a set of network matrices, 

spatial maps and amplitudes (node timeseries standard deviation) derived from several distinct 

group-average spatial parcellations/decompositions: from ICA decompositions at two scales of 

detail (dimensionalities of 25 and 200); a PROFUMO decomposition (PFM; dimensionality 50); 

an atlas-based hard parcellation (108 parcels9); task contrast spatial maps (86 contrasts); and 

MSM warp fields from native space to MSMAll aligned data (from estimate_metric_distortion; 

https://github.com/ecr05/MSM_HOCR_macOSX/blob/master/src/MSM/estimate_metric_distortio

n.cc). Each row reports a separate CCA analysis, performed against behaviour/life-factors. A 

very similar mode of variation is found across most of the parcellation methods and different 

fMRI measures. rU-V is the strength of the canonical correlation between imaging and 

non-imaging measures (confidence intervals estimated using surrogate data), PU-V is the 

associated (family-wise error corrected) p-value estimated using permutation testing, taking into 

account family structure, and rU-V CI is the 2.5-97.5% confidence interval estimated using 

surrogate data. rU-Uica is the correlation of a CCA mode (subject weights) with the 

positive-negative mode of population covariation obtained from ICA200 partial network matrices 

as used in30, and is therefore defined to be 1 in the row containing the results from that CCA. 

The rU-Uica result was included because it shows whether different metrics are associated with 

similar or distinct behavioural modes of population covariation (one may expect different rfMRI 

measures to be associated with distinct aspects of behaviour).  

 

The results in Table S1 reveal that subject-specific PFM spatial maps are strongly associated              

with cross-subject variability in lifestyle and behaviour. A visual representation of the spatial             

changes along the continuum of the CCA population mode of covariation for all 32 signal PFMs                

can be found in the supplementary movies. These movies show changes in spatial topography              

in representative unthresholded maps. The order of the PFMs reflect how strongly each PFM              

contributed to the CCA result (i.e., the first movie contains the 4 PFMs that contributed most                

strongly).  

 

Comparing PFM and HCP_MMP1.0 spatial results against surface area 
Direct comparison between the results in Figure 1 / Table S1 and the HCP_MMP1.0 parcellation               

(a subject-specific multimodal hard parcellation; 360 parcels11) and against associated fractional           

surface area (in native space as a ratio to total surface area, for each of the 360 parcels in the                    
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HCP_MMP1.0 parcellation) is challenging due to the large difference in the number of subjects              

(n=819 for Table S1 and n=441 for HCP_MMP1.0). Therefore, we have included an analysis on               

all PFM metrics in a reduced number of subjects (the same n=441 subjects) in order to facilitate                 

direct comparison between these two recent parcellation approaches that both aim to achieve             

accurate detection of subject-specific spatial boundaries (Table S2). These results show that            

spatial features from a variety of sources (surface area, multimodal parcellation and PFMs) are              

strongly associated with measures of behaviour and lifestyle. Also note that network matrices             

obtained by the HCP_MMP1.0 parcellation are more predictive of behaviour than are PFM             

network matrices. 

 

  rU-V rU-V 5% CI PU-V rU-Uica 

PFM 
d=50 
N=441 

Full correlation network matrix 

Partial correlation network matrix 

Amplitudes 

Spatial maps 

0.84 

0.86 

0.85 

0.88 

0.83-0.86 

0.85-0.87 

0.84-0.86 

0.86-0.89 

0.06733 

0.00096 

0.03058 

0.00002 

0.26 

0.20 

0.25 

0.79 

HCP_M
MP1.0 
d=360 
N=441 

Full correlation network matrix 

Partial correlation network matrix 

Amplitudes 

Spatial maps 

0.88 

0.88 

0.86 

0.87 

0.87-0.89 

0.87-0.90 

0.85-0.88 

0.86-0.89 

0.00001 

0.00001 

0.00066 

0.00022 

0.41 

0.59 

0.33 

0.51 

Area 
N=441 

Fractional surface area for all 

parcels in HCP_MMP1.0 

parcellation 

0.87 0.86-0.89 0.00003 0.40 

Table S2: The rU-V results here are inflated in comparison to the results presented in Table S1 

(due to increased overfitting as a result of the parcellation only being available in 441 subjects 

compared with 819 subjects included for the other CCAs), but the associated PU-V can (to some 

extent) be used for comparison. Therefore, this Table compares PFM (d=50), HCP_MMP1.0 

(d=360), and fractional surface area (the fraction of cortex occupied by each area in the 

multimodal HCP_MMP1.0 parcellation) on the same set of 441 subjects. 

