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Abstract		

The	 limited	 supply	 of	 fossil	 fuels	 and	 the	 establishment	 of	 new	 environmental	

policies	 shifted	 research	 in	 industry	 and	 academia	 towards	 sustainable	

production	 of	 the	 2nd	 generation	 of	 biofuels,	 with	Methyl	 Ethyl	 Ketone	 (MEK)	

being	 one	 promising	 fuel	 candidate.	 MEK	 is	 a	 commercially	 valuable	

petrochemical	with	an	extensive	application	as	a	solvent.	However,	as	of	today,	a	

sustainable	 and	 economically	 viable	 production	 of	 MEK	 has	 not	 yet	 been	

achieved	 despite	 several	 attempts	 of	 introducing	 biosynthetic	 pathways	 in	

industrial	 microorganisms.	 We	 used	 BNICE.ch	 to	 discover	 all	 novel	 pathways	

around	MEK.	 Out	 of	 1’325	 identified	 compounds	 connecting	 to	MEK	with	 one	

reaction	 step,	 we	 selected	 3-oxopentanoate,	 but-3-en-2-one,	 but-1-en-2-olate,	

butylamine,	 and	 2-hydroxy-2-methyl-butanenitrile	 for	 further	 study.	 We	

reconstructed	 3’679’610	 novel	 biosynthetic	 pathways	 towards	 these	 5	

compounds.	We	then	embedded	these	pathways	into	the	genome-scale	model	of	

E.	 coli,	 retaining	 a	 set	 of	 18’925	 most	 biologically	 viable	 ones	 based	 on	 their	

thermodynamic	 feasibilities	 and	 yields.	 For	 each	 novel	 reaction	 in	 the	 viable	

pathways,	 we	 proposed	 the	most	 similar	 KEGG	 reactions,	 with	 their	 gene	 and	

protein	 sequences,	 as	 candidates	 for	 either	 a	 direct	 experimental	

implementation	or	as	basis	for	enzyme	engineering.	Through	pathway	similarity	

analysis	we	classified	 the	pathways	and	 identified	 the	enzymes	and	precursors	

that	 were	 indispensable	 for	 the	 production	 of	 the	 target	 molecules.	 The	

developments	 from	this	study	enhance	 the	potential	of	BNICE.ch	 for	discovery,	

systematic	evaluation,	and	analysis	of	novel	pathways	in	future	synthetic	biology	

and	metabolic	engineering	studies.	
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Introduction	

Limited	reserves	of	oil	and	natural	gas	and	the	environmental	issues	associated	

with	 their	 exploitation	 in	 the	 production	 of	 chemicals	 sparked	 off	 current	

developments	of	processes	that	can	produce	the	same	chemicals	from	renewable	

feedstocks.	A	fair	amount	of	these	efforts	focuses	on	a	sustainable	production	of	

the	2nd	generation	of	biofuels.		

Compared	to	the	currently	used	fossil	fuels	and	bioethanol,	these	2nd	generation	

biofuels	 should	 provide	 lower	 carbon	 emissions,	 higher	 energy	 density,	 and	

should	 be	 less	 corrosive	 to	 engines	 and	distribution	 infrastructures.	 Currently,	

there	is	no	fuel	that	satisfies	all	the	above-mentioned	criteria.1	However,	a	large	

number	of	potential	 candidates	has	recently	been	proposed,	 such	as	n-butanol,	

isobutanol,	 2-methyl-1-butanol	or	3-methyl-1-butanol2,	 C13	 to	C17	mixtures	of	

alkanes	and	alkenes3,	fatty	esters,	and	fatty	alcohols4.	

For	many	 of	 these	 chemicals,	 natural	microbial	 producers	 are	 not	 known	 and	

novel	 biosynthetic	 pathways	 for	 their	 production	 are	 yet	 to	 be	 discovered.5,	6	

Even	when	production	pathways	for	target	chemicals	are	known,	it	is	important	

to	 find	 alternatives	 in	 order	 to	 reduce	 cost	 and	 greenhouse	 emissions,	 and	 as	

well	to	avoid	possible	patent	issues.		

Computational	 tools	 are	 needed	 to	 assist	 in	 the	 design	 of	 novel	 biosynthetic	

pathways	because	they	allow	exhaustive	generation	of	possible	alternatives	and	

evaluation	of	their	properties	and	prospects	for	producing	target	chemicals6.	For	

instance,	computational	tools	can	be	used	to	assess	the	success	of	expression	of	a	

production	pathway	operating	in	one	organism	in	another	host	organism.	They	

can	also	be	used	to	predict,	prior	to	experimental	pathway	implementation,	the	

yields	across	organisms	of	a	particular	pathway	in	producing	a	target	molecule.	
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There	are	different	computational	 tools	 for	pathway	prediction	available	 in	 the	

literature.7-17	 An	 important	 class	 of	 these	 tools	 is	 based	 on	 the	 concept	 of	

generalized	 enzyme	 reaction	 rules,	 which	 were	 introduced	 by	 Hatzimanikatis	

and	co-workers.18,	19	These	rules	emulate	the	functions	of	enzymes,	and	they	can	

be	 used	 to	 apply	 in	silico	biotransformations	 over	 a	wide	 range	 of	 substrates.6	

Most	 of	 the	 implementations	 of	 this	 concept	 appear	 in	 the	 context	 of	

retrobiosynthesis,	where	 the	algorithm	generates	 all	 possible	pathways	 from	a	

target	compound	toward	desired	precursors	in	an	iterative	backward	manner.5-7,	

12,	14,	17-24		

In	 this	 study,	 we	 used	 the	 retrobiosynthesis	 framework	 of	 BNICE.ch6,	7,	18-23	 to	

explore	 the	 biotransformation	 space	 around	 Methyl	 Ethyl	 Ketone	 (MEK),	 also	

referred	 to	 as	 2-butanone.25	 Besides	 acetone,	 MEK	 is	 the	 most	 commercially	

produced	ketone	with	broad	applications	as	a	solvent	 for	paints	and	adhesives	

and	as	a	plastic	welding	agent.26	MEK	shows	superior	characteristics	compared	

to	 the	 existing	 fuels	 in	 terms	 of	 its	 thermo-physical	 properties,	 increased	

combustion	 stability	 at	 low	 engine	 load,	 and	 cold	 boundary	 conditions,	 while	

decreasing	particle	emissions.27	Since	there	is	no	known	native	producer	of	MEK,	

there	were	recent	attempts	to	introduce	biosynthetic	pathways	and	produce	this	

molecule	 in	 E.	coli28,	29	 and	 yeast.25	 However,	 none	 of	 these	 attempts	 achieved	

commercially	 viable	 amounts	 of	 produced	 MEK.	 Alternatively,	 hybrid	

biochemical/chemical	approaches	that	combine	both	fermentative	and	catalytic	

processes	were	proposed.30,	31	

We	used	the	BNICE.ch	algorithm	to	generate	a	network	of	potential	biochemical	

reactions	around	MEK,	and	we	identified	159	KEGG32,	33	and	1’166	PubChem34,	35	

compounds	 one	 reaction	 step	 away	 from	 MEK	 (Table	 S1	 in	 the	 Supporting	
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Information).	 Out	 of	 the	 1’325	 compounds,	 2-hydroxy-2-methyl-butanenitrile	

was	the	only	compound	with	a	known	biotransformation	to	MEK.	We	chose	this	

compound	 along	 with	 3-oxopentanoate,	 but-3-en-2-one,	 but-1-en-2-olate	 and	

butylamine	for	further	study.	The	latter	four	compounds	were	chosen	based	on	

their:	(i)	easy	chemical	conversion	to	MEK,	e.g.,	3-oxopentanoate	spontaneously	

decarboxylates	 to	 MEK;	 and	 (ii)	 potential	 use	 as	 precursor	 metabolites	 to	

produce	a	range	of	other	valuable	chemicals.36-38	

We	 have	 reconstructed	 all	 possible	 novel	 biosynthetic	 pathways	 (3’679’610	 in	

total)	up	to	a	length	of	4	reaction	steps	from	the	central	carbon	metabolites	of	E.	

coli	toward	 the	5	 compounds	mentioned	above.	We	evaluated	 the	 feasibility	of	

these	 3’679’610	 pathways,	 and	 we	 further	 analyzed	 all	 18’925	

thermodynamically	 feasible	pathways	regarding	 their	yields.	We	also	 identified	

metabolic	subnetworks	that	were	carrying	fluxes	when	the	optimal	yields	were	

attained.	From	this	analysis,	we	determined	the	minimal	sets	of	precursors	and	

the	common	routes	and	enzymes	for	production	of	the	target	compounds.		

	
Results	and	Discussion	
	
Generated	metabolic	network	around	Methyl	Ethyl	Ketone	

We	used	 the	 retrobiosynthesis	algorithm	of	BNICE.ch	 to	 iteratively	 reconstruct	

the	biochemical	network	that	contained	all	compounds	and	reactions	that	were	

up	 to	 five	 generations	 away	 from	MEK	 (Figure	 1).	 In	 the	 first	 iteration	 of	 the	

reconstruction	procedure,	we	provided	to	BNICE.ch	the	initial	set	of	compounds	

that	 contained	 26	 cofactors	 along	 with	 MEK	 (Table	 S2	 in	 the	 Supporting	

Information).	After	five	iterations,	a	total	of	13’498	compounds	were	generated,	

and	out	of	these,	we	found	749	in	the	KEGG32,	33	and	13’414	in	the	PubChem34,	35	
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databases	 (Figure	 1,	 panel	 A).	 These	 compounds	 were	 involved	 in	 65’644	

reactions,	 out	 of	 which	 560	 existed	 in	 the	 KEGG	 database	 and	 the	 remaining	

65’084	 were	 novel	 reactions	 (Figure	 1,	 panel	 B).	 Out	 of	 361*2	 bidirectional	

generalized	 enzyme	 reaction	 rules	 of	 BNICE.ch,	 369	 (190	 forward	 and	 179	

reverse)	were	required	to	generate	the	metabolic	network	around	MEK	with	the	

size	of	5	reaction	steps.	

	

Figure	 1.	 Growth	 of	 the	 BNICE.ch	 generated	 metabolic	 network	 over	 5	

iterations.	 Compounds:	 KEGG	 (Panel	 A,	 blue)	 and	 PubChem	 (Panel	 A,	 red).	

Reactions:	KEGG	(Panel	B,	blue)	and	novel	(Panel	B,	red).	

