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Abstract

Motivation: Long non-coding RNAs(lncRNAs)
can act as competing endogenous RNAs(ceRNAs);
they indirectly regulate mRNAs expression levels
by reducing the amount of microRNAs(miRNAs)
available to target mRNAs. Previous work identified
potential lncRNA-mediated ceRNA interactions in
multiple cancer types including breast cancer. These
ceRNA interactions have not been yet characterized
for breast cancer subtypes.
Results:. To find lncRNA-mediated ceRNA interac-
tions in molecular subtypes of breast cancer, we use
partial correlation analysis and kernel independence
tests on patient gene expression profiles and further
refine the candidate interactions with miRNA target
information. We find that although there are sponges
common to multiple subtypes, there are also distinct
ceRNA regulatory interactions specific to certain
subtypes. Furthermore, we show that functional en-
richment of mRNAs involved in ceRNA interactions
proposed roles of different biological processes for
different subtypes. Interestingly, spatially proximal
ceRNA interaction analysis suggested a tight regu-
lation of HOX genes by HOTAIR using miR-196a-1
and miR-196a-2. We also discover subtype specific
ceRNA interactions with high prognostic potential.
When grouped based on the expression patterns of
these sponge interactions, patients differ significantly
in their survival distributions while patients groups

based on individual RNA expression profiles of
the sponge participants, the groups do not yield a
significant difference in survival.
Contact: oznur.tastan@cs.bilkent.edu.tr

1 Introduction

Advances in sequencing technologies have revealed
that there are large number of RNAs that do not
encode for proteins [11]. One class of non-coding
RNAs(ncRNAs) are microRNAs(miRNAs) that re-
press gene expression by preferentially binding the
complementary sequence of their target mRNAs and
triggering translation repression or degradation[2].
MiRNAs play crucial roles in regulating gene ex-
pression programs in the normal cell and their aber-
rant expression contribute to pathogenesis in sev-
eral diseases, including cancer. To date a large
number of miRNAs have been shown to be asso-
ciated with cancer progression, drug resistance or
metastasis[26, 6, 47, 37, 32].

Another major class of non-coding RNAs are long
non-coding RNAs(lncRNAs) that are longer than 200
nucleotides. Although a small number of lncRNAs
are functionally characterized so far, accumulating
evidence suggests that they are involved in regulation
of diverse cellular and pathological processes[45, 36].
Recent work has provided evidence for an emerging
role of lncRNAs; by acting as competitive endogenous

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/209015doi: bioRxiv preprint 

https://doi.org/10.1101/209015
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNAs(ceRNA), lncRNAs can reduce the amount of
miRNAs available for the target mRNA; in this way,
they indirectly prevent the target gene repression[7,
14]. As cancer is characterized by aberrant expression
of transcripts, dysregulation of these type of RNA-
RNA interactions contributes to cancer[20].

lncRNA-associated ceRNA interactions have
been investigated in gastric cancer[49], glioblas-
toma multiforme[8], pancreatic cancer[50], ovarian
cancer[53] and in breast cancer[34]. However, sub-
type specific lncRNA-mediated ceRNA networks in
breast cancer subtypes have not been characterized
with functional and prognostic potential. Breast
cancer is the second leading cause of cancer deaths
among women[41] and its subtypes differ significantly
in their molecular profiles and response to ther-
apy. Because miRNAs exhibit different molecular
activity patterns in breast cancer subtypes[23, 5],
it is expected that there will be subtype specific
lncRNA-mediated ceRNA interactions as well. Iden-
tifying these miRNA sponges can both shed light
on the uncharacterized mechanisms of the breast
cancer subtypes and potentially help in making
better therapeutic decisions. In this work, we use
an integrative approach to identify subtype spe-
cific lncRNA-miRNA-mRNA interactions in which
lncRNAs compete for binding to shared miRNAs in
breast cancer.

To identify subtype specific lncRNA-mediated
ceRNA interactions, we develop and integrative
methodology and systemically analyze lncRNA,
miRNA and mRNA expression profiles of breast
cancer patients made available through the Can-
cer Genome Atlas Project(TCGA)[33]. We identify
statistically related lncRNA-miRNA-mRNA interac-
tions through correlation and partial correlation anal-
ysis as in Paci et al.[34] and further refine these can-
didate interactions using a kernel-based conditional
independence test (KCI)[52]. KCI, which does not
assume any parametric form on the random variables
tested, is used for the first time in finding regulatory
interactions. The potential candidate interactions are
further filtered in the light of available evidence re-
garding the miRNA-target interactions. We investi-
gate the functional enrichment of mRNAs that par-
ticipate in sponges, the genomic spatial organization

and finally, through survival analysis of patients, we
discover lncRNA-mediated ceRNA interactions with
prognostic value.

