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Abstract9

Cells physiology adapts globally to changes in growth conditions. This includes changes in10

cell division rate, cell size, and gene expression. These global physiological changes are11

expected to affect noise in gene expression in addition to average molecule concentrations.12

Gene expression is inherently stochastic, and the amount of noise in protein levels depends13

on both gene expression rates and the cell division cycle.14

Here, we model stochastic gene expression inside growing and dividing cells to study the15

effect of cell division rate on noise in gene expression. We use a modelling framework and16

parameters relevant to E. coli, for which abundant quantitative data is available.17

We find that coupling of transcription rate (but not translation rate) with the division18

rate results in homeostasis of both protein concentration and noise across conditions.19

Interestingly, we find that the increased cell size at fast division rates, observed in E. coli20

and other unicellular organisms, prevents noise increase even for proteins with decreased21

average expression at faster growth.22

We then investigate the functional importance of these regulations by considering gene23
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regulatory networks that exhibit bistability and oscillations. We find that the topology of24

the gene regulatory network can affect its robustness with respect to changes in division25

rate in complex and unexpected ways. In particular, a simple model of persistence based26

on global physiological feedback predicts an increase in the persistence population at low27

division rates.28

Our study reveals a potential role for cell size regulation in the global control of gene29

expression noise. It also highlights that understanding of circuits’ robustness across growth30

conditions is key for the effective design of synthetic biological systems.31

Keywords stochastic gene expression, growth rate, division rate, bistable switches, circa-32

dian oscillations, E. coli33

Introduction34

Microbial species can proliferate in a variety of environmental conditions. How genomes35

achieve this phenotypic flexibility is a fundamental biological question. Regulated gene36

expression is a key mechanism by which cells adapt physiologically to changing environ-37

ments. For example, different types of metabolic enzymes are expressed to support growth38

on different carbon sources (Görke & Stülke, 2008). Despite this remarkable adaptability,39

the rate at which cells proliferate can vary strongly from one environment to another. For40

example, E. coli division rates range between 0.5 to 3.5 doublings per hour in response to41

different carbon sources (Taheri-Araghi et al, 2015).42

In addition to specific gene regulation, changes in division rate are accompanied by global43

physiological changes (Figure 1), such as changes in cell size at division and gene expression.44

Global changes in gene expression with cellular growth rates are required to counteract45

the increase in dilution rate inherent to faster proliferation and maintain average protein46

concentrations. This global coordination of gene expression with the division rate could47
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involve changes in transcription, translation and mRNA turnover. Experimental evidence48

suggests that in yeast and bacteria this coordination occurs primarily at the level of49

transcription (Keren et al, 2013; Gerosa et al, 2013; Berthoumieux et al, 2013; García-50

Martínez et al, 2016). Consistent with this, global translation rates in bacteria are less51

affected than transcription rates by the division rate, except at very slow proliferation rates52

(Klumpp et al, 2013; Dai et al, 2016). In B. subtilis, the translation rate (per mRNA) has53

even been found to decrease with the division rate, while the total mRNA concentration54

doubles as the division rate doubles (Borkowski et al, 2016). In yeast, mRNA turnover55

rates have been proposed to be globally regulated by the division rate (García-Martínez56

et al, 2016). Yet, it is unclear whether certain mechanisms of global gene expression57

regulation by the division rate are particularly advantageous over others for a fixed protein58

synthesis output.59

The expression parameters of different genes do not necessarily follow the same dependency60

with the division rate. In fact, the proteome fraction of distinct functional classes has61

been shown to follow specific and simple trends with the division rate (Scott et al, 2010; Li62

et al, 2014; Hui et al, 2015). Fundamentally, for a given type of division rate modulation,63

proteins can be categorised in three classes (R, P, Q) depending on whether their proteome64

fraction respectively increases, decreases or is maintained with the division rate. Simple65

models of proteome allocation and cell physiology have shown that the changes in global66

protein fractions observed experimentally are consistent with the maximisation of the67

division rate (Molenaar et al, 2009; Scott et al, 2014; Goelzer & Fromion, 2017). For68

example, when nutrient conditions are varied, ribosomal proteins that constitute most of69

the R proteins are needed in larger amounts to support fast growth in rich media (Scott70

et al, 2010). A consequence of a large R sector is that other proteins will necessarily fall71

into the P class, as proteome fractions add up to one. The Q class contains so-called72

housekeeping proteins, whose proteome fraction is maintained across all conditions.73
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Because total protein concentration is approximately constant across conditions (Basan et74

al, 2015), the concentration of P proteins decreases at fast growth. Lower concentrations75

mean lower number of molecules per unit of volume. Intrinsic noise, which results from the76

random timing of biochemical reactions and depends on absolute molecule numbers rather77

than concentrations, could therefore be higher at fast growth. Intrinsic noise contributes to78

cell-to-cell variability in gene expression, which leads to non-genetic phenotypic variability79

(Shahrezaei & Swain, 2008). In addition, gene expression is affected by other stochastic80

and dynamic cellular processes, resulting in so-called extrinsic noise (Elowitz et al, 2002;81

Shahrezaei et al, 2008). An important source of extrinsic noise in gene expression stems82

from the processes associated with the cell cycle, including cell growth and cell division,83

as illustrated by several experimental and modelling studies that are discussed below.84

Mathematical modelling has suggested that random partitioning of biomolecules at cell85

division is an important source of noise in gene expression and hard to separate from86

intrinsic noise (Huh & Paulsson, 2011). Other modelling studies have highlighted the87

contribution of heterogeneity in cell cycle time on noise in gene expression (Johnston et al,88

2012; Schwabe & Bruggeman, 2014; Antunes & Singh, 2014; Soltani et al, 2016). Also, cell89

cycle dependent expression and the timing of DNA replication also influences noise in gene90

expression in unexpected ways (Luo et al, 2013; Schwabe & Bruggeman, 2014; Peterson et91

al, 2015; Soltani et al, 2016). Several experimental studies have identified the cell cycle92

as a major source of noise in gene expression in bacteria and yeast (Cookson et al, 2010;93

Zopf et al, 2013; Keren et al, 2015; Walker et al, 2016). These studies suggest that gene94

expression noise is generally higher at lower division rates (Keren et al, 2015; Walker et al,95

2016). The impact of cell division and random partitioning of molecules on the behaviour96

of simple circuits has also been studied by modelling (Gonze, 2013; Lloyd-Price et al, 2014;97

Bierbaum & Klumpp, 2015). It has been shown that simple genetic oscillators can sustain98

oscillation in the presence of cell division but the oscillations could be entrained by the99
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cell cycle depending on the circuit topology (Gonze, 2013). Also, it is shown that random100

partitioning of biomolecules at division affects dynamics of simple circuits for example101

affecting stability of biological switches (Lloyd-Price et al, 2014).102

Cell size is regulated both across the division cycles and between different growth conditions.103