	

In	the	first	BNICE.ch	iteration,	there	were	25	KEGG	and	6	PubChem	compounds	

connected	 through	 48	 novel	 reactions	 to	 MEK.	 After	 five	 iterations,	 BNICE.ch	

generated	a	 total	of	1’841	 reactions	 that	 involved	MEK.	Among	 them,	only	one	

reaction	was	 catalogued	 in	 the	KEGG	database	 (KEGG	R09358).	 The	 generated	

reactions	 involved	 1’325	 carbon	 compounds	 that	 could	 be	 potentially	 used	 as	

MEK	 precursors.	 From	 these,	 we	 chose	 to	 study	 2-hydroxy-2-

methylbutanenitrile	because	it	was	the	only	KEGG	compound	connected	to	MEK	

through	 a	 KEGG	 reaction	 (KEGG	 R09358).	 We	 also	 selected	 four	 other	

compounds	obtained	 in	 the	 first	 iteration:	3-oxopentanoate	 (KEGG	compound),	

but-3-en-2-one	(KEGG	compound),	butylamine	(KEGG	compound),	and	but-1-en-

2-olate	(PubChem	compound).	

	

Pathway	reconstruction	toward	five	target	compounds		
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In	 the	 pathway	 reconstruction	 process,	 we	 used	 as	 starting	 compounds	 157	

metabolites	 selected	 from	 the	 generated	 network,	 which	 were	 identified	 as	

native	E.	coli	metabolites	 using	 the	 latest	E.	coli	genome-scale	model	 iJO136639	

(Table	S3	in	the	Supporting	Information).	We	performed	an	exhaustive	pathway	

search	 on	 the	 generated	 metabolic	 network,	 and	 we	 reconstructed	 3’679’610	

pathways	 toward	 these	 five	 target	 compounds	 with	 pathway	 lengths	 ranging	

from	1	up	to	4	reaction	steps	(Table	1).	The	reconstructed	pathways	consist	of	

37’448	 reactions,	 i.e.,	 57%	 of	 the	 reactions	 reproduced	 from	 the	 BNICE.ch	

generated	metabolic	network.		

More	than	58%	of	the	discovered	pathways	were	toward	butylamine.	For	but-1-

en-2-olate,	which	was	 the	only	PubChem	target	compound,	we	discovered	only	

140’779	pathways,	i.e.,	3.8%	of	the	reconstructed	pathways	(Table	1).	From	the	

33	 reconstructed	 pathways	 with	 the	 length	 of	 one	 reaction	 step,	 28	 were	

towards	 butylamine	 and	 none	 towards	 but-1-en-2-olate.	 The	 majority	 of	

reconstructed	 pathways	 (>	 97%)	 had	 the	 length	 of	 four	 reaction	 steps.	 This	

result	 suggests	 that	 the	 biochemistry	 of	 enzymatic	 reactions	 favors	 smaller	

changes	of	 a	molecule	 structure	over	 several	 steps,	 rather	 than	 a	more	 radical	

change	in	one	or	a	just	a	few	steps.	

	

Table	1.	Reconstructed	pathways	toward	five	target	compounds.		

Target	 Reconstructed	 Reaction	steps	 Feasible	
pathways	

compounds	 pathways	 1	 2	 3	 4	 FBA	 TFA	
3-Oxopentanoate	 641’493	 1	 198	 12’222	 629’072	 361’187	 11’145	
But-3-en-2-one	 438’889	 1	 136	 7’554	 431’198	 57’173	 4’117	
Butylamine	 2’146’890	 28	 1’236	 53’573	 2’092’053	 27’211	 1’177	

But-1-en-2-olate	 140’779	 0	 53	 2’905	 137’821	 30’689	 1’826	
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2-Hydroxy-2-
methylbutanenitrile	 311’559	 3	 94	 6’546	 304’916	 11’151	 660	

	 3’679’610	 33	 1’717	 82’800	 3’595’060	 487’411	 18’925	
	

Evaluation	of	reconstructed	pathways	

We	 performed	 a	 series	 of	 feasibility	 studies	 on	 the	 ~3.6	 million	 generated	

pathways	 to	 assess	 their	 biological	 viability	 and	performance,	 and	we	 rejected	

the	 ones	 that	 did	 not	 pass	 the	 requirements	 (Methods).	 The	 feasibility	 of	 the	

pathways	depends	on	the	metabolic	network	of	the	chassis	organism.	Therefore,	

we	 embedded	 each	 of	 the	 reconstructed	 pathways	 in	 the	 E.	coli	genome-scale	

model	 iJO1366	 to	perform	several	 feasibility	 tests.	Unless	stated	otherwise,	we	

applied	the	constraints	from	the	C1	set	(Methods)	for	the	subsequent	analyses.	

Flux	balance	analysis.	We	used	FBA	as	a	prescreening	method	to	reject	all	the	

pathways	 that	did	not	satisfy	 the	mass	balance	constraints.	More	precisely,	 the	

FBA	 infeasible	 pathways	 were	 incompatible	 with	 the	 host	 organism	 as	 they	

required	 co-substrates	 that	 were	 absent	 in	 iJO1366.	 Out	 of	 all	 reconstructed	

pathways,	 13.24%	 (487’411)	 were	 FBA	 feasible	 (Table	 1).	 Though	 the	 largest	

number	 of	 reconstructed	 pathways	 were	 towards	 butylamine,	 only	 1.27%	

(27’211)	of	these	passed	the	FBA	test.	The	number	of	FBA	feasible	pathways	for	

2-hydroxy-2-methylbutanenitrile	was	 also	 low	 (3.59%).	 In	 contrast,	more	 than	

56%	of	pathways	towards	3-oxopentanoate	were	FBA	feasible.	

Thermodynamics-based	 flux	analysis.	We	used	Thermodynamics-based	 Flux	

Analysis	 (TFA)	 to	 identify	 thermodynamically	 feasible	 pathways.	 Our	 analysis	

showed	that	TFA	is	a	necessary	step	 in	 the	pathway	evaluation	process	since	a	

majority	of	FBA	feasible	pathways	were	in	fact	infeasible	when	subjected	to	the	

thermodynamic	constrains.	Only	18’925	pathways	passed	this	test,	i.e.,	0.51%	of	
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all	generated	pathways,	or	3.88%	of	the	FBA	feasible	pathways.	The	set	of	TFA	

feasible	pathways	involved	3’269	unique	reactions.		

Analogous	 to	 the	 FBA	 feasibility,	 the	 lowest	 TFA	 feasibility	 rate	 was	 for	

butylamine,	 i.e.,	0.05%	of	 reconstructed	pathways	were	TFA	 feasible	 (Table	1).	

The	highest	rate	of	TFA	feasible	pathways	was	again	for	3-oxopentanoate	(1.74	

%).	 The	 shortest	 TFA	 feasible	 pathways	 consisted	 of	 2	 reaction	 steps	 (21	

pathways),	whereas	a	majority	of	 feasible	pathways	had	 length	4	(Table	2).	All	

pathways	contained	novel	 reaction	steps,	and	19	pathways	had	only	one	novel	

reaction	step	(Table	2).	All	of	these	19	pathways	were	towards	but-3-en-2-one,	

and	 had	 as	 intermediates	 2-acetolactate	 and	 acetoin.	 The	 final	 reaction	 step	

converting	acetoin	to	but-3-en-2-one	was	novel	for	all	of	them.		

	

Table	 2.	 Number	 of	 known	 reaction	 steps	 versus	 all	 reaction	 steps.	 Pathways	

with	 one	 novel	 reaction	 step	 are	marked	 in	 red.	 All	 shown	 pathways	 are	 TFA	

feasible.	

	 	 Reaction	steps	 Feasibility	
	 2	 3	 4	 TFA	

N
um

be
r	
of
	k
no
w
n	
st
ep
s	
in
	a
	p
at
hw

ay
	

0	 14	 371	 7’059	 7’444	 3-Oxopentanoate	

1	 	 118	 2’956	 3’074	

2	 	 	 627	 627	

0	 4	 72	 3’196	 3’272	 But-3-en-2-one	

1	 1	 13	 703	 717	

2	 	 2	 110	 112	

3	 	 	 16	 16	

0	 2	 35	 974	 1’011	 Butylam
ine	

1	 	 7	 139	 146	

2	 	 	 20	 20	
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0	 	 23	 1’576	 1’599	 But-1-en-2-olate	

1	 	 10	 196	 206	

2	 	 	 21	 21	

0	 	 50	 380	 430	
2-H

ydroxy-2-
m
ethylbutanenitrile3	

1	 	 2	 202	 204	

2	 	 	 26	 26	

	 	 21	 703	 18’201	 18’925	

	

Yield	 analysis.	 We	 used	 TFA	 to	 assess	 the	 production	 yield	 of	 the	 feasible	

pathways	 from	 glucose	 to	 the	 target	 compounds	 (S4	 in	 the	 Supporting	

Information).	 We	 identified	 pathways	 for	 all	 target	 compounds	 that	 could	

operate	without	a	loss	of	carbon	from	glucose.	More	than	a	half	of	the	pathways	

toward	 3-oxopentanoate	 (57%)	 could	 operate	 with	 the	 maximum	 theoretical	

yield	of	0.774	g/g,	 i.e.,	1Cmol/1Cmol	(Figure	2).	 In	contrast,	only	27	out	of	660	

pathways	toward	2-hydroxy-2-methylbutanenitrile	(4%)	could	operate	with	the	

maximal	 theoretical	 yield	 of	 0.66	 g/g	 (S4	 in	 the	 Supporting	 Information).	 The	

population	 of	 yields	 was	 grouped	 into	 several	 distinct	 sets	 rather	 than	 being	

more	 spread	 and	 continuous,	 e.g.,	 eleven	 sets	 for	 3-oxopentanoate,	 (S4	 in	 the	

Supporting	 Information).	 Interestingly,	 a	 similar	 discrete	 pattern	 in	 pathway	

yields	 was	 observed	 for	 the	 production	 of	 mono-ethylene	 glycol	 in	 Moorella	

thermoacetica	and	Clostridium	ljungdahlii.40		

Analysis	 of	 alternative	 assumptions	 on	 reaction	 directionalities.	Since	 the	

directionality	 of	 reactions	 in	 the	 network	 impacts	 yields,	we	 investigated	 how	
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the	 set	 of	 alternative	 constraints	 C2	(Methods)	 affected	 the	 yield	 distribution.	

The	 constraints	 from	 the	 C2	 set	 imposed	 the	 directionalities	 from	 iJO1366	 to	

some	reactions	 that	could	operate	 in	both	directions	with	 the	constraints	 from	

the	 C1	 set.	 As	 expected,	 these	 additional	 constraints	 reduced	 flexibility	 of	 the	

metabolic	network.	We	observed	that	the	distribution	of	yields	was	more	spread	

compared	 to	 the	 one	 obtained	 using	 the	 C1	 constraints;	 the	 yields	 were	 in	

general	lower,	and	some	pathways	even	became	infeasible	(S5	in	the	Supporting	

Information).	 For	 example,	 there	 were	 three	 alternative	 pathways	 for	 the	

production	of	3-oxopentanoate	from	acetate	via	two	intermediate	compounds:	2-

ethylmalate	and	(3S)-3-hydroxypentanoate.	The	three	alternative	pathways	had	

three	 different	 cofactor	 pairs	 in	 the	 final	 reaction	 step	 that	 converts	 (3S)-3-

hydroxypentanoate	 to	 3-oxopentanoate	 (Figure	 S1	 in	 the	 Supporting	

Information).	With	the	set	of	constraints	C1	applied,	the	three	pathways	had	an	

identical	 maximal	 yield	 of	 0.642	 g/g.	 In	 contrast,	 with	 the	 set	 C2	 applied,	 the	

pathway	with	NADH/NAD	cofactor	pair	in	the	final	step	had	a	yield	of	0.537	g/g,	

the	one	with	NADPH/NADP	had	a	yield	of	0.542	g/g,	and	the	one	with	H2O2/H20	

had	 a	 yield	 of	 0.495	 g/g.	 These	 difference	 in	 yields	 are	 a	 consequence	 of	 the	

different	costs	of	cofactor	production	upon	adding	supplementary	constraints.		

