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s Abstract

10 Cells physiology adapts globally to changes in growth conditions. This includes changes in
u cell division rate, cell size, and gene expression. These global physiological changes are
12 expected to affect noise in gene expression in addition to average molecule concentrations.
13 Gene expression is inherently stochastic, and the amount of noise in protein levels depends
14 on both gene expression rates and the cell division cycle.

15 Here, we model stochastic gene expression inside growing and dividing cells to study the
16 effect of cell division rate on noise in gene expression. We use a modelling framework and
17 parameters relevant to E. coli, for which abundant quantitative data is available.

18 We find that coupling of transcription rate (but not translation rate) with the division
19 rate results in homeostasis of both protein concentration and noise across conditions.
20 Interestingly, we find that the increased cell size at fast division rates, observed in E. coli
21 and other unicellular organisms, prevents noise increase even for proteins with decreased
2 average expression at faster growth.

23 We then investigate the functional importance of these regulations by considering gene
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2 regulatory networks that exhibit bistability and oscillations. We find that the topology of
»s  the gene regulatory network can affect its robustness with respect to changes in division
» rate in complex and unexpected ways. In particular, a simple model of persistence based
27 on global physiological feedback predicts an increase in the persistence population at low
s division rates.

20 Our study reveals a potential role for cell size regulation in the global control of gene
3 expression noise. It also highlights that understanding of circuits’ robustness across growth

a1 conditions is key for the effective design of synthetic biological systems.

» Keywords stochastic gene expression, growth rate, division rate, bistable switches, circa-

;3 dian oscillations, E. coli

» Introduction

55 Microbial species can proliferate in a variety of environmental conditions. How genomes
s achieve this phenotypic flexibility is a fundamental biological question. Regulated gene
s expression is a key mechanism by which cells adapt physiologically to changing environ-
;s ments. For example, different types of metabolic enzymes are expressed to support growth
% on different carbon sources (Gorke & Stiilke, 2008). Despite this remarkable adaptability,
w0 the rate at which cells proliferate can vary strongly from one environment to another. For
o example, E. coli division rates range between 0.5 to 3.5 doublings per hour in response to

» different carbon sources (Taheri-Araghi et al, 2015).

s In addition to specific gene regulation, changes in division rate are accompanied by global
w4 physiological changes (Figure 1), such as changes in cell size at division and gene expression.
ss  Global changes in gene expression with cellular growth rates are required to counteract
s the increase in dilution rate inherent to faster proliferation and maintain average protein

« concentrations. This global coordination of gene expression with the division rate could
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s involve changes in transcription, translation and mRNA turnover. Experimental evidence
s suggests that in yeast and bacteria this coordination occurs primarily at the level of
so transcription (Keren et al, 2013; Gerosa et al, 2013; Berthoumieux et al, 2013; Garcia-
s Martinez et al, 2016). Consistent with this, global translation rates in bacteria are less
2 affected than transcription rates by the division rate, except at very slow proliferation rates
53 (Klumpp et al, 2013; Dai et al, 2016). In B. subtilis, the translation rate (per mRNA) has
s« even been found to decrease with the division rate, while the total mRNA concentration
s doubles as the division rate doubles (Borkowski et al, 2016). In yeast, mRNA turnover
ss rates have been proposed to be globally regulated by the division rate (Garcia-Martinez
sv et al, 2016). Yet, it is unclear whether certain mechanisms of global gene expression
ss regulation by the division rate are particularly advantageous over others for a fixed protein

so synthesis output.

s The expression parameters of different genes do not necessarily follow the same dependency
s1 with the division rate. In fact, the proteome fraction of distinct functional classes has
2 been shown to follow specific and simple trends with the division rate (Scott et al, 2010; Li
63 et al, 2014; Hui et al, 2015). Fundamentally, for a given type of division rate modulation,
s« proteins can be categorised in three classes (R, P, ()) depending on whether their proteome
s fraction respectively increases, decreases or is maintained with the division rate. Simple
s models of proteome allocation and cell physiology have shown that the changes in global
&7 protein fractions observed experimentally are consistent with the maximisation of the
¢ division rate (Molenaar et al, 2009; Scott et al, 2014; Goelzer & Fromion, 2017). For
so example, when nutrient conditions are varied, ribosomal proteins that constitute most of
o the R proteins are needed in larger amounts to support fast growth in rich media (Scott
n et al, 2010). A consequence of a large R sector is that other proteins will necessarily fall
72 into the P class, as proteome fractions add up to one. The @ class contains so-called

73 housekeeping proteins, whose proteome fraction is maintained across all conditions.
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7+ Because total protein concentration is approximately constant across conditions (Basan et
75 al, 2015), the concentration of P proteins decreases at fast growth. Lower concentrations
7 mean lower number of molecules per unit of volume. Intrinsic noise, which results from the
77 random timing of biochemical reactions and depends on absolute molecule numbers rather
7s  than concentrations, could therefore be higher at fast growth. Intrinsic noise contributes to
79 cell-to-cell variability in gene expression, which leads to non-genetic phenotypic variability
o (Shahrezaei & Swain, 2008). In addition, gene expression is affected by other stochastic
s and dynamic cellular processes, resulting in so-called extrinsic noise (Elowitz et al, 2002;
22 Shahrezaei et al, 2008). An important source of extrinsic noise in gene expression stems
&3 from the processes associated with the cell cycle, including cell growth and cell division,
s as illustrated by several experimental and modelling studies that are discussed below.
ss  Mathematical modelling has suggested that random partitioning of biomolecules at cell
s division is an important source of noise in gene expression and hard to separate from
& intrinsic noise (Huh & Paulsson, 2011). Other modelling studies have highlighted the
gs contribution of heterogeneity in cell cycle time on noise in gene expression (Johnston et al,
o 2012; Schwabe & Bruggeman, 2014; Antunes & Singh, 2014; Soltani et al, 2016). Also, cell
o cycle dependent expression and the timing of DNA replication also influences noise in gene
o expression in unexpected ways (Luo et al, 2013; Schwabe & Bruggeman, 2014; Peterson et
2 al, 2015; Soltani et al, 2016). Several experimental studies have identified the cell cycle
3 as a major source of noise in gene expression in bacteria and yeast (Cookson et al, 2010;
aa  Zopf et al, 2013; Keren et al, 2015; Walker et al, 2016). These studies suggest that gene
s expression noise is generally higher at lower division rates (Keren et al, 2015; Walker et al,
o6 2016). The impact of cell division and random partitioning of molecules on the behaviour
v of simple circuits has also been studied by modelling (Gonze, 2013; Lloyd-Price et al, 2014;
¢ Bierbaum & Klumpp, 2015). It has been shown that simple genetic oscillators can sustain

