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ABSTRACT
We present a new structural brain network parcellation scheme
that can subdivide existing parcellations into smaller subre-
gions in a hierarchically nested fashion. The hierarchical par-
cellation was used to build multilayer convolutional structural
brain networks that preserve topology across different net-
work scales. As an application, we applied the method to
diffusion weighted imaging study of 111 twin pairs. The ge-
netic contribution of the whole brain structural connectivity
was determined. We showed that the overall heritability is
consistent across different network scales.

1. INTRODUCTION

In the usual brain connectivity studies, the whole brain is of-
ten parcellated into p disjoint regions, where p is usually 116
or less [1, 2]. For instance, Anatomical Automatic Label-
ing (AAL) parcellation provides 116 labels for all the corti-
cal and subcortical structures (Figure 1) [1]. Subsequently,
either functional or structural information is overlaid on top
of AAL and p × p connectivity matrices that measure the
strength of connectivity between brain regions are obtained.
The major shortcoming of using the existing parcellations in-
cluding AAL is the lack of refined spatial resolution. Even
if we detected connectivity differences between large chunk
of brain regions, it is not possible to localize what parts of
parcellations are affected without additional analysis. There
is a strong need to develop a higher resolution parcellation
scheme.

Brain networks are fundamentally multiscale. Intuitive
and palatable biological hypothesis is that brain networks are
organized into hierarchies [3]. A brain network at any par-
ticular sale might be subdivided into subnetworks, which can
be further subdivided into smaller subnetworks in an iterative
fashion. Unfortunately, many parcellation schemes give raise
to conflicting topological structures of the parcellation from
one scale to the next. The topological structure of parcellation
at one particular scale may not carry over to different scales
[2, 3]. There is a need to develop a hierarchical parcellation
scheme that provide a consistent network analysis results and
interpretation regardless of the choice of scale.
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Fig. 1. Left: AAL parcellation with 116 regions. Red region
is the left precentral gyrus. Middle: the second layer of the
hierarchical parcellation with 2 × 116 regions. Each AAL
parcellation is subdivided into two disjoint regions. Right:
the third layer of the hierarchical parcellation with 4 × 116
regions. Artificial gaps between subparcellations are intro-
duced for visualization purpose only.

In this study, we propose a new hierarchical parcellation
scheme based on the Courant nodal domain theorem [4]. The
proposed method is related to graph cuts [5] and spectral clus-
tering [6, 7] based parcellation schemes previous used in par-
cellating the resting-state functional magnetic resonance imag-
ing (fMRI). However, in all these studies, parcellations are not
hierarchical or nested so they produce conflicting topology
over different network scales. Unlike previous approaches,
our approach provides hierarchical nestedness and, thus, pre-
serves topology across different spatial resolutions.

As an application, the proposed method was applied to
diffusion weighted imaging (DWI) study of 111 twin pairs in
determining the statistical significance of the genetic contri-
bution of the whole brain structural connectivity.

2. HIERARCHICAL CONNECTIVITY

Courant nodal domain theorem. For Laplacian ∆ in a com-
pact domainM⊂ R3, consider eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · ·
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Fig. 2. Hierarchical parcellation of the left precentral gyrus
shown in Figure 1) up to the 8-th layer. At the 8-th layer, we
have 28−1 = 128 parcellations of the gyrus. The hierarchical
parcellation continues till every voxel is a parcellation.

and eigenfunctions ψ0, ψ1, ψ2, · · · satisfying

∆ψj(p) = λjψj(p).

We then have ψ0(p) = 1/
√
µ(M), where µ(M) is the vol-

ume of M. From the orthogonality of eigenfunctions, we
have ∫

M
ψ0(p)ψ1(p) dµ(p) = 0,

Thus, ψ1 must be take positive and negative values. The
Courant nodal domain theorem [4] further states that ψ1 di-
videsM into two disjoint regions by the nodal surface bound-
ary ψ1(p) = 0.When the domain is discretized as a 3D graph,
the second eigenfunction ψ1 is called the Fiedler vector. It is
often used in spectral clustering and graph cuts [5, 8]. Apply-
ing iteratively the nodal domain theorem, we can hierarchi-
cally partitionM in a nested fashion.

Hierarchical parcellation. The Courant nodal domain theo-
rem is discretely applied to the AAL parcellation as follows.
We first convert the binary volume of each parcellation in
AAL into a 3D graph by taking each voxel as a node and con-
necting neighboring voxels. Using the 18-connected neighbor
scheme, we connect two voxels only if they touch each other
on their faces or edges. If voxels are only touching at their
corner vertices, they are not considered as connected. This re-
sults in an adjacency matrix and the 3D graph Laplacian. The
computed Fiedler vector is then used to partition each AAL
parcellation into two disjoint regions (Figures 1 and 2). For
each disjoint subregion, we further recompute the Fiedler vec-
tor restricted to the subregion. This binary partition process
iteratively continues till all the partitions are voxels. We are
doubling the number of parcellations at each iteration. There
are a total of p = 116 parcellations in layer 1 and 2 · 115

Fig. 3. The hierarchical connectivity matrices of MZ- (top)
and DZ-twins (bottom). The parts of connectivity matrices of
the layers 1, 2 and 3 are shown. They form a layered convo-
lutional network, where the convolution is defined as the sum
of tracts between sub-parcellations.

parcellations in layer 2. At the i-th layer, there are 2i−1 · 116
parcellations. In our study, we were able to construct 20-layer
nested hierarchical parcellations all the way to the voxel-level.

