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Abstract10

Non-parametric population genetic modeling provides a simple and flexible approach for11

studying demographic history and epidemic dynamics using pathogen sequence data.12

Existing Bayesian approaches are premised on stationary stochastic processes which may13

provide an unrealistic prior for epidemic histories which feature extended period of14

exponential growth or decline. We show that non-parametric models defined in terms of15

the growth rate of the effective population size can provide a more realistic prior for16

epidemic history. We propose a non-parametric autoregressive model on the growth rate as17

a prior for effective population size, which corresponds to the dynamics expected under18

many epidemic situations. We demonstrate the use of this model within a Bayesian19

phylodynamic inference framework. Our method correctly reconstructs trends of epidemic20

growth and decline from pathogen genealogies even when genealogical data is sparse and21

conventional skyline estimators erroneously predict stable population size. We also propose22

a regression approach for relating growth rates of pathogen effective population size and23

time-varying variables that may impact the replicative fitness of a pathogen. The model is24

applied to real data from rabies virus and Staphylococcus aureus epidemics. We find a close25

correspondence between the estimated growth rates of a lineage of methicillin-resistant S.26

aureus and population-level prescription rates of β-lactam antibiotics. The new models are27

implemented in an open source R package called skygrowth which is available at28

https://mrc-ide.github.io/skygrowth/.29

(Keywords: phylodynamics, effective population size, growth rate, skygrowth ,30

antimicrobial resistance, MRSA)31
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Non-parametric population genetic modeling has emerged as a simple, flexible,32

popular and powerful tool for interrogating genetic sequence data to reveal demographic33

history (Ho and Shapiro 2011). This approach has proved especially useful for analysis of34

pathogen sequence data to reconstruct epidemic history and such models are increasingly35

incorporated into surveillance systems for infectious diseases (Volz et al. 2013). The most36

commonly used techniques are derivatives of the original skyline coalescent model, which37

describes the evolution of effective population size as a piecewise constant function of time38

(Pybus et al. 2000). The basic skyline model is prone to overfitting and estimating drastic39

fluctuations in effective population size, so that numerous approaches were subsequently40

developed for smoothing population size trajectories. Initial approaches to smoothing41

skyline estimators were based on aggregating adjacent coalescent intervals within a42

maximum likelihood framework (Strimmer and Pybus 2001). Subsequent development has43

largely focused on Bayesian approaches where a more complex stochastic diffusion process44

provides a prior for the evolution of a piecewise-constant function of effective population45

size (Drummond et al. 2005). Non-parametric Bayesian approaches are now the most46

popular approach for phylodynamic inference and such approaches have illuminated the47

epidemic history of numerous pathogens in humans and animals (Ho and Shapiro 2011).48

To date, all Bayesian non-parametric models have assumed that the effective49

population size (or its logarithm) follows a stationary stochastic process such as a50

Brownian motion (Minin et al. 2008; Palacios and Minin 2013). The choice of a stationary51

process as prior can have large influence on size estimates especially when genealogical data52

is sparse and uninformative. Genealogies often provide very little information about53

effective population size near the present (or most recent sample), especially in54

exponentially increasing populations (de Silva et al. 2012). In such cases, skyline estimators55

with Brownian motion priors on the effective population size may produce estimates which56

stabilize at a constant level even when the true size is increasing or decreasing57
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exponentially. We argue that in many situations, a more realistic prior can be defined in58

terms of the growth rate of the effective population size. Below, we describe such a prior59

based on a simple autoregressive stochastic process defined on the growth rate of effective60

population size.We show how this prior can lead to substantially different estimates and61

argue that these estimates are more accurate in many situations. When genealogical data is62

sparse, our model will retain the growth rate learned from other parts of the genealogy and63

will correctly capture trends of exponential growth or decline. Even though our approach is64

non-parametric, we consider its relationship with parametric models of epidemic population65

genetics to show that our estimates of growth rates of pathogen effective population size66

are often likely to correspond to growth rates of an infectious disease epidemic.67

Smoothing effective population size trajectories using a prior on growth rates also68

has important advantages when incorporating non-genetic covariate data into69

phylodynamic inference (Baele et al. 2016). Recent work has focused on refining effective70

population size estimates using both the times of sequencing sampling (Karcher et al.71