o oscillation in the presence of cell division but the oscillations could be entrained by the
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o cell cycle depending on the circuit topology (Gonze, 2013). Also, it is shown that random
w partitioning of biomolecules at division affects dynamics of simple circuits for example

102 affecting stability of biological switches (Lloyd-Price et al, 2014).

103 Cell size is regulated both across the division cycles and between different growth conditions.
s Although this is a long-standing problem in cell biology, the mechanisms behind cell size
s homeostasis remain largely elusive. Interest for this question has been recently renewed,
s particularly in bacteria. Recent data suggests that many bacterial species follow a so-called
w7 adder principle, adding a constant cytoplasm volume in each division cycle, independently
s of their size at birth. Interestingly, cell size at division is positively correlated with division
1o rates in both bacteria and yeast, cells becoming larger in richer environments (Schaechter
o et al, 1958; Turner et al, 2012). Although this is a universal observation, there is no
m satisfying universal explanation of why cells have evolved such regulation of cell size with

2 growth conditions.

us  Global regulation of gene expression and cell size is likely to affect the dynamics and
us  function of genetic and biochemical networks inside cells (Shahrezaei & Marguerat, 2015).
us A pioneering study quantified how division rate dependent global regulation of gene
us expression affects the average concentration of a constitutively expressed gene product,
17 and how this in turn can affect the behaviour of simple synthetic genetic networks (Klumpp
us et al, 2009). Another theoretical study showed that the division rate dependence of gene
o expression could impact the qualitative behaviour of a synthetic oscillator circuit, the
1o ‘repressilator’ (Osella & Lagomarsino, 2013). Moreover, the division rate regulation of a
21 gene impacting fitness can result in non-trivial global feedback in gene regulation (Klumpp
22 et al, 2009; Kiviet et al, 2014; Tan et al, 2009). However, theoretical insights on how global
123 regulation of gene expression and cell size with growth conditions impacts noise in gene

124 expression and therefore the behaviour of biochemical circuits are still largely lacking.

s In this study, we shed light on the regulation of noise in gene expression across growth
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126 conditions by integrating existing data in the bacterium F. coli on global regulation of gene
127 expression and cell size into detailed computational models of stochastic gene expression
128 in growing and dividing cells. We then use examples of some simple genetic networks to
120 illustrate how the changes in gene expression noise across growth conditions affects the

130 dynamics of cellular systems.

s Results

12 Stochastic gene expression in growing and dividing cells

133 To fully capture the effect of cell cycle on noise in gene expression, we model the stochastic
13 expression of a single gene in growing and dividing cells (Figure 2 A-B, Supplemental
135 Figure 1-A). Transcription, mRNA degradation and translation are represented by single
136 stochastic reactions. Corresponding rates are noted k,,, v, and k, respectively. Because
17 the majority of E. coli proteins are stable, we first neglect protein degradation. During
s the cell cycle, we assume cell size increases exponentially at a fixed rate, that results in a
130 decrease of the concentration of the mRNA and the protein when their numbers do not
1o change. We model cell division as a discrete event that splits the cell volume in two, and
11 each molecule is randomly partitioned between daughter cells with a probability matching
142 their inherited volume fraction. In our simulations, we keep only one of the two daughter
s cells, therefore reproducing the popular mother machine experimental setting (Wang et al,

s 2010).

us Cellular growth rate, cell size at division, and cell size at birth are all known to vary
us between individual cells even in identical, tightly controlled conditions. Variability in size
17 at birth arises from variability in the mother cell size at division but also from imperfect
ug  volume splitting between the two daughter cells. To realistically account for this variability,

1o we use the noisy linear map (NLM) model (see Methods and Supplemental Figure 1), a
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Figure 1: Global cellular factors affecting gene expression noise that depend
on growth conditions. Nutrient quality can increase the population doubling rate by
promoting growth and division of individual cells. This leads to increased dilution of
molecules, and more frequent random partitioning of molecules between daughter cells.
Because faster growth requires a higher rate of cell mass production, rates of mRNA and
protein expression increase globally with the division rate. However, the relative changes in
mRNA and protein expression rates is gene-dependent because the proteome composition
is reshaped when the division rate changes (Scott et al, 2014). For example, the fraction
of ribosomal proteins (R proteins) will increase with the division rate while the fraction
of metabolic enzymes (and other P proteins) will decrease, the fraction of house keeping
proteins (and other () proteins) remain constant (Scott et al, 2010). Cell size as well
is known to increase with the division rate in response to nutrient-based modulations
(Schaechter et al, 1958; Basan et al, 2015). All those factors affect both average expression
and expression noise in a non-trivial manner.
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150 recent phenomenological model of cell size control that captures the variability in cell
151 size at birth and division observed experimentally as well as their correlation within
152 individual cell cycles (Tanouchi et al, 2015; Jun & Taheri-Araghi, 2015). The degree of
153 this correlation is related to the mechanims underlying cell size homeostasis. For example,
154 a noisy linear map with the parameter a equal to 1 corresponds to an adder strategy,
155 where a fixed cytoplasm volume is added to the cell between each division. Alternatively,
156 a parameter a equal to zero corresponds to a sizer strategy, where cell division is triggered

157 at a fixed size (Jun & Taheri-Araghi, 2015).

