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Abstract 
Investigation of the genetic architecture of gene expression traits has aided interpretation of 
disease and trait-associated genetic variants, however key aspects of expression quantitative 
trait (eQTL) study design and analysis remain understudied. We used extensive, empirically-
driven simulations to explore eQTL study design and the performance of various analysis 
strategies. Across multiple testing correction methods, false discoveries of genes with eQTLs 
(eGenes) were substantially inflated when false discovery rate (FDR) control was applied to 
all tests, and only appropriately controlled using hierarchical procedures. All multiple testing 
correction procedures had low power and inflated FDR for eGenes whose causal SNPs had 
small allele frequencies using small sample sizes (e.g. frequency <10% in 100 samples), 
indicating that even moderately low frequency eQTL SNPs (eSNPs) in these studies are 
enriched for false discoveries. In scenarios with ≥80% power, the top eSNP was the true 
simulated eSNP 90% of the time, but substantially less frequently for very common eSNPs 
(minor allele frequencies >25%). Overestimation of eQTL effect sizes, so-called “Winner’s 
Curse”, was common in low and moderate power settings. To address this, we developed a 
bootstrap method (BootstrapQTL) which led to more accurate effect size estimation. These 
insights provide a foundation for future eQTL studies, especially those with sampling 
constraints and subtly different conditions.  
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Introduction 
Genome-wide association studies (GWAS) have identified thousands of genetic variants 
associated with complex phenotypes1 and the vast majority of genome-wide significant SNPs 
are located in non-coding region2, making interpretation challenging. Integration of gene 
expression and genetic variation is a ubiquitous approach for uncovering genetic regulatory 
effects and their ramifications for pathways relevant to human diseases and traits3,4,5,6, and 
indeed trait-associated SNPs have been found to be enriched for expression quantitative trait 
loci (eQTL) effects7.  
 
Yet, while eQTL analysis has become a focus of functional genomics, the lack of a strong 
evidence base for eQTL study design leaves fundamental questions unanswered. In particular, 
while more and more eQTLs reach statistical significance, the true proportion of false 
discoveries and the accuracy of their effect size estimates have not yet been well 
characterised. A seminal early study compared multiple testing correction methods for 
detecting eQTLs (including Bonferroni correction, false discovery rate control and 
permutation) using HapMap data, however estimates of false discovery rate (FDR) and 
sensitivity are not possible without knowledge of all true eQTLs in the data8. Previous eQTL 
simulations are typically part of new methodologies, yet these simulations have been limited 
in their reflection of real data. Genotype data have typically been simulated with a narrow 
minor allele frequency (MAF) range assuming Hardy-Weinberg equilibrium (e.g. MAF 30% 
in Ref 9, 5% and 20% in Ref 10, 40% in Ref 11), thus they have not captured realistic patterns 
of genetic variation, especially linkage disequilibrium (LD) complexity. Furthermore, MAFs 
at 1% or greater are typically utilized for eQTL analysis (Table S1).  Others have simulated 
only a fixed sample size11,12,13. Typically, eQTL studies have sample sizes of 50 to 1,000, 
with the accessibility of the tissue, cell-type or condition a major determining factor (Table 
S1). A recent trans-eQTL study performed in whole blood had a size of 5,257 samples6 and a 
study combined data for 2,116 whole blood samples to identify context-specific eQTLs14. 
Perhaps the exemplar multiple human tissue resource, the Genotype-Tissue Expression 
(GTEx) project15, comprises 44 tissues with a sample size range of 70–361 in its V6p data 
release16. 
 
While studies have generally converged on linear regression or linear mixed models for 
eQTL detection, the multiple testing correction approach is still a source of substantial 
variability among studies. Various approaches are available for minimizing type I errors. 
Often criticised as too conservative, particularly with complex LD patterns, the Bonferroni 
correction aims to control the familywise error rate (the probability of making any type I 
error) by setting the significance level at α/N, where α is the desired significance level (0.05 
conventionally) and N is the number of tests. FDR-controlling procedures, which aim to 
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control the expected proportion of false discoveries among all rejected null hypotheses, are 
generally considered to provide a better balance between false positives and false negatives. 
Benjamini and Hochberg (BH) proposed a procedure 17  assuming each statistical test is 
independent, which is not the case due to LD. Benjamini and Yekutieli (BY) modified the 
FDR procedure to one which, while more conservative, accommodates correlation structure 
between statistical tests18. The q-value FDR-controlling approach from Storey and Tibshirani 
(ST) estimates the proportion of hypotheses that are truly null (π0), while the BH procedure 
assumes π0 = 1 which makes ST less conservative than the BH procedure19.  
 