2016) or using environmental data which are expected to correlate with size estimates, such72

as independent epidemic size estimates based on non-genetic data (Gill et al. 2016).73

Existing statistical models have assumed that the effective population size has a linear or74

log-linear relationship with temporal covariates. However in many cases, a more realistic75

model would specify that the growth rate of effective population size is correlated with76

covariates, as when for example an environmental variable impacts the replicative fitness of77

a pathogen. We provide a similar extension of previous skyride models with covariate data78

(Gill et al. 2016) to show how such data can be used to test hypotheses concerning their79

effect and, when a significant effect exists, to refine estimates of both the growth rates and80

the effective population sizes.81

We illustrate the potential advantages of our growth rate model using a rabies virus82

dataset that has been thoroughly studied using previous phylodynamic methods (Biek83

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210054doi: bioRxiv preprint 

https://doi.org/10.1101/210054
http://creativecommons.org/licenses/by/4.0/


et al. 2007; Gill et al. 2016). In particular, we show how our model correctly estimates a84

recent decline in epidemic size whereas previous models mistakenly predict a stabilisation85

of the epidemic prevalence. We also apply our methodology to a genomic dataset of86

methicilin-resistant Staphylococcus aureus that had not formally been analysed using87

phylodynamic methods (Uhlemann et al. 2014). We show how time series on prescription88

rates of β-lactam antibiotics correlate strongly with growth and decline of the effective89

population size, revealing the impact of antibiotic use on the emergence and spread of90

resistant bacterial pathogens.91

Methods and Materials92

We model effective population size through time as a first order autoregressive93

stochastic process on the growth rate. This provides an intuitive link between the growth94

rate of effective population size of pathogens and epidemic size as well as the reproduction95

number of the epidemic. We further show how to incorporate time-varying environmental96

covariates into phylodynamic inference.97

Previous Bayesian non-parametric phylodynamic models98

Several non-parametric phylodynamic models have been proposed based on Brownian

motion (BM) processes and the Kingman coalescent genealogical model (Kingman 1982).

In particular, the Bayesian non-parametric skyride model uses a BM prior to smooth

trajectories of the logarithm of the effective population size (Minin et al. 2008). Let

γ(t) = log(Ne(t)) denote the logarithm of the effective population size as a function of

time. The BM prior is defined as:

γ(t+ dt) ∼ γ(t) +N (0, dt/τ) (1)
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where τ is an estimated precision parameter, for which an uninformative Gamma prior is99

typically used.100

This BM prior has been adapted and applied in a variety of ways to enable

statistical inference. In the skygrid model (Gill et al. 2012), time is discretized and γ is

defined to be a piecewise constant function of time over a grid with time increments h, and

the value γi is estimated for each interval i. Time intervals do not in general correspond to

coalescent times in the genealogy. In this case, the BM prior is computed over increments

of γ:

p(γ1:m|τ) ∝
m−1∏
i=1

p(γi+1 − γi|τ) (2)

where

p(γi+1 − γi|τ) =

√
τ

2πh
e−

τ
2h

(γi+1−γi)2

The genealogical data takes the form G = (c1:(n−1), s1:n) where c and s are101

respectively ordered coalescent times (internal nodes of the genealogy) and sampling times102

(terminal nodes of the genealogy). In the coalescent framework, the sampling times are103

usually considered to be fixed, so that p(s) = 1 and p(G) = p(c|s). Alternatively, in some104

variations of this model, a prior p(s|Ne) is also provided for the sequence of sampling105

times, making this approach similar to but more flexible than sampling-birth-death-models106

(Karcher et al. 2016; Volz and Frost 2014).107

Given a genealogy, the posterior distribution of the parameters τ and γ1:m is

decomposed as:

p(γ1:m, τ |G) ∝ p(G|γ1:m)p(γ1:m|τ)p(τ) (3)

The second term is given by Equation 2 and the last term by the prior on τ . To assist with108
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the definition of the first term, we first denote A(t) to be the number of extant lineages at109

time t:110

A(t) =
n∑
i=1

I(si > t)−
n−1∑
i=1

I(ci > t) (4)

where I(x) is an indicator function equal to one when x is true and equal to zero

otherwise. The probability density of the genealogical data given the population size

history γ1:m is then equal to (Griffiths and Tavare 1994):

p(G|γ1:m) =
2n−2∏
i=1

(
I(ti ∈ ci)