153 A priori, it is possible that the NLM parameters that best describe a given single-cell
159 dataset could change with growth conditions. Therefore, we have inferred the parameters
1o of the NLM from a recent mother machine dataset of cells grown in 7 different carbon
161 sources supporting a wide range of division rates (Taheri-Araghi et al, 2015). We find
162 that NLM parameters can indeed change with the division rate (Supplemental Figure
163 1). As expected, b strongly increases with the division rate (the average size at division
164 1S given by %) Notably, the slope parameter a is significantly lower than 1 at slow
16s  growth, consistently with another study reporting a deviation towards a sizer strategy
66 (a < 1) in slow regimes (Wallden et al, 2016). In addition, individual cell growth rates
17 are well described by normal distributions in all conditions. Based on that analysis, we
s derive linear functions describing all NLM parameters as a function of the division rate
160 (Supplemental Figure 1). This enables us to realistically model growth and division at the
o single cell level over a wide range of division rates and investigate their effects on gene

171 expression noise.

12 Before starting to explore effect of division rate on noise in gene expression and using the
13 NLM parameters extracted from the data, we first explore the effect of these parameters
17a on the gene expression noise for a fixed growth condition, as this has not been explored

s before. In Figure 2-C, we show protein number and concentration noise (CV) at cell
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s birth (immediately after cell division and at the beginning of the cell cycle) as the noise
177 in final size (07), noise in size partitioning (o,) and a are varied. Large noise in NLM
178 noise (o7 or g9) results in an increased noise in protein number noise at the beginning
o of the cell cycle (Figure 2-C). This is due to partitioning noise as this increased protein
10 number noise is mostly decayed in the middle of cell cycle (Supplemental Figure 2). Also,
11 protein concentration noise is not so much affected by NLM noise as we assume probability
122 of random partitioning of biomolecules is proportional to the inherited volume of the
183 daughter cells after division. For values of a greater than one size control is not very
18s  effective in filtering noise in cell size and there is an increased size variability for large a
155 and large NLM noise (0y or 02) (Modi et al, 2017). As a result the protein concentration
185 noise that directly depends on cell volume shows an increase at large a and large NLM
17 noise. Overall, these results show that the physiological range of NLM parameters across
188 growth conditions (Supplemental Figure 1) are not expected to produce strong effects in

189 NOiSe gene expression.

1o In the results shown in Figure 2-C, we have assumed the reaction propensities for tran-
101 scription, translation and mRNA decay are independent of cell volume. In Supplemental
12 Figure 3, we show the impact of a cell size-dependent transcription rate. Interestingly,
13 in this case, the protein concentration noise is reduced and becomes independent of the
1wa NLM parameters. We obtain very similar results if we assume translation rate is size-
s dependent (not shown). Size dependence of transcription rate has been recently reported
105 in eukaryotes (Padovan-Merhar et al, 2015; Kempe et al, 2015), while similar evidence in
17 prokaryotes is lacking. Therefore, in this work we assume cell size independent propensities
s for all first-order reactions (but volume dependency for bi-molecular reaction propensities
1o is accounted for). Also, we focus on protein concentration noise (physiologically more
200 relevant than molecule numbers) and across newly born cells (to eliminate cell cycle stage

20 contributions, similar trends are seen in the middle of the cell cycle).
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Figure 2: Modelling stochastic gene expression in growing and dividing cells.
(A) Sketch of the modelling approach. See Methods for details. (B) Example of simulated
trajectories. Typical parameters for E. coli have been used (see Methods). (C) Impact of
noisy linear map (NLM, see Methods) parameters on protein noise. Heatmaps of protein
number noise (left) or concentration noise (right) (defined as the coefficient of variation,
CV, across newly born cells) when a and oy (top) or a and o9 (right) are varied. Other
parameters are kept constant at reference values, except b that changes with a such that
the average size at birth is constant. Black crosses indicate empirical ranges estimated
from mother machine data (see Methods and Supplemental Figure 1).
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22 Expression noise depends on division rate even when protein concentration is

203 maintained

200 We consider first genes whose protein concentration stays constant when the division rate
205 changes (i.e. proteins belonging to the @ class). Interestingly, this requires that at least
206 one of the gene expression rates k,, (transcription rate), v, (nRNA degradation rate) or
200k, (translation rate per mRNA) changes with the division rate to compensate for increased

208 dilution of mRNA and protein molecules.

209 Using our model and typical values for gene expression rates at 2 doublings per hour
210 as a baseline, we computed the change in protein concentration noise with the division
an rate when average concentration is maintained either by adapting the transcription rate
22 only (Figure 3-A) or the translation rate per mRNA only (Figure 3-B). To investigate
213 the contribution of distinct sources of noise and of variability in cell size to protein
21 concentration noise we consider multiple scenarios in which different sources of variability

25 are turned off (colour codes in Figures 3-A and 3-B).

26 Our simulation results reveal that maintaining average protein concentration by adjusting
217 transcription or translation to the division rate leads to very different behaviours of the
218 protein concentration noise. We find that the empirically observed increase of cell size with
219 division rate strongly contributes to these behaviours. In the case of transcription rate
20 adjustment, protein noise sharply decreases with the division rate. A milder decrease is
221 also observed when cell size is kept constant across division rates. In the case of translation
22 rate adjustment, protein noise increases with the division rate instead, whether cell size

23 changes or not.

24 'To better understand these results, we looked at how mRNA numbers change with the
»s division rate in the different situations (bottom left plots in Figures 3-A and 3-B). When

26 transcription adjusts to the division rate in order to maintain average protein expression,

11
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27 mRNA numbers increases with the division rate. As mRNA noise (mnRNA numbers are
»s  typically much lower than protein numbers) is a major contributor of protein noise, an
29 increase in mRNA numbers results in a decrease in protein noise. However when instead
20 translation adjusts to the division rate, mRNA numbers remain mostly unchanged. This
21 is possible, because mRNA degradation rates are large compared to the division rate,
22 resulting in mRNA numbers being less sensitive to dilution than protein numbers. Despite
213 little change in mRNA numbers and hence mRNA noise, the increase in protein noise can
24 be explained by a higher propagation of the mRNA noise to protein, since contribution of
25 transcription to protein noise depends on the ratio of mRNA lifetime (which is mostly
26 constant) and protein lifetime (which is set by the dilution rate, itself set by the division

27 rate) (Swain et al, 2002).