BridgIT	 analysis.	 For	 each	 novel	 reaction	 from	 the	 feasible	 pathways,	 we	

identified	 the	 most	 similar	 KEGG	 reaction	 whose	 gene	 and	 protein	 sequences	

were	assigned	to	the	novel	reaction	(Methods).	The	BridgIT	results	are	available	

at	http://lcsb-databases.epfl.ch/pathways/.	

	

Analysis	of	non-core	subnetworks	capable	of	synthesizing	target	molecules	
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For	 each	 of	 the	 feasible	 pathways,	 we	 identified	 the	 active	 metabolic	

subnetworks	containing	the	reactions	required	to	carry	fluxes	to	synthesize	the	

corresponding	 target	 molecule	 (Methods).	 We	 then	 split	 the	 active	 metabolic	

subnetworks	 into	 the	 core	 metabolic	 network,	 which	 included	 central	 carbon	

metabolism	 pathways41,	 42,	 and	 the	 active	 non-core	 metabolic	 subnetwork	

(Figure	2,	panel	A,	and	Methods).	 In	 this	way,	we	 identified	57’139	active	non-

core	 subnetworks	 from	 the	 18’925	 TFA	 feasible	 pathways.	 On	 average,	 there	

were	more	 than	3	 alternative	 subnetworks	 per	 pathway	due	 to	 the	 redundant	

topology	of	metabolism	(Table	3).		

	

Figure	 2.	 Metabolic	 network	 representing	 the	 production	 of	 3-oxopentanoate	

from	 glucose	 (panel	 A).	 Black	 lines:	 reactions	 pertaining	 to	 the	 core	metabolic	

network.	 Red	 lines:	 reactions	 pertaining	 to	 the	 active	 non-core	 metabolic	

subnetwork.	 Green	 nodes:	 metabolites	 in	 the	 core	 metabolic	 network.	 Orange	

nodes:	metabolites	 in	the	active	non-core	metabolic	subnetwork.	Yellow	nodes:	

core	 precursors,	 i.e.,	 metabolites	 that	 connect	 the	 core	 and	 active	 non-core	

subnetworks.	Alternative	pathways	connecting	ribose-5-phosphate,	R5p,	with	2-

deoxy-D-ribose-1-phosphate,	2dr1p	(panel	B).	Alternative	pathways	connecting	

the	core	metabolites	with	propanal,	Ppal	(panel	C).		

	

Table	 3.	 Alternative	 non-core	 subnetworks	 for	 5	 target	 compounds	 together	

with	their	lumped	reactions	and	precursors.	

Target	
compounds	

Feasible	
pathways	

Alternative	
subnetworks	

Unique	
lumps	

Overlapping	sets	
of	precursors	

Unique	
precursors	

3-Oxopentanoate	 11’145	 35’013	 4’517	 281	 40	

But-3-en-2-one	 4’117	 10’162	 1’762	 126	 32	
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Butylamine	 1’177	 4’259	 1’791	 102	 30	

But-1-en-2-olate	 1’826	 5’339	 1’536	 97	 30	
2-Hydroxy-2-

methylbutanenitrile	 660	 2’420	 794	 37	 17	

	 18’925	 57’139	 10’400	 	
	 	

	
Next,	we	 computed	 a	 lumped	 reaction	 for	 each	of	 the	 alternative	 subnetworks	

(Methods).	 Out	 of	 the	 57’139	 computed	 lumped	 reactions,	 only	 10’400	 were	

unique	(Table	3).	For	 the	compound	3-oxopentanoate,	we	observed	 the	 largest	

diversity	 in	 alternative	 subnetworks	 per	 lumped	 reaction,	 where	 for	 35’013	

alternative	 subnetworks	 there	 were	 4’517	 unique	 lumped	 reactions,	 i.e.,	 on	

average,	more	than	7	alternative	subnetworks	had	the	same	lumped	reactions.	In	

contrast,	we	observed	the	smallest	diversity	 for	butylamin	with	more	than	two	

alternative	 subnetworks	 per	 lumped	 reaction	 (794	 unique	 lumped	 reactions	

from	2’420	alternative	 subnetworks)	 (Table	3).	For	 the	 five	 target	 compounds,	

there	 were,	 on	 average,	 more	 than	 5	 alternative	 subnetworks	 per	 lumped	

reaction.	This	result	suggests	that	the	overall	chemistry	and	the	cost	to	produce	

the	corresponding	target	molecule	are	the	same	for	many	different	pathways.	An	

illustrative	 example	 of	 multiple	 pathways	 with	 the	 same	 lumped	 reaction	 is	

provided	in	Figure	2	in	the	Supporting	Information.	

	
Origins	 of	 diversity	 of	 alternative	 subnetworks.	 To	 better	 understand	 the	

diversity	 in	alternative	subnetworks,	we	performed	an	 in-depth	analysis	of	 the	

two-step	pathway	from	acetyl-CoA	and	propanal	to	3-oxopentanoate,	which	was	

selected	because	it	presented	the	largest	number	of	alternative	networks	among	

all	 reconstructed	 pathways.	 The	 smallest	 alternative	 subnetwork	 of	 the	 185	

analyzed	 consisted	 of	 14	 enzymes,	 whereas	 the	 largest	 one	 comprised	 22	

enzymes	(Table	S6	in	the	Supporting	Information).	All	subnetworks	shared	five	
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common	 enzymes:	 two	 enzymes	 from	 the	 production	 pathway	 converting	

propanal	via	(3S)-3-hydroxypentanoate	 to	3-oxopentanoate	(with	 the	BNICE.ch	

assigned	 third	 level	 Enzymatic	 Commission,	 EC,	 numbers43	 2.3.3.-	 and	 1.1.1.-),	

two	 enzymes	 involved	 in	 acetyl-CoA	 production	 (phosphopentomutase	

(deoxyribose),	PPM2,	and	deoxyribose-phosphate	aldolase,	DRPA),	and	aldehyde	

dehydrogenase,	ALDD3y,	converting	propionate	(ppa)	to	propanal	(Figure	2).	

The	multiplicity	of	ways	to	produce	acetyl-CoA	and	propionate	contributed	to	a	

large	 number	 of	 alternative	 subnetworks:	 there	 were	 102	 alternative	 ways	 of	

producing	 acetyl-CoA	 from	 ribose-5-phosphate	 (r5p)	 via	 2-deoxy-D-ribose-1-

phosphate	 (2dr1p)	 and	 9	 different	 ways	 of	 producing	 propionate	 (Figure	 2,	

panels	B	and	C).		

There	 were	 two	 major	 routes	 to	 produce	 2dr1p.	 In	 the	 first	 route,	 R5p	 is	

converted	either	to	ribose-1-phosphate	(in	31	alternatives)	or	to	D-ribose	(in	19	

alternatives),	 which	 are	 intermediates	 in	 producing	 nucleosides	 such	 as	

adenosine,	 guanosine,	 inosine	 and	 uridine.	 These	 nucleosides	 are	 further	

converted	to	deoxyadenosine	(Dad_2),	deoxyguanosine	(Dgsn)	and	deoxyuridine	

(Duri)	that	are	ultimately	phosphorylated	to	2dr1p.	In	26	of	the	52	alternatives	

for	the	second	route,	R5p	is	converted	to	phosphoribosyl	pyrophosphate	(prpp),	

which	is	followed	by	a	transfer	of	its	phospho-ribose	group	to	nucleotides	such	

as	AMP,	GMP,	IMP	and	UMP.	These	nucleotides	are	then	converted	to	2dr1p	by	

downstream	reaction	steps.	 In	 the	remaining	alternatives	 for	 the	second	route,	

R5p	is	first	converted	to	AMP	in	one	reaction	step,	and	then	to	2dr1p	via	Dad_2	

and	Dgsn.	

There	 were	 9	 alternative	 routes	 to	 produce	 propionate.	 In	 4	 of	 these,	 this	

compound	was	produced	 from	pyruvate	 and	 succinate	 (Figure	2,	panels	A	and	
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C),	in	3	routes	it	was	produced	from	aspartate	(Figure	2,	panel	C),	and	in	2	routes	

it	was	produced	from	3-phosphoglycerate	and	glutamate.	

	

Core	 precursors	 of	 five	 target	 compounds.	 An	 abundant	 provision	 of	

precursor	metabolites	is	crucial	for	an	efficient	production	of	target	molecules.44	

Here,	we	defined	as	core	precursors	the	metabolites	that	connect	the	core	to	the	

active	 non-core	 metabolic	 subnetworks	 (Figure	 2,	 panel	 A).	 We	 analyzed	 the	

different	 combinations	 of	 core	 precursors	 that	 appeared	 in	 the	 alternative	

subnetworks.	 Our	 analysis	 revealed	 that	 the	 majority	 of	 subnetworks	 were	

connected	to	the	core	network	through	a	limited	number	of	core	precursors.	For	

example,	35’013	alternative	subnetworks	for	the	production	of	3-oxopentanoate	

were	 connected	 to	 the	 core	 network	 by	 281	 different	 sets	 of	 core	 precursors	

(Table	 3).	 In	 these	 281	 sets,	 there	 were	 only	 40	 unique	 core	 precursors.	 We	

ranked	 these	 sets	 based	 on	 their	 number	 of	 appearances	 in	 the	 alternative	

networks.	The	top	ten	sets	appeared	in	24’210	subnetworks,	which	represented	

69%	of	 all	 identified	 subnetworks	 for	 this	 compound	 (Table	 4).	Moreover,	 the	

metabolites	 from	 the	 top	 set	 (acetyl-CoA,	 propionyl-CoA,	 pyruvate,	 ribose-5-

phosphate,	 and	 succinate)	were	 the	 precursors	 in	 8’510	 (24.3%)	 subnetworks	

for	3-oxopentanoate	(Table	4).	Ribose-5-phosphate	appeared	in	9	out	of	the	top	

ten	 sets,	 and	 it	 was	 a	 precursor	 in	 32’237	 (92%)	 3-oxopentanoate	 producing	

subnetworks.		