Although this is a long-standing problem in cell biology, the mechanisms behind cell size104

homeostasis remain largely elusive. Interest for this question has been recently renewed,105

particularly in bacteria. Recent data suggests that many bacterial species follow a so-called106

adder principle, adding a constant cytoplasm volume in each division cycle, independently107

of their size at birth. Interestingly, cell size at division is positively correlated with division108

rates in both bacteria and yeast, cells becoming larger in richer environments (Schaechter109

et al, 1958; Turner et al, 2012). Although this is a universal observation, there is no110

satisfying universal explanation of why cells have evolved such regulation of cell size with111

growth conditions.112

Global regulation of gene expression and cell size is likely to affect the dynamics and113

function of genetic and biochemical networks inside cells (Shahrezaei & Marguerat, 2015).114

A pioneering study quantified how division rate dependent global regulation of gene115

expression affects the average concentration of a constitutively expressed gene product,116

and how this in turn can affect the behaviour of simple synthetic genetic networks (Klumpp117

et al, 2009). Another theoretical study showed that the division rate dependence of gene118

expression could impact the qualitative behaviour of a synthetic oscillator circuit, the119

‘repressilator’ (Osella & Lagomarsino, 2013). Moreover, the division rate regulation of a120

gene impacting fitness can result in non-trivial global feedback in gene regulation (Klumpp121

et al, 2009; Kiviet et al, 2014; Tan et al, 2009). However, theoretical insights on how global122

regulation of gene expression and cell size with growth conditions impacts noise in gene123

expression and therefore the behaviour of biochemical circuits are still largely lacking.124

In this study, we shed light on the regulation of noise in gene expression across growth125
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conditions by integrating existing data in the bacterium E. coli on global regulation of gene126

expression and cell size into detailed computational models of stochastic gene expression127

in growing and dividing cells. We then use examples of some simple genetic networks to128

illustrate how the changes in gene expression noise across growth conditions affects the129

dynamics of cellular systems.130

Results131

Stochastic gene expression in growing and dividing cells132

To fully capture the effect of cell cycle on noise in gene expression, we model the stochastic133

expression of a single gene in growing and dividing cells (Figure 2 A-B, Supplemental134

Figure 1-A). Transcription, mRNA degradation and translation are represented by single135

stochastic reactions. Corresponding rates are noted km, γm and kp respectively. Because136

the majority of E. coli proteins are stable, we first neglect protein degradation. During137

the cell cycle, we assume cell size increases exponentially at a fixed rate, that results in a138

decrease of the concentration of the mRNA and the protein when their numbers do not139

change. We model cell division as a discrete event that splits the cell volume in two, and140

each molecule is randomly partitioned between daughter cells with a probability matching141

their inherited volume fraction. In our simulations, we keep only one of the two daughter142

cells, therefore reproducing the popular mother machine experimental setting (Wang et al,143

2010).144

Cellular growth rate, cell size at division, and cell size at birth are all known to vary145

between individual cells even in identical, tightly controlled conditions. Variability in size146

at birth arises from variability in the mother cell size at division but also from imperfect147

volume splitting between the two daughter cells. To realistically account for this variability,148

we use the noisy linear map (NLM) model (see Methods and Supplemental Figure 1), a149
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Figure 1: Global cellular factors affecting gene expression noise that depend
on growth conditions. Nutrient quality can increase the population doubling rate by
promoting growth and division of individual cells. This leads to increased dilution of
molecules, and more frequent random partitioning of molecules between daughter cells.
Because faster growth requires a higher rate of cell mass production, rates of mRNA and
protein expression increase globally with the division rate. However, the relative changes in
mRNA and protein expression rates is gene-dependent because the proteome composition
is reshaped when the division rate changes (Scott et al, 2014). For example, the fraction
of ribosomal proteins (R proteins) will increase with the division rate while the fraction
of metabolic enzymes (and other P proteins) will decrease, the fraction of house keeping
proteins (and other Q proteins) remain constant (Scott et al, 2010). Cell size as well
is known to increase with the division rate in response to nutrient-based modulations
(Schaechter et al, 1958; Basan et al, 2015). All those factors affect both average expression
and expression noise in a non-trivial manner.
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recent phenomenological model of cell size control that captures the variability in cell150

size at birth and division observed experimentally as well as their correlation within151

individual cell cycles (Tanouchi et al, 2015; Jun & Taheri-Araghi, 2015). The degree of152

this correlation is related to the mechanims underlying cell size homeostasis. For example,153

a noisy linear map with the parameter a equal to 1 corresponds to an adder strategy,154

where a fixed cytoplasm volume is added to the cell between each division. Alternatively,155

a parameter a equal to zero corresponds to a sizer strategy, where cell division is triggered156

at a fixed size (Jun & Taheri-Araghi, 2015).157

A priori, it is possible that the NLM parameters that best describe a given single-cell158

dataset could change with growth conditions. Therefore, we have inferred the parameters159

of the NLM from a recent mother machine dataset of cells grown in 7 different carbon160

sources supporting a wide range of division rates (Taheri-Araghi et al, 2015). We find161

that NLM parameters can indeed change with the division rate (Supplemental Figure162

1). As expected, b strongly increases with the division rate (the average size at division163

is given by 2b
2−a). Notably, the slope parameter a is significantly lower than 1 at slow164

growth, consistently with another study reporting a deviation towards a sizer strategy165

(a < 1) in slow regimes (Wallden et al, 2016). In addition, individual cell growth rates166

are well described by normal distributions in all conditions. Based on that analysis, we167

derive linear functions describing all NLM parameters as a function of the division rate168

(Supplemental Figure 1). This enables us to realistically model growth and division at the169

single cell level over a wide range of division rates and investigate their effects on gene170

expression noise.171

Before starting to explore effect of division rate on noise in gene expression and using the172

NLM parameters extracted from the data, we first explore the effect of these parameters173

on the gene expression noise for a fixed growth condition, as this has not been explored174

before. In Figure 2-C, we show protein number and concentration noise (CV) at cell175
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birth (immediately after cell division and at the beginning of the cell cycle) as the noise176

in final size (σ1), noise in size partitioning (σ2) and a are varied. Large noise in NLM177

noise (σ1 or σ2) results in an increased noise in protein number noise at the beginning178

of the cell cycle (Figure 2-C). This is due to partitioning noise as this increased protein179

number noise is mostly decayed in the middle of cell cycle (Supplemental Figure 2). Also,180

protein concentration noise is not so much affected by NLM noise as we assume probability181

of random partitioning of biomolecules is proportional to the inherited volume of the182

daughter cells after division. For values of a greater than one size control is not very183

effective in filtering noise in cell size and there is an increased size variability for large a184

and large NLM noise (σ1 or σ2) (Modi et al, 2017). As a result the protein concentration185

noise that directly depends on cell volume shows an increase at large a and large NLM186

noise. Overall, these results show that the physiological range of NLM parameters across187

growth conditions (Supplemental Figure 1) are not expected to produce strong effects in188

noise gene expression.189

In the results shown in Figure 2-C, we have assumed the reaction propensities for tran-190

scription, translation and mRNA decay are independent of cell volume. In Supplemental191

Figure 3, we show the impact of a cell size-dependent transcription rate. Interestingly,192

in this case, the protein concentration noise is reduced and becomes independent of the193