23 While the relative contribution of distinct noise sources (stochastic gene expression,
20 partitioning noise, variability in cell growth rate, cell division size and cell birth size) to
20 total protein noise can change with the division rate, we find that the contribution of
21 stochastic gene expression is predominant at all division rates (Supplemental Figure 4). For
22 the case of transcription adjusting to division rate, we find the contribution of partitioning
23 noise is relatively constant across division rates, while contribution of LNM noise increases
s several folds at fast division rates. In contrast for the case of transcription adjusting to
us  division rate, we find the contribution of partitioning noise significantly decreases at fast

us  division rates, while contribution of LNM noise remains relatively constant.

27 In summary, our simulations demonstrate that for genes with typical expression parameters
2s  at intermediate division rates, maintaining a constant protein concentration across growth
29 conditions by adjusting transcription to the division rate leads to a decrease of protein

0 noise. In contrast, adjusting translation to the division rate increases protein noise levels.

12
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Figure 3: Changes in cell size, transcription and translation rates with the
division rate impact expression noise even when average protein concentration
is maintained (@ expression). (A) Change of protein concentration noise (right) with
division rate when the average concentration is maintained (middle-top plot) by tuning the
transcription rate (left-top plot). Noise is the CV of protein concentration across newly
born cells. The mRNA average number (#) and CV in are also shown (bottom-left plots).
Different model variants are simulated to explore the contribution of random partitioning
noise, size change with the division rate, and noise in size (NLM parameters) and cellular
growth rate (see Methods and Supplemental Figure 1). (B) Same as (A) but when the
translation rate is tuned instead of the transcription rate.
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»1 Increase of cell size with the division rate prevents noise increase for consti-

2 tutively expressed proteins despite a decrease in average concentration

3 The results described above concern proteins belonging to the () category, whose average
4 concentration is maintained constant independently of the division rate. Klumpp and
25 colleagues have shown that constitutively expressed proteins instead belong to the P
6 category: their concentration is decreased at fast growth (Klumpp et al, 2009). The
257 transcription rate of constitutively expressed genes strongly increases with the division
s rate, while mRNA degradation rate and translation rate per mRNA remain relatively
20 constant (Klumpp et al, 2009). However, this is not sufficient to balance both increased
20 dilution and increased cell size (Klumpp et al (2009), Supplemental Figure 5 and Figure 4

261 top left plot).

22 Remarkably, using parameters of gene expression from (Klumpp et al, 2009) (see Methods
23 and Supplemental Figure 5), we find that protein noise decreases with division rate, despite
¢ the strong decrease in average protein concentration (Figure 4). Cell size increase with
x5 division rate is a key contributor to this behaviour. Assuming that increased expression
»%6 noise for P proteins at fast growth is deleterious, this observation could explain why
7 increased cell size at fast division rates is a universally conserved feature of unicellular

268 Organisms.

%9 In the case of a P protein, similarly to the case of () protein above, we find that the relative
70 contribution contribution of stochastic gene expression is predominant at all division rates
o (Supplemental Figure 4). However, contribution of both partitioning noise and size and

o2 growth rate variability increases moderately at fast division rates.

14


https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/209593; this version posted October 26, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

150 4
Mean protein ++
concentration <3
®_ 100t Z
e c
= E2
* 50} S
o1
=
0 ~ : : 0 . . .
1 2 3 4 0 1 2 3 4
Division rate (dblgs/hr) Division rate (dblgs/hr)
) 0.7 —'No size change, K adjusted :
w0 ~ No size change, k_adjusted
o O 6 L Size change with 4, no partitioning noise, no noise in size and p||
c Y ——Size change with 4, partitioning noise, no noise in size and
c ——Size change with ;, partitioning noise, noise in size and ;.
205} ]
© -
= -7
$0.4¢ el ]
3] PESs
g P
03l \/% ]
£ ,/””
2o0.2} vl ]
o -
o
0.1 L L L
0 1 2 3 4

Division rate (dblgs/hr)

Figure 4: Larger cell size at fast division rates prevents expression noise in-
crease despite a decrease in average concentration (P expression). To repro-
duce P expression, we used gene expression parameter dependencies with division rate for
constitutively expressed proteins extracted from a previous study ((Klumpp et al, 2009),
see Methods and Supplemental Figure 3 for details). Average protein concentration (top
left), average mRNA number (#) (top right) and protein concentration noise (bottom) are
shown. The same model variants as in Figure 3 were used. Two additional scenarios are
also shown, in which cell size does not change with division rate but either the transcription
rate (dashed dark blue) or the translation rate (dashed light blue) is adjusted to obtain
the same decrease of average protein concentration with division rate (other parameters
remaining constant and equal to the reference values of solid line simulations at 2 doublings
per hour).
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o3 Impact of division rate on the behaviour of an oscillator circuit

o Changes in average expression and noise of individual proteins with the division rate in
s response to environmental changes is likely to impact the behaviour of genetic circuits
26 (Klumpp et al, 2009). Even when the protein average expression (in isolation, i.e. without
27 the circuit-specific regulations) is maintained, the expression noise can still change (Figure
zs 2) meaning that circuit behaviour could depend on the division rate (Shahrezaei &

20 Marguerat, 2015).

20 To investigate these effects, we first consider a two proteins oscillator circuit recapitulating
21 essential features of circadian clocks (Figure 5-A) (Vilar et al, 2002). An actively degraded
2 activator protein (A) promotes its own transcription as well as the transcription of a
23 stable repressor protein (R) by promoter binding. R can also binds A, preventing it
284 to bind promoters. This circuit can lead to oscillations as illustrated in Figure 5-B. A
s detailed analysis of why oscillations arise is beyond the scope of this study and has been
26 explored before (Guantes & Poyatos, 2006; Kut et al, 2009). Briefly, because R competes
27 with promoters for the binding of A, when the amount of free R is large only basal
s transcriptional activity for both genes is possible. Because R is stable, such a state can last
280 until dilution and partitioning renders free R levels too low to efficiently prevent promoter
20 binding by A. Promoter activation leads to a burst of A by auto-activation, but R levels
21 eventually rise because A also promotes R transcription. When R levels are sufficient to

22 efficiently compete with A promoter binding, a novel cycle starts.