2 Methods

2.1 Data Collection and Processing

2.1.1 lncRNA curation

As lncRNAs are not annotated in TCGA, we curated
a list of lncRNAs using GENCODE v24 [17]. Based
on Gencode24 annotation, 598 of the RNAs present
in RNASeq expression data are designated as lncR-
NAs. To minimize erroneous annotations, we fur-
ther checked each lncRNA’s coding potential with
alignment-free method Coding-Potential Assessment
Tool(CPAT) [46] and alignment-based method Cod-
ing Potential Calculator(CPC) [22]. LncRNAs whose
all transcripts are predicted to have high coding po-
tential by both tools are eliminated. The number of
lncRNAs that are predicted to have high coding po-
tential by each tool are provided in Figure S1 (Supp.
File1).

2.1.2 Expression data processing

Level 3 IlluminaHiSeq RNA-seq gene expression and
miRNA expression data for human breast cancer were
collected from The Cancer Genome Atlas [33] on Au-
gust 9th 2014 and patient survival data was obtained
from the UCSC Cancer Genomics Browser on June
31st 2016. Only the patient data that concurrently
include mRNA, lncRNA and miRNA expression data
were used. Patients were divided into subtypes based
on information in TCGA defined by PAM50 method.
The four subtypes used are Luminal A, Luminal B,
Basal, HER2. The number of patients in each sub-
type is provided in Table S1 (Supp. File1).

In expression data, Reads Per Kilobase Million
Reads(RPKM) values were used. To eliminate the
genes and miRNAs with very low expression, we as-
sumed that RKPM values below than 0.05 is missing
and filtered out RNAs that are missing in more than
20 of the samples in each subtype. Expression val-
ues were added with a constant 0.25 to deal with the
0 gene expression values and are log 2 transformed.
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RNAs that do not vary across samples were filtered.
We eliminated the genes with median absolute devi-
ation (MAD) below than 0.5. MAD is calculated as
follows:

MAD (r) = median (|ri −median(r)|) (1)

,where ri denotes the RNA expression in sample i
for RNA r and r denotes the vector that contains
expression values for all samples for RNA r.

2.2 Statistical Analysis for Finding
lncRNA Mediated ceRNA Inter-
actions

To identify ceRNA interactions between lncRNA-
miRNA-mRNA, we performed correlation analysis
and kernel-based conditional independence test on
expression data. Below, X random variable denotes a
lncRNA, Y denotes an mRNA and finally Z denotes
a miRNA.

2.2.1 Correlation and Partial Correlation
Analysis

For a given ceRNA interaction, we expect expression
values of the lncRNA and mRNA to be positively
correlated and if this correlation relies on miRNA ex-
pression, the correlation between mRNA and lncRNA
should weaken when miRNA expression is taken into
account. To quantify this, first Spearman rank order
correlation was calculated between lncRNA and mR-
NAs, which we denote with ρlncRNA,mRNA. Next, we
calculated the Spearman partial rank order correla-
tion between lncRNA and mRNA, this time control-
ling for miRNA expression, ρlncRNA,mRNA|miRNA, as
follows:

ρX,Y |Z =
ρX,Y − ρX,Z ρY,Z√
1− ρ2

X,Z

√
1− ρ2

Y,Z

(2)

The difference between the correlation and the par-
tial correlation for a miRNA measures the extend the
miRNA Z is effective in the statistical correlation of
X and Y , this value is calculated:

SZ = ρX,Y − ρX,Y |Z (3)

As we look for strongly positively correlated
lncRNA and mRNA pairs, only those with correla-
tion ρX,Y > 0.5 (p-value < 0.05) were considered.
Among those, RNA triplets where SZ is larger than
a threshold value, t, were retained. We conducted
our analysis at two different thresholds t = 0.2 and
t = 0.3.