	

Table	 4.	 	 Top	 ten	 core	 precursor	 combinations	 for	 the	 production	 of	 3-

oxopentanoate.	 Core	 precursors:	 acetate	 (Ac),	 acetyl-CoA	 (AcCoA),	 aspartate	
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(Asp-L),	dihydroxyacetone	phosphate	(Dhap),	propionyl-CoA	(PpCoA),	pyruvate	

(Pyr),	ribose-5-phosphate	(R5p),	succinate	(Succ),	succinyl-CoA	(SucCoA).	

Ac	 AcCoA	 Asp-L	 Dhap	 PpCoA	 Pyr	 R5p	 Succ	 SucCoA	 Number	of	
subnetworks	

	
✔	 	 	 ✔	 ✔	 ✔	 ✔	 	 8’510	

	 	 ✔	 	 ✔	 	 ✔	 	 	 5’409	

	 	 	 	 ✔	 ✔	 ✔	 ✔	 	 3’463	

✔	 	 	 	 	 	 ✔	 	 ✔	 1’344	

	 	 	 	 	 ✔	 ✔	 ✔	 	 1’049	

	 ✔	 	 	 	 	 ✔	 ✔	 	 965	

	 ✔	 	 	 	 	 ✔	 	 ✔	 956	

	 	 	 	 ✔	 ✔	 	 ✔	 	 915	

	 ✔	 	 ✔	 	 	 ✔	 	 	 834	

	 	 	 ✔	 	 	 ✔	 	 	 765	

	 	 	 	 	 	 	 	 	 24’210	

	

Clustering	of	feasible	pathways	

The	 repeating	 occurrences	 of	 core	 precursors	 and	 lumped	 reactions	 in	 the	

alternative	non-core	subnetworks	motivated	us	to	 identify	common	patterns	 in	

enzymes,	core	precursors	and	intermediate	metabolites	required	to	produce	the	

target	molecules.	To	this	end,	we	performed	two	types	of	clustering	on	the	test	

study	of	115	feasible	pathways	from	acetate	to	3-oxopentanoate.	

Clustering	based	on	core	precursors	and	byproducts	of	 lumped	reactions.	

We	 computed	 242	 lumped	 reactions	 corresponding	 to	 115	 pathways	 from	 the	

test	 study.	 For	 simplicity,	 we	 chose	 the	 first	 lumped	 reaction	 returned	 by	 the	

solver	for	each	of	the	115	pathways,	and	we	discuss	here	the	clustering	based	on	

core	precursors	and	byproducts	of	the	chosen	115	lumped	reactions	(Methods).		
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The	 main	 branching	 condition	 among	 the	 115	 pathways	 was	 the	 presence	 or	

absence	 of	 thioesters,	 such	 as	 AcCoA,	 in	 the	 set	 of	 core	 precursors	 (Figure	 3).	

There	were	56	pathways	with	CoA-related	precursors	and	59	pathways	that	did	

not	 require	 CoA.	 We	 further	 clustered	 the	 pathways	 from	 the	 former	 group	

subject	 to	 the	 presence	 of	 the	 precursors	 AcCoA	 (1	 pathway),	 PpCoA	 (30	

pathways),	both	AcCoA	and	PpCoA	(6	pathways),	and	SucCoA	(19	pathways),	or	

the	occurrence	of	the	byproducts	malonate	(Maln)	or	CO2.	The	pathways	that	did	

not	require	CoA	were	further	clustered	depending	on	 if	 they	had	as	precursors	

Formate	(For)	or	DHAP	(27	pathways)	or	not	(32	pathways).	

	
Figure	 3.	 Clustering	 dendrogram	 of	 the	 115	 reconstructed	 pathways	 from	

acetate	 to	 3-oxopentanoate	 and	 their	 respective	 yields	 (inset).	 Pathways	were	

classified	based	on	core	precursors	(red)	and	byproducts	(green)	of	their	lumped	

reactions.	(R)-CoA	denotes	the	group	of	thioesters.	

	

Remarkably,	the	clustering	based	on	core	precursors	and	byproducts	of	lumped	

reactions	also	separated	the	pathways	based	on	their	yields	(Figure	3,	inset).	For	

instance,	pathways	 that	had	AcCoA,	PpCoA,	Dhap,	 and	For	as	precursors	had	a	

maximal	theoretical	yield	of	0.774	g/g.	In	contrast,	pathways	with	2-oxoglutarate	

(AKG)	or	SucCoA	as	precursors,	and	Maln	as	the	byproduct,	had	the	lowest	yield	

(0.483	g/g)	from	the	set	of	examined	pathways.	

The	 clustering	 also	 provided	 insight	 into	 the	 different	 chemistries	 behind	 the	

analyzed	pathways.	For	most	of	the	pathways,	 i.e.,	 the	ones	classified	in	groups	

B1-2	 and	 B4-10,	 there	 was	 a	 clear	 link	 between	 the	 core	 precursors	 and	 co-

substrates	 of	 acetate	 in	 the	 first	 reaction	 step	 of	 the	 pathways	 (Figure	 3).	 For	
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example,	the	pathways	from	the	group	B1	have	a	common	first	reaction	step	(EC	

2.8.3.-)	 that	 converts	 acetate	 and	 3-oxoadipyl-CoA	 to	 3-oxoadipate	 (Figure	 3).	

The	 clustering	grouped	 these	pathways	 together	because	SucCoA	was	 the	 core	

precursor	 of	 3-oxoadipyl-CoA	 through	 3-oxoadipyl-CoA	 thiolase	 (3-OXCOAT).	

Moreover,	 3-oxoadipate,	 a	 6-carbon	 compound,	was	 converted	 in	 downstream	

reaction	 steps	 to	3-oxopentanoate,	 a	5-carbon	 compound,	 and	one	molecule	of	

CO2	through	18	alternative	routes.	Similarly,	 in	 the	single	pathway	of	group	B2	

the	co-substrate	in	the	first	reaction	step	was	(S)-methylmalonyl-CoA,	which	was	

produced	 from	 SucCoa	 through	 methylmalonyl-CoA	 mutase	 (MMM).	 This	

enzyme,	 also	 known	 as	 sleeping	 beauty	 mutase,	 is	 a	 part	 of	 the	 pathway	

converting	 succinate	 to	 propionate	 in	 E.	 coli.45	 Malonate	 (Maln),	 a	 2-carbon	

compound,	was	released	in	the	first	reaction	step,	which	resulted	in	a	low	yield	

of	this	pathway	(Figure	3).		

Despite	 sharing	 the	 first	 reaction	 step	 in	 which	 acetate	 reacted	 with	 2-

oxoglutarate	to	create	2-hydroxybutane	1-2-4-tricarboxylate,	the	pathways	from	

group	B9	were	 split	 in	 two	 groups	with	 different	 yields	 (Figure	 3).	 These	 two	

groups	 differed	 in	 the	 sequences	 of	 reactions	 involved	 in	 the	 reduction	 of	 2-

hydroxybutane	1-2-4-tricarboxylate,	a	7-carbon	compound,	to	3-oxopentanoate.	

In	11	pathways,	the	yield	was	0.483	g/g	due	to	a	release	of	two	CO2	molecules,	

whereas	in	one	pathway	the	yield	was	0.644	g/g	due	to	malate	being	created	as	a	

side-product	and	recycled	back	to	the	system.	

Pathways	 from	 group	 B3	 utilized	 different	 co-substrates,	 such	 as	 ATP	 and	

crotonoyl-CoA,	along	with	acetate	 to	produce	acetaldehyde	 in	 the	 first	 reaction	

step.	All	these	pathways	shared	a	common	novel	reaction	step	with	acetaldehyde	

and	propionyl-CoA	as	substrates	(EC	2.3.1.-).		
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Finally,	 group	 B11	 contained	 the	 pathways	 with	 the	 intermediate	 2-

methylcitrate,	which	was	produced	from	pyruvate	(Pyr).	

	

Clustering	 based	 on	 involved	 enzymes.	 The	 clustering	 based	 on	 the	 core	

precursors	and	byproducts	provided	an	insight	of	the	chemistry	underlying	the	

production	of	3-oxopentanoate.	However,	 lumped	reactions	hide	the	identity	of	

the	 enzymes	 involved	 in	 the	 active	 non-core	 subnetworks.	 To	 find	 common	

enzyme	routes	for	the	production	of	3-oxopentanoate,	we	performed	a	clustering	

based	on	the	sets	of	enzymes	forming	the	non-core	subnetworks	(Methods).	

Five	 enzymes,	 AMP	 nucleosidase	 (AMPN),	 5’-nucleotidase	 (NTD6),	 purine-

nucleoside	phosphorylase	(PUNP2),	PPM2	and	DRPA,	which	participated	 in	 the	

production	 of	 acetaldehyde	 from	 R5p,	 were	 present	 in	 all	 routes	 from	 3-

oxopentanoate	 to	 acetate	 (Figure	 2,	 panels	 A	 and	 C).	 The	 clustering	 separated	

pathways	 depending	 on	 if	 they	 contained	 or	 not	 a	 sequence	 of	 6	 enzymes	

starting	with	 aspartate	 kinase	 (ASPK)	 and	 ending	with	 L-threonine	 deaminase	

(THRD_L),	 whose	 product	 2-oxobutanoate	 was	 converted	 downstream	 to	 3-

oxopentanoate	 (Figure	 4).	 The	 groups	 contained	 47	 and	 68	 pathways,	

respectively.	

	

Figure	4.	Clustering	dendrogram	of	115	reconstructed	pathways	from	acetate	to	

3-oxopentanoate.	 Pathways	 were	 clustered	 based	 on	 enzymes	 involved	 in	 the	

active	non-core	metabolic	subnetworks.	

	

Both	 groups	 were	 further	 clustered	 based	 on	 a	 set	 of	 enzymes	 required	 to	

produce	deoxyadenosine	and	 the	downstream	metabolite	acetaldehyde	 (Figure	
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4).	 The	 first	 subgroup	 of	 enzymes,	 i.e.	 ribonucleoside-diphosphate	 reductase	

(RNDR1),	 deoxyadenylate	 kinase	 (DADK)	 and	 NTD6,	 converted	 adp	 to	

deoxyadenosine.	In	the	second	subgroup,	atp	was	transferred	to	deoxyadenosine	

via	 ribonucleoside-triphosphate	 reductase	 (RNTR1c2),	 nucleoside	 triphosphate	

pyrophosphorylase	 (NTPP5)	 and	 NTD6.	 Then,	 for	 both	 subgroups,	

deoxyadenosine	 was	 converted	 to	 2-deoxy-D-ribose	 5-phosphate	 (2dr5p)	 that	

was	further	transformed	to	acetaldehyde	via	DRPA	(Figure	2).	