23 We asked how the circuit behaviour was affected when division rate modified. We first
204 assume that basal transcription, translation and mRNA degradation follows the same
205 dependency as constitutively expressed proteins (i.e. P proteins, as in Figure 4), and
26 that the fold-change increase of transcription rate when the promoter is activated by

27 A is independent of the division rate. The resulting changes in circuit behaviour with
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28 the division rate are shown in Figure 5-C (black lines). The average period increases
209 as the division rate decreases because dilution is an important driver of the oscillations.
s0 The average amplitude of free R oscillations is also strongly dependent on the division
s rate, and decreases as the division rate increases. This is consistent with P expression,
52 although different behaviours are in theory possible because of gene regulation. The noise
33 in circuit behaviour changes as well with the division rate. Specifically, noise in period
;0 and amplitude of the oscillations display ‘U’ shape dependencies with the division rate,
s with lower noise close to the reference division rate of 2 doublings per hour. In summary,
w6 constitutive expression (typical of P proteins) leads to changes in average behaviour and a

57 strong increase in noise of an oscillatory circuit at very low or very high division rates.

s We then investigated whether ) expression of the circuit components could increase the
300 Tobustness of oscillations in response to changes in division rate. As in Figure 3 we consider
30 two modes of () expression, either by transcriptional adjustment (blue) or translational
su adjustment (red). Both modes could maintain the average amplitude of oscillations in a
si2 narrow range, but the average period remained strongly dependent on the division rate
a3 (Figure 5-C). While both modes resulted in identical changes in circuit average behaviour,
s they led to slightly different dependencies of noise in oscillations with the division rate.
a5 The division rate with the minimal noise in amplitude is around 2.3 doublings per hour for
si6  transcriptional adjustment and around 1.5 doublings per hour for translational adjustment.
sz In summary, ) expression increased robustness of oscillations compared to constitutive
us (P) expression, but it is not sufficient to make the oscillator’s period independent of the
a9 division rate. () expression via transcriptional or translational adjustment led to similar,

30 but not identical changes of noise in oscillations with the division rate.
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Figure 5: Behaviour of an oscillator circuit at different division rates. (A)
Schematic of the oscillator circuit described in (Vilar et al, 2002). See methods for model
description and parameter values. (B) Example simulation showing oscillations in free
R concentration. Detected peaks are shown with red circles. Note that the timescale of
oscillations is around 3 hours, while the inter-division time is around 30 minutes. (C)
Change of the oscillatory behavior (average period, noise in period, average amplitude,
noise in amplitude) as a function of division rate. The black curves correspond to P
expression. The other curves correspond to situations in which either transcription rates
(blue) or translation rates (red) are increasing with division rate in order to maintain
average expression () expression in absence of binding of A with R).
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;21 Impact of division rate on the behaviour of the toggle switch

522 We investigate next a simple synthetic circuit known to exhibit bistability: the toggle
23 switch (Gardner et al, 2000), in which two proteins repress each other’s transcription
2 (Figure 6-A). We asked first whether different circuit behaviours, namely the existence
»s  of bistability, the occupancy of the states, and the switching rates between states, were
ws  affected by changes in division rate and adjustment of transcription or translation to
s division rates. To this end, we consider simple model assumptions that are sufficient to
»s generate stochastic switching between different states (Methods) with typical parameter

30 values.

10 We found that the circuit could exhibit bistability (Figure 6-B,C) over the considered
s range of division rates for constitutive (P) expression as well as for () expression by
;2 transcriptional or translational adjustment. However, in all cases the circuit behaviour
1 strongly depends on the division rate (Figure 6-C), as illustrated by the change in ON
1 state occupancy (the circuit is ON when one of the two proteins, the reporter, is in
15 the high expression state). Interestingly, the change of behaviour is very different for
136 different modes of () expression: for translational adjustment, the ON state occupancy
w7 decreases with the division rate (in a fashion very similar to P expression). However, an
18 opposite behaviour is observed for () expression via transcriptional adjustment as ON

139 state occupancy becomes positively correlated with division rate..

s The ON state occupancy reflects the balance between stochastic switching in and out of
s this state. These rates are both dependent on the division rate (Figure 6-C, middle and
s2 right plots). We find that the switching rates increase with the division rate that could
w3 suggest random partitioning of mRNA and protein molecules, which is more frequent at
s high division rates, favours switching as also reported in another study (Lloyd-Price et

25 al, 2014). In addition, the observation that at fast growth the OFF — ON rate rises the
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s most sharply for () expression via translational adjustment is consistent with the high

17 level of protein noise for this mode of regulation at fast division rates (Figure 3-B).
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Figure 6: Behaviour of the toggle switch at different division rates. (A) Schematic
of the toggle-switch circuit. Two proteins A and B can transcriptionally repress each other
by promoter binding. (B) Example simulation of the toggle-switch circuit functioning
in growing and dividing cells, showing stochastic switching between high (ON) and low
(OFF) expression for one protein. The threshold separating the two states (black dashed
line) is computed using the overall protein distributions (see Methods). (C) Change of
the toggle-switch behaviour, quantified by the average time spent in the ON state and
the switching rates between the two states, as a function of division rate. The black
curve corresponds to P expression as in Figure 3, the blue and red curves corresponds to
constant average expression maintained either transcriptionally or translationally, as in
Figure 2-C,D. Note that when the concentration of one protein type is low, the other is
not necessarily high. This is why the ON state occupancy is not always 50% despite the
symmetry between the two proteins.
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us  When gene expression feedbacks on growth: the case of toxin-mediated

ue  growth inhibition

0 S0 far, the circuits we have considered respond to changes in division rate but they don’t
;51 impact cell physiology and growth. However, many natural circuits and some synthetic
32 circuits do influence cell physiology, for example by regulating cell metabolism or cell cycle
33 progression. Even when synthetic circuits are not designed to impact cell physiology, they
34 often do by competing with core cellular processes for global cellular resources, and this

35 has become a major concern for synthetic biologists (Ceroni et al, 2015).