Other approaches have been proposed to deal with multiple testing specifically for eQTL 
studies. Locus-restricted permutation testing is widely used to obtain empirical null 
distributions. To achieve this, sample labels are randomly shuffled while keeping genotype 
data constant, with association tests performed at each permutation step. For each gene, the 
best SNP association at each permutation is kept to generate an empirical null distribution of 
minimum p-values, from which permutation test p-values are calculated for each cis-SNP. 
Thousands of permutations are required to achieve accurate results, thus there is a high 
computational cost. Approximations have been investigated for calculating permutation p-
values, such as those in FastQTL20 and MVN21. For example, FastQTL provides an option to 
approximate the tail of the empirical null distributions of p-values using a beta distribution 
thereby reducing the number of permutations required20. In addition to permutation tests, 
eigenMT proposed by Davis et al. 22  adjusts p-values in shorter time. The number of 
independent tests (typically SNPs) for each gene is estimated by eigenMT using a genotype 
correlation matrix, then a Bonferroni procedure is applied22. Both FastQTL and eigenMT 
account for LD structure among local variants. Recently, hierarchical procedures, such as 
TreeQTL23, have been proposed, which first control for multiple testing of variants at each 
gene, before controlling for multiple testing across all genes. Taken together, with many 
correction methods available, it is not clear which method is optimal for eQTL mapping nor 
what their respective performances are for genetic variants with difference characteristics 
(allele frequency, effect size, etc). 
 
Effect size estimation for eQTLs represents a more complex and less explored problem, yet 
its importance is increasing as comparison of eQTLs across tissues, experimental conditions, 
and meta-analyses become more common. Furthermore, prediction of tissue-specific gene 
expression from genotypes, for example using the tool PrediXcan24, is critically dependent on 
effect size estimation, particularly cis-eQTL effect sizes obtained from analyses of GTEx and 
other studies. Conversely, a method which predicts genotypes at eQTL SNPs (eSNPs) based 
on measured gene expression levels has also been proposed25.  
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A well-recognised phenomenon in GWAS is “Winner's Curse”26,27, an ascertainment bias 
where the true genetic effect is smaller than its estimate within the discovery cohort, a 
problem which is accentuated when power is low. Methods have been proposed to correct 
this upward bias, such as those based on likelihood28 and resampling29, however none have 
been tailored to eQTLs. Winner's Curse has also been reported in eQTL studies30 but its 
presence and methods for its correction have not been systematically evaluated. 
 
Here we used extensive simulations of realistic LD patterns of human genetic variation and 
matched gene expression to investigate how various scenarios, including different sample 
sizes, allele frequencies and genetic effect sizes, influence statistical power and FDR (Fig. 1). 
In each scenario, we randomly selected SNPs as true causal cis-eQTLs, each associated with 
expression levels of a target gene. We performed eQTL mapping and evaluated a variety of 
multiple testing correction methods, used both individually and hierarchically, under each 
scenario. We next investigated the accuracy of genetic effect size estimation across scenarios, 
the effect of the Winner’s Curse, and how bias was affected by study power. Finally, we 
evaluated the accuracy of a variety of eQTL effect size estimation procedures.  
 
 
 
 
 
 
 

Results 

Simulation of cis-eQTL data 
To assess the power, FDR, and effect size estimation of eQTL studies based on different 
parameters, we simulated 36 scenarios with combinations of six sample sizes (N=100, 200, 
500, 1000, 2000, and 5000) and six true minor allele frequencies of eSNPs (MAF=0.5%, 1%, 
5%, 10%, 25%, and 50%). Realistic LD patterns were simulated using HAPGEN231 with 
chromosome 22 of the 1000 Genomes Project phase 3 data32 as reference. In each scenario, 
618 gene expression traits were simulated, among which 200 were under genetic regulation 
(true eGenes). Each true eGene was simulated to be regulated by one cis-eQTL with a genetic 
effect size randomly drawn from an empirical distribution based on eQTL analysis of a real 
dataset33,34. 
 
For each gene, all SNPs located within 1Mb of the transcription start site (TSS) were tested 
for association using linear regression models through Matrix eQTL35. We mapped cis-
eQTLs for the 36 scenarios separately and evaluated different multiple testing correction 
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methods. Figure 1 illustrates the workflow of our eQTL simulations and methods evaluation. 
We used Bonferroni, FDR-controlling procedures, permutation approaches, and eigenMT to 
correct for multiple testing. The Bonferroni and FDR procedures were applied alone to all 
hypotheses (pooled method) and were also used in combination via a hierarchical correction 
procedure (Methods). We repeated the simulation for each scenario 100 times and calculated 
the sensitivity and FDR of each multiple testing correction method based on all simulations.  
 