NLM parameters. We obtain very similar results if we assume translation rate is size-194

dependent (not shown). Size dependence of transcription rate has been recently reported195

in eukaryotes (Padovan-Merhar et al, 2015; Kempe et al, 2015), while similar evidence in196

prokaryotes is lacking. Therefore, in this work we assume cell size independent propensities197

for all first-order reactions (but volume dependency for bi-molecular reaction propensities198

is accounted for). Also, we focus on protein concentration noise (physiologically more199

relevant than molecule numbers) and across newly born cells (to eliminate cell cycle stage200

contributions, similar trends are seen in the middle of the cell cycle).201
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Figure 2: Modelling stochastic gene expression in growing and dividing cells.
(A) Sketch of the modelling approach. See Methods for details. (B) Example of simulated
trajectories. Typical parameters for E. coli have been used (see Methods). (C) Impact of
noisy linear map (NLM, see Methods) parameters on protein noise. Heatmaps of protein
number noise (left) or concentration noise (right) (defined as the coefficient of variation,
CV, across newly born cells) when a and σ1 (top) or a and σ2 (right) are varied. Other
parameters are kept constant at reference values, except b that changes with a such that
the average size at birth is constant. Black crosses indicate empirical ranges estimated
from mother machine data (see Methods and Supplemental Figure 1).
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Expression noise depends on division rate even when protein concentration is202

maintained203

We consider first genes whose protein concentration stays constant when the division rate204

changes (i.e. proteins belonging to the Q class). Interestingly, this requires that at least205

one of the gene expression rates km (transcription rate), γm (mRNA degradation rate) or206

kp (translation rate per mRNA) changes with the division rate to compensate for increased207

dilution of mRNA and protein molecules.208

Using our model and typical values for gene expression rates at 2 doublings per hour209

as a baseline, we computed the change in protein concentration noise with the division210

rate when average concentration is maintained either by adapting the transcription rate211

only (Figure 3-A) or the translation rate per mRNA only (Figure 3-B). To investigate212

the contribution of distinct sources of noise and of variability in cell size to protein213

concentration noise we consider multiple scenarios in which different sources of variability214

are turned off (colour codes in Figures 3-A and 3-B).215

Our simulation results reveal that maintaining average protein concentration by adjusting216

transcription or translation to the division rate leads to very different behaviours of the217

protein concentration noise. We find that the empirically observed increase of cell size with218

division rate strongly contributes to these behaviours. In the case of transcription rate219

adjustment, protein noise sharply decreases with the division rate. A milder decrease is220

also observed when cell size is kept constant across division rates. In the case of translation221

rate adjustment, protein noise increases with the division rate instead, whether cell size222

changes or not.223

To better understand these results, we looked at how mRNA numbers change with the224

division rate in the different situations (bottom left plots in Figures 3-A and 3-B). When225

transcription adjusts to the division rate in order to maintain average protein expression,226
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mRNA numbers increases with the division rate. As mRNA noise (mRNA numbers are227

typically much lower than protein numbers) is a major contributor of protein noise, an228

increase in mRNA numbers results in a decrease in protein noise. However when instead229

translation adjusts to the division rate, mRNA numbers remain mostly unchanged. This230

is possible, because mRNA degradation rates are large compared to the division rate,231

resulting in mRNA numbers being less sensitive to dilution than protein numbers. Despite232

little change in mRNA numbers and hence mRNA noise, the increase in protein noise can233

be explained by a higher propagation of the mRNA noise to protein, since contribution of234

transcription to protein noise depends on the ratio of mRNA lifetime (which is mostly235

constant) and protein lifetime (which is set by the dilution rate, itself set by the division236

rate) (Swain et al, 2002).237

While the relative contribution of distinct noise sources (stochastic gene expression,238

partitioning noise, variability in cell growth rate, cell division size and cell birth size) to239

total protein noise can change with the division rate, we find that the contribution of240

stochastic gene expression is predominant at all division rates (Supplemental Figure 4). For241

the case of transcription adjusting to division rate, we find the contribution of partitioning242

noise is relatively constant across division rates, while contribution of LNM noise increases243

several folds at fast division rates. In contrast for the case of transcription adjusting to244

division rate, we find the contribution of partitioning noise significantly decreases at fast245

division rates, while contribution of LNM noise remains relatively constant.246

In summary, our simulations demonstrate that for genes with typical expression parameters247

at intermediate division rates, maintaining a constant protein concentration across growth248

conditions by adjusting transcription to the division rate leads to a decrease of protein249

noise. In contrast, adjusting translation to the division rate increases protein noise levels.250
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Figure 3: Changes in cell size, transcription and translation rates with the
division rate impact expression noise even when average protein concentration
is maintained (Q expression). (A) Change of protein concentration noise (right) with
division rate when the average concentration is maintained (middle-top plot) by tuning the
transcription rate (left-top plot). Noise is the CV of protein concentration across newly
born cells. The mRNA average number (#) and CV in are also shown (bottom-left plots).
Different model variants are simulated to explore the contribution of random partitioning
noise, size change with the division rate, and noise in size (NLM parameters) and cellular
growth rate (see Methods and Supplemental Figure 1). (B) Same as (A) but when the
translation rate is tuned instead of the transcription rate.
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Increase of cell size with the division rate prevents noise increase for consti-251

tutively expressed proteins despite a decrease in average concentration252

The results described above concern proteins belonging to the Q category, whose average253

concentration is maintained constant independently of the division rate. Klumpp and254

colleagues have shown that constitutively expressed proteins instead belong to the P255

category: their concentration is decreased at fast growth (Klumpp et al, 2009). The256

transcription rate of constitutively expressed genes strongly increases with the division257

rate, while mRNA degradation rate and translation rate per mRNA remain relatively258

constant (Klumpp et al, 2009). However, this is not sufficient to balance both increased259

dilution and increased cell size (Klumpp et al (2009), Supplemental Figure 5 and Figure 4260

top left plot).261

Remarkably, using parameters of gene expression from (Klumpp et al, 2009) (see Methods262

and Supplemental Figure 5), we find that protein noise decreases with division rate, despite263

the strong decrease in average protein concentration (Figure 4). Cell size increase with264

division rate is a key contributor to this behaviour. Assuming that increased expression265

noise for P proteins at fast growth is deleterious, this observation could explain why266

increased cell size at fast division rates is a universally conserved feature of unicellular267

organisms.268

In the case of a P protein, similarly to the case of Q protein above, we find that the relative269

contribution contribution of stochastic gene expression is predominant at all division rates270

(Supplemental Figure 4). However, contribution of both partitioning noise and size and271

growth rate variability increases moderately at fast division rates.272
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Figure 4: Larger cell size at fast division rates prevents expression noise in-
crease despite a decrease in average concentration (P expression). To repro-
duce P expression, we used gene expression parameter dependencies with division rate for
constitutively expressed proteins extracted from a previous study ((Klumpp et al, 2009),
see Methods and Supplemental Figure 3 for details). Average protein concentration (top
left), average mRNA number (#) (top right) and protein concentration noise (bottom) are
shown. The same model variants as in Figure 3 were used. Two additional scenarios are
also shown, in which cell size does not change with division rate but either the transcription
rate (dashed dark blue) or the translation rate (dashed light blue) is adjusted to obtain
the same decrease of average protein concentration with division rate (other parameters
remaining constant and equal to the reference values of solid line simulations at 2 doublings
per hour).
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Impact of division rate on the behaviour of an oscillator circuit273