2.2.2 Kernel Based Conditional Indepen-
dence Test

To find lncRNA interactions we also test directly
for conditional independence. In a ceRNA inter-
action, if the interaction of a particular pair of
lncRNA (X) and mRNA(Y) were through a shared
miRNA (Z), we would expect that lncRNA and
mRNA expressions to be conditionally independent
given the miRNA expression level. Conditional in-
dependence is denoted by X ⊥⊥ Y | Z. Formally,
X and Y are conditionally independent given Z if
and only if the P (X | Y, Z) = P (X | Z) (or equiv-
alently P (Y | X,Z) = P (Y | Z) or P (X,Y | Z) =
P (X | Z)P (Y | Z) ). That is if X and Y are
conditionally independent given Z, further knowing
the values of X (or Y ) does not provide any ad-
ditional evidence about Y (or X ). There are con-
ditional independence tests available for continuous
random variables[44, 18, 42, 52]. In our work we
employ, kernel-based conditional independence (KCI)
test proposed by Zhang et al.[52] as it does not
make any distributional assumptions on the variables
tested. Furthermore, KCI-test does not require ex-
plicit estimation of the joint or conditional probabil-
ity densities and avoids discretization of the contin-
uous random variables, both of which require large
sample sizes for an accurate test performance. Below
we describe the KCI-test briefly, details of which can
be found in [52].

KCI-test defines a test statistic which is calcu-
lated from the kernel matrices associated with X, Y
and Z random variables. A kernel function takes
as its inputs vectors in the original space and re-
turns the dot product of the input vectors in a trans-
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formed feature space, k : X × X → R. The fea-
ture transformation is denoted by Φ : X → H[39],
k(xi,xj) = 〈Φ(xi) · Φ(xj)〉. In this work we use the

Gaussian kernel, k (xi,xj) = exp(−‖xi−xj‖2
2σ2

x
), where

σ > 0 is the kernel width. CI and KCI are based on
kernel matrix of X, Y and Z, which are calculated by
evaluating the kernel function for all pairs of samples,
i.e. the (i,j)th entry of KX is k(xi,xj). The corre-

sponding centralized kernel matrix is K̃X
∆
= HKXH

where H = I− 1
n11

T where I is the n×n identity ma-

trix and 1 is a vector 1's. K̃Y and K̃Z are similarly
calculated for Y and Z variables.

Given the i.i.d. samples x
∆
= (x1, x2, . . . , xn) and

y
∆
= (y1, y2, . . . , yn) , the unconditional kernel test

first calculates the centralized kernel matrices, K̃X

and K̃Y from the samples x and y and then eigen-
values of the centralized matrices. The eigenvalue de-
compositions of centralized kernel matrices K̃X and
K̃Y are K̃X = VxΛxV

T
x and K̃Y = VyΛyV

T
y . Here

Λx and Λy are the diagonal matrices containing the
non-negative eigenvalues λx,i and λy,i in descending
order, respectively. Vx and Vy matrices contain the
corresponding eigenvectors. Zhang et al. [52] shows
that under the null hypothesis that X and Y are in-
dependent, the following test statistic:

TUI
∆
=

1

n
Tr(K̃XK̃Y ) (4)

has the same asymptotic distribution (n→∞) as

T̃UI
∆
=

1

n2

n∑
i,j=1

λx,iλy,iz
2
i,j , (5)

Here zi,j are i.i.d. standard Gausian variables, thus
z2
i,j are i.i.d χ2

1 - distributed. The unconditional inde-
pendence test procedure involves calculating TUI ac-
cording to Eq (4). Empirical null distribution of T̃UI
is simulated by drawing i.i.d random samples for z2

i,j

variable from χ̃2. Finally, the p-value is calculated
by locating TUI in the emprical null distribution. We
use this

The kernel conditional independence test also
makes use of the centralized kernel matrices. Under
the null hypothesis that X and Y are conditionally

independent given Z, the following test statistic is
calculated:

T̃CI
∆
=

1

n
Tr(K̃Ẍ |ZK̃Y |Z), (6)

where Ẍ
∆
= (X,Z) and KẌ is the centralized kernel

matrix for Ẍ. As Zhang et al. [52] reports has the
same asymptotic distribution as

T̃CI
∆
=

1

n

n2∑
k=1

λ̊k · z2
k (7)

The details of the definition of λ̊k and z2
k can be found

in [52]. The procedure involves calculating the em-
prical p-value based on the test statistic as defined in
Eq (4) and simulating the null distribution based on
Eq (7).