Power and false discovery rate between scenarios and multiple testing correction 
procedures  
We first assessed the variability in sensitivity and FDR for the various multiple testing 
correction methods for eGene detection across simulation scenarios. A significant eGene was 
considered a true positive if: (1) it was among the 200 true eGenes simulated, and (2) the 
simulated causal eSNP for that eGene was among the significant eSNPs, or a significant 
eSNP was in high LD with the causal eSNP (r2 ≥0.8). For each multiple testing correction 
method, sensitivity, or true positive rate (TPR), was calculated as the proportion of simulated 
true eGenes correctly identified as true positives. Conversely, the FDR was calculated as the 
proportion of false positives in significant eGenes identified across all 100 simulations. We 
did not calculate FDR for a scenario if no eGenes were significant in all simulations.  
 
We evaluated multiple testing correction methods in two ways; first, applied across all SNP–
gene hypothesis tests (hereby “pooled methods”), and second, in combinations in a 
hierarchical approach in which SNP–gene hypothesis tests were partitioned into groups by 
the gene being tested (hereby “hierarchical correction procedures”) 36 . In the case of 
hierarchical correction procedures, the multiple hypothesis tests of eGenes were controlled 
(Step 2, global correction) based on the multiple testing adjusted statistics (Step 1, local 
correction) of each gene’s best association, then SNPs significantly associated with the 
significant eGenes were identified based on the locally corrected p-value corresponding to 
the threshold of 0.05 after global correction (Step 3, Methods).  
 
FDR-controlling procedures applied to all hypotheses (pooled FDR methods) failed to control 
the FDR of eGenes in nearly all scenarios, and FDR increased with statistical power (Fig. S1). 
We applied three FDR-controlling procedures to all hypotheses: the Storey-Tibshirani (ST)19, 
Benjamini-Hochberg (BH)17, and Benjamini-Yekutieli (BY)18 procedures. The ST and BH 
procedures failed to control FDR at the desired level of 0.05 in majority of the scenarios, and 
FDR increased with sample size, reaching more than 0.6 under scenarios with sample sizes of 
2,000 or 5,000 and true eSNP MAFs ≥25% (Fig. S1A). The BY procedure was the most 
conservative method among pooled FDR procedures but still had inflated FDR under 
scenarios with large sample sizes (≥1,000) and true eSNP MAFs ≥25%. As expected, a 
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pooled Bonferroni correction had very low FDR values in most scenarios, with the lowest 
sensitivity across MAFs and sample sizes (Fig. S1). However, even pooled Bonferroni 
correction failed to control FDR of rare variant eQTLs (MAF ≤1%) in scenarios with <1,000 
samples. Overall, we observed inflated rates of false positive eGenes for all pooled FDR 
methods.  
 
In contrast to pooled methods, we observed better calibrated FDR for hierarchical multiple 
testing correction procedures, except in scenarios with low statistical power (Fig. 2A, Fig. 
S2). We compared ST, BH, BY, Bonferroni, eigenMT, and three permutation approaches 
(discussed in a later paragraph) for adjusting the cis-SNP p-values for each simulated gene 
(local correction), combined with a comparison of the ST, BH, BY, and Bonferroni 
correction for adjusting the subsequent minimum adjusted p-value across all genes (global 
correction).  
 
We observed lower sensitivity as well as lower FDR than ST and BH when applying BY and 
Bonferroni to correct across genes, regardless of which multiple testing correction method 
was used for local correction (Fig. S2, Fig. S3). ST and BH global correction had identical 
performance, except when permutation tests were used as local correction method, where ST 
had higher FDR than BH and often had FDR slightly higher than 5% (Fig. S2, Fig. S3). We 
therefore subsequently focused on the BH procedure to control for multiple testing across 
genes in hierarchical correction procedures.  
 
We compared three different permutation approaches to correct for multiple testing at each 
gene: (1) using exact permutation test p-values from 1,000 permutations (Perm1k-BH), (2) 
using p-values obtained from beta distribution approximation of each null distribution’s tail 
after 1,000 permutations (BPerm1k-BH), and (3) using beta approximation under an adaptive 
scheme where a minimum of 100 and a maximum of 10,000 permutations were performed 
for each gene based on the significance level of this gene (APerm10k-BH). Due to the 
prohibitive computational time required to run Perm1k and APerm10k, we ran 10 simulations 
rather than 100 to compare the three permutation approaches. Perm1k-BH had lower 
sensitivity than the other two permutation approaches in scenarios with low detection power 
and it also had a higher FDR (Fig. S4). BPerm1k and APerm10k had similar performance, 
indicating 1000 permutations were sufficient to obtain an accurate approximation of the 
p-value null distribution tail. We therefore used BPerm1k-BH as a representative of 
permutation approaches to compare with other multiple testing correction methods. 
 