Changes in average expression and noise of individual proteins with the division rate in274

response to environmental changes is likely to impact the behaviour of genetic circuits275

(Klumpp et al, 2009). Even when the protein average expression (in isolation, i.e. without276

the circuit-specific regulations) is maintained, the expression noise can still change (Figure277

2) meaning that circuit behaviour could depend on the division rate (Shahrezaei &278

Marguerat, 2015).279

To investigate these effects, we first consider a two proteins oscillator circuit recapitulating280

essential features of circadian clocks (Figure 5-A) (Vilar et al, 2002). An actively degraded281

activator protein (A) promotes its own transcription as well as the transcription of a282

stable repressor protein (R) by promoter binding. R can also binds A, preventing it283

to bind promoters. This circuit can lead to oscillations as illustrated in Figure 5-B. A284

detailed analysis of why oscillations arise is beyond the scope of this study and has been285

explored before (Guantes & Poyatos, 2006; Kut et al, 2009). Briefly, because R competes286

with promoters for the binding of A, when the amount of free R is large only basal287

transcriptional activity for both genes is possible. Because R is stable, such a state can last288

until dilution and partitioning renders free R levels too low to efficiently prevent promoter289

binding by A. Promoter activation leads to a burst of A by auto-activation, but R levels290

eventually rise because A also promotes R transcription. When R levels are sufficient to291

efficiently compete with A promoter binding, a novel cycle starts.292

We asked how the circuit behaviour was affected when division rate modified. We first293

assume that basal transcription, translation and mRNA degradation follows the same294

dependency as constitutively expressed proteins (i.e. P proteins, as in Figure 4), and295

that the fold-change increase of transcription rate when the promoter is activated by296

A is independent of the division rate. The resulting changes in circuit behaviour with297
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the division rate are shown in Figure 5-C (black lines). The average period increases298

as the division rate decreases because dilution is an important driver of the oscillations.299

The average amplitude of free R oscillations is also strongly dependent on the division300

rate, and decreases as the division rate increases. This is consistent with P expression,301

although different behaviours are in theory possible because of gene regulation. The noise302

in circuit behaviour changes as well with the division rate. Specifically, noise in period303

and amplitude of the oscillations display ‘U’ shape dependencies with the division rate,304

with lower noise close to the reference division rate of 2 doublings per hour. In summary,305

constitutive expression (typical of P proteins) leads to changes in average behaviour and a306

strong increase in noise of an oscillatory circuit at very low or very high division rates.307

We then investigated whether Q expression of the circuit components could increase the308

robustness of oscillations in response to changes in division rate. As in Figure 3 we consider309

two modes of Q expression, either by transcriptional adjustment (blue) or translational310

adjustment (red). Both modes could maintain the average amplitude of oscillations in a311

narrow range, but the average period remained strongly dependent on the division rate312

(Figure 5-C). While both modes resulted in identical changes in circuit average behaviour,313

they led to slightly different dependencies of noise in oscillations with the division rate.314

The division rate with the minimal noise in amplitude is around 2.3 doublings per hour for315

transcriptional adjustment and around 1.5 doublings per hour for translational adjustment.316

In summary, Q expression increased robustness of oscillations compared to constitutive317

(P) expression, but it is not sufficient to make the oscillator’s period independent of the318

division rate. Q expression via transcriptional or translational adjustment led to similar,319

but not identical changes of noise in oscillations with the division rate.320
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Figure 5: Behaviour of an oscillator circuit at different division rates. (A)
Schematic of the oscillator circuit described in (Vilar et al, 2002). See methods for model
description and parameter values. (B) Example simulation showing oscillations in free
R concentration. Detected peaks are shown with red circles. Note that the timescale of
oscillations is around 3 hours, while the inter-division time is around 30 minutes. (C)
Change of the oscillatory behavior (average period, noise in period, average amplitude,
noise in amplitude) as a function of division rate. The black curves correspond to P
expression. The other curves correspond to situations in which either transcription rates
(blue) or translation rates (red) are increasing with division rate in order to maintain
average expression (Q expression in absence of binding of A with R).
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Impact of division rate on the behaviour of the toggle switch321

We investigate next a simple synthetic circuit known to exhibit bistability: the toggle322

switch (Gardner et al, 2000), in which two proteins repress each other’s transcription323

(Figure 6-A). We asked first whether different circuit behaviours, namely the existence324

of bistability, the occupancy of the states, and the switching rates between states, were325

affected by changes in division rate and adjustment of transcription or translation to326

division rates. To this end, we consider simple model assumptions that are sufficient to327

generate stochastic switching between different states (Methods) with typical parameter328

values.329

We found that the circuit could exhibit bistability (Figure 6-B,C) over the considered330

range of division rates for constitutive (P) expression as well as for Q expression by331

transcriptional or translational adjustment. However, in all cases the circuit behaviour332

strongly depends on the division rate (Figure 6-C), as illustrated by the change in ON333

state occupancy (the circuit is ON when one of the two proteins, the reporter, is in334

the high expression state). Interestingly, the change of behaviour is very different for335

different modes of Q expression: for translational adjustment, the ON state occupancy336

decreases with the division rate (in a fashion very similar to P expression). However, an337

opposite behaviour is observed for Q expression via transcriptional adjustment as ON338

state occupancy becomes positively correlated with division rate..339

The ON state occupancy reflects the balance between stochastic switching in and out of340

this state. These rates are both dependent on the division rate (Figure 6-C, middle and341

right plots). We find that the switching rates increase with the division rate that could342

suggest random partitioning of mRNA and protein molecules, which is more frequent at343

high division rates, favours switching as also reported in another study (Lloyd-Price et344

al, 2014). In addition, the observation that at fast growth the OFF → ON rate rises the345
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most sharply for Q expression via translational adjustment is consistent with the high346

level of protein noise for this mode of regulation at fast division rates (Figure 3-B).347
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Figure 6: Behaviour of the toggle switch at different division rates. (A) Schematic
of the toggle-switch circuit. Two proteins A and B can transcriptionally repress each other
by promoter binding. (B) Example simulation of the toggle-switch circuit functioning
in growing and dividing cells, showing stochastic switching between high (ON ) and low
(OFF) expression for one protein. The threshold separating the two states (black dashed
line) is computed using the overall protein distributions (see Methods). (C) Change of
the toggle-switch behaviour, quantified by the average time spent in the ON state and
the switching rates between the two states, as a function of division rate. The black
curve corresponds to P expression as in Figure 3, the blue and red curves corresponds to
constant average expression maintained either transcriptionally or translationally, as in
Figure 2-C,D. Note that when the concentration of one protein type is low, the other is
not necessarily high. This is why the ON state occupancy is not always 50% despite the
symmetry between the two proteins.
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When gene expression feedbacks on growth: the case of toxin-mediated348

growth inhibition349

So far, the circuits we have considered respond to changes in division rate but they don’t350

impact cell physiology and growth. However, many natural circuits and some synthetic351

circuits do influence cell physiology, for example by regulating cell metabolism or cell cycle352

progression. Even when synthetic circuits are not designed to impact cell physiology, they353

often do by competing with core cellular processes for global cellular resources, and this354

has become a major concern for synthetic biologists (Ceroni et al, 2015).355

In prokaryotes, well-known examples of gene expression feeding back on growth are toxin-356

antitoxin systems. These systems are involved in bacterial persistence, where a very small357

subpopulation of slow growing cells naturally arises among a normally growing population.358