 

The two rfMRI parcellation methods included in Table S2 (HCP_MMP1.0 and PFM) explicitly             

aim to capture cross-subject variability in the spatial location of functional regions. The subject              

spatial maps estimated by both methods are strongly associated with cross-subject behavioural            
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variability (when matching the sample size rU-V did not significantly differ, and subject weights of               

the strongest CCA results were moderately correlated rU-U=0.55). Therefore, it is of interest to              

compare these results in more detail, to determine whether cross-subject variability is            

represented similarly for the two approaches. Furthermore, given that fractional surface area            

(the fraction of cortex occupied by each area in the multimodal HCP_MMP1.0 parcellation) was              

also strongly predictive of behaviour (Table S2), we investigated the potential relationship            

between rfMRI-based PFM weights, multimodally-defined cortical areal boundaries        

(HCP_MMP1.0 parcellation), and structural variation in fractional surface area. To this end, we             

averaged CCA subject weights obtained from two separate CCA results (PFM spatial maps -              

behaviour, and HCP_MMP1.0 spatial maps - behaviour). These averaged subject weights were            

subsequently correlated against fractional surface area, and against subject-specific PFM and           

HCP_MMP1.0 spatial maps (grayordinate-wise), to investigate which brain regions contribute          

strongly to the association with behaviour, and to compare these localised effects across             

methods/modalities. 

 

Correlations between fractional area and behaviour were highly consistent between left and            

right hemispheres, and revealed relatively high correlations in higher order sensory and            

cognitive regions (Figure S1A). Specifically, bilaterally significant (FDR corrected p<0.05)          

positive associations between larger surface area and higher scores on the positive-negative            

mode of population covariation were found in area POS2 of the posterior cingulate cortex and in                

area IPS1 of the dorsal visual processing stream; bilaterally significant negative correlations            

were identified in the cingulate motor area 24dv, premotor area 6r, and inferior parietal cortex               

(areas PFt, PFm, PGi). Qualitative comparison between the spatial localisation of strongest            

correlations with behaviour across all three datasets reveals that many regions that contribute             

strongly in either the HCP_MMP1.0 or in the PFM individual subject spatial estimates spatially              

overlap or adjoin cortical areas in which fractional surface area was also closely linked to               

behaviour (Figure S1B). This qualitative finding suggests that differences in regional surface            

area may drive many of the results presented in this work, although further research is needed                

to confirm this interpretation. The cortical localization of strong associations with behaviour do             

not closely overlap between PFMs and the HCP_MMP1.0 parcellation (i.e. red and blue regions              

in Figure S1B and un-thresholded maps in Figure S1C/D). This lack of exact correspondence of               

the representations of cross-subject variability may reflect differences between the          

HCP_MMP1.0 and PROFUMO models (the former being a hard parcellation with no overlap             
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between parcels, and the latter being a soft parcellation that includes complex and often              

overlapping networks), and differences in the data types driving the parcellation (PROFUMO            

being driven by rfMRI data only, and the HCP_MMP1.0 parcellation being driven by data from               

multiple different modalities).  

 

 

Figure S1: Comparison of the cortical representation of associations with behaviour across 

fractional area, HCP_MMP1.0 individual subject parcellation and PFM spatial maps. A: 

Correlations between fractional surface area and behaviour are bilaterally symmetric and 

strongest in cognitive and association cortices. B: Direct comparison of strongest results 

qualitatively suggests that PFM and HCP_MMP1.0 effects may be partly linked to areal size, 

and highlights lack of precise co-location of effects (for visual comparison the PFM correlation 

maps are shown using a higher threshold pFDR<0.0001, |r|>0.218, and HCP_MMP1.0 correlation 
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maps are correlated at pFDR<0.05; |r|>0.159). C: Un-thresholded HCP_MMP1.0 correlations with 

CCA subject weights; these are the maximum absolute r across all parcels, and therefore do not 

contain the parcel structure itself. D: Un-thresholded PFM correlations with CCA subject weights 

(maximum absolute r across all PFMs). 