(
A(ti)
2

)
Ne(ti+1)

e−
∫ ti+1
ti

−(A(ti)
2 ) 1

Ne(t)
dt

+(1− I(ti ∈ ci))e−
∫ ti+1
ti

−(A(ti)
2 ) 1

Ne(t)
dt

)
(5)

where t1:(2n−1) = c1:(n−1) ∪ s1:n is the set union of sample and coalescent times in descending111

order.112

Relationship between the growth rate of effective population size and113

epidemic properties114

Several recent studies have investigated the relationship between the effective population115

size of a pathogen and the number of infected hosts (Koelle et al. 2011; Dearlove and116

Wilson 2013; Rosenberg and Nordborg 2002). A simple link between these quantities does117

not exist, since the relationship depends on how incidence and epidemic size change118

through time (Volz et al. 2009), population structure (Volz 2012), and complex evolution of119

the pathogen within hosts (Didelot et al. 2016; Volz et al. 2017). Under idealized120

situations, there is however a simple relationship between the growth rate of effective121

population size and the growth rate of an epidemic (Frost and Volz 2010; Volz et al. 2013).122

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210054doi: bioRxiv preprint 

https://doi.org/10.1101/210054
http://creativecommons.org/licenses/by/4.0/


Let Y (t) and β(t) denote the number of infected hosts and per-capita transmission123

rate, respectively, as functions of time. Note that β(t) may depend on the density of124

susceptible individuals in the population, as in the common susceptible-infected-removed125

(SIR) model, in which case β(t) ∝ S(t)/N (Allen 2008). The coalescent rate for an126

infectious disease epidemic was previously derived under the assumption that within-host127

effective population size is negligible and that super-infection does not occur (Volz et al.128

2009; Frost and Volz 2010):129

λ(t) =

(
A(t)

2

)
2β(t)

Y (t)
(6)

Equating this rate with the coalescent rate under the coalescent model λ(t) =
(
A(t)
2

)
/Ne(t)130

(Kingman 1982) yields the following formula for the effective population size:131

Ne(t) =
Y (t)

2β(t)
(7)

Differentiating with respect to time (denoting with a dot superscript) yields:132

Ṅe(t) =
Ẏ (t)

2β(t)
− β̇(t)Y (t)

2(β(t))2
(8)

Note that in general the growth rate of the effective population size does not correspond to133

the growth rate of Y , however if the per-capita transmission rate is constant (β̇ = 0), we134

have Ṅe = Ẏ /(2β) ∝ Ẏ . Thus, we expect that over phases of the epidemic where135

per-capita transmission rates are nearly constant there will be close correspondence136

between the growth or decline of the effective population size and the growth or decline of137

the unobserved number of infected hosts. This condition is often satisfied near the138

beginning of an outbreak which has an exponential phase. It is also often satisfied towards139

the end of epidemics when the epidemic size is decreasing at a constant exponential rate.140

The basic reproduction number R0 describes the expected number of transmission141
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events caused by a single infected individual in an otherwise susceptible population. By142

extension, we can define R(t) as the expected number of transmissions by an infected host143

infected at time t (Fraser 2007). Assuming that all infected individuals are equally144

infectious (as is the case for example in the SIR model), we have that during periods when145

the epidemic growth rate is constant, each infected individual transmits at rate146

β(t) = R(t)/ψ where ψ is the mean duration of infections. With these definitions, the147

number of infections Y (t) varies according to the following differential equation:148

Ẏ (t) = Y (t)
R(t)− 1

ψ
(9)

Combining Equations 7, 8 and 9 leads to the following approximate estimator for149

the reproduction number through time:150

R̂(t) = 1 + ψ
Ṅe(t)

Ne(t)
(10)