A minimal model, where a single protein is toxic for growth was found to be sufficient to359

generate growth bistability (Klumpp et al (2009), Tan et al (2009), Rocco et al (2013),360

and Figure 7-B). Here we investigate the behaviour of this kind of model (Figure 7) when361

both the maximal growth rate reached by a toxin-free cell and the dependency of the362

transcription rate with the cell growth rate are varied.363

For each parameter set enabling growth bistability (coloured pixels in Figure 7-C), we364

computed the occupancy of the fast state (Figure 7-C, left) and the switching rates between365

the slow and fast states (Figure 7-C, middle and right). The occupancy of the fast growing366

state decreases when the maximal growth rate decreases (Figure 7-C, moving from right to367

the left), and this behaviour is independent of the dependency of the toxin transcription368

rate to the cell division rate (i.e. the value of kmslope). Therefore, the system will naturally369

respond to less favourable growth conditions by increasing the time spent in the slow state.370
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Figure 7: Growth bistability caused by expression of a toxic protein. (A) Model
description. The instantaneous cell growth rate, which here we assume to be a decreasing
function of the expressed protein concentration. In turn, changes in cell growth rate
impacts gene expression via the transcription rate. (B) Growth bistability is possible
with realistic parameter values (Methods). In the simulation shown, kmslope = 0, meaning
that the positive feedback: toxin → slower growth → more toxin is only mediated by
changes in dilution. (C) Influence of growth conditions (µmax) and growth rate dependence
of transcription (kmslope) on growth bistability. For each parameter set, km0 was also
adjusted such that kmcell(2 doublings/hr) = 0.28min−1. From corresponding simulations,
the existence of bistability was tested and corresponding switching rates were estimated
(See Methods).
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Discussion371

In this study, we have used detailed simulations of stochastic gene expression in growing372

and dividing bacteria to investigate the role of division rate in protein noise and dynamics373

of genetic networks. Our simulations are constrained by data available for E. Coli related to374

division rate regulation of constitutive gene expression (Klumpp et al, 2009) and single-cell375

data related to cell size control (Taheri-Araghi et al, 2015). For a constitutively expressed376

gene, we find that coupling transcription but not translation to division rate results in lower377

protein noise levels. Interestingly, existing data seem to suggest that global regulation of378

gene expression with division rate mostly acts at the level of transcription (Keren et al,379

2013; Gerosa et al, 2013; Berthoumieux et al, 2013; García-Martínez et al, 2016), consistent380

with the idea that lower noise levels are beneficial, or even necessary, at fast growth.381

However, regulation at the level of translation has also been observed (Borkowski et al,382

2016), which, coupled to transcriptional regulation, could result in non-trivial interplay in383

terms of gene expression noise regulation.384

An important factor that helps to minimise noise in gene expression at fast division385

rate is increased cell size. Large cell sizes in growth conditions with fast division rate386

results in higher overall number of mRNA and protein molecules, and reduce noise in gene387

expression. This is particularly relevant for the regulation of noise in gene expression for388

proteins belonging to P category (Figure 1) as their concentration go down at high division389

rates. Based on these results, we propose a possible evolutionary reason for microbial cells390

(bacteria and yeast) to grow bigger at fast growth is to reduce gene expression noise, which391

is presumably more detrimental to fitness at fast growth (Shahrezaei & Marguerat, 2015).392

At the mechanistic level, the division rate regulation of cell size could be implemented393

via the division rate regulation of gene expression for proteins involved in cell size control394

(Basan et al, 2015; Bertaux et al, 2016).395
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Our simulations included physiologically relevant levels of partitioning noise, size variability396

and growth variability. Overall, we observe that the contribution of these factors to protein397

noise is small but that it tends to vary with the division rate for the different cases398

considered. We also observed the noise in molecular numbers and concentrations do not399

always behave similarly, as the later directly depends on cell volume. Interestingly, we find400

that if transcription rate scales with cell size as recently reported in eukaryotes (Padovan-401

Merhar et al, 2015; Kempe et al, 2015), the concentration noise becomes independent of402

noise in cell size control mechanism. In bacteria, there has not been a careful investigation403

of transcription scaling with cell size and in the absence of such reports we have assumed404

cell size independent reaction propensities thoughout this study. We also did not model405

the contribution of DNA replication to protein concentration noise, but its impact has406

been found experimentally to be very small (Walker et al, 2016).407

We then tested how dynamics of simple biochemical networks respond to division rate.408

As shown by the seminal work of Klumpp et al (2009), we find overall that division rate409

regulation of concentration of P proteins can change the average behaviour of biochemical410

networks significantly. But, as discussed below, we find that even when proteins in411

the network have a Q regulation, the changes in noise properties of the individual gene412

expression can significantly alter the mean and noise properties of the system.413

In the case of a genetic oscillator, we find changes in gene expression and cell size414

with the division rate can impact the behaviour of oscillatory circuits in a non-trivial415

manner. Namely, large changes of average expression with the division rate for constitutive416

expression (P) of circuit components render circuit behaviour sensitive to the division417

rate. However, maintaining constant expression of circuit components (for example via418

transcriptional or translational adjustment) does not guarantee full robustness of circuit419

behaviour against changes in division rate. Robustness might require more complex, circuit-420

specific dependencies of gene expression with the division rate, or even specific circuit421
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architecture (Paijmans et al, 2016). Interestingly, we observed a ‘U’ shape dependency of422

noise on division rate suggesting that there could be an optimally robust growth condition423

for a specific network design and parameter combination, which is relevant to appropriate424

function of natural biochemical systems or synthetic systems.425

The toggle switch circuit behavior is strongly dependent on the division rate and on the426

type of gene expression dependency with the division rate. So, this suggests the simple427

toggle switch circuit is not going to perform robustly across growth conditions. As for the428

oscillator circuit, maintaining average expression is not sufficient to generate a division rate429

independent behaviour. Moreover, this example shows that even when average expression430

is maintained, whether it is maintained via adjustment of transcription or translation431

matters, as the circuit behaves differently in either situation.432

In the case of simple models of persistence induced by the expression of a toxic protein in433

single growing and dividing cells, we could investigate the impact of growth conditions434

and gene expression dependency with the cell growth rate on the emergence of growth435

bistability. The role of growth conditions in prevalence of persister cells is a very relevant436

problem as the growth conditions of bacteria during infection are likely to be altered by437

the immune system and therapeutic treatments for instance. So, to validate our simple438

modelling results, it would be interesting to assess quantitatively, if and how growth439

conditions regulate the probability of the non-growing persistence phenotype.440

In molecular systems biology, we use models of biochemical networks to validate our441

mechanistic understanding of the system under study. We propose that such models442

should be tested also against data collected across cellular division rates. If the behaviour443

of the system is observed to be robust to growth conditions, then our models should be444

able to capture this robustness. Conversely, describing the ways in which the system445

behaviour changes across growth conditions is key to refine our models and therefore our446

mechanistic understanding of the system under study.447
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In synthetic biology, we often desire to build a system that either functions robustly at448

a particular growth condition or across a range of growth conditions. Our study shows449

that stochastic models of synthetic biochemical networks in growing and dividing cells450

coupled with data on the regulation of gene expression across division rates are essential451

to optimal design of system topologies that achieve robustness against changes in cellular452

division rates.453
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Methods461