Spatiotemporal simulations demonstrating potential sources of variability in edges 

The ICA 200 full network matrix results shown in the main manuscript Table 1 reveal that highly                 

similar network matrices can be obtained from simulated data for which the only source of               

cross-subject variability is differences in spatial maps. We considered whether these results            

might be specific to the timeseries extraction approach used to create network matrices (for              

Table 1 this was dual regression against ICA 200 dimensional group maps). To address this, we                

repeated the same analysis (using the identical approach to generate simulated datasets),            

performing dual regression against a lower dimensional set of group maps (d=25), and also              

after masking against two different types of parcellations (HCP_MMP1.0 & Yeo). For the             

HCP_MMP1.0 parcellation, parcel definitions are available both at the group and subject level,             

and both were tested here. The results (Table S3) for a wide range of different parcellations                

show comparable trends (i.e., a large proportion of cross-subject variability is captured purely by              

spatial maps, as indicated by the highlighted rows).  

 

Full 
network 
matrices 

Results driven 
by subject 

variability in: 

Z 
network 

matrix 

R 
correlation 

CCA 
r U-V 

CCA 
P U-V 

CCA 
r U-Uica 

ICA 
D = 200 
N=819 

 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

-0.0003  
1.14  
0.47  
0.22  
0.78  

0.03  
0.60  
0.65  
0.15  
0.54  

0.65  
0.71  
0.69  
0.69  
0.72  

0.32017  
0.00001  
0.00028  
0.00052  
0.00001 

0.11  
0.52  
0.40  
0.45  
0.62 

ICA 
D = 25 
N=819 

 
 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

-0.0004  
1.19  
0.88  
0.26  
0.78  

-0.003  
0.52  
0.75  
0.08  
0.61 

0.65  
0.71  
0.69  
0.67  
0.73  

0.26790  
0.00001  
0.00005  
0.03876  
0.00001  

0.12  
0.47  
0.44  
0.47  
0.47 

Yeo Nothing - - - -0.002  -0.01  0.65  0.14899  0.14  
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parcellation 
D = 109 
N=819 

 

Amps & spatial  
Connectivity only 
Amplitudes only 

Spatial maps only 

- 
✓ 
- 
- 

✓ 
- 
✓ 
- 

✓ 
- 
- 
✓ 

1.09  
0.50  
0.25  
0.69 

0.40  
0.55  
0.10  
0.40 

0.72  
0.69  
0.68  
0.74 

0.00001  
0.00003  
0.00258  
0.00001 

0.59  
0.47  
0.27  
0.61  

HCP_MMP
1.0 subject 
parcellation 

D = 360 
N=441 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

0.19 
1.04 
0.46 
0.30 
0.65 

0.19 
0.38 
0.62 
0.14 
0.45 

0.85 
0.86 
0.85 
0.84 
0.85 

0.02565 
0.00055 
0.01399 
0.17321 
0.01161 

0.34 
0.51 
0.27 
0.34 
0.70 

HCP_MMP
1.0 group 

parcellation 
D = 360 
N = 441 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

-0.0005 
1.03 
0.43 
0.21 
0.65 

-0.01 
0.41 
0.62 
0.11 
0.43 

0.85 
0.86 
0.86 
0.84 
0.86 

0.01726 
0.00153 
0.00034 
0.18253 
0.00850 

0.18 
0.48 
0.37 
0.29 
0.61 

Table S3: Results from simulated datasets in which one or more of the network matrices, 

amplitudes and spatial maps are fixed to the group average to remove any subject variability 

associated with it. Results in each row were driven by variables in which subject variability was 

present, as indicated with ✓ (variables with - were fixed to the group average). Results are 

shown for within-subject correlations between simulated and original z-transformed network 

matrices (Znetwork matrix), across-subject correlations between simulated and original subject 

correlation matrices (Rcorrelation), and for results obtained from the CCA against behaviour. Note 

that comparable CCA results from the original data can be found in Table S1.This Table 

presents results from full correlation network matrices. 

 

Partial network matrices may be better suited to control for misalignment than full network              

matrices. Therefore, we repeated to full set of analyses presented in Figure 1 and Table S3                

after estimating partial network matrices from the timeseries extracted from simulated data. The             

results (Table S4) show that the main result is also found when using partial network matrices                

(e.g., for ICA 200, 0.512=26% variance explained in partial network matrices was captured by              

spatial information, and 0.542=29% variance explained in full network matrices was captured by             

spatial information). Therefore, partial network matrices are also strongly influenced by           

cross-subject spatial variability. 

 

Note that the results driven by subject network matrices for partial correlations of ICA 200               

dimensionality, and the Yeo and HCP_MMP1.0 parcellation in Table S4 are considerably lower             
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compared with the full correlation findings for the same simulation (Table S3). The reason for               

this is that the PFM 50-dimensional subject network matrices were added into the data (to keep                

the simulation pipeline identical). This approximated 50-dimensional network matrix is too low            

rank to allow accurate estimation of partial connectivity across a much larger number of nodes.               