Amongst the hierarchical correction methods with BH as global correction, BY adjustment of 
multiple SNPs (BY-BH) had the most conservative FDR among all methods, more so than 
Bonferroni-BH due to BY’s heavier correction for the lowest p-values; however, this came at 
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the expense of lower sensitivity (Fig. 2). Besides BY-BH, other methods did not show a 
notable difference in sensitivity. Perhaps surprisingly, Bonferroni-BH maintained a 
comparable sensitivity to other methods while having an FDR well below 0.05. In terms of 
calibration, eigenMT-BH had an FDR closest to 0.05 and was relatively stable with respect to 
sample size, whereas other methods showed an inverse relationship between FDR and sample 
size. In the Discussion, we explore the trade-offs of FDR calibration versus minimization for 
a given power. Below, we utilise the eigenMT-BH procedure to illustrate the ramification of 
our findings for eQTL study design, while also noting that design differences between 
Bonferroni-BH and eigenMT-BH would be minor. 
 
Across all effect sizes and using the eigenMT-BH procedure (Fig. 2), it was apparent that (i) 
eSNPs with ≤0.5% MAF and ≤1% MAF that were detected with <1000 and <500 samples, 
respectively, were likely to be false discoveries, (ii) for studies with 100 samples, a MAF 
threshold of 10% is necessary to control FDR at ≤5% irrespective of hierarchical multiple 
testing procedure. In varying the eSNP effect size (0.25, 0.5, 1.0, or 1.5 s.d. gene expression 
per allele), we found that sample sizes up to 200 (quite common in the eQTL literature) only 
reached 80% power for eQTLs of ≥5% MAF and effect size 1.5 s.d. per allele or for eQTLs 
of MAF 50% and effect size of approximately ≥0.6 s.d. per allele (Fig. 3). The maximum 
sample size of 5,000 in our simulations still did not reach 80% power to detect eQTLs with 
effect size of 0.25 s.d. per allele and 5% MAF. When sample sizes were >1,000 and 
MAF >10%, eQTLs with effect size of 0.25 s.d. per allele could be detected at power 80%. 
Studies of 100 samples were underpowered unless eQTLs were moderately common (at least 
~25% MAF) and of large effect size (≥1.0 s.d. per allele).  
 

Identification of the simulated causal eSNP 
When hierarchical multiple testing correction procedures had calibrated FDR for eGenes, we 
observed multiple significant eSNPs at each true positive eGene (Fig. S5) despite simulating 
only one causal eSNP for each true eGene, as would be expected given LD. The number of 
SNPs significantly associated with a true eGene increased with both sample size and true 
eSNP MAF, with >1,000 significant eSNPs identified per eGene on average in the scenario 
with the largest sample size (N=5,000), true eSNP MAF (50%), and eQTL effect size (1.5 s.d. 
per allele) (Fig. S5).  
 
Many studies focus on the eSNP with the strongest association (lowest p-value) with each 
eGene (top eSNP) when performing downstream analyses, such as enrichment analysis or 
effect size estimation14,16. In our simulations, we found that while the power to detect the 
presence of an eQTL increased with increasing MAF, the probability that the true causal 
eSNP was the top eSNP declined (Fig. 4A). However, holding MAF constant and increasing 
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study power (increasing sample size and effect size) resulted in increasing probability to 
detect the true causal eSNP (Fig. 4A). In scenarios with at least 1% power to detect an eQTL, 
top eSNPs with MAF 0.5% were nearly always the true causal eSNP. Given the critical role 
of LD in fine-mapping, we confirmed our observations were due to a positive relationship 
between an eSNPs' MAF and the amount of local LD (Fig. 4B). For top eSNPs that were not 
true causal eSNPs, 83% were in high LD (r2 ≥0.8) with the true causal eSNPs (Fig. S6). 
Overall, for studies with 80% power to detect a given eQTL of MAF ≤25%, the top eSNP 
was the true causal eSNP 90% of the time. 
 

Winner’s Curse in eQTL effect size estimation 
To systematically evaluate the effect of Winner’s Curse in eQTL studies, we compared beta 
coefficients obtained from the Matrix eQTL linear regression models for the top eSNP of 
each true positive eGene (the “naïve estimator”) to their simulated true effect sizes. We 
observed that median error of the naïve estimator increased as study power decreased, as 
expected, and also that the naïve estimator consistently overestimated the true effect size with 
overestimation increasing as power to detect an eQTL decreased (Fig. 5, Fig. S7).  
 