Convolutional network. At the each layer of the hierarchi-
cal parcellation, we counted the total number of white mat-
ter fiber tracts connecting parcellations as a measure of con-
nectivity. The resulting connectivity matrices form a convo-
lutional network. Let Sijk denote the total number of tracts
between parcellations Ri

j and Ri
k at the i-th layer. The con-

nectivity Sijk at the i-th layer is then the sum of connectivities
at the (i+ 1)-th layer (Figure 3), i.e.,

Sijk =
∑

Ri+1
l ⊂Ri

j

∑
Ri+1

m ⊂Ri
k

Si+1
lm .

The sum is taken over every subparcellation of Ri
j and Ri

k.

3. APPLICATION

Subjects. Participants were part of the Wisconsin Twin Project
[9]. 58 monozygotic (MZ) and 53 same-sex dizygotic (DZ)
were used in the analysis. Twins were scanned in a 3.0 Tesla
GE Discovery MR750 scanner with a 32-channel receive-only
head coil. Diffusion tensor imaging was performed using a
three-shell diffusion-weighted, spin-echo, echo-planar imag-
ing sequence. A total of 6 non-DWI (b=0 s·mm2) and 63
DWI with non-collinear diffusion encoding directions were
collected at b=500, 800, 2000 (9, 18, 36 directions). Other
parameters were TR/TE = 8575/76.6 ms; parallel imaging;
flip angle = 90◦; isotropic 2mm resolution (128×128 matrix
with 256 mm field-of-view).

Image preprocessing follows the pipeline established in
[10]. FSL were used to correct for eddy current related dis-
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Fig. 4. Top, middle: Edge colors are Spearman’s rank correlations thresholded at 0.3 for MZ- and DZ-twins for different layers.
Node colors are the maximum correlation of all the connecting edges. Bottom: Edge colors are the heritability index (HI). Node
colors are the maximum HI of all the connecting edges. MZ-twins show higher correlations compared to DZ-twins. The node
and edge sizes are proportionally scaled.

tortions, head motion and field inhomogeneity. Estimation of
the diffusion tensors at each voxel was performed using non-
linear tensor estimation in CAMINO. DTI-TK was used for
constructing the study-specific template. Spatial normaliza-
tion was performed tensor-based white matter alignment us-
ing a non-parametric diffeomorphic registration method. Each
subject’s tractography was constructed using TEND algorithm,
and tracts were terminated at FA-value less than 0.2 and de-
flection angle greater than 60 degree.

Heritability Index. We are interested in knowing the extent
of the genetic influence on the structural brain network of
these participants and determining its statistical significance
over different parcellation scales. For quantification, we used
the heritability index (HI), which determines the amount of
variation due to genetic influence in a population. HI is often
estimated using Falconer’s formula as a baseline [11]:

HI = 2(ρMZ − ρDZ),

where ρMZ and ρDZ are the pairwise correlation between MZ-
and and same-sex DZ-twins (Figure 4). For discrete tract
counts, it is more reasonable to use Spearman’s correlation
than Pearson’s correlation. The Pearson’s correlation does not

work well with discrete tract count measures that often do not
necessarily scale at the constant rate across different subjects
and parcellations. Note Spearman’s correlation is Pearson’s
correlation between the ordered tract counts.

Exact Topological Inference. We determined the statistical
significance of HI using the exact topological inference [11].
Consider weighted networks G1 and G2. Let G1

λ and G2
λ be

the binary networks obtained by thresholding G1 and G2 at
correlation λ. Let B be a monotonic graph function such that

B(G1
λ1

) ≤ B(G2
λ1

) and B(G1
λ2

) ≤ B(G2
λ2

)

for λ1 ≤ λ2. The number of connected components (Betti-0
number) often used in persistent homology is such a function.
The test statistic

Dq = sup
1≤j≤q

∣∣B(G1
λj

)−B(G2
λj

)
∣∣

is used to determine the statistical significance. The thresh-
olds λj are chosen uniformly in [0, 1] at 0.01 increment. The
p-value under the null hypothesis of no network difference is
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Fig. 5. Betti-0 plots. The number of connected components
(vertical) over the thresholded correlation values (horizontal)
at each layer. The plots scale up over different layers reson-
ably well. The sudden changes in the topological structure of
network match up at the same correlation values.

then computed using [11]

P
(
Dq/

√
2q ≥ d

)
≈ 2

∞∑
i=1

(−1)i−1e−2i
2d2 .

Results. We are only showing results up to the 6-th layer,
which has 3712 parcellations (61 voxels per parcellation in
average). Beyond 6 layers, the individual parcellation was
too small to be easily interpretable or visualize (Figure 4).
At each layer, we performed the exact topological inference
and obtained very consistent results. The p-values are less
than 10−12 for each layer indicating the strong overall genetic
contribution on the structural brain networks. Figure 5 shows
the Betti-0 plots [11], which show the change of the number
of connected components B(Gλ) over correlation threshold
values λ for MZ- (solid yellow) and DZ-twins (dotted red).
The sudden topological changes are occurring at the almost
same correlation values regardless of the scale of the network.

4. CONCLUSION

We have developed new nested hierarchical structural brain
parcellation and network methods. The methods were used in
determining the genetic contribution of anatomical connec-
tivity. The framework provides the topologically consistent
statistical inference results regardless of the scale of the par-
cellation used. It is hoped the proposed parcellation and net-
work construction frameworks will provide more consistent
and robust network analysis across different studies and pop-
ulations without concern for spatial resolution.
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