Modelling462

We describe here our basic model for gene expression in growing and dividing cells.463

mRNA molecules are randomly synthetized and degraded at rate km and γm respectively.464

Stochastic synthesis of protein from each mRNA occurs at rate kp. Protein molecules465

are assumed to be stable (except for A in the oscillator circuit). Cell volume is growing466

exponentially at a fixed rate between Vbirth and Vdiv = 2Vbirth, then cell division is triggered467

(for the case including cell size control and variability see below). At cell division, molecules468

are randomly split between daughter cells and the volume is halved. In simulations, only469
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one of the daughter cell is considered for further simulation (hence mimicking the ‘mother470

machine’ microfluidic experiments for a symmetrically dividing cell (Wang et al, 2010).471

Throughout, noise is quantified by using coefficient of variability (CV), which is defined as472

standard deviation divided by the mean.473

Reference gene expression parameters474

Realistic (Taniguchi et al, 2010) parameters for E. coli gene expression have been used475

(km = 0.28min−1, γm = 0.14min−1, kp = 0.94min−1, µ = 2doublings/hr). This corre-476

sponds to a mRNA half-life of 5 min, an average mRNA number at birth of 1 molecule477

and an average protein number at birth of 50 molecules.478

Realistic modelling of cellular growth rate and cell size variability across479

growth conditions with noisy linear maps480

We use noisy linear maps (Tanouchi et al, 2015) with parameters inferred from mother481

machine data in different growth conditions (Taheri-Araghi et al, 2015). See Supplemental482

Figure 1 for model description. a and b are estimated by linear regression of Vdiv vs Vbirth483

(the data contains around 100K cell cycles per condition). σ1 is by definition related to484

the residual of this regression. σ2 is estimated from the variance of Vdiv
V next
birth

where V next
birth is485

the birth size recorded just after the division at Vdiv.486

Modelling Q expression by transcriptional or translational adjustment487

For a stable protein, it is possible to derive an analytical expression for the average number488

of protein molecules at birth: < P >birth= kmkp
γmµ

(1− µ
γm

1−e−γm/µ

2−e−γm/µ ).489

This expression was used to compute the transcription or translation rate achieving a given490
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average protein concentration (Figure 3 and 4). In the case of active protein degradation (as491

for A for the oscillator circuit studied in Figure 5), we used simulations and the MATLAB492

scalar optimization function fminsearch to compute the transcriptional or translational493

rate adjustment enabling to maintain a constant average concentration at birth.494

Modelling P expression495

For Figure 4, we have used division rate dependencies of gene expression parameters from496

(Klumpp et al, 2009) as illustrated in (Supplemental Figure 5). The dependencies were497

used as a relative scaling with respect to the reference gene expression parameters at 2498

doublings per hour. For modelling P expression in the oscillator circuit (Figure 5), for499

simplicity we simply used the effective transcription rate division rate dependency (the500

cell size dependency being given by the noisy linear maps) as change in translation rate501

per mRNA or mRNA degradation rate are small.502

Oscillator circuit503

The model structure and parameterization is adapted from (Vilar et al, 2002). The A504

protein can transcriptionally activate its own expression as well as the expression of another505

protein R by promoter binding. A is short-lived while R is stable. A and R can form506

a complex. The same model reactions were used, but we also explicitly model growth507

and division (including random partitioning of free A and free R, but we do not model508

gene replication and consider a single copy of each promoter which is always inherited by509

daughter cells). The volume dependency of bi-molecular reactions is also accounted for.510

As reference parameters (i.e. corresponding to an intermediate E. coli division rate of 2511

doublings per hour, at which optimal circuit behavior should be obtained), we used the512

same parameters as Vilar and colleagues, except that the R degradation rate was set to513
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0 (the original value, corresponding to a ~200 min half-life, was accounting for dilution514

only), the active degradation rate of A was scaled up to maintain a constant ratio with the515

division rate, the R translation rate was scaled up by the same factor, and all transcription516

rates were scaled by this factor (~7).517

The resulting values are:518

Name Value Unit

kAon 0.0167 min−1µm−3

kAoff 0.0833 min−1

kA,0m 5.77 min−1

kAm 10 * kA,0m min−1

γAm 0.167 min−1

kAp 0.833 min−1

γAP 0.115 min−1

kRon 0.0167 min−1µm−3

kRoff 1.67 min−1

kR,0m 0.00115 min−1

kRm 5000 * kR,0m min−1

γRm 0.0083 min−1

kRp 0.577 min−1

kc 0.033 min−1µm−3

To compute the period and amplitude of oscillations in free R concentration, we used519

the MATLAB function findpeaks on very long (200K minutes) mother machine traces,520

requiring a minimum peak amplitude of 25% of the maximum value in the trace. We521

verified visually the behavior of the peak detection algorithm for each simulation.522
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Toggle switch circuit523

The model structure and parameters are completely symmetric for the two proteins524

repressing each other. There is no cooperativity in the repression, as it is not required to525

obtain stochastic switching, consistently with (Lipshtat et al, 2006). As for the oscillator526

circuit, the volume dependency of bi-molecular reactions (only promoter binding here) was527

accounted for. We assumed that transcription is completely blocked when the promoters528

are bound, and that the promoter binding and unbinding rates are independent of the529

division rate.530

The reference parameter values are:531

Name Value Unit

kb 1 min−1µm−3

ku 0.25 min−1

km 0.28 min−1

γAm 0.14 min−1

kp 0.94 min−1

Detection of bistability (always the case for simulations shown in Figure 5), threshold532

identification and computation of switching rates were performed as follows. A very long533

(500 thousands hours of biological time) single-lineage trace (one output every 15 minutes)534

of the free A concentration is obtained by simulation. This trace is then discretized into535