To address this, we investigated various methods for re-estimating effect sizes. Methods have 
been proposed to correct for Winner’s Curse in GWAS28,29, but to our knowledge, no method 
has yet been designed for bias correction in eQTL studies. We adapted a bootstrap 
resampling method37 for eQTL studies and compared three bootstrap estimators (a shrinkage 
estimator, an out-of-sample estimator, and a weighted estimator, see Methods) to determine 
the best approach for adjusting for Winner’s Curse. All three bootstrap estimators had more 
accurate effect size estimates (smaller mean squared error and median error closer to 0) than 
the naïve estimator when power of eQTL detection was low to moderate (Fig. 5B, Fig. S8). 
Amongst the three bootstrap estimators, the shrinkage estimator was closest to the true effect 
size overall and across all study powers. In scenarios with high power for eQTL detection, 
Winner’s Curse was not apparent, and the bootstrap shrinkage estimator and naïve estimator 
had similar estimates (Fig. S9). The bootstrap method for eQTL studies is freely available at 
https://github.com/InouyeLab/BootstrapQTL.  
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Discussion 
In this study, we have utilized extensive, realistic simulations of eQTL data to investigate 
fundamental questions in eQTL study design relating to power, FDR and effect size 
estimation. The most commonly used MAF cut-offs in recent eQTL studies are 1% or 5% 
(Table S1). For instance, GTEx restricted the association tests to SNPs with minor allele 
count ≥10 in the tissue analysed, the corresponding MAF being 7% and 1.4%, in the 
minimum (70) and the maximum (361) sample size, respectively16. In our simulations, we 
found that eQTLs with a small MAF identified in low sample sizes were highly likely to be 
false positives, regardless of which multiple testing correction strategy was used (Fig. 2). 
Based on above, when 100, 200, and 500 samples are available (typical in eQTL studies), we 
recommend a MAF cut-off at 10%, 5% and 1%, respectively. Many studies listed in Table 
S1 had a lower MAF cut-off than recommended. Detecting rare eQTLs with MAF 0.5% is 
possible in ≥2000 samples, but even 5,000 samples cannot provide sufficient power unless 
the eQTL effect size is extremely high: 1.5 s.d. gene expression per allele dosage (Fig. 2, Fig. 
3).   
 
Recent eQTL studies have used pooled FDR methods to correct for multiple testing38,39,40. 
Here, we show that pooled methods are inappropriate for eQTL studies, as they give inflated 
(sometimes substantially) FDR which worsen as sample size or eSNP MAF increases. This 
suggests that many eQTLs identified in these studies may be false positives. Hierarchical 
multiple testing correction procedures had substantially better calibrated FDR. A hierarchical 
approach of permutation as local correction method followed by ST global adjustment is 
commonly used in eQTL studies (e.g. by GTEx16). When permutation was used as a local 
correction method, ST often had FDR slightly higher than the desired level in our simulations, 
while use of BH instead would have better calibrated FDR. Notably, ST and BH adjustment 
of multiple genes after correction for multiple local SNPs at each gene using other methods 
except permutation tests had identical results, therefore we recommend using BH to adjust 
across genes rather than ST. 
 
Most hierarchical procedures had nearly identical sensitivity when BH was used to correct for 
multiple testing across genes, thus FDR was a differentiating factor. Here, when studies were 
appropriately powered, eigenMT-BH was the most closely calibrated approach for 
controlling FDR at 5%, and it had the least variable FDR across different sample sizes. On 
the other hand, Bonferroni-BH had the smallest FDR with negligibly lower sensitivity. The 
trade-offs between the use of Bonferroni-BH versus eigenMT-BH are best considered in the 
context of the specific study. Statistically, calibration is perhaps the deciding factor; if the 
analysis is intended to guide time-consuming experimental follow-up of specific eQTLs then 
it may be preferable to minimise FDR for a given detection power.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/209171doi: bioRxiv preprint 

https://doi.org/10.1101/209171
http://creativecommons.org/licenses/by/4.0/


	 10	

 
After eGene detection, identification of the causal eSNP among the significant eSNPs with 
high LD remains a challenge. Interestingly, we found that the simulated causal eSNP was the 
most significant eSNP approximately 90% of the time. When the causal variant was not the 
top variant, ~80% of the time the causal eSNP was in high LD (r2 ≥0.8). However, our 
simulations were simplified to assume that each eGene was regulated by only one casual 
eSNP, despite observations that gene expression can also be affected by multiple independent 
genetic variants. 41.2% of protein-coding genes across all 44 tissues showed multiple 
independent cis-eQTLs from the GTEx V6p release16. Similarly, a separate study found 26.8% 
of gene probes had multiple independent eSNPs41.  
 