Using the unconditional kernel independence test,
we first test the null hypothesis that a lncRNA and
mRNA pair is independent against the alternative hy-
pothesis they are dependent. For those pairs where
the null is rejected at significance level 0.01 are con-
sidered. For each of the lncRNA-mRNA pair, we
test their conditional independence with all miRNAs.
A lncRNA and mRNA pair is tested for condition-
ally independence given an miRNA using KCI. Those
pairs that are found to be independent at signifi-
cance level 0.01 are considered as potential lncRNA-
mediated ceRNAs.

2.3 Filtering ceRNAs Based on
miRNA-Target Interactions

To identify interactions that are biologically mean-
ingful, we filtered the potential ceRNA interactions
that were not supported by miRNA target informa-
tion. The miRNA-mRNA and miRNA-lncRNA in-
teractions are retrieved from multiple databases as
listed in Table 1. The candidate sponges are retained
if both mRNA and lncRNA have support for being
targeted by the miRNA of the sponge.
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Table 1: Computationally and experimentally vali-
dated miRNA-target databases used for mRNA and
lncRNA. Plus signs denote databases that are used
for the miRNA interactions of the RNA type. ‘P’ de-
notes predicted target information while ‘E’ denotes
experimentally supported target information.

miRNA-
Target
Databases

mRNA lncRNA P/C Reference

TargetScan + + P [1]
mirCode + + P [19]
mirSVR + + P [3]
PITA + + P [21]
RNA22 + + P [30]
lnCeDB + P [10]
mirWalk + P [12]
mirTarBase + + E [9]
Diana
LncBase

+ E [35]

2.4 Identifying ceRNAs with Prog-
nostic Value

To evaluate the ceRNA interactions in terms of their
prognostic potential, we analyzed the survival of the
patients based on the expression patterns of each
sponge interaction. In a sponge interaction, we ex-
pect the lncRNA and mRNA to be regulated in the
same direction and miRNA to be in the opposite di-
rection. For each ceRNA found in a subtype, the
patients are divided into two groups based on the reg-
ulation patterns of the RNAs that participate in the
ceRNA. For the up-down-up pattern, the first group
comprises patients whose sponge lncRNA and mRNA
are upregulated and miRNA is downregulated; the
second group includes all patients that do not fit in
this pattern. Similarly, we divide the patients based
on the down-up-down pattern: if both lncRNA and
mRNA are downregulated whereas miRNA is unreg-
ulated such patients constitute one group and the rest
of the patients constitute the second group.

For each of the subtype specific ceRNAs identified,
the patient groups are tested whether their survival
rates significantly differ from each other using log-

rank test[16] (p-value < 0.05). We further excluded
ceRNAs if any of the RNAs can by itself divide the
patients into groups that differ in terms of survival
distributions significantly. In each subtype, the pa-
tients are divided as upregulated and downregulated
for each of the RNA participating in the ceRNA in-
teraction separately. If at least one of the molecules
leads to groups with significant survival difference
(log-rank test, (p-value < 0.05)), we disregard this
ceRNA from the list of prognostic ceRNAs. This last
step ensures that the prognostic difference is due to
the interactions between the RNAs and that it does
not stem from expression of the single RNA's expres-
sion patterns.

The identified ceRNA interactions are further di-
vided based on the following f score that reflects the
interaction’s prognostic value with respect to the in-
dividual RNA’s prognostic value:

fxyz = − log
pxyz

min(px, py, pz)
(8)

Here, pxyz is the p-value attained in testing
whether patient survivals differ based on the log-
rank test whereas px, py, pz indicate the p-values
obtained by testing patient survival distribution dif-
ferences due to lncRNA, mRNA, and miRNA expres-
sion patterns, respectively.

In the above analysis, RNAs that have expres-
sion levels above (or below) a certain threshold value
are considered upregulated (or downregulated). This
threshold value is selected among the candidate cut-
off values of expression as the one that results in the
lowest p-value in the log-rank test when patients are
grouped based on this cut-off. The candidate cut-off
values were the 10th and 90th percentiles, mean, me-
dian, the lower and upper quartiles of the expression
values of the patients in each subtype.