This estimator makes use of the quantity Ṅe(t)/Ne(t) which will be estimated in our model151

below. Equation 10 is likely to be a good estimator over periods of the epidemic where152

per-capita transmission rates are invariant. A special case of this occurs at the start of an153

epidemic, in which case Equation 10 can be used to estimate the basic reproduction154

number R0, as previously noted (Pybus 2001).155

A growth rate prior for effective population size156

We propose a model in which the growth rate of the effective population size is an157

autoregressive process with stationary increments. This growth rate is defined as:158

ρ(t) =
Ṅe(t)

Ne(t)
(11)
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Note that ρ(t) is a real-valued quantity, with negative and positive values respectively159

indicating an increase and decrease in the effective population size. In particular, if the160

population is exponentially growing or declining from t = 0 then we have161

Ne(t) = Ne(0)exp(ρt) so that ρ(t) = ρ at every time t ≥ 0. More generally, we model ρ(t)162

using a BM process: ρ(t) ∼ BM(τ) (cf Equation 1). To facilitate statistical inference, we163

work with a discretized time axis with m intervals of length h as in the skygrid model (Gill164

et al. 2013). We define the growth rate in time interval i as:165

ρi =
Nei+1 − Nei

hNei
(12)

We use the following approximate model for p(ρi+1|ρi):166

ρi+1 ∼ ρi +N (0, h/τ) (13)

Note that Equation 12 implies ρi ∈ (−1/h,∞) since Ne cannot decline below zero, whereas167

the approximate model in Equation 13 assumes support on the entire real line. We have168

found performance with this approximate model to be superior to exact models on the log169

transformation of Ne provided that h is small.170

With the above definitions, the prior density of a sequence ρ1:m is defined in terms

of the increments:

p(ρ1:m|τ) ∝
m−2∏
i=1

p(ρi+1 − ρi|τ) (14)

where

p(ρi+1 − ρi|τ) =

√
τ

2πh
e−

τ
2h

(ρi+1−ρi)2

This equation can be compared with the skygrid density, Equation 2.171
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Incorporating covariates into phylodynamic inference172

A simple model was recently proposed for incorporating time-varying covariates into

phylodynamic inference with skygrid models (Gill et al. 2016). Suppose we observe q

covariates at m time points denoted X = (X1:m,1:q), and such that observation times

correspond to the grid used in the phylodynamic model. The following linear model for the

marginal distribution of γ with covariate vector α1:q was proposed:

p(γi|X,α1:q, ε) ∼ N (α0 +Xi,1:qα1:q, ε) (15)

where α0 is the expected mean of γ without covariate effects.173

This implies, along with the BM model, the following marginal distribution of the

increments:

p(γi+1 − γi|X,α1:q, τ, ε) ∼ N (Xi+1,1:qα1:q −Xi,1:qα1:q, h/τ + 2ε) (16)

When covariates are likely to be associated with growth rates of the effective

population size instead of the logarithm of the effective population size, we can analogously

define the density of increments of ρ:

p(ρi+1 − ρi|X,α1:q, τ, ε) ∼ N (Xi+1,1:qα1:q −Xi,1:qα1:q, h/τ + 2ε) (17)

When fitting this model, we drop ε for simplicity (as in Gill et al. 2016), and estimate a174

single variance parameter τ .175

Inference and software implementation176

Our growth rate model is implemented in an open-source R package called skygrowth ,177

available from https://mrc-ide.github.io/skygrowth/, and which includes both178
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maximum a posteriori (MAP) and Bayesian Markov Chain Monte Carlo (MCMC) methods179

for model fitting.180

The MCMC procedure uses a Gibbs-within-Metropolis algorithm that alternates181

between sampling the growth rate vector ρ1:m and sampling of the precision parameter τ .182

Metropolis-Hastings sampling is also performed for regression coefficients α1:q if covariate183

data is provided with univariate normal proposals. The elements of ρ1:m are sampled in184

sequence (from past to present), and multiple Gibbs iterations (by default one hundred)185

are performed before updating other parameters using Metropolis-Hastings steps.186

Maximum a posteriori (MAP) is used as a starting point for the MCMC. The MAP187

estimator alternates between optimisation of γ1:m using gradient descent (BFGS in R,188