The full correlation results in Table S3 are estimable, and support the 25-dimensional ICA              

results. 

 
 

Partial 
network 
matrices 

Results driven 
by subject 

variability in: 

Z 
network 

matrix 

R 
correlation 

CC
A r 

U-V 

CCA 
P U-V 

CCA 
r U-Uica 

ICA 
D = 200 
N=819 

 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

-0.0003  
0.61  

0.02*  
0.08  
0.53  

0.02  
0.58  

0.06*  
0.12  
0.51 

0.65  
0.77  

0.66*  
0.68  
0.76  

0.18364  
0.00001  
0.0417*  
0.00109  
0.00001 

0.15  
0.78  

0.14*  
0.42  
0.77 

ICA 
D = 25 
N=819 

 
 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

-0.001  
0.96  
0.56  
0.15  
0.73  

-0.02  
0.50  
0.38  
0.11  
0.65 

0.64  
0.71  
0.69  
0.67  
0.70  

0.48333  
0.00001  
0.00007  
0.03009  
0.00001 

0.11  
0.54  
0.24  
0.39  
0.50 

Yeo 
parcellation 

D = 109 
N=819 

 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

0.0007  
0.91  

0.09* 
0.11  
0.75  

0.02  
0.29  

0.29*  
0.001  

0.72  

0.64  
0.73  

0.67*  
0.68  
0.76  

0.57151 
0.00001 
0.0192* 
0.00312 
0.00001  

0.15 
0.53 

0.35* 
0.39 
0.63 

HCP_MMP
1.0 subject 
parcellation 

D = 360 
N=441 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

0.27 
0.81 

0.30* 
0.25 
0.73 

0.40 
0.36 

0.44* 
0.03 
0.79 

0.85 
0.87 

0.86* 
0.85 
0.88 

0.04779 
0.00038 
0.0064* 
0.06235 
0.00001 

0.36 
0.58 

0.37* 
0.46 
0.55 

HCP_MMP
1.0 group 

parcellation 
D = 360 
N = 441 

Nothing 
Amps & spatial  

Connectivity only 
Amplitudes only 

Spatial maps only 

- 
- 
✓ 
- 
- 

- 
✓ 
- 
✓ 
- 

- 
✓ 
- 
- 
✓ 

-0.0003 
0.76 

0.07* 
0.05 
0.68 

-0.05 
0.33 

0.36* 
-0.02 
0.74 

0.84 
0.87 

0.85* 
0.84 
0.87 

0.11041 
0.00018 
0.0491* 
0.22268 
0.00005 

0.17 
0.60 

0.20* 
0.26 
0.59 
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Table S4: Results from simulated datasets in which one or more of the network matrices, 

amplitudes and spatial maps are fixed to the group average to remove any subject variability 

associated with it. Results in each row were driven by variables in which subject variability was 

present, as indicated with ✓ (variables with - were fixed to the group average). Results are 

shown for within-subject correlations between simulated and original z-transformed network 

matrices (Znetwork matrix), across-subject correlations between simulated and original subject 

correlation matrices (Rcorrelation), and for results obtained from the CCA against behaviour. This 

Table presents results from partial correlation network matrices. Note that the results flagged 

with * are poorly estimated as a result of the low rank of the PFM subject network matrices 

(containing 50 PFM modes) used to drive these simulations. 

Role of spatially varying amplitudes 

The subject-specific PFM maps obtained from PROFUMO are relatively complex and can            

represent a range of different types of information, including the shape and size of the modes,                

but also the relative amplitudes of separate network nodes included in the PFM spatial modes.               

The latter might be classed as information that represents (within-mode) functional connectivity,            

rather than being a purely spatial feature of the mode. We performed a further set of simulations                 

in which we aimed to separate the role of subject-specific spatial features (such as shape and                

size) from the role of these complex amplitudes included in the spatial map. In order to do this,                  

we thresholded and binarized the PFM spatial maps prior to generating the simulated datasets,              

in order to simplify the maps and remove the amplitude-information contained in them. This              

binarization procedure was performed using either a fixed threshold across subjects (which may             

allow differences in the size of resulting maps across subjects), or using a percentile threshold               

(calculated within subject and mode) to fix the size of the binarized maps across subjects and                

only allow shape information to drive the simulation. Therefore, the cross-subject variability            

present in these simulated datasets was purely driven by the spatial shape of functional              

networks (amplitude and network matrices were both fixed to the group average). The results of               

network matrices extracted from these binarized-map-based simulations using either dual          

regression against ICA-200 maps or masking against Yeo parcellations are presented in Table             