2.5 Pathway and GO Enrichment
Analysis

We conducted pathway and GO enrichment of mR-
NAs that participate in subtype specific sponges. En-
richment tests are conducted with clusterProfiler [51]
with Bonferroni multiple hypothesis test correction.
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In deciding enriched pathways and GO terms, a p-
value cutoff of 0.05 and FDR cutoff of 1 × 10-4 are
used. In both pathway and GO enrichment analy-
sis the background genes were the union of mRNAs
that remained after MAD filtering step (Step B in
Figure 1(A)). For pathway enrichment analysis, dif-
ferent pathway data sources were downloaded from
Baderlab GeneSets Collection[28]. List of all path-
ways that were employed in this analysis is provided
in Table S2 ( Supp. File1). Redundant pathways
are eliminated when different sources are combined.
Additionally, a pathway enrichment analysis is con-
ducted with KEGG pathways (downloaded on Febru-
ary 28th 2017).

2.6 Clustering mRNAs

If mRNAs are highly correlated among each other,
we often find that correlated mRNAs participate in
ceRNA interactions with the lncRNA and miRNA
pair. We consider the mRNAs that participate in
a ceRNA interaction with the same pair of lncRNA
and miRNA. If all mRNAs are strongly correlated
among each other, where all the pairwise correlations
are above than 0.7, all mRNAs are assigned into the
same cluster. Otherwise, we apply Ward hierarchi-
cal clustering method to find groups of correlated
mRNAs[48]. We determine optimal number of clus-
ters with Mojena’s stopping rule[31] using Milligan
and Cooper’s[29] correction.

3 Results and Discussion

3.1 Overview of Discovered ceRNA
Interactions

In order to discover subtype specific breast can-
cer ceRNA interactions, we employ the methodology
summarized in Figure 1(A) and identify ceRNAs spe-
cific to four molecular subtypes of breast cancer: Lu-
minal A, Luminal B, HER2 and Basal. The number
of candidate ceRNA interactions that remain after
each main step when in the partial correlation anal-
ysis step S value threshold t = 0.2 is employed, is
provided in Figure 1(B) (see Figure S2(A) in Supp.
File1 for t = 0.3). The total number of ceRNA inter-
actions found in all subtypes is 11.614. Figure 1(C)

Curate lncRNAs in TCGA 
• Subset RNAs in TCGA that are annotated as 

lncRNA based on GENCODE24 
• Remove lncRNAs that are predicted as 

coding by CPC and CPAT 

A 

Process Expression Data 
• Retrieve patient expression data 

• Filter RNAs with missing values 
• log2 transform 

• Filter RNAs with low MAD values 

Partial Correlation Analysis 
• Find highly positively correlated lncRNA-

mRNA pairs 
• Calculate partial correlation of these lncRNA-

pairs controlling for each miRNA separately 

• Calculate the difference of correlation and 
partial correlation (S-value) 

• Retain only triplets with S-value > t

B 

C 

Kernel Conditional Independence Test
• Apply kernel unconditional and conditional 

independence tests to find lncRNA-mRNA-
miRNA triplets where lncRNA and mRNA are 

statistically dependent but are conditionally 

independent given the miRNA 

D 

Integrate with miRNA Target Interaction 
• Retain triplets if there is computational or 

experimental supporting evidence on miRNA 
targeting both the lncRNA and the mRNA

E 

Find Prognostic Sponges 
• Find triplets where the survival distribution of 

patients differ if grouped based on sponge 
expression pattern

F 

5615

Lumi l B

Luminal A

Basal

Her2

A.                                                B.

Figure 1: A)Overview of the methodology, each box
represents a step in the methodology. Steps B-F are
conducted for each breast cancer subtype separately.
B)Number of ceRNAs remained after each main fil-
tering step when t = 0.2 (Step C in Figure 1A).
C)Venn diagram of ceRNA interactions discovered in
each of the breast cancer molecular subtype.

shows the Venn diagram of number of ceRNA inter-
actions discovered for the four subtypes (see Figure
S2(B) in Supp. File1 for t = 0.3).

Although there are sponges that are detected in
multiple subtypes, there are also a large number of
sponges that are only specific to a single subtype (Ta-
ble S3 and Figures S3A and S3B in Supp. File1). The
list of sponges identified in each subtype, their par-
tial correlation analysis, KCI-test results and target
information are provided in Supp. File 2.