Winner’s Curse in eQTL effect size estimation must be taken into account when comparing 
effect sizes from different tissue types or conditions, estimating replication sample size, or 
constructing predictive models. For example, a recent study compared cis-eQTL effects 
between blood samples (N=1,240 samples) and four other tissues (N<85 samples), 
identifying >2,000 probes with cis-eQTL associations that were tissue-dependent, and nearly 
half were with the same eSNP but with a different effect size41. This may be an artefact of 
Winner’s Curse. To address eQTL effect over-estimation, we have presented a bootstrap 
method and tool for re-estimation which should enable more accurate eQTL comparisons as 
well as predictive genetic models for gene expression for less accessible tissues, cell types, 
conditions or other situations where power is limited.  
 
The investigation of the genetic component of transcriptional variation has become an 
essential part of linking genotype to phenotype42. Despite the increasing scale of eQTL 
studies (e.g. 5,257 samples in Yao et al.6, and 2,116 in Zhernakova et al.14), fundamental 
questions about study design and analysis strategies have remained unanswered. Here, we 
have investigated the sensitivity and FDR of diverse multiple testing strategies, the factors 
contributing the identification of the causal eSNP, and the correction of eQTL effect size 
overestimation using a simple tool, BootstrapQTL. The insights from our simulation study 
are likely not limited to eQTL analysis, and may extend to other studies of genome-related 
quantitative traits, such as chromatin accessibility, methylation and other epigenetic traits.  
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Methods 

Simulating genotypes and selecting eQTLs 
Genotype data were simulated using HAPGEN231 based on the FIN haplotypes of 
chromosome 22 from the 1000 Genomes Project data (phase3, GRCh37)32. The simulated 
genotypes had similar LD patterns with the reference data. Six sets of genotype data were 
generated at varying sample sizes: 100, 200, 500, 1000, 2000, and 5000 individuals. After 
filtering out SNPs with MAF less than 0.5% or Hardy-Weinberg Equilibrium (HWE) p-value 
less than 5×10-6, approximately 150 thousand SNPs remained in each data set.  
 
We explored six different eSNP MAFs (0.5%, 1%, 5%, 10%, 25%, 50%) in each of the six 
genotype datasets, resulting in 36 scenarios in total. In each scenario, 200 SNPs at the 
scenario MAF were randomly chosen as true causal eSNPs, each regulating the expression of 
a randomly selected cis gene (within ±1 Mb from transcription start site of the gene). These 
200 causal eSNPs were selected from an LD pruned subset where the pairwise r2 was ≤0.3. 
 

Simulating gene expression 
To get a distribution of cis-eQTL effect sizes, we first performed eQTL mapping in 
DILGOM datase33,34 using additive linear model with covariates that accounted for gender, 
age, and population structure. Expression data were further scaled to make each gene’s 
expression across samples follow a standard normal distribution. To avoid an inflated number 
of associations due to LD structure among variants, we kept only the best association with the 
minimum nominal p-value for each gene. As shown in simulation results, only eQTLs with 
large effect sizes could be identified given a limited sample size. To reduce the bias caused 
by limited power, we included all genes to obtain the effect size distribution and fit it with a 
gamma distribution, from which we randomly selected true effect sizes.  
 
In each scenario, 200 genes out of 618 genes on chromosome 22 were designated as “true 
eGenes” regulated by a causal eSNP each and the resting 418 as “null genes” with no truly 
associated eSNPs. The 200 true associations were modelled by a simple linear regression: 
 

yi = βgi + εi with εi ~ N(0, 1), 
 
where yi denoted the expression level of an eGene for individual i, β the genetic effect size of 
the corresponding eSNP, gi the minor allele dosage of the eSNP coded as 0, 1 or 2, and εi the 
error variance for the ith individual, which followed the standard normal distribution. For 418 
null genes, no genetic effects were simulated (β = 0) and the simulated expression was 
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normally distributed. True eGenes effect sizes were randomly drawn from a gamma 
distribution derived from a real dataset as described above.  
 

Mapping eQTLs and correcting for multiple testing 
For cis-eQTL analysis, we used Matrix eQTL (version 2.1.1)35 to fit linear regression models 
between each gene and the minor allele dosage of all SNPs located within 1 Mb of their 
transcription start site. To adjust for multiple tests, we applied either (1) a correction method 
to all hypotheses (pooled method), or (2) a hierarchical correction procedure, where two 
methods were used in combination to correct for multiple SNPs tested for each gene and 
multiple genes separately.  
 