50 equal size bins from zero to the maximal value of the trace. The following algorithm536

is then applied on this discretized distribution: (1) identify the highest mode (i.e. the537

most populated bin); (2) iteratively identify next highest mode and ask whether they538

are corresponding to a neighbor bin of the highest mode (then it is not the second mode539

of a bimodal distribution) OR if there exists populated, lower height bins in-between540
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(indicative of bimodality); (3) in the latter case, to avoid incorrect detection of bimodality541

because of finite sampling of the distribution, the secondary mode is required to be more542

than 5% of what an uniform distribution would give.543

Growth bistability caused by expression of a toxic protein544

As previously, stochastic gene expression of a protein is simulated in growing and dividing545

cells. However, the protein is a toxin inhibiting cell growth: the instantaneous growth546

rate of the cell µcell is a decreasing Hill function of the toxin concentration (hence it is547

not anymore constant during the cell cycle). Also, the impact of growth conditions is not548

modeled anymore with condition-specific noisy linear maps, as they are not adapted to549

situations with very heterogeneous growth rates between cells in a given condition. We550

rather use a parameter µmax representing the toxin-free cellular growth rate. For simplicity,551

to model cell division size and its variability we use a single noisy linear map across growth552

conditions. Finally, to represent the dependency of gene expression with the cell growth553

rate, we assume that the toxin transcription rate is a linear function of µcell. The reference554

parameter values are:555

Name Value Unit

µmax 2 doublings/hr

km0 0.28 min−1

kmslope 0 min−1/doublings/hr

γm 0.14 min−1

kp 0.94 min−1

γp 0.001 min−1

n 2 dimensionless

T ? 140 #/µm3
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Name Value Unit

alnm 1 dimensionless

blnm 1 µm3

σ1
lnm 0.2 µm3

σlnm2 0.05 dimensionless

Note that because kmslope = 0, the positive feedback toxin → growth slow down → more556

toxin is only mediated by a change of dilution (as in (Rocco et al, 2013)). Also note557

that it is necessary to assume that protein degradation is non-zero to allow bistability, as558

otherwise exit of the slow state is impossible.559

For Figure 7-C, for each parameter set, the existence of bistability, threshold identification560

and switching rates computation for the instantaneous cell growth rate µcell were performed561

as for the toggle switch circuit analysis (except that simulation duration for each single-562

lineage trace was 60 thousands hours of biological time, with one output every 10 minutes,563

and the number of bins used was 20).564

Grey indicates parameter sets for which the lineage simulation of 60 thousands hours565

(~120 thousands generations) either did not lead to a bimodal distribution of µcell, or did566

lead to such bimodal distribution, but with less than 10 switches fast → slow → fast,567

preventing an accurate estimate of switching rates in reasonable computational time.568

Simulation algorithm569

We describe here the general simulation algorithm used for all models. Between fixed570

timesteps (6 seconds), cell volume is considered constant, and the Gillespie algorithm is used571

to simulate stochastic molecular reactions (more sophisticated simulation methods exist572

(Lu et al, 2004; Shahrezaei et al, 2008), but this one is simple to implement and accurate573
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as long as the timestep is small enough). Then, the cell volume is updated according to the574

instantaneous exponential growth rate, it is checked whether cell division should occur, and575

if so, cell division and molecules partitioning is realized. The code used for all simulations576

is available on GitHub: https://github.com/ImperialCollegeLondon/coli-noise-and-growth.577

References578

Antunes D & Singh A (2014) Quantifying gene expression variability arising from random-579

ness in cell division times. Journal of Mathematical Biology580

Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR & Hwa T (2015) Overflow581

metabolism in Escherichia coli results from efficient proteome allocation. Nature 528:582

99–104583

Bertaux F, Von Kügelgen J, Marguerat S & Shahrezaei V (2016) A unified coarse-grained584

theory of bacterial physiology explains the relationship between cell size, growth rate and585

proteome composition under various growth limitations. bioRxiv586

Berthoumieux S, Jong H de, Baptist G, Pinel C, Ranquet C, Ropers D & Geiselmann J587

(2013) Shared control of gene expression in bacteria by transcription factors and global588

physiology of the cell. Molecular Systems Biology 9: 634–634589

Bierbaum V & Klumpp S (2015) Impact of the cell division cycle on gene circuits. Physical590

biology 12: 066003591

Borkowski O, Goelzer A, Schaffer M, Calabre M, Mäder U, Aymerich S, Jules M & Fromion592

V (2016) Translation elicits a growth rate-dependent, genome-wide, differential protein593

production in Bacillus subtilis. Molecular Systems Biology 12: 870–14594

Ceroni F, Algar R, Stan G-B & Ellis T (2015) Quantifying cellular capacity identifies gene595

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209593doi: bioRxiv preprint 

https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/


expression designs with reduced burden. Nature methods 12: 415–418596

Cookson NA, Cookson SW, Tsimring LS & Hasty J (2010) Cell cycle-dependent variations597

in protein concentration. Nucleic acids research 38: 2676–2681598

Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick599

K, Wang Y-P & Hwa T (2016) Reduction of translating ribosomes enables Escherichia600

coli to maintain elongation rates during slow growth. Nature Microbiology 2: 16231601

Elowitz MB, Levine AJ, Siggia ED & Swain PS (2002) Stochastic gene expression in a602

single cell. Science (New York, N.Y.) 297: 1183–1186603

García-Martínez J, Delgado-Ramos L, Ayala G, Pelechano V, Medina DA, Carrasco F,604

González R, Andrés-León E, Steinmetz L, Warringer J, Chávez S & Pérez-Ortín JE605

(2016) The cellular growth rate controls overall mRNA turnover, and modulates either606

transcription or degradation rates of particular gene regulons. Nucleic acids research 44:607

3643–3658608

Gardner TS, Cantor CR & Collins JJ (2000) Construction of a genetic toggle switch in609

Escherichia coli. Nature 403: 339–342610

Gerosa L, Kochanowski K, Heinemann M & Sauer U (2013) Dissecting specific and global611

transcriptional regulation of bacterial gene expression. Molecular Systems Biology 9:612

658–658613

Goelzer A & Fromion V (2017) Resource allocation in living organisms. Biochemical614

Society transactions615

Gonze D (2013) Modeling the effect of cell division on genetic oscillators. Journal of616

Theoretical Biology 325: 22–33617

Görke B & Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make618

34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209593doi: bioRxiv preprint 

https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/


the most out of nutrients. Nature reviews. Microbiology 6: 613–624619

Guantes R & Poyatos JF (2006) Dynamical principles of two-component genetic oscillators.620

PLoS computational biology 2: e30621

Huh D & Paulsson J (2011) Random partitioning of molecules at cell division. Proceedings622

of the National Academy of Sciences of the United States of America 108: 15004–15009623

Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T & Williamson624

JR (2015) Quantitative proteomic analysis reveals a simple strategy of global resource625

allocation in bacteria. Molecular Systems Biology 11: e784626

Johnston IG, Gaal B, Neves RP das, Enver T, Iborra FJ & Jones NS (2012) Mitochondrial627

variability as a source of extrinsic cellular noise. PLoS computational biology 8: e1002416628

Jun S & Taheri-Araghi S (2015) Cell-size maintenance: universal strategy revealed. Trends629

in Microbiology 23: 4–6630

Kempe H, Schwabe A, Crémazy F, Verschure PJ & Bruggeman FJ (2015) The volumes631

and transcript counts of single cells reveal concentration homeostasis and capture biological632

noise. Molecular biology of the cell 26: 797–804633

Keren L, Dijk D van, Weingarten-Gabbay S, Davidi D, Jona G, Weinberger A, Milo R634

& Segal E (2015) Noise in gene expression is coupled to growth rate. Genome research:635

gr.191635.115636

Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G,637

Bren A, Zeevi D, Weinberger A, Alon U, Milo R & Segal E (2013) Promoters maintain638

their relative activity levels under different growth conditions. Molecular Systems Biology639

9: 701–701640

Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V & Tans SJ (2014) Stochasticity641

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209593doi: bioRxiv preprint 

https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/


of metabolism and growth at the single-cell level. Nature 514: 376–379642

Klumpp S, Scott M, Pedersen S & Hwa T (2013) Molecular crowding limits translation643

and cell growth. Proceedings of the National Academy of Sciences 110: 16754–16759644