Goldfarb 1970) and univariate optimisation of τ until convergence in the posterior is189

observed. Approximate credible intervals are provided for the MAP estimator based on190

curvature of the posterior around the optimum.191

Results192

Simulations193

We evaluated the ability of the skygrowth model to infer epidemic trends by simulating194

partially-sampled genealogies from a stochastic individual-based195

susceptible-infected-recovered (SIR) model. Simulated data were generated using the196

BEAST2 package MASTER (Vaughan and Drummond 2013), and code to reproduce197

simulated results is available at https://github.com/emvolz/skygrowth-experiments.198

The skygrowth model was also compared to skygrid model as implemented in the phylodyn199

R package (Karcher et al. 2016, 2017) which estimates effective population size using a fast200

approximate Bayesian non-parametric reconstruction (BNPR). The SIR model was density201
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dependent with a reaction rate βS(t)I(t) of generating new infections. Figure 1 shows202

results of a single simulation with R0 = 1.3 and 10,000 initial susceptible individuals.203

Additional simulations are shown in supporting Figure S1. Estimates with skygrowth were204

obtained using the MCMC algorithm and an Exponential(0.1) prior on the precision205

parameter. We report the posterior means from both skygrowth and skygrid BNPR.206

Genealogies were reconstructed by samping 200 or 1000 infected individuals at random207

from the entire history of the epidemic. In this scenario, both the skygrowth and208

skygrid models reproduce the true epidemic trend, capturing both the rate of initial209

exponential increase, the time of peak prevalence, and the rate of epidemic decline.210

However, when sampling only 200 lineages (Figure 1A), the genealogy contains relatively211

little information about later epidemic dynamics, and the skygrid estimates revert to a212

stationary prior producing an unrealistic levelling-off of Ne. Estimates using the213

skygrid BNPR model were highly similar to results using an exact MCMC algorithm for214

sampling the posterior also included in the phylodyn package.215

While the results in Figure 1A and B suggest that Ne(t) can serve as a very effective216

proxy for epidemic size, the degree of correspondence will depend on details of the epidemic217

model as discussed in the Methods section. Figure 1C and supporting Figure S2 shows a218

scenario where estimates of Ne(t) capture the initial rate of exponential growth but fail to219

estimate the time of peak epidemic prevalence, and the skygrid model also fails to detect220

that the epidemic ever decreases. This scenario was based on a higher R0 = 5 and only221

2,000 initially susceptible individuals, such that almost all hosts are eventually infected and222

the rate of epidemic decline predominantly reflects the host recovery rate. This is easily223

understood using the formula Ne(t) ∝ I(t)/S(t) (cf. Equation 7). When R0 is large, S(t)224

will change drastically over the course of the epidemic. In the later stages, almost all hosts225

have been infected so that 1/S(t) is large, producing correspondingly large effective226

population sizes.227
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Simulation
(rescaled)
Skygrowth

BNPR

A B

C

Figure 1: Comparison of effective population size estimates using the skygrowth and sky-
grid models applied to data from a susceptible-infected-recovered simulated epidemic. Ef-
fective population size estimates are also compared to the number of infected hosts through
time under a linear rescaling (red). A. Estimates using a SIR model and simulated genealogy
with 1000 sampled lineages and R0 = 1.3. B. Estimates using a SIR model and simulated
genealogy with 200 sampled lineages and R0 = 1.3. C. Estimates using a SIR model and
simulated genealogy with 200 sampled lineages and R0 = 5.
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Rabies virus228

An epidemic of rabies broke out in the late 1970s in the North American raccoon229

population, following the emergence of a host-adapted variant of the virus called RRV. By230

the end of the 1990s, this outbreak had spread to a vast geographical area including all231

Northeast and mid-Atlantic US states (Childs et al. 2000). A sample of 47 RRV isolates232

has been sequenced in a previous study (Biek et al. 2007), and BEAST (Drummond et al.233

2012) was used to reconstruct a dated phylogenetic tree. A standard skyline analysis234

(Drummond et al. 2005) was performed, which visually suggested a correlation between the235

inferred effective population size (Ne) and the monthly area newly affected by RRV236