We analyze the specificity of the individual RNAs
that participate in each of the subtypes. Figures 2A
and 2B display the number of sponges per lncRNA
and miRNA for t = 0.2 (Figure S3C in Supp. File1
for t = 0.3). Some lncRNAs and miRNAs partic-
ipate in sponges of all the subtypes (Table 2); i.e.
KIAA0125 participates in a large number of sponges
across the four subtypes. KIAA0125 has been re-
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ported to act as an oncogene in bladder cancer related
to cell migration and invasion[27]; however, no func-
tional relevance to breast cancer has been reported to
date. HOTAIR, which is one of the lncRNAs that has
been associated with metastasis[15], is found to par-
ticipate in sponges of all the subtypes except HER2.
Similarly, miRNAs hsa-miR-142, hsa-miR-150, and
hsa-miR-155 participate in ceRNA interactions of all
subtypes.

There are also RNAs that take part in sponges of
exclusively in a single subtype (Table S4 in Supp.
File1). For example, the lncRNA C17orf44 is specific
to HER2 (Figure 2(A)) while hsa-miR-342 is only
found in Basal ceRNA interactions (Figure 2(B)).
Similarly, some RNAs are only regulated in single
subtype (see Supp. File 3 for all the mRNAs in the
interactions and for only the prognostic mRNAs see
Supp. File 4). These subtype specific RNAs are of
great value for understanding the dsyregulated cellu-
lar mechanisms in each subtype.

The lncRNA-mRNA networks for each subtype
where each node denotes a lncRNA or an mRNA
while an edge represents an interaction through a
shared miRNA is shown in Figure S4 (Supp. File1)
and Supp. File 8. The number of nodes and edges
are provided in Table S5 (Supp. File1). In Lumi-
nal A, lncRNA LOC100188949 regulates majority of
the sponge interactions, while C21orf34 also form a
smaller connected component of its own. In Lumi-
nal B, KIAA0125 is at the center of the many in-
teractions while a few other lncRNAs among them
are HOTAIR and C21orf34 mediates a small num-
ber of interactions. Basal and HER2 include a
large number of interactions. In Basal, among oth-
ers HCP5, MIR155HG, MIAT are the hubs of the
network. In HER2 KIAA0125, LOC100188949 and
LOC100233209 are the top 3 largest hubs.

We find that ceRNA interactions often contain the
same lncRNA-miRNA pair but for those interactions
mRNAs vary. As an example, HER2 subtype spe-
cific C14orf72-hsa-miR-150 lncRNA-miRNA pair in-
teracts with 45 different mRNAs, the same is not
true for lncRNA-mRNA pairs. Number of ceRNA
interactions per lncRNA-miRNA pairs are provided
in Figure S5 (Supp. File1). We also analyze the data
by clustering mRNAs that participate in a sponge

Table 2: List of lncRNAs & miRNAs that are found
to participate in sponges of all four subtypes.

miRNA lncRNA
hsa-miR-142 LOC100188949
hsa-miR-196a-1 C5orf58
hsa-miR-127 LOC100233209
hsa-miR-155 HCP5
hsa-miR-150 KIAA0125
hsa-miR-196a-2 C21orf34
hsa-miR-125b-2 MIR155HG

with the same lncRNA-miRNA pair based on mRNA
expression correlation. The view of the identified
sponges in terms of these clusters are provided in
Supp. File 5.

3.2 Spatially Proximal ceRNAs Inter-
actions

Although regulatory interactions can take place be-
tween molecules encoded in different chromosomes,
spatial proximity often hints a tight regulatory co-
ordination. To characterize sponge interactions, we
examine the genomic locations of the RNAs that par-
ticipate in the genome. The sponge interactions for
which the participating RNAs are within 100KB dis-
tance of each other are identified. The most strik-
ing case is the set of sponge interactions that take
place between HOTAIR, hsa-miR-196a miRNAs and
HOXC genes (Figure 3(A)). These sponge interac-
tions are identified in all subtypes except HER2.
Both HOTAIR, has-miR-196a-1, and hsa-miR-196a-2
are all spatially proximal to the HOX gene clusters on
chromosome 12 (Figure 3(B)). HOX genes are highly
conserved transcription factors that take master reg-
ulatory roles in numerous cellular process including
development, apoptosis, receptor signaling, differen-
tiation, motility and angiogenesis. Their aberrant
expression is reported in multiple cancer types [4].
HOXA are reported to have altered expression in
breast and ovarian cancers; other HOX genes are also
associated with other tumor types, including colon,
lung, and prostate cancer. The other lncRNA partner
of this sponge interaction is HOTAIR. Upregulation
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  A.                                                  B.