Klumpp S, Zhang Z & Hwa T (2009) Growth Rate-Dependent Global Effects on Gene645

Expression in Bacteria. Cell 139: 1366–1375646

Kut C, Golkhou V & Bader JS (2009) Analytical approximations for the amplitude and647

period of a relaxation oscillator. BMC systems biology 3: 6648

Li G-W, Burkhardt D, Gross C & Weissman JS (2014) Quantifying absolute protein649

synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:650

624–635651

Lipshtat A, Loinger A, Balaban NQ & Biham O (2006) Genetic toggle switch without652

cooperative binding. Physical review letters 96: 188101653

Lloyd-Price J, Tran H & Ribeiro AS (2014) Dynamics of small genetic circuits subject to654

stochastic partitioning in cell division. Journal of Theoretical Biology 356: 11–19655

Lu T, Volfson D, Tsimring L & Hasty J (2004) Cellular growth and division in the Gillespie656

algorithm. Systems biology657

Luo R, Ye L, Tao C & Wang K (2013) Simulation of E. coli Gene Regulation including658

Overlapping Cell Cycles, Growth, Division, Time Delays and Noise. PLoS ONE 8:659

e62380–10660

Modi S, Vargas-Garcia CA, Ghusinga KR & Singh A (2017) Analysis of Noise Mechanisms661

in Cell-Size Control. Biophysical journal 112: 2408–2418662

Molenaar D, Berlo R van, Ridder D de & Teusink B (2009) Shifts in growth strategies663

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209593doi: bioRxiv preprint 

https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/


reflect tradeoffs in cellular economics. Molecular Systems Biology 5: 323664

Osella M & Lagomarsino MC (2013) Growth-rate-dependent dynamics of a bacterial665

genetic oscillator. Physical review. E, Statistical, nonlinear, and soft matter physics 87:666

012726667

Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Church-668

man LS, Singh A & Raj A (2015) Single Mammalian Cells Compensate for Differences in669

Cellular Volume and DNA Copy Number through Independent Global Transcriptional670

Mechanisms. Molecular Cell 58: 339–352671

Paijmans J, Bosman M, Wolde PR ten & Lubensky DK (2016) Discrete gene replication672

events drive coupling between the cell cycle and circadian clocks. Proceedings of the673

National Academy of Sciences 113: 4063–4068674

Peterson JR, Cole JA, Fei J, Ha T & Luthey-Schulten ZA (2015) Effects of DNA replication675

on mRNA noise. Proceedings of the National Academy of Sciences of the United States of676

America 112: 15886–15891677

Rocco A, Kierzek AM&McFadden J (2013) Slow protein fluctuations explain the emergence678

of growth phenotypes and persistence in clonal bacterial populations. PLoS ONE 8: e54272679

Schaechter M, Maaloe O & Kjeldgaard NO (1958) Dependency on medium and temperature680

of cell size and chemical composition during balanced grown of Salmonella typhimurium.681

Journal of general microbiology 19: 592–606682

Schwabe A & Bruggeman FJ (2014) Contributions of Cell Growth and Biochemical683

Reactions to Nongenetic Variability of Cells. Biophysical journal 107: 301–313684

Scott M, Gunderson CW, Mateescu EM, Zhang Z & Hwa T (2010) Interdependence of cell685

growth and gene expression: origins and consequences. Science (New York, N.Y.) 330:686

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209593doi: bioRxiv preprint 

https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/


1099–1102687

Scott M, Klumpp S, Mateescu EM & Hwa T (2014) Emergence of robust growth laws688

from optimal regulation of ribosome synthesis. Molecular Systems Biology 10: 747689

Shahrezaei V & Marguerat S (2015) Connecting growth with gene expression: of noise690

and numbers. Current opinion in microbiology 25: 127–135691

Shahrezaei V & Swain PS (2008) Analytical distributions for stochastic gene expression.692

Proceedings of the National Academy of Sciences 105: 17256–17261693

Shahrezaei V, Ollivier JF & Swain PS (2008) Colored extrinsic fluctuations and stochastic694

gene expression. Molecular Systems Biology 4: 196695

Soltani M, Vargas-Garcia CA, Antunes D & Singh A (2016) Intercellular Variability696

in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes. PLoS697

computational biology 12: e1004972698

Swain PS, Elowitz MB & Siggia ED (2002) Intrinsic and extrinsic contributions to699

stochasticity in gene expression. Proceedings of the National Academy of Sciences of the700

United States of America 99: 12795–12800701

Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M & Jun702

S (2015) Cell-size control and homeostasis in bacteria. Current biology : CB 25: 385–391703

Tan C, Marguet P & You L (2009) Emergent bistability by a growth-modulating positive704

feedback circuit. Nature Chemical Biology705

Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, Emili A & Xie XS (2010)706

Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single707

cells. Science (New York, N.Y.) 329: 533–538708

Tanouchi Y, Pai A, Park H, Huang S, Stamatov R, Buchler NE & You L (2015) A noisy709

38

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209593doi: bioRxiv preprint 

https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/


linear map underlies oscillations in cell size and gene expression in bacteria. Nature710

Publishing Group 523: 357–360711

Turner JJ, Ewald JC & Skotheim JM (2012) Cell size control in yeast. Current biology :712

CB 22: R350–9713

Vilar JMG, Kueh HY, Barkai N & Leibler S (2002) Mechanisms of noise-resistance in714

genetic oscillators. Proceedings of the National Academy of Sciences of the United States715

of America 99: 5988–5992716

Walker N, Nghe P & Tans SJ (2016) Generation and filtering of gene expression noise by717

the bacterial cell cycle. BMC Biology 14: 11718

Wallden M, Fange D, Lundius EG, Baltekin Ö & Elf J (2016) The Synchronization of719

Replication and Division Cycles in Individual E. coli Cells. Cell 166: 729–739720

Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A & Jun S (2010) Robust721

growth of Escherichia coli. Current biology : CB 20: 1099–1103722

Zopf CJ, Quinn K, Zeidman J & Maheshri N (2013) Cell-cycle dependence of transcription723

dominates noise in gene expression. 9: e1003161724

39

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209593doi: bioRxiv preprint 

https://doi.org/10.1101/209593
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Impact of division rate and cell size on gene expression noise
	Abstract
	Introduction
	Results
	Stochastic gene expression in growing and dividing cells
	Expression noise depends on division rate even when protein concentration is maintained
	Increase of cell size with the division rate prevents noise increase for constitutively expressed proteins despite a decrease in average concentration
	Impact of division rate on the behaviour of an oscillator circuit
	Impact of division rate on the behaviour of the toggle switch
	 When gene expression feedbacks on growth: the case of toxin-mediated growth inhibition

	Discussion
	Acknowledgments
	Methods
	Modelling
	Reference gene expression parameters
	Realistic modelling of cellular growth rate and cell size variability across growth conditions with noisy linear maps
	Modelling Q expression by transcriptional or translational adjustment
	Modelling P expression
	Oscillator circuit
	Toggle switch circuit
	Growth bistability caused by expression of a toxic protein
	Simulation algorithm

	References