(hereafter denoted V), but without attempting to quantify the strength or significance of237

this association.238

This data was recently reanalysed using the skygrid model with covariates (Gill239

et al. 2016). No significant association was found between Ne and V, but the authors noted240

that since V is the newly affected area, V would be expected to be associated with a241

change in Ne rather than Ne itself. Since the skyride method is focused on Ne, like all242

previous phylodynamic methods, the authors considered the cumulative distribution of V243

and showed that this is slightly associated with Ne (with a 95% credible interval of244

[0.18-2.86] on the covariate effect size, Gill et al. 2016). However, this approach is not fully245

satisfactory. In particular, since V is always positive, the cumulative distribution of V is246

always increasing, whereas Ne is in principle equally likely to increase or decrease over247

time. Furthermore both V and its cumulative distribution were considered on a logarithm248

scale, so that the latter flattens over time by definition.249

A more natural solution is to keep the covariate V untransformed, and investigate250

its association with the growth rate ρ(t) rather than Ne(t) as implemented in our251

methodology (Figure 2). For this analysis we used exactly the same dated phylogeny as252

previously published (Biek et al. 2007) (reproduced in Supporting Figure S3). When the253
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covariate was not used (red results in Figure 2), the growth rate was inferred to be positive254

but declining progressively to zero from 1973 to ∼1983, then stable around zero up to255

∼1990, followed by a period of positive growth until ∼2000, after which the growth rate256

decreased below zero. This implies that the effective population size increased from 1973 to257

∼1983, then was stable until ∼1990, increased to a peak in ∼1997 and afterwards258

decreased. Two waves of spread have therefore been inferred as in previous analyses (Biek259

et al. 2007; Gill et al. 2016), with the first one starting in the 1970s and ending in ∼1983260

and the second one lasting from ∼1990 to ∼1997.261

Unfortunately the covariate data V starts in September 1978 and therefore does not262

cover the first wave. However, the covariate data shows that the epidemic was spreading263

very quickly between 1992 and 1997, much faster than before or after these dates, and this264

timing corresponds fairly precisely to the second wave of spread. When the covariate data265

was integrated into phylodynamic inference, the covariate effect size was found to be266

statistically significant but only slightly so, with a large 95% credible interval for the267

covariate effect size of [0.03-4.61] and posterior mean of 1.09. The reconstructed growth268

rate and effective population size when using the covariate data (blue results in Figure 2)269

were compatible with results without covariate data. Using additional informative data270

tightens the credible interval as would be expected, except in the second wave during which271

the covariate data suggests higher values for both the growth rate and effective population272

size. The mean posterior growth rate reached a value of about 2.5 per year in the 1990s273

(Figure 2) and the average generation time of raccoon rabies has previously been estimated274

to be around 2 months (Biek et al. 2007). We can use Equation 10 to infer a reproduction275

number of R = 1.4, slightly higher than a previous estimate around R = 1.1 based on the276

same data (Biek et al. 2007).277

One of the main novel findings of our analysis is that we found a significant decline278

of the effective population size of raccoon rabies post-2000, whereas previous phylodynamic279
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Figure 2: Results on the rabies application. Top: covariate data, representing the area in
km2 newly affected by rabies recorded monthly between September 1978 and October 1999.
Middle: growth rate estimates. Bottom: log effective population size estimates. The middle
and bottom plots show results without (red) and with (blue) the use of the covariate data,
and with a solid line indicating posterior means and shaded areas indicating the 95% credible
regions.
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studies based on the same data found this to be constant (Biek et al. 2007; Gill et al.280

2016). Previous methods consider a Brownian motion on the logarithm of Ne, which results281

in a strong prior that Ne is constant in recent time. By contrast, our model results in the282

growth rate being a-priori constant, so that the clear decline in growth rate started in the283

mid-1990s is likely to have continued to the point that the growth rate became negative284

and Ne declined. Our result is in good agreement with CDC surveillance that shows a clear285

decline in rabid raccoons after the peak in the mid-1990s (Monroe et al. 2016).286

Staphylococcus aureus USA300287

Staphylococcus aureus is a bacterium that causes infections ranging from mild skin288

infections to life-threatening septicaemia. In the 1980s and 1990s, several variants of S.289

aureus have emerged that are resistant to methicilin and other β-lactam antibiotics, and290

collectively called methicilin-resistant S. aureus (MRSA) (Chambers and Deleo 2009).291