16 In prokaryotes, well-known examples of gene expression feeding back on growth are toxin-
57 antitoxin systems. These systems are involved in bacterial persistence, where a very small
358 subpopulation of slow growing cells naturally arises among a normally growing population.
30 A minimal model, where a single protein is toxic for growth was found to be sufficient to
10 generate growth bistability (Klumpp et al (2009), Tan et al (2009), Rocco et al (2013),
;0 and Figure 7-B). Here we investigate the behaviour of this kind of model (Figure 7) when
32 both the maximal growth rate reached by a toxin-free cell and the dependency of the

33 transcription rate with the cell growth rate are varied.

s« For each parameter set enabling growth bistability (coloured pixels in Figure 7-C), we
s computed the occupancy of the fast state (Figure 7-C, left) and the switching rates between
36 the slow and fast states (Figure 7-C, middle and right). The occupancy of the fast growing
w7 state decreases when the maximal growth rate decreases (Figure 7-C, moving from right to
ws  the left), and this behaviour is independent of the dependency of the toxin transcription
;0 rate to the cell division rate (i.e. the value of kmygpe). Therefore, the system will naturally

s respond to less favourable growth conditions by increasing the time spent in the slow state.
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Figure 7. Growth bistability caused by expression of a toxic protein. (A) Model
description. The instantaneous cell growth rate, which here we assume to be a decreasing
function of the expressed protein concentration. In turn, changes in cell growth rate
impacts gene expression via the transcription rate. (B) Growth bistability is possible
with realistic parameter values (Methods). In the simulation shown, kmg. = 0, meaning
that the positive feedback: toxin — slower growth — more toxin is only mediated by
changes in dilution. (C) Influence of growth conditions (ft;,q,) and growth rate dependence
of transcription (kmgppe) on growth bistability. For each parameter set, kmg was also
adjusted such that kmee;(2 doublings/hr) = 0.28 min~!. From corresponding simulations,
the existence of bistability was tested and corresponding switching rates were estimated
(See Methods).
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s Discussion

s In this study, we have used detailed simulations of stochastic gene expression in growing
;3 and dividing bacteria to investigate the role of division rate in protein noise and dynamics
s of genetic networks. Our simulations are constrained by data available for . Coli related to
ws division rate regulation of constitutive gene expression (Klumpp et al, 2009) and single-cell
ws data related to cell size control (Taheri-Araghi et al, 2015). For a constitutively expressed
w7 gene, we find that coupling transcription but not translation to division rate results in lower
s protein noise levels. Interestingly, existing data seem to suggest that global regulation of
w0 gene expression with division rate mostly acts at the level of transcription (Keren et al,
10 2013; Gerosa et al, 2013; Berthoumieux et al, 2013; Garcia-Martinez et al, 2016), consistent
;21 with the idea that lower noise levels are beneficial, or even necessary, at fast growth.
1 However, regulation at the level of translation has also been observed (Borkowski et al,
33 2016), which, coupled to transcriptional regulation, could result in non-trivial interplay in

;s terms of gene expression noise regulation.

s An important factor that helps to minimise noise in gene expression at fast division
;s rate is increased cell size. Large cell sizes in growth conditions with fast division rate
37 results in higher overall number of mRNA and protein molecules, and reduce noise in gene
;s expression. This is particularly relevant for the regulation of noise in gene expression for
10 proteins belonging to P category (Figure 1) as their concentration go down at high division
30 rates. Based on these results, we propose a possible evolutionary reason for microbial cells
;1 (bacteria and yeast) to grow bigger at fast growth is to reduce gene expression noise, which
32 is presumably more detrimental to fitness at fast growth (Shahrezaei & Marguerat, 2015).
33 At the mechanistic level, the division rate regulation of cell size could be implemented
s via the division rate regulation of gene expression for proteins involved in cell size control

s (Basan et al, 2015; Bertaux et al, 2016).
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w6 Our simulations included physiologically relevant levels of partitioning noise, size variability
;7 and growth variability. Overall, we observe that the contribution of these factors to protein
s noise is small but that it tends to vary with the division rate for the different cases
30 considered. We also observed the noise in molecular numbers and concentrations do not
wo always behave similarly, as the later directly depends on cell volume. Interestingly, we find
w1 that if transcription rate scales with cell size as recently reported in eukaryotes (Padovan-
w2 Merhar et al, 2015; Kempe et al, 2015), the concentration noise becomes independent, of
w03 Toise in cell size control mechanism. In bacteria, there has not been a careful investigation
s Of transcription scaling with cell size and in the absence of such reports we have assumed
ws  cell size independent reaction propensities thoughout this study. We also did not model
w6 the contribution of DNA replication to protein concentration noise, but its impact has

w7 been found experimentally to be very small (Walker et al, 2016).

w8 We then tested how dynamics of simple biochemical networks respond to division rate.
w0 As shown by the seminal work of Klumpp et al (2009), we find overall that division rate
a0 regulation of concentration of P proteins can change the average behaviour of biochemical
a1 networks significantly. But, as discussed below, we find that even when proteins in
a2 the network have a () regulation, the changes in noise properties of the individual gene

a3 expression can significantly alter the mean and noise properties of the system.