The	 clustering	 based	 on	 enzymes	 allowed	 us	 to	 identify	 enzymatic	 routes	

corresponding	to	different	yields	(Figure	4,	and	Figure	3	inset).	For	example,	all	

pathways	that	 include	ASPK	and	novel	reaction	steps	with	BNICE.ch	third	 level	

EC	assignments,	such	as	1.13.11-,	1.2.1-,	would	provide	the	maximal	theoretical	

yield	 of	 0.774	 g/g	 (Figure	 4).	 Similarly,	 pathways	 that	 contained	 ALDD3Y,	

methylisocitrate	 lyase	 (MCITL2),	 and	 RNTR1C2,	 but	 not	 3-OXCOAT	 and	 ASPK,	

would	also	provide	the	maximal	theoretical	yield.	In	contrast,	the	clustering	also	

permitted	us	to	 identify	key	enzymes	participating	 in	pathways	with	a	reduced	

yield.	For	example,	pathways	that	contained	3-OXCOAT	had	a	yield	of	0.644	g/g.	

Furthermore,	 the	 clustering	 based	 on	 enzymes	 allowed	 us	 to	 clarify	 the	 link	

between	the	precursors	and	the	corresponding	sequence	of	enzymes	that	needed	

to	 be	 active	 for	 producing	 the	 target	 molecule.	 For	 example,	 pathways	 from	

group	B1,	which	had	SucCoA	as	a	core	precursor	and	CO2	as	a	byproduct,	had	the	

common	reaction	step	3-OXCOAT	(Figure	4).	Similarly,	all	pathways	from	group	

B4	with	core	precursors	PpCoA	and	AcCoA	contained	ALDD3Y.	

	

Ranking	of	biosynthetic	pathways	and	recommendations		

We	ranked	the	corresponding	feasible	pathways	according	to	their	yield,	number	
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of	reaction	steps	and	enzymes	that	could	be	directly	implemented	or	needed	to	

be	engineered	(Methods).	This	way,	we	obtained	the	top	candidate	pathways	for	

each	of	the	target	molecules	that	were	likely	to	produce	these	compounds	with	

economically	 viable	 yields.	 The	 top	 candidates	 were	 visualized	 and	 can	 be	

consulted	at	http://lcsb-databases.epfl.ch/pathways/.	

	
Methods		

We	employed	the	BNICE.ch	framework6,	7,	18-23	to	generate	biosynthetic	pathways	

towards	 5	 precursors	 of	 Methyl	 Ethyl	 Ketone:	 3-oxopentanoate,	 2-hydroxy-2-

methylbutanenitrile,	 but-3-en-2-one,	 but-1-en-2-olate	 and	 butylamine.	 We		

tested	 the	set	of	 reconstructed	pathways	against	several	 requirements,	 such	as	

thermodynamic	 feasibility	 and	 mass	 balance	 constraints,	 and	 discarded	 the	

pathways	 that	 were	 not	 biologically	meaningful.6	 Next,	 we	 ranked	 the	 pruned	

pathways	based	on	the	several	criteria,	such	as	yield,	number	of	known	reaction	

steps,	 pathway	 length,	 etc.	 The	 steps	 of	 the	 employed	workflow	 are	 discussed	

further	(Figure	5).	

	

Figure	 5.	 Computational	 pipeline	 for	 discovery,	 evaluation	 and	 analysis	 of	

biosynthetic	pathways.	

	

Metabolic	network	generation		

We	 applied	 the	 retrobiosynthesis	 algorithm	 of	 BNICE.ch6	 to	 generate	 a	

biosynthetic	 network	 that	 contains	 all	 theoretically	 possible	 compounds	 and	

reactions	that	are	up	to	5	reaction	steps	away	from	MEK.	Starting	from	MEK	and	

26	 cofactors	 appearing	 in	 the	 central	 carbon	 metabolism	 of	 living	 organisms	
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(Table	S2	in	the	Supporting	Information),	we	identified	iteratively	in	a	backward	

manner	the	reactions	that	lead	to	MEK	along	with	its	potential	precursors.46	The	

BNICE.ch	network	generation	algorithm	utilizes	 the	expert-curated	generalized	

enzyme	 reaction	 rules18,	 19,	 47	 for	 identifying	 all	 potential	 compounds	 and	

reactions	 that	 lead	 to	 the	 production	 of	 the	 target	molecules.	 The	most	 recent	

version	 of	 BNICE.ch	 includes	 361*2	 bidirectional	 generalized	 reaction	 rules	

capable	of	reconstructing	more	than	6’500	KEGG	reactions.21		

Note	 that	 for	 studies	 where	 we	 need	 to	 generate	 a	 metabolic	 network	 that	

involves	only	KEGG	compounds,	mining	 the	ATLAS	of	Biochemistry21	 is	a	more	

efficient	procedure	than	using	BNICE.ch	retrobiosynthesis	algorithm.	The	ATLAS	

of	 Biochemistry	 is	 a	 repository	 that	 contains	 all	 KEGG	 reactions	 and	 over	

130’000	novel	enzymatic	reactions	between	KEGG	compounds.		

	

Pathway	reconstruction	

We	 performed	 a	 graph-based	 search	 to	 reconstruct	 all	 possible	 pathways	 that	

connect	 the	 five	 target	molecules	with	 the	 set	of	157	native	E.	coli	metabolites	

(Table	S3	in	the	Supporting	Information)32.	We	reconstructed	the	exhaustive	set	

of	pathways	up	to	the	length	of	4	reaction	steps.		

Note:	 If	 we	 were	 interested	 in	 pathways	 containing	 only	 KEGG	 reactions,	 we	

would	perform	a	graph-based	search	over	the	network	mined	from	the	ATLAS	of	

Biochemistry.	

	

Pathway	evaluation		

It	 is	crucial	 to	 identify	and	select,	out	of	a	vast	number	of	generated	pathways,	

the	 ones	 that	 satisfy	 physico-chemical	 constraints,	 such	 as	 mass	 balance	 and	
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thermodynamics,	or	the	ones	that	have	an	economically	viable	production	yield	

of	 the	 target	 compounds	 from	 a	 carbon	 source.	 Evaluation	 of	 pathways	 is	

context-dependent,	 and	 it	 is	 important	 to	perform	 it	 in	an	exact	host	organism	

model	and	under	the	same	physiological	conditions	as	the	ones	that	will	be	used	

in	the	experimental	implementation.	

	

Flux	balance	and	thermodynamic-based	flux	balance	analysis.	We	 embedded	 the	

generated	pathways	one	at	 the	time	in	the	 latest	genome-scale	model	of	E.	coli,	

iJO1366,39	 and	 we	 performed	 both	 Flux	 Balance	 Analysis	 (FBA)48	 and	

Thermodynamic-based	Flux	Analysis	(TFA)49-53	on	the	resulting	models.	In	these	

analyses,	we	assumed	that	 the	only	carbon	source	was	glucose	and	we	applied	

the	following	two	sets	of	constraints	on	reaction	directionalities:	

	 (C1)	 We	 removed	 the	 preassigned	 reaction	 directionalities54	 from	 the	

iJO1366	 model	 with	 the	 exception	 of	 ATP	 maintenance	 (ATPM),	 and	 we	

assumed	 that	 the	 reactions	 that	 involve	 CO2	 are	 operating	 in	 the	

decarboxylation	 direction.	 	 The	 lower	 bound	 on	 ATPM	 was	 set	 to	 8.39	

mmol/gDCW/hr.	The	remaining	reactions	were	assumed	to	be	bi-directional	

for	FBA,	whereas	 for	TFA	 the	directionality	of	 these	reactions	was	 imposed	

by	 thermodynamics.	 The	 purpose	 of	 removing	 preassigned	 reaction	

directionalities	was	 to	 explore	 the	 limitations	 that	 are	 imposed	only	by	 the	

physico-chemical	properties	of	metabolic	network.	

	 (C2)	This	set	of	constraints	contains	the	preassigned	reaction	directionalities	

from	iJO1366	together	with	the	constraints	from	C1.	

Since	FBA	is	less	computationally	expensive	than	TFA,	we	first	performed	FBA	as	

a	 prescreening	 method	 to	 identify	 and	 discard	 the	 pathways:	 (i)	 that	 are	 not	
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satisfying	the	mass	balance,	e.g.,	pathways	that	need	co-substrates	not	present	in	

the	model;	and	(ii)	that	have	a	yield	from	glucose	to	the	target	compounds	lower	

than	 a	 pre-specified	 threshold.	We	 then	 performed	 TFA	 on	 the	 reduced	 set	 of	

pathways	 to	 identify	 the	 pathways	 that	 are	 bio-energetically	 favorable	 and	we	

computed	 their	 yields	 from	 glucose	 to	 5	 target	 compounds	 under	

thermodynamic	constraints.	

	

BridgIT	analysis.	We	used	BridgIT,	our	in-house	developed	computational	tool,	to	

find	 known	 reactions	 with	 associated	 genes	 in	 databases	 that	 were	 the	 most	

structurally	 similar	 to	 novel	 reactions	 appearing	 in	 the	 feasible	 pathways.	

BridgIT	 integrates	 the	 information	 about	 the	 structures	 of	 substrates	 and	

products	 of	 a	 reaction	 into	 reaction	 fingerprints.55	 These	 reaction	 fingerprints	

contain	 the	 information	about	chemical	groups	 in	substrates	and	products	 that	

were	 modified	 in	 the	 course	 of	 a	 reaction.	 BridgIT	 compares	 the	 reaction	

fingerprints	of	novel	reactions	to	the	ones	of	known	reactions,	and	quantifies	this	

comparison	with	the	Tanimoto	similarity	score.	The	Tanimoto	score	of	1	signifies	

that	two	compared	reactions	had	a	high	similarity,	whereas	the	Tanimoto	score	

values	close	to	0	signify	that	there	was	no	similarity.	We	used	this	score	to	rank	

the	 reactions	 identified	as	 similar	 to	each	of	 the	novel	 reactions.	The	gene	and	

protein	sequences	of	the	highest	ranked	reactions	were	proposed	as	candidates	

for	either	a	direct	experimental	implementation	or	enzyme	engineering.		

	

Subnetwork	reconstruction	analysis		

Once	 the	most	 biologically	 feasible	 pathways	were	 identified,	we	 analyzed	 the	

parts	 of	 the	 metabolism	 that	 carry	 fluxes	 when	 the	 target	 compounds	 are	
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produced	 from	 glucose.	 We	 considered	 that	 the	 active	 parts	 of	 metabolism	

consisted	of:	(i)	the	core	metabolic	network	(Figure	2,	panel	A),	which	included	

the	 central	 carbon	 pathways,	 such	 as	 glycolysis,	 pentose	 phosphate	 pathway,	

tricarboxylic	 cycle,	 electron	 transport	 chain;	 and	 (ii)	 the	 active	 non-core	

metabolic	 subnetworks	 (Figure	 2,	 panel	 A),	 which	 contain	 of	 reactions	 that	

would	carry	fluxes	when	a	target	molecule	is	produced,	but	did	not	belong	to	the	

core	metabolic	network.	We	also	defined	the	core	precursors	as	metabolites	that	

are	connecting	the	core	and	the	active	non-core	metabolic	subnetworks	(Figure	

2,	panel	a).	