MRSA are well known as a leading cause of hospital infections worldwide, but the MRSA292

variant called USA300 differs from most others by causing infections mostly in293

communities rather than hospitals. USA300 was first reported in 2000, and has since294

spread throughout the USA and internationally (Tenover and Goering 2009). A recent295

study sequenced the genomes from 387 isolates of USA300 sampled from New York296

between 2009 and 2011, and reconstructed phylogeographic spread that frequently involved297

transmission within households (Uhlemann et al. 2014).298

The USA300 phylogenetic tree (Uhlemann et al. 2014) was dated using a previously299

described method (Didelot et al. 2012) and a clock rate of ∼3 substitutions per year for300

USA300 (Uhlemann et al. 2014; Alam et al. 2015). We analysed the resulting dated301

phylogeny (Supporting Figure S4) using our phylodynamic methodology (Figure 3). We302

initially performed this analysis without the use of any covariate data (red results in Figure303

3) and found that the growth rate had been around zero up until 1985, after which it304
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steadily increased until ∼1995, and subsequently decreased almost linearly, becoming305

negative in ∼2002 and continuing to decrease afterwards. The effective population size was306

accordingly found to have been very small until the mid-1990s, to have peaked in ∼2002307

and to have declined since. These results are in very good agreement with a phylodynamic308

analysis of USA300 performed using a traditional skyline plot on a different genomic309

dataset (Glaser et al. 2016) as well as USA300 incidence trends (Planet 2017). However,310

the causes for the recent decline in USA300 are still unclear (Planet 2017). Declines in311

other MRSA lineages were recently described (Ledda et al. 2017) and have been attributed312

to improved hospital infection control measures, but this does not apply to the313

community-associated USA300 lineage.314

We hypothesized that the dynamics of USA300 may be driven by the consumption315

of β-lactams in the USA, and we therefore gathered data on this from three different316

sources covering respectively the periods between 1980 and 1992 (McCaig and Hughes317

1995), between 1992 and 2000 (McCaig et al. 2003) and between 2000 and 2012 (CDDEP318

2017). There was an overlap of one year between the first and second, and between the319

second and third of these sources, which was used to scale data for consistency between the320

three sources. Specifically, values from the second source were scaled so that the 2000 value321

is equal to the one in the third source, and values from the first source were then scaled so322

that the 1992 value is equal to the one in the second source. The rescaled data is therefore323

measured as in the third source, namely in standard units of β-lactams (ie narrow-spectrum324

and broad spectrum penicilins plus cephalosporins) consumed per 1000 population in the325

USA (CDDEP 2017). This data show that the consumption of β-lactams almost doubled326

between 1980 and 1991, and subsequently decreased to reach around 2010 levels comparable327

to the early 1980s (Figure 3). These trends on β-lactams consumption therefore appear to328

be very similar to the ones observed for the USA300 growth rate without the use of329

covariates (red results in Figure 3). To confirm this observation, we repeated our330
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Figure 3: Results on the USA300 application. Top: covariate data, representing the con-
sumption of β-lactams between 1980 to 2012 in the USA, measured in standard units per
1000 population. Middle: growth rate estimates. Bottom: log effective population size es-
timates. The middle and bottom plots show results without (red) and with (blue) the use
of the covariate data, and with a solid line indicating posterior means and shaded areas
indicating the 95% credible regions.
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phylodynamic analysis with integration of the β-lactam use as a covariate (blue results in331

Figure 3). We found that the covariate was significantly associated with growth rate, with332

a mean posterior effect of 0.48 and 95% credible interval [0.18-0.71]. The growth rate333

dynamics inferred when using covariate data was almost identical to those inferred without334

the use of covariate data, except for a clear reduction of the width of the intervals which335

reflects the gain in information when combining two independent types of data.336

Our analysis therefore suggests that the rise in β-lactams consumption in the 1980s337

was responsible for the emergence of the highly successful USA300 lineage. From the338

mid-1990s, the use of β-lactams has declined, both due to an overall reduction in antibiotic339

use and a diversification of the type of antibiotics prescribed (McCaig et al. 2003; CDDEP340