aa In the case of a genetic oscillator, we find changes in gene expression and cell size
a5 with the division rate can impact the behaviour of oscillatory circuits in a non-trivial
a6 manner. Namely, large changes of average expression with the division rate for constitutive
sz expression (P) of circuit components render circuit behaviour sensitive to the division
s rate. However, maintaining constant expression of circuit components (for example via
a9 transcriptional or translational adjustment) does not guarantee full robustness of circuit
20 behaviour against changes in division rate. Robustness might require more complex, circuit-

a1 specific dependencies of gene expression with the division rate, or even specific circuit
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22 architecture (Paijmans et al, 2016). Interestingly, we observed a ‘U’ shape dependency of
23 noise on division rate suggesting that there could be an optimally robust growth condition
w24 for a specific network design and parameter combination, which is relevant to appropriate

w5 function of natural biochemical systems or synthetic systems.

w26 The toggle switch circuit behavior is strongly dependent on the division rate and on the
w27 type of gene expression dependency with the division rate. So, this suggests the simple
w8 toggle switch circuit is not going to perform robustly across growth conditions. As for the
w0 oscillator circuit, maintaining average expression is not sufficient to generate a division rate
10 independent behaviour. Moreover, this example shows that even when average expression
i1 is maintained, whether it is maintained via adjustment of transcription or translation

132 matters, as the circuit behaves differently in either situation.

»3  In the case of simple models of persistence induced by the expression of a toxic protein in
s single growing and dividing cells, we could investigate the impact of growth conditions
i35 and gene expression dependency with the cell growth rate on the emergence of growth
s bistability. The role of growth conditions in prevalence of persister cells is a very relevant
s37 problem as the growth conditions of bacteria during infection are likely to be altered by
¢ the immune system and therapeutic treatments for instance. So, to validate our simple
10 modelling results, it would be interesting to assess quantitatively, if and how growth

wo conditions regulate the probability of the non-growing persistence phenotype.

w1 In molecular systems biology, we use models of biochemical networks to validate our
w2 mechanistic understanding of the system under study. We propose that such models
a3 should be tested also against data collected across cellular division rates. If the behaviour
s of the system is observed to be robust to growth conditions, then our models should be
ws  able to capture this robustness. Conversely, describing the ways in which the system
us behaviour changes across growth conditions is key to refine our models and therefore our

w7 mechanistic understanding of the system under study.

25


https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/209593; this version posted October 26, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

us In synthetic biology, we often desire to build a system that either functions robustly at
mo a particular growth condition or across a range of growth conditions. Our study shows
o that stochastic models of synthetic biochemical networks in growing and dividing cells
1 coupled with data on the regulation of gene expression across division rates are essential
ss2 to optimal design of system topologies that achieve robustness against changes in cellular

43 division rates.
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w1 Methods
w2 Modelling

163 We describe here our basic model for gene expression in growing and dividing cells.
s MRNA molecules are randomly synthetized and degraded at rate k,, and ~,, respectively.
a5 Stochastic synthesis of protein from each mRNA occurs at rate k,. Protein molecules
w6 are assumed to be stable (except for A in the oscillator circuit). Cell volume is growing
w7 exponentially at a fixed rate between Vi and Vi, = 2 Viien, then cell division is triggered
ss  (for the case including cell size control and variability see below). At cell division, molecules

w0 are randomly split between daughter cells and the volume is halved. In simulations, only
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w0 one of the daughter cell is considered for further simulation (hence mimicking the ‘mother
s machine’ microfluidic experiments for a symmetrically dividing cell (Wang et al, 2010).
a2 Throughout, noise is quantified by using coefficient of variability (CV), which is defined as

a3 standard deviation divided by the mean.

s Reference gene expression parameters

w5 Realistic (Taniguchi et al, 2010) parameters for E. coli gene expression have been used
wo (K = 0.28min™ ', 4, = 0.14min™', k, = 0.94min™", = 2doublings/hr). This corre-
a7 sponds to a mRNA half-life of 5 min, an average mRNA number at birth of 1 molecule

as and an average protein number at birth of 50 molecules.

s Realistic modelling of cellular growth rate and cell size variability across

w0 growth conditions with noisy linear maps

w1 We use noisy linear maps (Tanouchi et al, 2015) with parameters inferred from mother
s2 machine data in different growth conditions (Taheri-Araghi et al, 2015). See Supplemental
w3 Figure 1 for model description. a and b are estimated by linear regression of Vg, vs Vi
s¢ (the data contains around 100K cell cycles per condition). o7 is by definition related to

w5 the residual of this regression. oy is estimated from the variance of VV;f;;t where %?ff,f is

birth

s the birth size recorded just after the division at V.

w7 Modelling ) expression by transcriptional or translational adjustment

w8 For a stable protein, it is possible to derive an analytical expression for the average number

kjmk‘p(l _u 176—‘/m/#).

w0 of protein molecules at birth: < P >y;= - -+

Ym 2—e=Ym/1

a0 This expression was used to compute the transcription or translation rate achieving a given
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w1 average protein concentration (Figure 3 and 4). In the case of active protein degradation (as
w2 for A for the oscillator circuit studied in Figure 5), we used simulations and the MATLAB
w3 scalar optimization function fminsearch to compute the transcriptional or translational

ss  rate adjustment enabling to maintain a constant average concentration at birth.

w5 Modelling P expression

ws For Figure 4, we have used division rate dependencies of gene expression parameters from
w7 (Klumpp et al, 2009) as illustrated in (Supplemental Figure 5). The dependencies were
w8 used as a relative scaling with respect to the reference gene expression parameters at 2
w0 doublings per hour. For modelling P expression in the oscillator circuit (Figure 5), for
so0 simplicity we simply used the effective transcription rate division rate dependency (the
s cell size dependency being given by the noisy linear maps) as change in translation rate

s per mRNA or mRNA degradation rate are small.

s3  Oscillator circuit

s The model structure and parameterization is adapted from (Vilar et al, 2002). The A
sos protein can transcriptionally activate its own expression as well as the expression of another
so6 protein R by promoter binding. A is short-lived while R is stable. A and R can form
so7 a complex. The same model reactions were used, but we also explicitly model growth
ss and division (including random partitioning of free A and free R, but we do not model
so0 gene replication and consider a single copy of each promoter which is always inherited by
si0 daughter cells). The volume dependency of bi-molecular reactions is also accounted for.
s As reference parameters (i.e. corresponding to an intermediate E. coli division rate of 2
sz doublings per hour, at which optimal circuit behavior should be obtained), we used the

s13 same parameters as Vilar and colleagues, except that the R degradation rate was set to
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0 (the original value, corresponding to a ~200 min half-life, was accounting for dilution
only), the active degradation rate of A was scaled up to maintain a constant ratio with the
division rate, the R translation rate was scaled up by the same factor, and all transcription

rates were scaled by this factor (~7).