We	derived	 the	 core	metabolic	 network	 from	 the	 genome-scale	 reconstruction	

iJO136639	 using	 the	 redGEM	 algorithm56,	 and	 we	 then	 used	 the	 lumpGEM57	

algorithm	to	identify	active	non-core	subnetworks,	and	to	compute	their	lumped	

reactions.	 The	 analysis	 of	 lumped	 reactions	 allowed	 us	 to	 identify	 core	

precursors	 of	 the	 target	 chemicals.	 We	 then	 performed	 clustering	 to	 uncover	

common	enzymes,	core	precursors	and	intermediate	metabolites	of	the	non-core	

subnetworks	leading	to	the	production	of	the	target	chemicals.		

	
Identification	 and	 lumping	 of	 active	 non-core	 subnetworks.	 The	 lumpGEM	

algorithm	was	 applied	 to	 identify	 the	 comprehensive	 set	 of	 smallest	metabolic	

subnetworks	that	were	stoichiometrically	balanced	and	capable	of	synthesizing	a	

target	 compound	 from	 a	 defined	 set	 of	 core	 metabolites.	 The	 set	 of	 core	

metabolites	belongs	to	the	core	metabolic	network,	and	it	includes	also	cofactors,	

small	 metabolites,	 and	 inorganic	 metabolites	 (Table	 S7	 in	 the	 Supporting	

Information).	 Then,	 for	 each	 target	 compound	 and	 for	 each	 identified	

subnetwork,	 we	 used	 lumpGEM	 to	 collapse	 this	 subnetwork	 and	 generate	 a	
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corresponding	lumped	reaction.	Within	this	process,	we	also	 identified	the	cost	

of	core	metabolites	for	the	biosynthesis	of	these	target	compounds.	

	

Clustering	of	subnetworks.	To	better	understand	the	chemistry	that	leads	towards	

the	 target	 compounds,	we	 performed	 two	 types	 of	 clustering	 on	 the	 identified	

subnetworks:	

• Clustering	 based	 on	 the	 structural	 similarity	 between	 the	 core	 precursors	

and	 byproducts	 of	 the	 lumped	 reactions.	 For	 each	 lumped	 reaction,	 we	

removed	all	non-carbon	compounds,	such	as	H2,	O2,	and	phosphate,	and	the	

cofactor	 pairs,	 such	 as	 ATP	 and	ADP,	NAD+	and	NADH,	NADP+	 and	NADPH,	

flavodoxin	 oxidized	 and	 reduced,	 thioredoxin	 oxidized	 and	 reduced,	

ubiquinone	 and	 ubiquinol.	 This	 way,	 we	 created	 a	 set	 of	 substrates	 (core	

precursors)	 and	 byproducts	 of	 interest	 for	 each	 lumped	 reaction.	We	 then	

used	 the	msim	 algorithm	 from	 the	 RxnSim	 tool58	 to	 compare	 the	 lumped	

reactions	 based	 on	 individual	 similarities	 of	 their	 core	 precursors	 and	

byproducts.	 We	 finally	 used	 the	 obtained	 similarity	 scores	 to	 perform	 the	

clustering.	

• Clustering	 based	 on	 the	 structural	 similarity	 between	 reactions	 that	

constitute	the	non-core	subnetworks.	We	used	BridgIT	to	compute	structural	

fingerprints	 of	 reactions	 that	 constitute	 the	 non-core	 subnetworks,	 and	we	

then	 performed	 a	 pairwise	 comparison	 of	 the	 non-core	 subnetworks	 as	

follows.		

For	 a	 given	 pair	 of	 non-core	 subnetworks,	 we	 carried	 out	 a	 pairwise	

comparison	of	their	reactions.	As	a	comparison	metric	we	used	the	Tanimoto	

distance	of	 the	 reaction	 fingerprints.59	 Based	on	 this	 comparison,	we	 found	
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the	pair	of	the	most	similar	reactions	in	two	subnetworks	and	we	stored	the	

corresponding	distance	 score.	We	 then	 removed	 this	pair	of	 reactions	 from	

comparison,	 and	 we	 found	 the	 next	 pair	 of	 the	most	 similar	 reactions,	 we	

stored	 their	distance	 score,	 and	we	 continued	with	 this	procedure	until	we	

found	 all	 pairs	 of	 reactions	 in	 two	 subnetworks.	Whenever	 the	 number	 of	

reactions	 in	 two	 subnetworks	 was	 unequal,	 we	 ignored	 the	 unmatched	

reactions.	 The	 distance	 score	 between	 two	 compared	 subnetworks	 was	

formed	as	the	sum	of	the	distance	scores	of	compared	pairs	of	reactions.	This	

procedure	was	repeated	for	all	pairs	of	subnetworks.		

We	 then	 used	 the	 computed	 distance	 scores	 to	 perform	 the	 subnetworks	

clustering.		

	

Ranking	and	visualization	of	in	silico	pathways		

In	 this	 step,	 we	 identified	 the	 pathways	 that	 were	most	 likely	 to	 produce	 the	

target	molecules.	For	scoring	and	ranking	the	biologically	meaningful	pathways	

we	used	several	criteria:	(i)	maximum	yield	from	glucose	to	the	target	molecules;	

(ii)	 minimal	 number	 of	 novel	 reactions,	 i.e.,	 enzymes	 to	 be	 engineered;	 (iii)	

minimal	number	of	 reaction	 steps	 in	 the	production	pathway;	 and	 (iv)	highest	

similarity	scores	from	BridgIT.		

	

Conclusions	

In	this	work,	we	used	BNICE.ch	to	reconstruct,	evaluate	and	analyze	more	than	

3.6	million	biosynthetic	pathways	from	the	central	carbon	metabolites	of	E.	coli	

toward	 five	 precursors	 of	Methyl	 Ethyl	 Ketone	 (MEK),	 a	 2nd	generation	 biofuel	
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candidate.	Our	evaluation	and	analysis	 showed	 that	more	 than	18’000	of	 these	

pathways	are	biologically	 feasible.	We	provided	gene	and	protein	sequences	of	

the	 structurally	 most	 similar	 KEGG	 reactions	 to	 the	 novel	 reactions	 in	 the	

feasible	 pathways,	 which	 is	 valuable	 information	 for	 their	 experimental	

realization.	 Implementation	of	 the	discovered	pathways	 in	E.	coli	will	allow	the	

sustainable	and	efficient	production	of	five	precursors	of	MEK,	3-oxopentanoate,	

but-3-en-2-one,	 but-1-en-2-olate,	 butylamine,	 and	 2-hydroxy-2-

methylbutanenitrile,	which	can	also	be	used	as	precursors	for	the	production	of	

other	valuable	chemicals.36-38		

	

The	 pathway	 analysis	 methods	 developed	 and	 used	 in	 this	 work	 offer	 a	

systematic	way	for	classifying	and	evaluating	alternative	ways	for	the	production	

of	target	molecules.	They	also	provide	a	better	understanding	of	the	underlying	

chemistry	and	can	be	used	to	guide	the	design	of	novel	biosynthetic	pathways	for	

a	wide	range	of	biochemicals	and	for	their	implementation	into	host	organisms.		

The	present	study	shows	the	potential	of	computational	retrobiosynthetic	tools	

for	 discovery	 and	 design	 of	 novel	 synthetic	 pathways,	 and	 their	 relevance	 for	

future	developments	in	the	area	of	metabolic	engineering	and	synthetic	biology.		
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F1:	Three	alternative	ways	to	produce	3-oxopentanoate	from	acetate	

through	2	intermediate	metabolites:	2-ethylmalate	and	3-
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Abbreviations	
	
PPM2	 	 Phosphopentomutase	2	(deoxyribose)		 	 5.4.2.7	

DRPA		 	 Deoxyribose-phosphate	aldolase		 	 	 4.1.2.4		

ALDD3y	 Aldehyde	dehydrogenase	(propanal,	NADP)		 1.2.1.4		

3OXCOAT	 3-oxoadipyl-CoA	thiolase	 	 	 	 2.3.1.174	

MMM	 	 Methylmalonyl-CoA	mutase		 	 	 5.4.99.2	

AMPN			 AMP	nucleosidase	 	 	 	 	 3.2.2.4	

NTD6				 5'-nucleotidase	(dAMP)		 	 	 	 3.1.3.89	

PUNP2		 Purine-nucleoside	phosphorylase		 	 	 2.4.2.1	

ASPK		 	 Aspartate	kinase		 	 	 	 	 2.7.2.4	

THRD_L		 L-threonine	deaminase	 	 	 	 4.1.1.19	

RNDR1		 Ribonucleoside-diphosphate	reductase	(ADP)		 1.17.4.1		

DADK			 Deoxyadenylate	kinase		 	 	 	 2.7.4.3	

NTTP5		 Nucleoside	triphosphate	pyrophosphorylase	 3.6.1.19	

RNTR1c2		 Ribonucleoside-triphosphate	reductase	(ATP)	 1.17.4.2	

MGSA			 Methylglyoxal	synthase	 	 	 	 4.2.3.3		

ACACT1r		 Acetyl-CoA	C-acetyltransferase	 	 	 2.3.1.9	

FTHFLi		 Formate-tetrahydrofolate	ligase	 	 	 6.3.4.3	

MCITL2		 Methylisocitrate	lyase		 	 	 	 4.1.3.30	
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MCITD		 2-methylcitrate	dehydratase	 	 	 4.2.1.79	

	
References:	
	
1.	Fischer,	C.	R.,	Klein-Marcuschamer,	D.,	and	Stephanopoulos,	G.	(2008)	

Selection	and	optimization	of	microbial	hosts	for	biofuels	production,	
Metabolic	engineering	10,	295-304.	

2.	Atsumi,	S.,	Hanai,	T.,	and	Liao,	J.	C.	(2008)	Non-fermentative	pathways	for	
synthesis	of	branched-chain	higher	alcohols	as	biofuels,	Nature	451,	86-
89.	

3.	Schirmer,	A.,	Rude,	M.	a.,	Li,	X.,	Popova,	E.,	and	del	Cardayre,	S.	B.	(2010)	
Microbial	biosynthesis	of	alkanes,	Science	(New	York,	N.Y.)	329,	559-562.	

4.	Steen,	E.	J.,	Kang,	Y.,	Bokinsky,	G.,	Hu,	Z.,	Schirmer,	A.,	McClure,	A.,	Del	Cardayre,	
S.	B.,	and	Keasling,	J.	D.	(2010)	Microbial	production	of	fatty-acid-derived	
fuels	and	chemicals	from	plant	biomass,	Nature	463,	559-562.	

5.	Cho,	A.,	Yun,	H.,	Park,	J.	H.,	Lee,	S.	Y.,	and	Park,	S.	(2010)	Prediction	of	novel	
synthetic	pathways	for	the	production	of	desired	chemicals,	Bmc	Systems	
Biology	4.	