S5 and show that the role of the spatial maps in driving the resulting functional connectivity                

estimates remains comparably strong (for example, all CCA results in table S5 are highly              

significant; p=0.00001), even when highly simplified maps that only contain a binarized            

representation of shape are used. 
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 Spatial 
maps 

Znetwork matrix Rcorrelation CCA rU-V CCA PU-V CCA rU-Uica 

ICA 200 

Full  

Thresholded 

Binarized 

Binarized % 

0.43  

0.45  

0.44 

0.32  

0.43  

0.44 

0.74  

0.74  

0.70 

0.00001 

0.00001 

0.00001 

0.67  

0.63  

0.57  

ICA 200 

Partial 

Thresholded 

Binarized 

Binarized % 

0.29  

0.28  

0.41 

0.42  

0.54  

0.55  

0.74  

0.76  

0.77 

0.00001 

0.00001 

0.00001 

0.73  

0.77  

0.76 

Yeo 109 

Full 

Thresholded 

Binarized 

Binarized % 

0.57  

0.56  

0.44  

0.37  

0.37  

0.37 

0.71  

0.71  

0.72 

0.00001 

0.00001 

0.00001 

0.56  

0.54  

0.56  

Yeo 109 

Partial 

Thresholded 

Binarized 

Binarized % 

0.48  

0.46  

0.54 

0.68  

0.62  

0.62 

0.75  

0.75  

0.75  

0.00001 

0.00001 

0.00001 

0.63  

0.67  

0.52 

Table S5: Modulating the subject spatial maps by thresholding and binarizing retains the shape 

and size aspects, but removes any relative amplitude information from the spatial maps. 

Binarized % results are binarized after applying a percentile threshold, and therefore only retain 

shape aspects (while fixing the size). The results reveal that even after thresholding and 

binarizing the spatial maps, remaining spatial variability strongly drives the cross-subject 

information present in the resulting network matrices. See earlier Tables for a description of the 

measures.  

Comparing cross-subject similarities between different types of imaging measures  

The simulation results and CCA results presented above suggest that the same cross-subject             

variance structure is present in a range of different rfMRI-derived measures. Given that             

cross-subject variability is typically of key interest in neuroimaging studies, the next analysis             

aimed to directly compare the subject variations present in the network matrices, spatial maps              

and amplitudes obtained from the original data. This is achieved by calculating            

subject-by-subject correlation matrices from different measures and comparing these matrices          
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between the imaging measures.  

 

The results show that the cross-subject variability that is present in estimated network matrices              

is shared with ICA spatial maps, PFM spatial maps and PFM amplitudes (Figure S2). Of these,                

subject variations in estimated network matrices are most similar to PFM spatial maps, and              

these similarities remain relatively strong when looking at the partial correlations (i.e., after             

regressing out any variance that can be explained by the other factors). These findings are               

consistent with the simulation results above, showing that estimated network matrices and            

spatial topography to a large extent overlap in terms of the interesting cross-subject variability              

they represent. Additionally, the results show that while dual regression ICA spatial maps are              

able to capture some of the subject spatial variability, subject maps estimated by PROFUMO              

capture considerably more spatial variability over and above the dual regression maps. 

49 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210195doi: bioRxiv preprint 

https://doi.org/10.1101/210195
http://creativecommons.org/licenses/by/4.0/


 

50 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210195doi: bioRxiv preprint 

https://doi.org/10.1101/210195
http://creativecommons.org/licenses/by/4.0/


Figure S2: Similarities between cross-subject variations estimated from different rfMRI 

measures. Subject-by-subject correlation matrices are estimated (A), and vectorised (B; one 

subject correlation matrix being estimated for each measure type). The first column of the 

similarities (C; highlighted) shows the relationship (full correlation) between the ICA network 

matrix and various other measures, such as PFM spatial maps and amplitudes, and ICA spatial 

maps. These results show that the ICA network matrix is closely related to PFM spatial maps. 

The first row of the similarities (C; highlighted) shows the same relationship after taking into 

account all the other elements (i.e., the partial correlation between different measures). This 

reveals that PFM spatial maps are strongly linked to the ICA network matrix, even after 

accounting for any variance that can be explained by ICA spatial maps and PFM amplitudes. 

Similar results are obtained for ICA 200 and 25 dimensionality and for partial and full network 

matrices (D).  
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