The resulting values are:

Name Value Unit
kA 0.0167  min tum=3
ko s 0.0833 min~!
kA0 5.77 min~?
kA 10 * kA0 min ™!
v 0.167 min~!
k) 0.833 min~!
o 0.115 min ™!
kR 0.0167  min tum™3
kff f 1.67 min~!
kE0 0.00115 min !
kR 5000 * k2O min !
i 0.0083 min~!
Kl 0.577 min~!
ke 0.033 min~tpm=3

To compute the period and amplitude of oscillations in free R concentration, we used
the MATLAB function findpeaks on very long (200K minutes) mother machine traces,
requiring a minimum peak amplitude of 25% of the maximum value in the trace. We

verified visually the behavior of the peak detection algorithm for each simulation.
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523 'Toggle switch circuit

s« 'The model structure and parameters are completely symmetric for the two proteins
ss5 repressing each other. There is no cooperativity in the repression, as it is not required to
s Obtain stochastic switching, consistently with (Lipshtat et al, 2006). As for the oscillator
s27  circuit, the volume dependency of bi-molecular reactions (only promoter binding here) was
s2s  accounted for. We assumed that transcription is completely blocked when the promoters
s20 are bound, and that the promoter binding and unbinding rates are independent of the

s division rate.

s The reference parameter values are:

Name Value Unit

ky, 0.25 min !
kum 0.28 min~!
Yoo 0.14 min
k, 0.94 min~!

s Detection of bistability (always the case for simulations shown in Figure 5), threshold
s13 identification and computation of switching rates were performed as follows. A very long
s3¢ (500 thousands hours of biological time) single-lineage trace (one output every 15 minutes)
35 of the free A concentration is obtained by simulation. This trace is then discretized into
s3 D0 equal size bins from zero to the maximal value of the trace. The following algorithm
s37 is then applied on this discretized distribution: (1) identify the highest mode (i.e. the
s33 most populated bin); (2) iteratively identify next highest mode and ask whether they
s39 are corresponding to a neighbor bin of the highest mode (then it is not the second mode

se0 of a bimodal distribution) OR if there exists populated, lower height bins in-between
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sa (indicative of bimodality); (3) in the latter case, to avoid incorrect detection of bimodality
si2  because of finite sampling of the distribution, the secondary mode is required to be more

se3 than 5% of what an uniform distribution would give.

s« Growth bistability caused by expression of a toxic protein

sas  As previously, stochastic gene expression of a protein is simulated in growing and dividing
sa6  cells. However, the protein is a toxin inhibiting cell growth: the instantaneous growth
sev  rate of the cell uqy is a decreasing Hill function of the toxin concentration (hence it is
s¢s. not anymore constant during the cell cycle). Also, the impact of growth conditions is not
ss9 modeled anymore with condition-specific noisy linear maps, as they are not adapted to
ss0 situations with very heterogeneous growth rates between cells in a given condition. We
ss1 rather use a parameter i, representing the toxin-free cellular growth rate. For simplicity,
ss2 to model cell division size and its variability we use a single noisy linear map across growth
53 conditions. Finally, to represent the dependency of gene expression with the cell growth
ssa  rate, we assume that the toxin transcription rate is a linear function of p.e;. The reference

55 parameter values are:

Name Value Unit
Hmaz 2 doublings/hr
kmo 0.28 min "

kMisiope 0 min~! /doublings/hr

Ym 0.14 min~t
k, 0.94 min ™!
Tp 0.001 min "t
n 2 dimensionless
T* 140 #/um?
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Name Value Unit
Clnm 1 dimensionless
blnm 1 um3

o mm 0.2 um?
olrm 0.05 dimensionless

sss  Note that because kmgope = 0, the positive feedback toxin — growth slow down — more
ss7 toxin is only mediated by a change of dilution (as in (Rocco et al, 2013)). Also note
sss  that it is necessary to assume that protein degradation is non-zero to allow bistability, as

50 otherwise exit of the slow state is impossible.

ss0 For Figure 7-C, for each parameter set, the existence of bistability, threshold identification
ss1 and switching rates computation for the instantaneous cell growth rate ji.;; were performed
s as for the toggle switch circuit analysis (except that simulation duration for each single-
63 lineage trace was 60 thousands hours of biological time, with one output every 10 minutes,

s« and the number of bins used was 20).

ses Grey indicates parameter sets for which the lineage simulation of 60 thousands hours
ses  (~120 thousands generations) either did not lead to a bimodal distribution of ficey, or did
ss7  lead to such bimodal distribution, but with less than 10 switches fast — slow — fast,

sss  preventing an accurate estimate of switching rates in reasonable computational time.

se0  Simulation algorithm

so We describe here the general simulation algorithm used for all models. Between fixed
sn timesteps (6 seconds), cell volume is considered constant, and the Gillespie algorithm is used
s to simulate stochastic molecular reactions (more sophisticated simulation methods exist

ss (Lu et al, 2004; Shahrezaei et al, 2008), but this one is simple to implement and accurate
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s as long as the timestep is small enough). Then, the cell volume is updated according to the
si5  instantaneous exponential growth rate, it is checked whether cell division should occur, and
s76  if so, cell division and molecules partitioning is realized. The code used for all simulations

sz is available on GitHub: https://github.com/ImperialCollegeLondon/coli-noise-and-growth.
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