6.	Hadadi,	N.,	and	Hatzimanikatis,	V.	(2015)	Design	of	computational	
retrobiosynthesis	tools	for	the	design	of	de	novo	synthetic	pathways,	
Current	Opinion	in	Chemical	Biology	28,	99-104.	

7.	Henry,	C.	S.,	Broadbelt,	L.	J.,	and	Hatzimanikatis,	V.	(2010)	Discovery	and	
Analysis	of	Novel	Metabolic	Pathways	for	the	Biosynthesis	of	Industrial	
Chemicals:	3-Hydroxypropanoate,	Biotechnology	and	Bioengineering	106,	
462-473.	

8.	Moriya,	Y.,	Shigemizu,	D.,	Hattori,	M.,	Tokimatsu,	T.,	Kotera,	M.,	Goto,	S.,	and	
Kanehisa,	M.	(2010)	PathPred:	an	enzyme-catalyzed	metabolic	pathway	
prediction	server,	Nucleic	Acids	Research	38,	W138-W143.	

9.	Cho,	A.,	Yun,	H.,	Park,	J.	H.,	Lee,	S.	Y.,	and	Park,	S.	(2010)	Prediction	of	novel	
synthetic	pathways	for	the	production	of	desired	chemicals,	BMC	Systems	
Biology	4,	35.	

10.	Hou,	B.	K.,	Ellis,	L.	B.	M.,	and	Wackett,	L.	P.	(2004)	Encoding	microbial	
metabolic	logic:	predicting	biodegradation,	Journal	of	Industrial	
Microbiology	and	Biotechnology	31,	261-272.	

11.	Ellis,	L.	B.	M.,	Gao,	J.,	Fenner,	K.,	and	Wackett,	L.	P.	(2008)	The	University	of	
Minnesota	pathway	prediction	system:	predicting	metabolic	logic,	Nucleic	
Acids	Research	36,	W427-W432.	

12.	Campodonico,	M.	A.,	Andrews,	B.	A.,	Asenjo,	J.	A.,	Palsson,	B.	O.,	and	Feist,	A.	
M.	(2014)	Generation	of	an	atlas	for	commodity	chemical	production	in	
Escherichia	coli	and	a	novel	pathway	prediction	algorithm,	GEM-Path,	
Metabolic	Engineering	25,	140-158.	

13.	Rodrigo,	G.,	Carrera,	J.,	Prather,	K.	J.,	and	Jaramillo,	A.	(2008)	DESHARKY:	
automatic	design	of	metabolic	pathways	for	optimal	cell	growth,	
Bioinformatics	24,	2554-2556.	

14.	Carbonell,	P.,	Parutto,	P.,	Herisson,	J.,	Pandit,	S.	B.,	and	Faulon,	J.	L.	(2014)	
XTMS:	pathway	design	in	an	eXTended	metabolic	space,	Nucleic	Acids	
Research	42,	W389-W394.	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


15.	Heath,	A.	P.,	Bennett,	G.	N.,	and	Kavraki,	L.	E.	(2010)	Finding	metabolic	
pathways	using	atom	tracking,	Bioinformatics	26,	1548-1555.	

16.	Dale,	J.	M.,	Popescu,	L.,	and	Karp,	P.	D.	(2010)	Machine	learning	methods	for	
metabolic	pathway	prediction,	Bmc	Bioinformatics	11.	

17.	Prather,	K.	L.	J.,	and	Martin,	C.	H.	(2008)	De	novo	biosynthetic	pathways:	
rational	design	of	microbial	chemical	factories,	Current	Opinion	in	
Biotechnology	19,	468-474.	

18.	Hatzimanikatis,	V.,	Li,	C.,	Ionita,	J.	A.,	Henry,	C.	S.,	Jankowski,	M.	D.,	and	
Broadbelt,	L.	J.	(2005)	Exploring	the	diversity	of	complex	metabolic	
networks,	Bioinformatics	21,	1603-1609.	

19.	Hatzimanikatis,	V.,	Li,	C.	H.,	Ionita,	J.	A.,	and	Broadbelt,	L.	J.	(2004)	Metabolic	
networks:	enzyme	function	and	metabolite	structure,	Curr	Opin	Struc	Biol	
14,	300-306.	

20.	Hadadi,	N.,	Soh,	K.	C.,	Seijo,	M.,	Zisaki,	A.,	Guan,	X.	L.,	Wenk,	M.	R.,	and	
Hatzimanikatis,	V.	(2014)	A	computational	framework	for	integration	of	
lipidomics	data	into	metabolic	pathways,	Metabolic	Engineering	23,	1-8.	

21.	Hadadi,	N.,	Hafner,	J.,	Shajkofci,	A.,	Zisaki,	A.,	and	Hatzimanikatis,	V.	(2016)	
ATLAS	of	Biochemistry:	A	Repository	of	All	Possible	Biochemical	
Reactions	for	Synthetic	Biology	and	Metabolic	Engineering	Studies,	ACS	
Synthetic	Biology.	

22.	Soh,	K.	C.,	and	Hatzimanikatis,	V.	(2010)	Dreams	of	Metabolism,	Trends	
Biotechnol	28,	501-508.	

23.	Brunk,	E.,	Neri,	M.,	Tavernelli,	I.,	Hatzimanikatis,	V.,	and	Rothlisberger,	U.	
(2012)	Integrating	computational	methods	to	retrofit	enzymes	to	
synthetic	pathways,	Biotechnology	and	Bioengineering	109,	572-582.	

24.	Yim,	H.,	Haselbeck,	R.,	Niu,	W.,	Pujol-Baxley,	C.,	Burgard,	A.,	Boldt,	J.,	
Khandurina,	J.,	Trawick,	J.	D.,	Osterhout,	R.	E.,	Stephen,	R.,	Estadilla,	J.,	
Teisan,	S.,	Schreyer,	H.	B.,	Andrae,	S.,	Yang,	T.	H.,	Lee,	S.	Y.,	Burk,	M.	J.,	and	
Van	Dien,	S.	(2011)	Metabolic	engineering	of	Escherichia	coli	for	direct	
production	of	1,4-butanediol,	Nature	Chemical	Biology	7,	445-452.	

25.	Ghiaci,	P.,	Norbeck,	J.,	and	Larsson,	C.	(2014)	2-Butanol	and	Butanone	
Production	in	Saccharomyces	cerevisiae	through	Combination	of	a	B12	
Dependent	Dehydratase	and	a	Secondary	Alcohol	Dehydrogenase	Using	a	
TEV-Based	Expression	System,	PLoS	ONE	9,	e102774.	

26.	Hoell,	D.,	Mensing,	T.,	Roggenbuck,	R.,	Sakuth,	M.,	Sperlich,	E.,	Urban,	T.,	Neier,	
W.,	and	Strehlke,	G.	(2009)	2-Butanone,	In	Ullmann's	Encyclopedia	of	
Industrial	Chemistry,	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	

27.	Hoppe,	F.,	Burke,	U.,	Thewes,	M.,	Heufer,	A.,	Kremer,	F.,	and	Pischinger,	S.	
(2016)	Tailor-Made	Fuels	from	Biomass:	Potentials	of	2-butanone	and	2-
methylfuran	in	direct	injection	spark	ignition	engines,	Fuel	167,	106-117.	

28.	Srirangan,	K.,	Liu,	X.,	Akawi,	L.,	Bruder,	M.,	Moo-young,	M.,	and	Chou,	C.	P.	
(2016)	Engineering	Escherichia	coli	for	Microbial	Production	of	
Butanone,	2574-2584.	

29.	Yoneda,	H.,	Tantillo,	D.	J.,	and	Atsumi,	S.	(2014)	Biological	production	of	2-
butanone	in	Escherichia	coli,	ChemSusChem	7,	92-95.	

30.	Multer,	A.,	McGraw,	N.,	Hohn,	K.,	and	Vadlani,	P.	(2013)	Production	of	Methyl	
Ethyl	Ketone	from	Biomass	Using	a	Hybrid	Biochemical/Catalytic	
Approach,	Industrial	&	Engineering	Chemistry	Research	52,	56-60.	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


31.	Drabo,	P.,	Tiso,	T.,	Heyman,	B.,	Sarikaya,	E.,	Gaspar,	P.,	Förster,	J.,	Büchs,	J.,	
Blank,	L.	M.,	and	Delidovich,	I.	(2017)	Anionic	Extraction	for	Efficient	
Recovery	of	Biobased	2,3-Butanediol—A	Platform	for	Bulk	and	Fine	
Chemicals,	ChemSusChem	10,	3252-3259.	

32.	Kanehisa,	M.,	Sato,	Y.,	Kawashima,	M.,	Furumichi,	M.,	and	Tanabe,	M.	(2016)	
KEGG	as	a	reference	resource	for	gene	and	protein	annotation,	Nucleic	
Acids	Research	44,	D457-D462.	

33.	Kanehisa,	M.,	and	Goto,	S.	(2000)	KEGG:	Kyoto	Encyclopedia	of	Genes	and	
Genomes,	Nucleic	Acids	Research	28,	27-30.	

34.	Engel,	T.	(2007)	The	structural-	and	bioassay	database	PubChem,	Nachr	
Chem	55,	521-524.	

35.	Kim,	S.,	Thiessen,	P.	A.,	Bolton,	E.	E.,	Chen,	J.,	Fu,	G.,	Gindulyte,	A.,	Han,	L.,	He,	J.,	
He,	S.,	Shoemaker,	B.	A.,	Wang,	J.,	Yu,	B.,	Zhang,	J.,	and	Bryant,	S.	H.	(2016)	
PubChem	Substance	and	Compound	databases,	Nucleic	Acids	Research	44,	
D1202-D1213.	

36.	Krumpfer,	J.	W.,	Giebel,	E.,	Frank,	E.,	Müller,	A.,	Ackermann,	L.-M.,	Tironi,	C.	N.,	
Mourgas,	G.,	Unold,	J.,	Klapper,	M.,	Buchmeiser,	M.	R.,	and	Müllen,	K.	
(2017)	Poly(Methyl	Vinyl	Ketone)	as	a	Potential	Carbon	Fiber	Precursor,	
Chemistry	of	Materials	29,	780-788.	

37.	Siegel,	H.,	and	Eggersdorfer,	M.	(2000)	Ketones,	In	Ullmann's	Encyclopedia	of	
Industrial	Chemistry,	Wiley-VCH	Verlag	GmbH	&	Co.	KGaA.	

38.	Eller,	K.,	Henkes,	E.,	Rossbacher,	R.,	and	Höke,	H.	(2000)	Amines,	Aliphatic,	In	
Ullmann's	Encyclopedia	of	Industrial	Chemistry,	Wiley-VCH	Verlag	GmbH	&	
Co.	KGaA.	