Pooled multiple testing correction was performed using either Bonferroni correction or FDR-
controlling procedures applied to all SNP–gene hypothesis tests. Bonferroni correction 
(pooled Bonferroni), Benjamini-Hochberg17 (pooled BH), and Benjamini-Yekutieli18 (pooled 
BY) FDR procedures were performed using “p.adjust” function in R (version 3.1.3)43, and 
Storey-Tibshirani19 (pooled ST) procedure was performed by the R package “qvalue” 
(version 1.43.0)44. 
 
A three-step procedure was employed to perform hierarchical multiple testing correction. In 
Step 1, p-values of all cis-SNPs were adjusted for multiple testing for each gene separately 
(locally adjusted p-value). In Step 2, the minimum adjusted p-value from Step 1 was taken 
for each gene, then these adjusted p-values were further adjusted for multiple testing across 
all genes (globally adjusted p-value). Finally, in Step 3, significant eSNPs were identified for 
each significant eGene as SNPs with a locally adjusted p-value from Step 1 < the locally 
adjusted minimum p-value corresponding to the globally adjusted p-value threshold of 0.05.  
 
Hierarchical multiple testing correction was performed using different combinations of 
multiple testing correction methods in Step 1 and Step 2 described above. In Step 1, we 
applied FDR procedures (ST, BH, or BY), Bonferroni, eigenMT22, or permutation 
approaches to correct for multiple local SNPs tested for each gene. In Step 2, we applied 
three FDR-controlling procedures, or Bonferroni correction to control the rate of false 
positive eGenes. Note that eigenMT and permutation approaches are used hierarchically by 
design.  
 
When Bonferroni was used as a local correction method, the adjusted p-value was calculated 
by multiplying each linear model p-value by the number of SNPs in the corresponding 1Mb 
cis window for the tested gene. When using eigenMT, the linear model p-value was 
multiplied by the number of effective independent tests estimated from the genotype 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/209171doi: bioRxiv preprint 

https://doi.org/10.1101/209171
http://creativecommons.org/licenses/by/4.0/


	 13	

correlation matrix by eigenMT (in python 2.7.3)22. Permutations were performed by shuffling 
sample labels of expression data. For each gene, minimum nominal p-values from all 
permutation tests were kept to obtain the null distribution. Permutation p-values were 
calculated as the proportion of permutations showing more significant minimum p-value than 
the observed nominal p-value. The null distribution used to calculate permutation p-values 
was either (1) the exact distribution from permutations (exact permutation scheme), or (2) a 
beta distribution approximation of the null distribution tail, which is implemented in FastQTL 
(version 2.0)20. When using FastQTL, we performed either a fixed number of permutations 
(1,000), or under an adaptive scheme, a number ranging from 100 to 10,000 permutations 
determined via iterative estimates of gene significance throughout the permutation procedure.  
 

Correcting for Winner’s Curse 
To evaluate and correct the effect of the Winner’s Curse, we considered the effect size 
estimates of the SNP with the minimum p-value (top eSNP) for each eGene. We use 𝛽#(%) to 
denote the “naïve estimator”: the beta coefficient obtained from the linear regression of each 
eGene on its top eSNP.  
 
We adjusted a bootstrap method37 to re-estimate eQTL effect sizes of significant eGenes 
determined by a hierarchical correction procedure (Bonferroni-BH by default; eigenMT-BH 
is also recommended). This approach consists of a repeated bootstrap analysis, in which 
random samples are drawn with replacement from the study dataset to partition the study 
samples into two groups: a bootstrap detection group of identical size to the original dataset 
comprising samples randomly selected with replacement, and a bootstrap estimation group 
comprising the remainder of the study samples. Due to the sampling with replacement, the 
bootstrap detection group typically comprised 63.2% of the study samples while the bootstrap 
estimation group comprised the other 36.8% of samples. The effect size is then estimated 
separately in the bootstrap detection and estimation groups for each eGenes and its top eSNP 
based on the original dataset.  
 
After performing this bootstrap procedure with 200 bootstraps, three bootstrap estimators 
were calculated and compared for eGene effect size re-estimation: 
 
a shrinkage estimator: 

𝛽#(%) −
1
𝐵(%)

(𝛽*(%)+ − 𝛽,(%)+)

-(.)

+/0

 

an out-of-sample estimator: 
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1
𝐵(%)

𝛽,(%)+

-(.)

+/0

 

and a weighted estimator: 

1 − 𝜔 𝛽#(%) + 𝜔
1
𝐵(%)

𝛽,(%)+

-(.)