2017), and the growth rate of USA300 has consequently decreased. Importantly, the341

consumption of antibiotics is expected to be associated with the growth rates of resistant342

bacterial pathogens, rather than with their effective population sizes, which here is not at343

all correlated with the covariate (Figure 3). Amongst pairs of individuals thought to have344

infected one another within households, the distribution of genomic distance had a mean of345

4 substitutions (Uhlemann et al. 2014), and this represents on average twice the number of346

substitutions occurring during an infection when accounting for within-host diversity347

(Didelot et al. 2012, 2014, 2016). Given that the molecular clock rate of USA300 is348

approximately 3 substitutions per year (Uhlemann et al. 2014; Alam et al. 2015), the349

average duration of infections in this outbreak is around eight months. In the first half of350

the 1990s, the growth rate peaked around 1 per year (Figure 3) and using Equation 10 we351

estimate that the reproduction number was around R = 1.6, which is in good agreement352

with the recent estimate R = 1.5 for MRSA in the US population (Hogea et al. 2014). The353

fact that this estimate is only modestly above the minimum threshold of R = 1 required for354

outbreaks to take place could help explain why the USA300 is declining, even though355

β-lactams are still widely used. The consumption level may have lowered below the356
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threshold caused by the fitness cost of resistance, as previously discussed for other resistant357

bacteria (Whittles et al. 2017; Dingle et al. 2017).358

Discussion359

Many environmental covariates, particularly those with a mechanistic influence on360

replicative fitness of pathogens, are closely related to the growth rate of epidemic size but361

not necessarily related to absolute epidemic size. We have found that these relationships362

can be inferred from random samples of pathogen genetic sequences by relating363

environmental covariates to the growth rate of the effective population size. This enables364

the estimation of the fitness effect of environmental covariates as well as the prediction of365

future epidemic dynamics should conditions change. We have found a clear and highly366

significant relationship between the growth and decline of community-associated MRSA367

USA300 and the population-level prescription rates of β-lactam antibiotics (Figure 3). This368

relationship is not apparent when comparing antibiotic usage directly with the effective369

population size of MRSA USA300. Our methodology focused on growth rate is therefore370

well suited to investigate the drivers of antibiotic resistance, compared to previous371

phylodynamic methods focused on the effective population size.372

The skygrowth model can provide a more realistic prior for many infectious disease373

epidemics where the growth rate of epidemic size is likely to approach stationarity as374

opposed to the absolute effective population size. Conventional skyride and skygrid models375

are prone to erroneously estimating a stable effective population size when genealogical376

data is uninformative, as for example when estimating epidemic trends in the latter stages377

of SIR epidemics (Figure 1). The skygrowth model will correctly predict epidemic decline378

in this situation. Moreover, under ideal conditions, the estimated growth rate can be379

related to the reproduction number of an epidemic, and the skygrowth model provides a380
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simple non-parametric estimator of the reproduction number through time given additional381

information about the natural history of infection (Equation 10). Caution should be382

exercised when using the effective population size as a proxy for epidemic size, as the383

relationship between the two is complex (cf. Simulation results). In general, there will be384

close correspondence between the growth of epidemic size and growth of effective385

population size during periods where the growth rate is relatively constant.386

The methods presented here can be applied more generally to evaluate the role of387

antibiotic stewardship, vaccine campaigns, or other public health interventions on epidemic388

growth rates. Some environmental covariates, such as independent prevalence estimates,389

may be more closely related to effective population size rather than growth rates, and390

future work is indicated on the development of regression models in terms of both391

statistics. More complex stochastic models can also be considered, such as processes with392

both autoregressive and moving average components. A variety of mathematical models393

have been developed to explain de novo evolution of antimicrobial resistance as a function394

of population-level antimicrobial usage (Bonhoeffer et al. 1997; Austin et al. 1999;395

Spicknall et al. 2013; Whittles et al. 2017), and an important direction for future work will396

be the development of parametric and semi-parametric structured coalescent models (Volz397

2012) that can be applied to bacterial phylogenies featuring a mixture of antibiotic398

sensitive and resistant lineages. This methodology will allow us to estimate key399

evolutionary parameters, such as the fitness cost and benefit of resistance, or the rate of400

mutation from sensitive to resistant status, which are needed to make well informed401

recommendations on resistance control strategies.402
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