39.	Orth,	J.	D.,	Conrad,	T.	M.,	Na,	J.,	Lerman,	J.	A.,	Nam,	H.,	Feist,	A.	M.,	and	Palsson,	
B.	O.	(2011)	A	comprehensive	genome-scale	reconstruction	of	Escherichia	
coli	metabolism-2011,	Molecular	Systems	Biology	7.	

40.	Islam,	M.	A.,	Hadadi,	N.,	Ataman,	M.,	Hatzimanikatis,	V.,	and	Stephanopoulos,	
G.	(2017)	Exploring	biochemical	pathways	for	mono-ethylene	glycol	
(MEG)	synthesis	from	synthesis	gas,	Metabolic	Engineering	41,	173-181.	

41.	Neidhardt,	F.	C.,	Ingraham,	J.	L.,	and	Schaechter,	M.	(1990)	Physiology	of	the	
bacterial	cell	:	a	molecular	approach,	Sinauer	Associates,	Sunderland,	
Mass.	

42.	Sudarsan,	S.,	Dethlefsen,	S.,	Blank,	L.	M.,	Siemann-Herzberg,	M.,	and	Schmid,	
A.	(2014)	The	Functional	Structure	of	Central	Carbon	Metabolism	in	
Pseudomonas	putida	KT2440,	Applied	and	Environmental	Microbiology	
80,	5292-5303.	

43.	Lilley,	D.	M.	J.,	Clegg,	R.	M.,	Diekmann,	S.,	Seeman,	N.	C.,	Von	Kitzing,	E.,	and	
Hagerman,	P.	J.	(1995)	A	nomenclature	of	junctions	and	branchpoints	in	
nucleic	acids,	Nucleic	Acids	Research	23,	3363-3364.	

44.	Chen,	Y.,	Daviet,	L.,	Schalk,	M.,	Siewers,	V.,	and	Nielsen,	J.	(2013)	Establishing	
a	platform	cell	factory	through	engineering	of	yeast	acetyl-CoA	
metabolism,	Metab	Eng	15.	

45.	Haller,	T.,	Buckel,	T.,	Rétey,	J.,	and	Gerlt,	J.	A.	(2000)	Discovering	New	
Enzymes	and	Metabolic	Pathways: 	Conversion	of	Succinate	to	Propionate	
by	Escherichia	coli,	Biochemistry	39,	4622-4629.	

46.	Corey,	E.	J.	(1991)	The	Logic	of	Chemical	Synthesis	-	Multistep	Synthesis	of	
Complex	Carbogenic	Molecules,	Angew	Chem	Int	Edit	30,	455-465.	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


47.	Li,	C.	H.,	Henry,	C.	S.,	Jankowski,	M.	D.,	Ionita,	J.	A.,	Hatzimanikatis,	V.,	and	
Broadbelt,	L.	J.	(2004)	Computational	discovery	of	biochemical	routes	to	
specialty	chemicals,	Chemical	Engineering	Science	59,	5051-5060.	

48.	Orth,	J.	D.,	Thiele,	I.,	and	Palsson,	B.	Ø.	(2010)	What	is	flux	balance	analysis?,	
Nature	biotechnology	28,	245-248.	

49.	Henry,	C.	S.,	Broadbelt,	L.	J.,	and	Hatzimanikatis,	V.	(2007)	Thermodynamics-
based	metabolic	flux	analysis,	Biophys	J	92,	1792-1805.	

50.	Henry,	C.	S.,	Jankowski,	M.	D.,	Broadbelt,	L.	J.,	and	Hatzimanikatis,	V.	(2006)	
Genome-scale	thermodynamic	analysis	of	Escherichia	coli	metabolism,	
Biophys	J	90,	1453-1461.	

51.	Ataman,	M.,	and	Hatzimanikatis,	V.	(2015)	Heading	in	the	right	direction:	
thermodynamics-based	network	analysis	and	pathway	engineering,	Curr	
Opin	Biotechnol	36,	176-182.	

52.	Soh,	K.	C.,	and	Hatzimanikatis,	V.	(2010)	Network	thermodynamics	in	the	
post-genomic	era,	Curr	Opin	Microbiol	13,	350-357.	

53.	Soh,	K.	S.,	and	Hatzimanikatis,	V.	(2014)	Constraining	the	flux	space	using	
thermodynamics	and	integration	of	metabolomics	data,	Methods	in	
Molecular	Biology	1191,	49-63.	

54.	Frainay,	C.,	and	Jourdan,	F.	(2017)	Computational	methods	to	identify	
metabolic	sub-networks	based	on	metabolomic	profiles,	Briefings	in	
Bioinformatics	18,	43-56.	

55.	James,	C.	A.,	and	Weininger,	D.	Daylight	Theory	Manual,	Daylight	Chemical	
Information	Systems,	Inc.:	Irvine,	CA.	

56.	Ataman,	M.,	Gardiol,	D.	H.	F.,	Fengos,	G.,	and	Hatzimanikatis,	V.	(2017)	
redGEM:	Systematic	Reduction	and	Analysis	of	Genome-scale	Metabolic	
Reconstructions	for	Development	of	Consistent	Core	Metabolic	Models,	
Plos	Computational	Biology.	

57.	Ataman,	M.,	and	Hatzimanikatis,	V.	(2017)	lumpGEM:	Systematic	Generation	
of	Subnetworks	and	Elementally	Balanced	Lumped	Reactions	for	the	
Biosynthesis	of	Target	Metabolites,	Plos	Computational	Biology.	

58.	Giri,	V.,	Sivakumar,	T.	V.,	Cho,	K.	M.,	Kim,	T.	Y.,	and	Bhaduri,	A.	(2015)	RxnSim:	
a	tool	to	compare	biochemical	reactions,	Bioinformatics	31,	3712-3714.	

59.	Bajusz,	D.,	Rácz,	A.,	and	Héberger,	K.	(2015)	Why	is	Tanimoto	index	an	
appropriate	choice	for	fingerprint-based	similarity	calculations?,	Journal	
of	Cheminformatics	7,	20.	

	
	
	 	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


Figures	
	

	
	

Figure	1	
	

0 1 2 3 4 5

 Compounds

Generation

N
um

be
r o

f c
om

po
un

ds

a
0

20
00

40
00

60
00

80
00

10
00

0
12

00
0

Biochemical
Chemical

a)

27 0 33 25 66
29

5
20

8
1 4

45

48
3

5 1
19

74
9

12
 74

9

1 2 3 4 5

Reactions

Generation

N
um

be
r o

f r
ea

ct
io

ns
0

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

KEGG
Novel

0 48 4 88
0

70
5 7

31

29
1

22
 78

0

56
0

65
 08

4
b

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


	
	

Figure	2	
	

a

b c

2.3.3.-

1.1.1.-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


	
	

Figure	3	

0.3 0.4 0.5 0.6 0.7 0.8

10

30

50

70

114
113
112
36
37
55
54
53
47
46
45
44
43
42
41
40
39
38
4
2
3
111
110
109
108
107
106
105
104
103
101
102
115
94
93
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
7
5
6
24
23
22
21
19
20
18
29
28
25
26
27
30
99
98
97
96
95
92
91
90
89
88
52
51
50
49
48
35
34
33
32
31
17
16
15
14
13
12
11
10
8
9
100
72
71
7069
68
67
66
6564
63
62
6160
59
58
57
1
56

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

 

 

3-Oxoadipyl-CoA

Methylmalonyl-CoA

Propanoyl-CoA

Propanoyl-CoA

Pyruvate

Acetaldehyde

Oxygen

Methylglyoxal

2-Aminomalonate 
semialdehyde

2-Oxoglutarate

2-Oxobutanoate

2-Methylcitrate

2-Oxoglutarate
00.51.52.5 123

Acetate

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B9

Yield [gr product/gr substrate]

N
um

be
r 

of
 fe

as
ib

le
 p

at
hw

ay
s

Inset

Ac
Co

A

(R
) -

 C
oA

SuccCoA

PpCoA

Pp
Co

A

Ye
s

No

Ye
s

No
Ye

s
No

No
Ye

s

Ye
s

No

Pyr
Asp

Akg

Dhap

For

Gl
yc

lt

CO

Maln

Mal

Fo
r o

r D
ha

p

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


	
	

Figure	4	
	

38
45
46
55

4
2

3
39

41
40

47
54

48
95

88
16

34119097508311391985198996143249153310
52

35
17

92
99

12
53

44
43

42
18

110
109
114
77
5
73
84
79
75
112
63
65
64
62
69
56
72
71
67
68
58
61
60
70
59
57
66
1
6
7
82

19
23 21

22 24
20 81

80 76 78 93 94 86 83 87 85 74 107108105102
103

106
111
104
101

37
113
36
26
29
30
27
28
25
115
100

19.6 13.1 6.5 0.0
ASPK  

Aspartate kinase      ->
EC 2.7.2.4     

THRD_L
L-threonine deaminase

EC 4.3.1.17

YES

NO

RNTR1c2

EC 1.17.4.1

RNDR1

EC 1.17.4.1

EC 1.13.11.-

EC 1.2.1.-

EC 2.7.1.-

EC
 1.

14
.13

.-
EC

 4.
1.1

.-

EC
 4

.2
.1

.-

EC
 1.

1.1
.-

EC
 1

.1
4.

15
.-

M
CITL2 -> MCITD

N
O

EC 1.14.13.-

EC 4.1.1.-
EC 4.2.1.-

EC 1.13.11.-EC 1.2.1.-EC 2.7.1.-

EC 2.8.3.-

EC 4.1.2.-

EC 6.2.1.-

RNDR1
EC 1.17.4.1

3-OXCOAT

YES

MCITL2 -> MCITD

M
G

SA

YES
NO

ACACT1r
FTHFLi

3-OXCOAT

EC 1.17.4.1

RNTR1c2YE
S

NO

ALDD3Y

YE
S

YES
NO

YES MGSAYES NO

B1

B1

B11

B7

B9

B8

B5
B5

B10
B10

B7

B6
B7

B9

B11

B4

B8
B2

NO

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569


	
	

Figure	5	

Target compound

1

2

3

Genome 
Scale Model

IN
P

U
T

5

Set of 
Constraints

4

Pathway 
Reconstruction

Pathway 
Evaluation

IN
P

U
TS

Subnetwork 
Reconstruction

Analysis

Experimental
 implementation &

pathway optimization

Result
        Interpretation 

Set of starting
compounds

Reject
infeasible
pathways

Feasibility 
analysis

(FBA,TFA)

Yield analysis

Lumping

Clustering

Visualization

Scoring and Ranking

BNICE.ch
 retrobiosynthesis

is KEGG?

YES

NO

Mining ATLAS
 of Biochemistry

Network involves
only KEGG

compounds?

NO

IN
P

U
T

Core 
Model

IN
P

U
T

Generalized 
reaction rules

(772)

Databases:
   - KEGG 
   - PubChem
   - Chebi ...

IN
P

U
TS

Metabolic Network 
Generation

BridgIT analysis

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569