+/0

 

 
Where 𝛽*(%)+ denotes the effect size of eGene e in each bootstrap detection group i, 𝛽,(%)+ 
denotes the effect size of eGene e in each bootstrap estimation group i, and 𝐵(%) denotes the 
number of bootstraps in which the association between the eGene e and its top eSNP was 
significant in the bootstrap detection group (thus 𝐵(%)  ≤200). An association between an 
eGene and its top eSNP was considered significant in the bootstrap detection group if its 
locally adjusted p-value (corrected for multiple cis-SNPs within 1Mb of the respective eGene 
using e.g. eigenMT or Bonferroni) was smaller than the locally adjusted p-value 
corresponding to the 0.05 threshold after global adjustment (e.g. BH) in the eGene detection 
analysis prior to performing the bootstrap procedure. For the weighted estimator, the weight 
w was 0.632, i.e. the proportion of unique samples in the bootstrap detection group.   
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Main Figures: 
 

 

Figure 1. Flowchart our eQTL simulation study.  
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Figure 2. False discovery rate (FDR) and sensitivity of selected hierarchical multiple 
testing correction methods. Comparison of the FDR (A) and sensitivity (B) of six methods 
(different colours) for controlling multiple testing of SNPs at each gene (local correction), 
with Benjamini-Hochberg (BH) used to control for multiple testing across all genes (global 
correction). The six methods compared were Storey-Tibshirani (ST), Benjamini-Hochberg 
(BH), Benjamini-Yekutieli (BY), Bonferroni correction, eigenMT, and permutation tests 
based on beta approximation (BPerm1k). Comparison of all combinations of multiple testing 
correction methods for hierarchical correction are shown in Fig. S2 and Fig. S3. Application 
of BH in the global correction step had the best sensitivity for all methods used in the local 
correction step of any hierarchical correction procedures. Each dot represents one scenario 
and plots show different minor allele frequencies (MAFs) of the simulated causal eSNPs. The 
dashed horizontal line indicates the desired FDR level of 5%. Scenarios where no significant 
eGenes were identified are not shown in panel A.  
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Figure 3. Power and eQTL effect size. A constant genetic effect size (0.25, 0.5, 1.0, or, 1.5 
s.d. gene expression per allele) was simulated in each scenario. Plots represents different 
minor allele frequencies (MAFs) of the simulated true eSNPs. Sample size increases from left 
to right on x-axes. The estimated statistical power for eGene detection from 100 simulations 
is shown on y-axes. A hierarchical correction procedure using eigenMT for local correction 
and BH for global correction (eigenMT-BH) was used to correct for multiple testing. The 
dashed horizontal line indicates sufficient statistical power (0.8).  
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Figure 4. Identification of true causal eSNPs. In each scenario, the 200 causal eSNPs have 
the same effect size in addition to minor allele frequency (MAF). For significant true eGenes, 
the proportion of top eSNPs (minimum p-value) that were true causal eSNPs is shown (y-
axes) for either (A) the power to detect eQTLs of the scenario, or (B) the amount of linkage 
disequilibrium (LD) for true causal eSNPs, i.e. the average number of SNPs within 1Mb and 
in moderate LD (r2 ≥0.5) with the causal eSNP. Scenarios are coloured according to true 
eSNP minor allele frequency (MAF). Only scenarios with power ≥0.01 are shown. A 
hierarchical correction procedure using eigenMT for local correction and BH for global 
correction (eigenMT-BH) was used to identify true positive eGenes.  
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Figure 5. Winner’s Curse in eQTL effect size estimation and correction by bootstrap 
method. (A) shows the phenomenon of Winner’s Curse by three examples: scenarios where 
the sample size is 200 and the minor allele frequencies (MAFs) of causal eSNPs are 5%, 10%, 
and 25%. Each dot represents one true positive eGene from ten simulations of the scenario. 
Plots compare the estimated effect size (y-axes) of the top SNP of each true positive eGene to 
the true effect size (x-axes) of the simulated causal eSNP. Red points show the naïve 
estimator (beta coefficient from liner regression) and blue points show the bootstrap 
shrinkage estimator, which was the best estimator (see panels B). Red (or blue) lines are 
linear regression fit of the naïve estimator (or the bootstrap estimator) on the simulated effect 
size for the true positive eGenes. Black dashed lines in panel A indicate where the estimated 
effect size equals to the true value. (B) shows the median error (difference between estimated 
and true effect size) for all estimators across 10 simulations of scenarios where a constant 
true effect size (0.25, 0.5, 1, or, 1.5 s.d. gene expression per allele) was simulated. A 
hierarchical correction procedure using eigenMT for local correction and BH for global 
correction (eigenMT-BH) was used to correct for multiple testing. 
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