Figure 2: Number of ceRNA interactions discovered that A) lncRNAs and B) miRNAs take part in each
breast cancer subtype (t = 0.2).

of HOTAIR is associated with metastatic progression
and low survival rates in breast, colon and liver can-
cer patients [14, 20, 27, 49, 8, 53, 41, 43, 25]. The
complete list of sponge interactions whose members
exhibit such spatial proximity at least between two
RNAs in the sponge are provided in Supp. File 6.

3.3 Functional Enrichment Analysis
of mRNAs in ceRNAs

To understand the patterns of pathways related to
identified sponges, we conducted pathway enrichment
of mRNAs that participate in the sponges separately.
The top enriched pathways are found to be common
across subtypes (see S6-S7 Figures, Supp. File1) and
these pathways are mostly related to the immune sys-
tem and signaling pathways, which are known to crit-
ical for breast cancer[13]. Interestingly, interferon al-
pha/beta signaling pathway is among the top path-
ways for Basal subtype (p-value 7.20 × 10−23) while
it is not found enriched in other subtypes (p-value
cut-off 0.05 and FDR cutoff 1× 10−4).

The overlap between the enriched pathways in dif-
ferent subtypes are shown on a Venn diagram (Fig-

ure S8 in Supp. File1). The list of pathways that
are found enriched only in a single subtype are listed
in Table S7 in Supp. File1 with p-value cut-off 0.05
and FDR cutoff 1 × 10−4. Interestingly, PI3K path-
way is found to be enriched specifically in Luminal
A. This is interesting as the most frequently mutated
gene in Luminal A is PIK3CA (45% of the patients
in TCGA) and there are PIK3CA mutations that
are specific to this subtype[33]. Complement cascade
induces cell proliferation which causes carcinogene-
sis including invasion, cell death and metastasis[38],
which are Basal subtype characteristics. We de-
tected C2, C3, C3AR1, C4A, C7 complement genes
in Basal ceRNA interactions. Consequently, comple-
ment cascade pathway may significant for Basal sub-
type. Integrin signaling widely studied in breast can-
cer literature since integrins incorporate breast can-
cer progression[24]. Moreover, integrin have role in
cell migration and tissue invasion. Thus, they drive
tumor cell to metastasis[24]. HER2 subtype specific
enriched pathways contain integrin signaling path-
ways (TableS7 in Supp. File1).
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Figure 3: A) Network of sponge interactions be-
tween HOTAIR, hsa-miR-196a miRNAs and HOXC
genes. The circles denote lncRNAs and triangles de-
note mRNAs. An edge exists between a lncRNA and
an mRNA if there is a sponge interaction between
them; the edge label indicates the miRNA that reg-
ulates the interaction. B) The genomic locations of
the sponge interactions on chromosome 12.

3.4 Prognostic Sponge Interactions

To identify ceRNA interactions with prognostic
value, for each of the identified sponge we checked
whether the sponge expression pattern divides the
patients into groups that differ in their survival prob-
ability. To further verify that this difference is due to
the interaction and not due to an individual RNA
molecule that participates in the sponge, we filter
them further. We only consider interactions where
there is significance difference in survival when pa-
tients are grouped based on ceRNA expression pat-
tern while there is no significance due to a group-
ing based on a single RNA molecules’ expression
pattern. These prognostic ceRNA interactions are
ranked based on f -score (details in 2.4) and are pro-
vided as a list in Supp. File 7 and the network of

interactions are shown in Figure 10 in Supp. File1.
KM plots for the two examples are shown in Figure 4.
The distribution of lncRNAs that participate in the
prognostic sponges are provided in Figure S9 in Supp
File1 and the network of interaction among prognos-
tic sponges are provided in Figure 5 and the Supp.
Cytoscape file in Supp. File 9.

4 Conclusion

In this study, we focus on a specific type of interaction
between lncRNAs, mRNAs and miRNAs. lncRNAs
are known to reduce the relative amount of avail-
able miRNAs to mRNAs by binding to shared miR-
NAs. This way, they serve as sponges for miRNA
by preventing the repression of the target mRNAs.
We characterize these lncRNA-mediated sponge in-
teractions in each breast cancer molecular subtypes.
Our analysis method integrates the statistical anal-
ysis of gene expression profiles of lncRNA, mRNA
and miRNAs of patients and reveals that there are
distinct interactions specific to each subtype that are
also supported by miRNA target information. We
also find that breast cancer patients who possess cer-
tain expression patterns pertaining to certain sponge
RNAs have different survival distributions.
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